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Abstract

The main result of this paper is Theorem 1.1: let k be a field of characteristic p > 0,
and let A/k be a central simple algebra of index d = pn and exponent pe. Then A
is split by a purely inseparable extension of k of the form k( pe

√
ai, i = 1 . . . d − 1).

Combining this result with a theorem of Albert -of which we include a new proof- we
get that any such algebra is Brauer equivalent to the tensor product of at most d − 1
cyclic algebras of degree pe. This improves drastically the previously known upper
bounds (cf. introduction for more details).

The author would like to thank O. Gabber, P. Mammone, D. Saltman and J.-P.
Tignol for heplful suggestions. He also thanks the referees for their remarks, which
helped improve the clarity of the exposition.

1. Introduction

Let k be a field. If k contains all roots of unity, it is known by the theorem of Merkurjev and
Suslin that any central simple algebra over k, of exponent e prime to the characteristic of k,
is Brauer equivalent to the tensor product of cyclic algebras of degree e. To the question ’how
many cyclic algebras are needed?’, very little is known. This question is called the symbol length
problem. It has recently been discussed in the survey article [ABGV], pages 230-231. Before
stating our theorem, let us recall some known results. Rosset and Tate proved that a central
simple algebra of prime degree p, with p prime to the characteristic of k, is Brauer equivalent to
the tensor product of at most (p − 1)! cyclic algebras of degree p. If p > 2, this bound may be
improved down to (p− 1)!/2. We refer to [GS], proposition 7.4.13 and exercise 7.10, for details.
In this paper, we concentrate on the case ’orthogonal’ to the previous one: that of p-algebras,
that is, when k has characteristic p > 0 and the algebras under consideration have exponent a
power of p. In this case, the theory has mainly been developed by Albert and Teichmüller. By a
theorem of Teichmüller (cf. loc. cit., theorem 9.1.4) , we know that an algebra of exponent pe is
Brauer equivalent to a tensor product of cyclic algebras of degree pe(note that a result of Albert
(loc. cit., theorem 9.1.8) states that such an algebra is in fact Brauer equivalent to a cyclic one;
more precisely, Albert shows that a tensor product of cyclic p-algebras remains cyclic). Here
again, we might ask for a bound on the number of cyclic algebras needed. Let us briefly recall
the results previously known. In [T], it is proven that an algebra of index pr and exponent pe is
Brauer equivalent to the tensor product of pr!(pr!− 1) cyclic algebras of degree pe. For algebras
of degree p, Mammone ([M], proposition 5.2) improved this bound to (p − 1)!. Note also that
Mammone and Merkurjev ([MM], proposition 5) proved that a -cyclic- p-algebra of degree pn

and exponent pe is Brauer equivalent to a tensor product of pn−e cyclic algebras of degree pe.
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The main result of this paper is the following theorem.

Theorem 1.1. Let k be a field of characteristic p > 0. Let A/k be a division algebra of index
d = pn and exponent pe. Then there exists d − 1 elements a1, . . . , ad−1 in k such that the field
extension

k( pe
√
ai, i = 1 . . . d− 1)

splits A. In particular, A is Brauer equivalent to a tensor product of d − 1 cyclic algebras of
degree pe.

The paper is organized as follows. After introducing notation and recalling some basic material
in section 2, we give in section 3 the proof of two elementary auxiliary tools. The first one is
proposition 3.3, stating that, over a field of characteristic p > 0, base-changing by the Frobenius
induces multiplication by p in the Brauer group. It can be found in [J], theorem 4.1.2; or in
[KOS], theorem 3.9, for any ring of characteristic p. We include here a slightly different proof.
The second one is proposition 3.4 which is well-known but plays a key rôle in the proof of the
main theorem, which is the object of section 4. The last section is devoted to the proof of a
structure theorem for some commutative unipotent algebraic groups. Roughly speaking, it says
the following. Let K/k be a finite purely inseparable field extension. Then the algebraic k-group
U := RK/k(Gm)/Gm is unipotent. To split it, i.e. to make it acquire a composition series with
quotients isomorphic to Ga, it suffices to mod out the (finite constant) subgroup generated by
the images in U(k) of a system of generators of K as a k-algebra. This yields Albert’s theorem
as an immediate corollary.

