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ON THE RATIONALITY PROBLEM FOR FORMS OF MODULI

SPACES OF STABLE MARKED CURVES OF POSITIVE GENUS

MATHIEU FLORENCE, NORBERT HOFFMANN, AND ZINOVY REICHSTEIN

Abstract. Let Mg,n (respectively, Mg,n) be the moduli space of smooth (respectively
stable) curves of genus g with n marked points. Over the field of complex numbers,
it is a classical problem in algebraic geometry to determine whether or not Mg,n (or

equivalently, Mg,n) is a rational variety. Theorems of J. Harris, D. Mumford, D. Eisenbud
and G. Farkas assert that Mg,n is not even unirational for any n > 0 if g > 22. Moreover,
P. Belorousski and A. Logan showed that Mg,n is unirational for only finitely many pairs
(g, n) with g > 1. Finding the precise range of pairs (g, n), where Mg,n is rational, stably
rational or unirational, is a problem of ongoing interest.

In this paper we address the rationality problem for twisted forms of Mg,n defined

over an arbitrary field F of characteristic 6= 2. We show that all F -forms of Mg,n are
stably rational for g = 1 and 3 6 n 6 4, g = 2 and 2 6 n 6 3, g = 3 and 1 6 n 6 14,
g = 4 and 1 6 n 6 9, g = 5 and 1 6 n 6 12.

1. Introduction

Let Mg,n (respectively M g,n) be the moduli space of smooth (respectively stable) curves
of genus g with n marked points. Recall that these moduli spaces are defined over the
prime field (Q in characteristic zero and Fp in characteristic p). The purpose of this paper
is to address the rationality problem for twisted forms of M g,n. Recall that a form of a
scheme X defined over a field F is another scheme Y , also defined over F , such that X
and Y become isomorphic over the separable closure F sep. We will use the terms “form”,
“twisted form” and “F -form” interchangeably. Forms of M g,n are of interest because they
shed light on the arithmetic geometry of M g,n, and because they are coarse moduli spaces
for natural moduli problems in their own right; see [FR17, Remark 2.4].

This paper is a sequel to [FR17], where two of us considered twisted forms of M 0,n.
The main results of [FR17] can be summarized as follows.

Theorem 1.1. Let F be a field of characteristic 6= 2 and n > 5 be an integer. Then

(a) all F -forms of M 0,n are unirational.

(b) If n is odd, all F -forms of M 0,n are rational.

(c) If n is even, then there exist fields E/F and E-forms of M 0,n that are not stably
rational (or even retract rational) over E.
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In the present paper we will study the rationality problem for forms of M g,n in the
case, where g > 1. Here the rationality problem for the usual (split) moduli space M g,n

(or equivalently, for Mg,n) over the field of complex numbers is already highly non-trivial.
Theorems of J. Harris, D. Mumford, D. Eisenbud [HM82, EH87] and G. Farkas [Fa11]
assert that if g > 22, then Mg,0 is not unirational (and hence, neither is Mg,n for any
n > 0). Moreover, work of P. Belorousski [Bel98] (for g = 1) and A. Logan [Lo03]
(for g > 2) tells us that Mg,n is unirational for only finitely many pairs (g, n) with
g > 1. Finding the precise range of pairs (g, n), where Mg,n is rational, stably rational or
unirational, is a problem of ongoing interest. In particular, over C, Mg,n is known to be
rational for 1 6 n 6 rg and not unirational for n > ng, where

g 1 2 3 4 5
rg 10 12 14 15 12
ng 11 - - 16 15

,

see [Lo03] and [CF07]. Surprisingly, we have not been able to find specific values for n2

and n3 in the literature, even though Logan showed that they exist; see [Lo03, Theorem
2.4]. The main result of the present paper is as follows.

Theorem 1.2. Let F be a field of characteristic 6= 2. Then every F -form of Mg,n is
stably rational over F if

g = 1 and 3 6 n 6 4,

g = 2 and 2 6 n 6 3,

g = 3 and 1 6 n 6 14,

g = 4 and 1 6 n 6 9,

g = 5 and 1 6 n 6 12.

Several remarks are in order.

(1) Stable rationality of every form of Mg,n is a priori much stronger than stable ratio-
nality of M g,n itself. For example, M 1,1 ≃ P1 is rational, but its forms are conic curves
which are not unirational in general.

(2) Theorem 1.2 also holds for (g, n) = (1, 2) (respectively, (2, 1)), provided char(F ) = 0
(respectively, char(F ) 6= 2, 3); see Remark 2.7.

(3) By [DR15, Theorem 6.1(b)], every F -form of M1,n is unirational for 3 6 n 6 9.