2. Notation, definitions

Let l be a field. We denote by l (resp. ls) an algebraic (resp. separable) closure of l. We denote
by Br(l) the Brauer group of l. if V is an l-vector space, we denote by Al(V ) the affine space of
V , with functor of points sending an l-algebra A to V ⊗l A. It is also canonically endowed with
the structure of an algebraic l-group (vector group). We denote by Pl(V ) the projective space of
lines in V . These two notions obviously extend to the case of a locally free module of finite rank
over any commutative base ring.

2.1 Cohomology.

Let G/l be an algebraic group. We shall write H1(l, G) for the first cohomology set for the fppf
topology with coefficients inG. It coincides with Galois cohomology ifG/l is smooth. Accordingly,
if G is commutative, we write H i(l, G) for the higher fppf cohomology groups.

2.2 Severi-Brauer varieties.

If A is a central simple algebra of degree (=square root of the dimension) n, we denote by SB(A)
the Severi-Brauer variety associated to A. As usual, SB(A)(l) is the set of right ideals of A⊗l l,
of dimension n (as a l-vector space). Recall that, if A = End(V ), for V an l-vector space of
dimension n, we have a canonical identification between Pl(V ) and SB(A): to a line d ⊂ V ,
we associate the right ideal of endomorphisms whose image is contained in d. A Severi-Brauer
variety is thus nothing else than a twisted projective space.
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2.3 Cyclic algebras.

Let a ∈ l∗ and let n > 1 be an integer. Denote by σ the class of 1 in the group Z/nZ. Let
M/l be a Galois l-algebra, of group Z/nZ. Consider the l-algebra A, generated by M and an
indeterminate y, subject to the relations

yn = a

and

y−1λy = σ(λ),

for all λ ∈ M . The algebra A is central simple; it is called the cyclic algebra associated to M
and a, usually denoted by (M/l, a). Its class in the Brauer group of l is the cup product of the
class of a in H1(l, µn) and that of M/l in H1(l,Z/nZ) (cf. [GS], 2.5 and 4.7).

2.4 Twisting varieties by torsors.

Let G/l be an algebraic group (= l-group scheme of finite type). To the data of a (left) action of
G on a quasi-projective variety X, together with a (right) G-torsor T over l, one can associate
the twist

TX := (T ×l X)/G,

where G acts on T ×l X by the formula (t, x).g = (tg, g−1x). For a proof that this twist indeed
exists and for the statement of some of its basic properties (including, in particular, functoriality
for G-equivariant morphisms), we refer to [F], propositions 2.12 and 2.14. Note that the change
of structure group for torsors is a special case of twisting. More precisely, let f : G −→ H be a
homomorphism of algebraic l-groups and let T/l be a (right) G-torsor. Then G acts (on the left)
on H via f . One can thus form the twist TH, which is nothing but the H-torsor f∗(T ) obtained
from T by change of structure group using f .

2.5 Frobenius twist.

Assume that l has characteristic p > 0.
Denote by Frob : l −→ l the Frobenius x 7→ xp. If X is an l-scheme, we put

X(p) := X ×Spec(Frob) Spec(l),

the Frobenius twist of X. Recall that there exists a canonical l-morphism

FX : X −→ X(p).

When X = Spec(A) is affine, it is nothing but the Spec of the l-algebra homomorphism

A⊗Frob l −→ A,

x⊗ λ 7→ λxp.

2.6 Weil scalar restriction (for Gm).

Let A −→ B be a finite locally free morphism of commutative rings. Then there is a Weil scalar
restriction functor RB/A, at least for affine B-schemes. We shall only need to apply this functor
to the multiplicative group Gm, in which case RB/A(Gm) is the open A-subscheme of AA(B) =
Spec(SymA(B∗)) whose points are invertible elements of B. It has Gm as a subgroup scheme,
and the quotient RB/A(Gm)/Gm is easily seen to be representable by the open A-subscheme of
PA(B) whose points are line subbundles of B, locally directed by an invertible element of B.
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2.7 Kähler differentials and the logarithmic differential.

Let A −→ B be a morphism of commutative rings. We denote by ΩB/A the B-module of Kähler
differentials. Recall there is a group homomorphism

dlog : B∗/A∗ −→ ΩB/A,

x 7→ dx

x
.

If moreover A −→ B is finite locally free, and ΩB/A is a finite locally free A-module, we can
consider dlog as a morphism of A-group schemes

RB/A(Gm)/Gm −→ AA(ΩB/A).

In the sequel, k is a field of characteristic p > 0.

3. Auxiliary results

Lemma 3.1. LetG/k be an algebraic group, and let T/k be aG-torsor. Denote by FG : G −→ G(p)

the Frobenius morphism. Then (FG)∗(T ) and T (p) are canonically isomorphic as G(p)-torsors.

Proof. There is a morphism

Ψ : T ×l G
(p) −→ T (p),

(t, h) 7→ FT (t)h.

It is G(p)-equivariant, where G(p) acts on the left-hand side by the formula (t, h).h′ = (t, hh′).
Now, let G act on T ×l G

(p) by the formula

g.(t, h) = (tg−1, FG(g)h),

and trivially on T (p). I claim that Ψ is then G-equivariant as well. This amounts to saying that,
on the level of functors of points, we have the formula

FT (tg−1)FG(g)h = FT (t)h,

where t (resp. g, h) is a point of T (resp. G, G(p)). In other words, we have to check that

FT (tg) = FT (t)FG(g).

Consider the action map

a : T ×k G −→ T.

We know that the square

T ×k G

FT×kG

��

a // T

FT
��

T (p) ×k G
(p)a

(p)
// T (p)

commutes. This yields the equality we had to check. Thus, Ψ induces a morphism of G(p)-torsors

(FG)∗(T ) = (T ×l G
(p))/G −→ T (p),

which is an isomorphism (as is any morphism between torsors). �

Proposition 3.2. Let A be a central simple algebra of degree n. Then

A(p) := A⊗Frob k
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is Brauer equivalent to A⊗
p
.

Proof. We have a commutative diagram of morphisms of algebraic k-groups

1 // Gm

��

// GLn

��

// PGLn

��

// 1

1 // G(p)
m

// GL
(p)
n

// PGL
(p)
n

// 1

,

where the vertical arrows are the Frobenius morphisms. Since all groups appearing here are

defined over Fp, we have canonical isomorphisms G(p)
m ' Gm,GL

(p)
n ' GLn and PGL

(p)
n ' PGLn.

The vertical map on the left is then nothing but x 7→ xp. Denote by δ : H1(k,PGLn) −→ Br(k)
the boundary map. For any PGLn-torsor T/k, the above diagram -or more accurately the exact
sequence it induces in fppf cohomology- implies that

pδ([T ]) = δ([(FPGLn)∗(T )]).

But [(FPGLn)∗(T )] = [T (p)] ∈ H1(k,PGLn), by lemma 3.1. Moreover, if T corresponds to the
central simple algebra A (of degree n), then T (p) corresponds to A(p). The proposition is proved.
�

Remark 3.3. From the canonical isomorphism SB(A(p)) ' SB(A)(p) (the formation of Severi-
Brauer varieties commutes with base-change), we get a statement equivalent to that of the
previous proposition: let V = SB(A) be a Severi-Brauer variety over k. Then V (p) is k-isomorphic
to the Severi-Brauer variety associated to a central simple algebra of the same degree as A, Brauer
equivalent to A⊗

p
.

Proposition 3.4. Let K/k be a finite purely inseparable extension. Denote by r(K/k) the mini-
mal cardinality of a subset of K which generates K as a k-algebra. Then r(K/k) = dimK(ΩK/k).
In particular, it is invariant under separable field extensions. More precisely, if l/k is a separable
field extension, we have

r(K/k) = r(K ⊗k l/l).

Proof. Put r = r(K/k) and d = dimK(ΩK/k). There exists elements x1, . . . , xr in K such that
K = k[x1, . . . , xr]. Hence the inequality r > d. Now, choose y1, . . . , yd in K such that the dyi’s
form a K-basis of ΩK/k. Put K ′ = k[y1, . . . , yd]. We have the first fundamental exact sequence
of K-vector spaces

ΩK′/k ⊗K′ K −→ ΩK/k −→ ΩK/K′ −→ 0,

from which we instantly infer that ΩK/K′ = 0, hence that K ′/K is separable, hence that K ′ = K.
This shows that r 6 d. The assertion about invariance under separable extensions is then trivial.
�

4. Proof of theorem 1.1

The goal of this section is to use the material discussed previously in order to prove theorem 1.1.
We can assume that k is infinite.
Let V := SB(A). By remark 3.3, we know that V (pe) (V twisted by the e-th power of the
Frobenius) is k-isomorphic to a projective space. Consider the canonical morphism

F : V −→ V (pe)
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which is given by composing the F
V (pi) : V (pi) −→ V (pi+1). Extend scalars to ks; we obtain a

morphism Fs, where both the source and target of Fs are isomorphic to Pd−1
ks

. More precisely Fs

is nothing else but the morphism

Pd−1
ks
−→ Pd−1

ks
,

[x1 : . . . : xd] 7→ [xp
e

1 : . . . : xp
e

d ].