(4) The situation we encountered in Theorem 1.1(c), where some forms of M 0,n are
stably rational and others are not, does not arise for any of the pairs (g, n) covered by
Theorem 1.2. We do not know if it arises for any pair (g, n) with g > 1 and 2g + n > 5.

A proof of Theorem 1.2 is outlined in Section 3 and completed in Sections 4 and 5.
Our arguments rely on a theorem of B. Fantechi and A. Massarenti [FM14] describing the
automorphism group of M g,n; see Section 2e.

2. Preliminaries

All algebraic groups in this paper will be assumed to be affine, and all algebraic varieties
to be quasi-projective.
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2a. Twisting. Let G be an algebraic group defined over a field F , X be an F -variety
endowed with a (left) G-action, and P → Spec(F ) be a (right) G-torsor. The twisted
variety PX is defined as PX := (P × X)/G, where G acts on P × X by g : (p, x) →
(p · g−1, g ·x). Here P ×X is, in fact, a G-torsor over (P ×X)/G; in particular, P ×X →
(P ×X)/G is a geometric quotient. A G-equivariant morphism of F -varieties f : X → Y
gives rise to a G-equivariant morphism id × f : P × X → P × Y which descends to an
F -morphism Pf : PX →P Y . Similarly a G-equivariant rational map f : X 99K Y of F -
varieties induces a rational map Pf : PX 99K PY . Some basic properties of the twisting
operation are summarized in Lemma 2.1 below; see also [Flo08, Section 2] or [DR15,
Section 3].

Lemma 2.1. Let G be an algebraic group defined over a field F , f : X → Y and f ′ : X ′ →
Y be G-equivariant morphisms of F -varieties, and P → Spec(F ) be a G-torsor.

(a) If f is an open (respectively, closed) immersion, then so is Pf .

(b) If f is a dominant morphism (respectively, an isomorphism or a birational isomor-
phism), then so is Pf .

(c) If f is a vector bundle of rank r, then so is Pf . In particular, PX is rational over
PY .

(d) P (X ×Y X ′) is isomorphic to PX ×PY
P (X ′) over PY .

(e) Moreover, if f and f ′ are vector bundles, then P (X×Y X ′) and PX×PY
P (X ′) are

isomorphic as vector bundles over PY .

(f) If f is a vector bundle of rank r, then the twisted Grassmannian bundle P Gr(m,X) ≃
Gr(m, PX) is rational over PY for any 1 6 m 6 r − 1. In particular, PP(X) ≃ P( PX)
is rational over PY .

Here when we say that f is a vector bundle, we are assuming that G acts on X by
vector bundle automorphisms (and similarly for f ′). That is, for any g ∈ G and y ∈ Y , g
restricts to a linear map between the fibers f−1(y) and f−1(g(y)).

Proof. For a proof of (a) and (b), see [DR15, Corollary 3.4].

(c) The first assertion is a consequence of Hilbert’s Theorem 90. The second assertion
follows from the first, since the vector bundle Pf : PX → PY becomes trivial after passing
to some dense Zariski open subset of PY .

(d) The morphism φ : P × (X ×Y X ′) → (P × X) ×Y (P × X ′) over Y given by
(p, x, x′) 7→

(

(p, x), (p, x′)
)

descends to a morphism φ : P (X ×Y X ′) → PX ×P Y
P (X ′)

over PY . Here the unmarked direct products are assumed to be over Spec(F ). To show
that φ is an isomorphism, we may pass to a splitting field F ′/F for P . Over F ′, the
G-torsor P → Spec(F ) becomes split, i.e., PF ′ ≃ GF ′. Thus over F ′, the morphism
P × X ≃ G × X → X given by (g, x) 7→ g · x is a G-torsor. This yields a natural
isomorphism between PX andX . Identifying P (X ′) withX ′, PY with Y , and P (X×Y X

′)
with X ×Y X ′ in a similar manner, we see that over F ′, φ becomes the identity map
X ×Y X ′ → X ×Y X ′. Hence, φ is an isomorphism over F .

(e) To check that φ is an isomorphism of vector bundles over PY , we may, once again,
pass to a splitting field F ′/F for P . In the proof of part (d), we identified P (X ′) with
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X ′ and P (X ×Y X ′) with X ×Y X ′ after passing to F ′. Now we observe that these
identifications are, in fact, isomorphisms of vector bundles over PY (which we identified
with Y ). Modulo these identifications, φ is the identity map X ×Y X ′ → X ×Y X ′, and
part (e) follows.