Hence the finite, purely inseparable field extension ks(V )/ks(V
(pe)) induced by Fs is of degree

p(d−1)e, of exponent e and obtained by extracting pe-th roots of d − 1 elements of ks(V
pe);

namely, the elements x1/xd, x2/xd . . . xd−1/xd. By proposition 3.4, we get that the field exten-
sion k(V )/k(V (pe)) (of the same degree p(d−1)e and exponent e) is generated by d − 1 elements
y1, . . . , yd−1 ∈ k(V ). Note that we don’t know much about an explicit possible choice of the yi’s.
Put ai = yp

e

i ∈ k(V (pe)). We have a surjection

k(V (pe))[X1, . . . Xd−1]/ < Xpe

i − ai >−→ k(V ),

Xi 7→ yi,

which is an isomorphism since both sides are k(V (pe))-vector spaces of the same dimension p(d−1)e.
This isomorphism gives the field extension k(V )/k(V (pe)) the structure of a µd−1pe -torsor. Hence

there is a rational action of µd−1pe on V which generically gives F : V −→ V (pe) the structure

of a µd−1pe -torsor. More accurately, there exists a nonempty Zariski open U ⊂ V (pe) such that

F̃ := F|F−1(U) : F−1(U) −→ U can be given the structure of a µd−1pe -torsor. But since U is a

nonempty open of a projective space, its set of k-rational points is nonempty. The fiber of F̃
over such a point is a µd−1pe -torsor T which splits A (recall that in general a finite commutative
k-algebra B splits A if and only if V (B) is nonempty; here T is canonically embedded in V ). But
the k-algebra of functions on T is local, with residue field a field of the type

k( pe
√
ai, i = 1 . . . d− 1),

which then splits A as well. This proves the first statement of the theorem. Combine it with
Albert’s theorem (theorem 5.7) to obtain the second statement.

5. Structure of some unipotent groups and a new proof of Albert’s theorem

In this section, we give a structure theorem for the unipotent group RK/k(Gm)/Gm, when K/k is
a purely inseparable field extension (theorem 5.6), from which we derive a new proof of Albert’s
theorem.

Lemma 5.1. Let A be a commutative ring of characteristic p. Put B := A[Y ]/ < Y p >. Denote
by y the class of Y in B. For λ = a0 + a1y + . . .+ ap−1y

p−1 ∈ B, there exists b ∈ B∗ such that

λdy = db/b

if and only if ap−1 = ap0.

Proof. Assume that ap−1 = ap0. Since dlog is a group homomorphism, it suffices to deal with
the cases where λ = ayk (k = 1 . . . p− 2) and λ = a+ apyp−1. Pick an integer 1 6 k 6 p− 1 and
pick a ∈ A. Put

b = 1 + ayk + a2y2k/2! + . . .+ ap−1y(p−1)k/(p− 1)!
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(truncated exponential series). An easy computation shows that

db = kayk−1bdy

if k > 1 and that

db = a(b− ap−1yp−1/(p− 1)!)dy = b(a+ apyp−1/b)dy = b(a+ apyp−1)dy

if k = 1. In the last equalities, we have used the fact that (p− 1)! = −1 mod p and that 1/b = 1
mod yB. The claim follows.
Assume now that λ = db/b for b ∈ B∗. We have to show that ap−1 = ap0. Assume that b factors
as

b = c(1− x0y) . . . (1− xp−1y),

with c ∈ A∗ and xi ∈ A. Since dlog is a group homomorphism, it suffices to deal with the case
b = 1− xy. We then compute:

db/b = d(1− xy)/(1− xy) = (−x− x2y − . . .− xpyp−1)dy,

and the fact to check becomes trivial. To conclude, it suffices to remark that b factors in the way
above after a faithfully flat ring extension of A (for instance the well-known ’universal splitting
algebra’ for b, cf. [G], lemma S), and the equality ap−1 = ap0 might be checked after such a base
change.

�

Remark 5.2. In [O], proposition VI. 5.3, Oesterlé studies the unipotent group RK/k(Gm)/Gm,

where K = k(t1/p) is a purely inseparable extension of k. He shows that this group is isomorphic
to the subgroup of Gp

a given by the equation

(E) : xp0 + xp1t+ . . .+ xpp−1t
p−1 = xp−1.

His proof uses the logarithmic differential as well, and is not unrelated to our approach. In short,
what has to be shown is the following. Put t′ = t1/p. Given y = y0 + y1t

′ + . . .+ yp−1t
′p−1 ∈ K,

then

dy/y = (x0 + x1t
′ + . . .+ xp−1t

′p−1)dt′,

with the xi’s satisfying equation (E) above. As an exercise, the reader may provide a short proof
of Oesterlé’s result using lemma 5.1, which corresponds to the ’trivial’ case t = 0. We thank one
of the referees for suggesting us to insert this remark.

Lemma 5.3. Let A be a commutative ring of characteristic p, with Spec(A) connected. Pick
t ∈ A∗ and put B := A[X]/ < Xp − t >. Denote by x the class of X in B. For b ∈ B∗, there
exists α ∈ A such that

db/b = αdx/x ∈ ΩB/A

if and only if b is of the form axn, for some integer n and some a ∈ A∗.

Proof. The B-module ΩB/A is free of rank one with generator dx. Write b =
∑p−1

i=0 aix
i, with

ai ∈ A. The equality

db/b = αdx/x

reads as
p−1∑
i=0

iaix
i =

p−1∑
i=0

αaix
i.
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It follows that αp−α = Πp−1
i=0 (α−i) annihilates all ai’s, hence b, hence is zero since b is invertible.

Since Spec(A) is connected, we deduce that α belongs to Fp. Let n be an integer whose class is
α. The equality

db/b = αdx/x

can now be rewritten as d(bx−n) = 0, which obviously implies the conclusion of the lemma. �

Proposition 5.4. Let A be a commutative ring of characteristic p. Let t ∈ A∗. Put B :=
A[X]/ < Xp − t >. Denote by x the class of X in B. Put

Ω′B/A := ΩB/A/ < A
dx

x
>;

it is a free A-module of rank p− 1. We have an exact sequence of A-group schemes

1 −→ Z/pZ n7→xn

−→ RB/A(Gm)/Gm −→ AA(Ω′B/A) −→ 1,

where the morphism on the right is the composition of

dlog : RB/A(Gm)/Gm −→ AA(ΩB/A)

with the quotient map

AA(ΩB/A) −→ AA(Ω′B/A).

Proof. Injectivity and exactness in the middle follow from lemma 5.3, where we can replace
A by an arbitrary commutative A-algebra and base-change B accordingly. We now check surjec-
tivity. We will show the following. For any element bdx ∈ ΩB/A, there exists a faithfully flat ring
extension A′/A, together with an invertible b′ ∈ B ⊗A A

′ such that

db′

b′
= bdx

modulo A′ dxx . Base-changing A to an arbitrary A-algebra then yields surjectivity. By base-
changing A to a faithfully flat A-algebra in which t is a p-th power (B itself will do), we can
assume that t = up is a p-th power in A. Put y := x − u ∈ B; then B becomes isomorphic to
A[Y ]/ < Y p >. Take b = a0 + a1y + . . .+ ap−1y

p−1 ∈ B. In ΩB/A, we have

dx

x
=

dy

y + u
= (u−1 − u−2y + u−3y2 + . . .+ (−1)p−1u−pyp−1)dy.

After a finite étale extension of A, we can assume the equation

(a0 + αu−1)p = ap−1 + (−1)p−1αu−p

has a solution α ∈ A. Replacing b by b+ αdx
x , we can assume that ap0 = ap−1. Apply lemma 5.1

to conclude. �

Remark 5.5. The preceding proposition can be slightly generalized as follows. Let R be a com-
mutative ring of characteristic p. Let A be an R-algebra which is finite and locally free. Let t,
B, x and Ω′B/A be as in the proposition. Then there is an exact sequence of R-group schemes

1 −→ Z/pZ n7→xn

−→ RB/R(Gm)/RA/R(Gm) −→ AR(Ω′B/A) −→ 1.