(f) The second assertion follows from the first by setting m = 1.
Rationality of Gr(m, PX) over PY follows from the fact that any vector bundle, and

in particular the vector bundle Pf : PX → PY , is locally trivial in the Zariski topology.
To show that P Gr(m,X) is isomorphic to Gr(m, PX) over PY , recall that Gr(m,X)

is the quotient of the dense open subset (Xm)0 of the n-fold fibered product Xm =
X ×Y · · · ×Y X consisting of linearly independent m-tuples by the group GLm (over Y ).
To construct P Gr(m,X), we proceed as follows. First take the quotient of the product
P × (Xm)0 by the action of GLm. This action is trivial on the first factor, so we obtain
P ×Gr(m,X). Now take the quotient of P ×Gr(m,X) by G to arrive at P Gr(m,X).
To construct Gr(m, PX), we also start with P × (Xm)0 and take the quotients by the

same groups, but in reverse order. First we take the quotient of P × (Xm)0 by G to
obtain P ((Xm)0) ≃ (( PX)m)0 (see parts (d) and (e)); the quotient of (( PX)m)0 by GLm

is Gr(m, PX). Since the actions of GLm and G on P ×F (Xm)0 commute, we conclude
that P Gr(m,X) and Gr(m, PX) are isomorphic over PY . �

The F -forms of a varietyX are in a natural bijective correspondence withH1(F,Aut(X)).
Here Aut(X) is a functor which associates to a scheme S/F the abstract group Aut(XS).
In general this functor is not representable by an algebraic group defined over F . If it
is, one usually says that Aut(X) is an algebraic group. In this case the bijective cor-
respondence between H1(F,Aut(X)) (which may be viewed as a set of Aut(X)-torsors
P → Spec(F )) and the set of F -forms of X (up to F -isomorphism) can be described
explicitly as follows. An Aut(X)-torsor P → Spec(F ) corresponds to the twisted variety
PX , and a twisted form Y ofX corresponds to the isomorphism scheme P = IsomF (X, Y ),
which is naturally an Aut(X)-torsor over Spec(F ); see [Se97, Section III.1.3], [Sp98, Sec-
tion 11.3].

2b. Étale algebras. An étale algebra A/F is a commutative F -algebra of the form
F1 × · · · × Fr, where each Fi is a finite separable field extension of F . n-dimensional
étale algebras over F are F -forms of the split étale algebra A = F × · · · × F (n times).
The automorphism group of this split algebra is the symmetric group Sn, permuting
the n factors of F . Thus n-dimensional étale algebras over F are in a natural bijective
correspondence with the Galois cohomology set H1(F, Sn); see, e.g., Examples 2.1 and 3.2
in [Ser03].

2c. Weil restriction. Let A be an étale algebra over F and X → Spec(A) be a variety
defined over A. The Weil restriction (or Weil transfer) of X to F is, by definition, an
F -variety RA/F (X) satisfying

(2.2) MorF (Y,RA/F (X)) ≃ MorA(YA, X),

where YA := Y ×Spec(F ) Spec(A), MorF (Y, Z) denotes the set of F-morphisms Y → Z, and
≃ denotes an isomorphism of functors (in Y ). For generalities on this notion we refer the
reader to [BLR90, Section 7.6]. For a brief summary, see [Ka00, Section 2]. In particular,
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it is shown in [BLR90, Theorem 4] that if X is quasi-projective over A, then RA/F (X)
exists. Note that uniqueness of RA/F (X) follows from (2.2) by Yoneda’s lemma.

The following properties of Weil restriction will be helpful in the sequel.

Lemma 2.3. Let A/F be an étale algebra and X be a (quasi-projective) variety defined
over A.

(a) Let V be a free A-module of finite rank, and X = AA(V ) be the associated affine
space. Then RA/F (X) = AF (V ), where we view V as an F -vector space.

(b) If X and Y are birationally isomorphic over A, then RA/F (X) and RA/F (Y ) are
birationally isomorphic over F .

(c) If X is a rational variety over A, then RA/F (X) is rational over F .

Proof. (a) follows directly from (2.2). For details, see [Ka00, Lemma 1.2].

(b) Since X and Y are birationally isomorphic, there exists a variety U defined over A
and open immersions i : U →֒ X and j : U →֒ Y . After replacing U by an open subvariety,
we may assume that U is quasi-projective (we may even assume that U is affine). Since
Weil restriction commutes with open immersions, i and j induce open immersions of
RA/F (U) into RA/F (X) and RA/F (Y ), respectively, and part (b) follows.

(c) By our assumption, X is birationally isomorphic to Y = Ad over A, where d is the
dimension of X . By part (b), RA/F (X) and RA/F (Y ) are birationally isomorphic over F ,
and by part (a), RA/F (Y ) is an affine space over F . �

In the special case where X is defined over F , the Weil transfer RA/F (XA) can be
explicitly described as follows. The symmetric group Sn acts on the n-fold direct product
Xn by permuting the factors. If P → Spec(F ) is a Sn-torsor, and A/F is the étale algebra
of degree n representing the class of P in H1(F, Sn), then RA/F (XA) =

P (Xn); see, e.g.,
[DR15, Proposition 3.2].

2d. Automorphism of marked curves. We shall need the following well-known result
in the sequel; see, e.g., in [Ha77, Corollary IV.4.7] for g = 1 and [Ha77, Exercise V.1.11]
for g > 2.

Proposition 2.4. Suppose 2g+n > 5. Then Aut(C, p1, . . . , pn) = {1} for a general point
(C, p1, . . . , pn) of Mg,n (or equivalently, of Mg,n). �

Note that the inequality 2g+n > 5 is satisfied for every pair of integers (g, n) appearing
in Theorem 1.2.

2e. Automorphisms and forms of M g,n. The following theorem is the starting point
of our investigation.

Theorem 2.5. (A. Massarenti [Mas13], B. Fantechi and A. Massarenti [FM14]) Let F be
a field of characteristic 6= 2. If g, n > 1, (g, n) 6= (2, 1) and 2g + n > 5, then the natural
embedding Sn → AutF (M g,n) is an isomorphism. �

Using the bijective correspondence between F -forms of X and Aut(X)-torsors P →
Spec(F ) described at the end of Section 2a, we obtain the following.
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Corollary 2.6. For F, g, n as in Theorem 2.5, every F -form of M g,n is F -isomorphic to
PM g,n for some Sn-torsor P → Spec(F ). �

Remark 2.7. Theorem 1.2 also holds in the following cases.

(a) g = 2 and n = 1, and char(F ) = 0,

(b) g = 1 and n = 2 and char(F ) 6= 2 or 3.

In case (a), M 2,1 has no non-trivial automorphisms by [FM14, Theorem 1] and hence,
no non-split forms. On the other hand, the split form of M 2,1 is known to be rational;
see [CF07].
In case (b), the automorphism group G of M 1,2 is non-trivial; however, it is special;

see [FM14, Proposition 2.4]. In other words, every G-torsor over a field is split. As a
consequence, M 1,2 has no non-split forms (see [DR15, Remark 6.4]) and the split form of
M 1,2 is rational (see [CF07]).

Remark 2.8. We do not know if M g,n can be replaced by Mg,n in the statement of Theo-
rem 2.5. If so, then M g,n can also be replaced by Mg,n in the statements of Theorems 1.2.
The proof remains unchanged.

3. Proof of Theorem 1.2: the overall strategy

Let (C, p1, . . . , pn) be a point of Mg,n.

Case I. We define a vector space V of dimension d as follows.

• If g = 3, 4 or 5, then V = H0(C, ωC)
∗, where ωC is the canonical line bundle. Here

d = g.

• If g = 1 and n = 3 or 4, then V = H0(C,OC(p1 + . . .+ pn))
∗. Here d = n.

• If g = 2 and n = 2, then V = H0(C, ωC(p1 + p2))
∗. Here d = 3.

Case II.

• If g = 2 and n = 3, then in place of V we define two vector spaces, V1 = H0(C, ωC)
∗

and V2 = H0(C,OC(p1 + p2 + p3))
∗. Here dim(V1) = dim(V2) = 2.

Remark 3.1. In Case I, for (C, p1, . . . , pn) in a suitably defined open subset (Mg,n)0 of
Mg,n, V is the fiber of a vector bundle E → (Mg,n)0 obtained via push-forward from a
vector bundle over the universal curve. In Case II the same is true of both V1 and V2. After
replacing (Mg,n)0 by a dense open subset, we may assume without loss of generality that
(i) (Mg,n)0 is Sn-invariant and (ii) Aut(C, p1, . . . , pn) = 1 for any (C, p1, . . . , pn) ∈ (Mg,n)0;
see Proposition 2.4.

In Case I, set

X = {(C, p1, . . . , pn, B) ∈ (Mg,n)0 | B is a basis of V , up to proportionality}.

Here two bases B = (v1, . . . , vd) and B′ = (v′1, . . . , v
′
d) are called proportional if there

exists a 0 6= c ∈ k such that v′i = cvi for every i = 1, . . . , d.
In Case II, the vector space V in the definition of X should be replaced by a pair of

2-dimensional vector spaces V = (V1, V2) and the basis B by a pair B = (B1, B2), where
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B1 is a basis of V1 and B2 is a basis of V2. We identify two such pairs, B = (B1, B2) and
B′ = (B′

1, B
′
2), if B1 is proportional to B′

1 and B2 is proportional to B′
2.

In Case I, choosing a basis in V gives rise to the map fB : C → Pd−1. Two bases,
B and B′, are proportional if and only if fB = fB′ . In Case II, we obtain two maps,
fB1

, fB2
: C → P1, which can be combined into a single morphism fB = fB1

× fB2
: C →

P1 × P1. Once again, we identify B = (B1, B2) and B′ = (B′
1, B

′
2) if and only if fB = fB′ .

In each case we will consider a diagram of the form

(3.2) X
α

{{✇✇
✇✇
✇✇
✇✇
✇

β

��
❄

❄
❄

❄

Mg,n (Mg,n)0?
_

open
oo Y.

Here α is the natural projection (C, p1, . . . , pn, B) → (C, p1, . . . , pn) which “forgets” the
basis B. The second projection β “forgets” the curve C, and maps (C, p1, . . . , pn, B) to a
suitable configuration space Y for the remaining data. Specifically, we define Y and β as
follows.

Case I.

• If g = 3, 4 or 5, then fB : C → Pg−1 is the canonical embedding. We define
Y = (Pg−1)n, and β(C, p1, . . . , pn, B) = (fB(p1), . . . , fB(pn)) ∈ Y .

• Let g = 1 and n = 3 or 4. The constant function 1 ∈ H0(C,OC(p1 + . . . + pn))
cuts out a hyperplane L ⊂ Pn−1 passing through fB(p1), . . . , fB(pn). We set
Y ⊂ ((Pn−1)∗)n to be the locally closed subvariety consisting of n-tuples p1, . . . , pn
such that p1, . . . , pn are linearly dependent (i.e., lie in a hyperplane) in Pn−1

but any n − 1 of them are linearly independent and define β(C, p1, . . . , pn) =
(fB(p1), . . . , fB(pn)).

• If g = 2 and n = 2, then for p1, p2 in general position on C, the image of fB in
P2 is a quartic curve C ′ with a node at p = fB(p1) = fB(p2), and fB : C → C ′ is
the normalization map; see [H11, Example 5.15]. Moreover, C ′ has two tangent
lines at p, L1 and L2, which correspond to p1 and p2 under fB. We thus define
Y as the open subvariety of (P2)∗× (P2)∗ parametrizing pairs of distinct lines and
β(C, p1, p2, B) = (L1, L2).

Case II.

• Here g = 2 and n = 3, and the maps fB1
and fB2

: C → P1 are of degree 2
and 3, respectively; see [H11, Examples 5.11 and 5.13]. For p1, p2, p3 in general
position, C ′ := fB(C) is a curve of bidegree (3, 2) in P1 × P1, fB = fB1

× fB2

is an isomorphism between C and C ′, and fB2
(p1) = fB2

(p2) = fB2
(p3) in P1.

We set Y to be the open subvariety of (P1)3 × P1 consisting of elements of the
form

(

(a1, a2, a3), b
)

, where a1, a2, a3 ∈ P1 are distinct and β(C, p1, p2, p3, B) =
(

(fB1
(p1), fB1

(p2), fB1
(p3)), fB2

(p1)
)

.

By Corollary 2.6 it suffices to show that the twisted variety P Mg,n is stably rational
over F for every Sn-torsor P → Spec(F ). Here 1 6 g 6 5, and (g, n) is one of the pairs
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appearing in Theorem 1.2. Twisting the diagram (3.2) by P and applying Lemma 2.1,
we obtain the following diagram of twisted varieties.

(3.3) PX
Pα

yyss
ss
ss
ss
ss Pβ

!!❉
❉

❉
❉

PMg,n
P ((Mg,n)0)?
_

open
oo PY.

In order to complete the proof of Theorem 1.2, we need to establish the following facts
for each pair (g, n) in Theorem 1.2.

Lemma 3.4. The rational map β : X 99K Y is dominant.

Lemma 3.5. (a) PY is rational over F ,

(b) PX is rational over PMg,n,

(c) PX is rational over PY .

4. Proof of Lemma 3.4

For g = 3, 4, 5 we need to show that there is a canonical curve passing through n points
r1, . . . , rn in general position in Pg−1.
g = 3. Canonical curves of genus 3 are precisely the smooth quartic curves in P2;

see [Ha77, Example IV.5.2.1]. Since dim H0(P2,O(4)) = 15, there is a smooth quartic
curve passing through n points in P2 in general position for any n 6 14.
g = 4. We will use the fact that a complete intersection of a smooth quadric surface Q

and a smooth cubic surface S in P3 is a canonical curve of genus 4; see [Ha77, Example
IV.5.2.2]. The dimensions of H0(P3,O(2)) and H0(P3,O(3)) are 10 and 20, respectively.
Hence, as long as n 6 9 and r1, . . . , rn are in general position in P3, there exist a smooth
quadric Q ⊂ P3 and smooth cubic S ⊂ P3 such that Q and S pass through r1, . . . , rn and
intersect transversely. The intersection Q∩S is then a canonical curve of genus 4 passing
through r1, . . . , rn.
g = 5. Let n 6 12. Since dim H0(P4,O(2)) = 15, for n points r1, . . . , rn in general

position in P4, there exist three linearly independent quadrics, Q1, Q2 and Q3 such that

(i) Q1, Q2 and Q3 pass through r1, . . . , rn,

(ii) Q1, Q2 and Q3 intersect transversely, and

(iii) C = Q1 ∩Q2 ∩Q3 is a smooth curve.

By [Ha77, Example IV.5.5.3], C is a canonical curve of genus 5. By (i), C passes through
r1, . . . , rn, as desired.
g = 2 and n = 2. The projection β is equivariant with respect to the natural GL3-

action on X and Y . Here GL3 acts on (C, p1, . . . , pn, B) ∈ X by linear changes of the
basis B, leaving C and p1, . . . , pn invariant, and on Y via its natural action on P2. Since
the GL3-action on Y is transitive, β is dominant.
(g, n) = (2, 3), (1, 3) or (1, 4). Let G = GL2 ×GL2, GL3 or GL4, respectively. In each

case, β is G-equivariant and G acts transitively on Y , so the same argument as in the
previous case shows that β is dominant. This completes the proof of Lemma 3.4. �
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5. Proof of Lemma 3.5

(a) Let A/F be the étale algebra associated to the Sn-torsor P → Spec(F ). If g = 3, 4
or 5, then PY ≃ RA/F (P

g−1). If g = 2 and n = 2, then PY ≃ RA/F ((P
2)∗). If g = 2 and

n = 3, then PY ≃ RA/F (P
1) × P1. Here ≃ stands for “birationally isomorphic over F”.

In each case PY is rational over F by Lemma 2.3(c).
If g = 1, let H → (Pn−1)∗ be the tautological bundle whose fiber over the hyperplane

{l = 0} consists of the points of the affine hyperplane cut out by l in An. Then Y is Sn-
equivariantly birationally isomorphic to the n-fold fibered product P(H)n over (Pn−1)∗.
Since Sn acts trivially on (Pn−1)∗, and (Pn−1)∗ is rational over F , it suffices to show that
P (P(H)n) is rational over (Pn−1)∗. Choosing projective coordinates a1, . . . , an in Pn−1, we
can identify the function field K of (Pn−1)∗ with F (ai/aj | i, j = 1, . . . , n). Over K, H is
isomorphic to the (n−1)-dimensional vector subspace onKn given by a1x1+· · ·+anxn = 0
and P (P(H)n) is isomorphic to RAK/K(P(H)AK

), where AK = A⊗F K. By Lemma 2.3(c),
RAK/K(P(H)AK

) is rational over K. This shows that P (P(H)n) is rational over (Pn−1)∗,
as desired.

(b) Case I. Let E → (Mg,n)0 be the vector bundle whose fiber over (C, p1, . . . , pn) is
V , as in Remark 3.1. The space of bases in V (up to equivalence) can be identified with
a dense open subset of P(V d). Hence, X is Sn-equivariantly birationally isomorphic to
P(Ed) over (Mg,n)0 and consequently PX is birationally isomorphic to PP(Ed). On the
other hand, by Lemma 2.1(f), PP(Ed) is rational over P (Mg,n)0, and by Lemma 2.1(a),
P (Mg,n)0 is a dense open subset of P (Mg,n). We conclude that PX ≃ PP(Ed) is rational
over PMg,n.

Case II. Now suppose (g, n) = (2, 3). Let E1 and E2 be the rank 2 vector bundles over
(Mg,n)0 whose fibers over (C, p1, . . . , pn) are V1 and V2, respectively, as in Remark 3.1.
The space of bases in Vi (up to equivalence) can be identified with a dense open subset
of P(V 2

i ). Hence, X is S3-equivariantly birationally isomorphic to a dense open subset of
P(E2

1) ×(Mg,n)0 P(E
2
2) over (Mg,n)0. By Lemma 2.1(d), PX is birationally isomorphic to

PP(E2
1)×P (Mg,n)0

PP(E2
2) over

P (Mg,n)0. By Lemma 2.1(f), each PP(E2
i ) is rational over

P (Mg,n)0 (or equivalently, over PMg,n). Hence, so is PX ≃ PP(E2
1)×P (Mg,n)0

PP(E2
2).

(c) Recall that in Case I each (C, p1, . . . , pn, B) ∈ X gives rise to a map fB : C →
Pd−1. Here d = dim(V ). In Case II, fB maps C to P1 × P1. Now observe that in
both cases fB (and thus B, up to equivalence) is uniquely determined by the image of
(C, p1, . . . , pn) under fB. Indeed, in each case fB maps C birationally onto its image. If fB
and fB′ have the same image, then composing fB′ with f−1

B , we obtain an automorphism
of (C, p1, . . . , pn). On the other hand, for (C, p1, . . . , pn) ∈ (Mg,n)0, Aut(C, p1, . . . , pn) = 1;
see Remark 3.1.

g = 3. Using the above observation we can Sn-equivariantly identify X with the space
of tuples (Q, r1, . . . , rn), where Q ⊂ P2 is a smooth curve of degree 4 and r1, . . . , rn are n
distinct points on Q. Let Y0 ⊂ Y = (P2)n be the dense open Sn-invariant subvariety con-
sisting of n-tuples (r1, . . . , rn) such that (i) (r1, . . . , rn) impose n independent conditions
on quartic curves, (ii) there is a smooth quartic curve passing through r1, . . . , rn. Let
W → Y0 ⊂ (P2)n be the vector bundle whose fiber over (r1, . . . , rn) is the space of quartic
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polynomials in 3 variables vanishing at r1, . . . , rn. Then over Y0, X is Sn-equivariantly
birationally isomorphic to P(W ). By Lemma 2.1, PX ≃ PP(W ) is rational over PY .
g = 4. Recall that C ⊂ P3 is a canonically embedded curve of genus 4 if and only if

C is a complete intersection of an irreducible quadric surface Q and an irreducible cubic
surface S in P3. Moreover, the quadric Q is uniquely determined by C, and the cubic
polynomial s which cuts out S, is uniquely determined up to replacing s by s′ = c · s+ lq,
where c ∈ F ∗ is a non-zero constant, q is the quadratic form cutting out Q, and l is a
linear form. Conversely, any irreducible non-singular curve in P3, which is a complete
intersection of an irreducible quadric and an irreducible cubic, is a canonically embedded
curve of genus 4; see [Ha77, Example IV.5.2.2].
Let Y0 ⊂ Y = (P3)n be the open subset consisting of n-tuples of points imposing

independent conditions of quadrics and cubics in P3. Let W be the space of (n+1)-tuples
(q, r1, . . . , rn), where (r1, . . . , rn) ∈ Y0 and q ∈ H0(P3,O(2)) vanishes at r1, . . . , rn. The
natural projection W → Y0 given by (q, r1, . . . , rn) 7→ (r1, . . . , rn) is a vector bundle of
rank 10− n. The fiber of the projective bundle P(W ) over (r1, . . . , rn) ∈ Y0 parametrizes
quadric surfaces Q ⊂ P3 passing through r1, . . . , rn. Now let W ′ be the vector bundle
of rank 20 − n over P(W ), whose fiber over (Q, r1, . . . , rn) consists of cubic forms s ∈
H0(P3,O(3)) vanishing at r1, . . . , rn. Let W ′′ ⊂ W be the subbundle, whose fiber over
(Q, r1, . . . , rn) consists of cubic forms l · q, where q ∈ H0(P3,O(2)) cuts out Q and l
ranges over H0(P3,O(1)). Now set W = W ′/W ′′. A general point (S,Q, r1, . . . , rn) of
P(W ) gives rise to a canonical curve Q∩S ⊂ P3 of genus 4 passing through r1, . . . , rn. Thus
X is Sn-birationally isomorphic to P(W ) over Y0, and we obtain the following diagram of
Sn-equivariant maps

X
∼

//❴❴❴ P(W )

��

P(W )

��

Y
∼

//❴❴❴❴ Y0.

Twisting by the Sn-torsor P → Spec(F ), we obtain a diagram

PX
∼

//❴❴❴ PP(W )

��

PP(W )

��

PY
∼

//❴❴❴❴ PY0.

By Lemma 2.1, PX is rational over PP(W ) and PP(W ) is rational over over PY .
g = 5. Recall that a general canonical curve C ′ = fB(C) of genus 5 is a complete

intersection of three quadric hypersurfaces Q1, Q2 and Q3 in P4. Let qi ∈ H0(P4,O(2))
be a defining equation for Qi. Then the span of q1, q2 and q3 is uniquely determined by the
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canonical curve C ′, because H0(P4, IC′(2)) is 3-dimensional. Conversely, a 3-dimensional
subspace of H0(P4,O(2)) in general position cuts out a canonical curve of genus 5 in P4;
see [Ha77, Example IV.5.5.3].

Let Y0 ⊂ Y = (P4)n be the open subset consisting of n-tuples of points imposing inde-
pendent conditions of quadrics. Let W be the space of (n+1)-tuples (q, r1, . . . , rn), where
(r1, . . . , rn) ∈ Y0 and q ∈ H0(P4,O(2)) vanishes at r1, . . . , rn. The natural projection
W → Y0 ⊂ (P4)n given by (q, r1, . . . , rn) 7→ (r1, . . . , rn) is a vector bundle of rank 15− n.
By the above description, X is Sn-equivariantly birationally isomorphic to the total space
of the Grassmannian bundle Gr(3,W ). Twisting by P , we obtain the following diagram

PX
∼

//❴❴❴ P Gr(3,W )

��

PY oo
∼

❴❴❴❴❴ PY0.

By Lemma 2.1, we conclude that PX is rational over PY .
g = 2 and n = 2. Here Y ⊂ (P2)∗× (P2)∗ parametrizes pairs (L1, L2) of distinct lines in

P2. Let W → Y be the vector bundle whose fiber over (L1, L2) consists of quartic forms
q ∈ H0(P2,O(4)) such that both q |L1

and q |L2
vanish to second order at p = L1 ∩ L2.

Then X is S2-equivariantly birationally isomorphic to P(W ) over Y . By Lemma 2.1, we
conclude that PX is rational over PY .

g = 2 and n = 3. Here X is S3-equivariantly birationally isomorphic to P(W ), where W
is the vector bundle over a suitable dense open subset of Y ⊂ (P1)3 × P1 whose fiber over
((a1, a2, a3), b) consists of bihomogeneous polynomials φ ∈ H0(P1 ×P1,O(3, 2)) vanishing
at (a1, b), (a2, b) and (a3, b). By Lemma 2.1, PX is rational over PY .

g = 1 and n = 3. Here (C ′, r1, r2, r3) = fB(C, p1, p2, p3) is a smooth plane cubic curve
with three distinct collinear points for every (C, p1, p2, p3) ∈ M1,3. Conversely, every
smooth cubic curve C ′ ⊂ P2 with three distinct collinear points r1, r2, r3 ∈ C ′ is of the
form fB(C, p1, p2, p3) for some (C, p1, p2, p3, B) ∈ X , because OC′(r1 + r2 + r3) = OC′(1).
Thus X is S3-equivariantly birationally isomorphic to P(W ) over Y , where W → Y is the
vector bundle whose fiber over (r1, r2, r3) consists of cubic forms in H0(P2,O(3)) vanishing
at (r1, r2, r3). Twisting by the S3-torsor P , we conclude that PX ≃ P( PW ) is rational
over PY by Lemma 2.1(f).

g = 1 and n = 4. For (C, p1, . . . , p4) in general position, (C ′, r1, . . . , r4) = fB(C, p1, . . . , p4)
is a smooth curve of genus 1 in P3 with four coplanar points no three of which are collinear.
By [Ha77, Exercise IV.3.6(b)], the space H0(P3, IC′(2)) of global sections of the ideal
sheaf IC′(2) is 2-dimensional. Moreover, if q1, q2 is a basis of this space, then C ′ is a
complete intersection of the quadrics Q1 and Q2 cut out by q1 and q2. Conversely, a
complete intersection of two smooth quadrics in P3 in general position is a smooth curve
of genus 1; see [Ha77, Exercise I.7.2]. We conclude that X is S4-equivariantly birationally
isomorphic to the total space of the Grassmannian bundle Gr(2,W ) over a suitably de-
fined dense open subvariety Y0 ⊂ Y , where W → Y0 is the vector bundle whose fiber
over (r1, . . . , r4) ∈ Y consists of q ∈ H0(P3,O(2)) vanishing at (r1, . . . , r4). Twisting
by a S4-torsor P → Spec(F ), we see that PX is birational to Gr(2, PW ) over PY . By
Lemma 2.1(f), PX is rational over PY .
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This concludes the proof of Lemma 3.5 and thus of Theorem 1.2. �
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