The proof is exactly the same and will be omitted.

We now concentrate on the case of our field k.
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Proposition 5.6. Let t1, . . . , tr be elements of k∗, and n1, . . . , nr be positive integers. Put

K =

r⊗
i=1

k[Xi]/ < Xpni

i − ti > .

Put

UK/k := RK/k(Gm)/Gm;

it is a smooth, connected, commutative (unipotent) k-group scheme. For each i, denote by Gi

the subgroup of UK/k generated by the class xi of Xi in K∗; it is isomorphic to Z/pniZ. Denote
by VK/k the cokernel of the inclusion

Πr
i=1Gi −→ UK/k.

Then VK/k has a composition series with quotients isomorphic to Ga. In particular, it has trivial
H i for each i > 1.

Proof. Induction on the sum of the ni’s. Put

K ′ = k[xp1, x2, . . . , xr].

Then Gi, i > 2, is a subgroup of UK′/k as well. Denote by G′1 the subgroup of UK′/k generated

by xp1; it is isomorphic to Z/p(n1−1)Z. Denote by VK′/k the quotient UK′/k/(G
′
1×Πr

i=2Gi); it is a
subgroup of VK/k. It is enough to show that the quotient VK/k/VK′/k is isomorphic to a product
of Ga’s, then induction applies.
By remark 5.5 applied to R = k, A = K ′ and t = Xp

1 (the K-algebra B then being canonically
isomorphic to K), we obtain an exact sequence of k-group schemes:

1 −→ Z/pZ
n7→xn

1−→ RK/k(Gm)/RK′/k(Gm) −→ Ak(Ω′K′/K) −→ 1,

yielding an isomorphism from VK/k/VK′/k to Ak(Ω′K′/K), which is of course, as a k-group scheme,
isomorphic to a product of copies of Ga’s.

�

Theorem 5.7. (Albert). Let K = k[ pni
√
ai, i = 1 . . . r] be a purely inseparable field extension.

Let α ∈ Br(k) be in the kernel of the restriction map Br(k) −→ Br(K). Then there exists
Z/pniZ-Galois k-algebras Mi such that

α =
r∑

i=1

[(Mi, ai)]

in Br(k).

Proof. Put

K ′ =
r⊗

i=1

k[Xi]/ < Xpni

i − ai > .

The k-algebra K ′ is finite-dimensional, local, with residue field K. Recall that there is (as for
any scheme) a Brauer group Br(K ′), defined as H2(Spec(K ′),Gm) (for the étale or fppf topology,
it is the same here since Gm is smooth). It corresponds to the group of equivalence classes of
Azumaya algebras over K ′, and the natural map Br(K ′) −→ Br(K) is an isomorphism. Put

UK′/k := RK′/k(Gm)/Gm.
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As usual, from the long exact sequence in (Galois) cohomology associated to the short exact
sequence

1 −→ Gm −→ RK′/k(Gm) −→ UK′/k −→ 1,

we deduce that

H1(k, UK′/k) = Ker(Br(k) −→ Br(K ′)) = Ker(Br(k) −→ Br(K)).

We can then view α as a class in H1(k, UK′/k).
By proposition 5.6, we have an exact sequence

1 −→ Πr
i=1Z/pniZ −→ UK′/k −→ VK′/k −→ 1,

with VK′/k having trivial H1. We thus have a surjection

s : Πr
i=1H

1(k,Z/pniZ) −→ H1(k, UK′/k).

Let i be an integer between 1 and r, and let Mi be a Galois Z/pniZ-algebra over k. By (a variant
of the) construction 2.5.1 of [GS], we see that

s([Mi/k]) = [Mi/k, ai]

in Br(k), whence the result. �

Remark 5.8. We present here Albert’s theorem as a corollary of proposition 5.6. The usual proofs
of this theorem are completely different. To the author’s knowledge, the shortest one is to be
found in [GS], theorem 9.1.1, where the theorem is attributed to Hochschild. Meanwhile, we are
grateful to David Saltman for pointing out that this theorem is actually due to Albert, cf. [A],
theorem 28, page 108. It is likely that the proof of Albert’s theorem presented in [GS] is due to
Hochschild. Roughly speaking, it goes as follows. As in the proof of proposition 5.6, the crucial
case is that of K = k[ p

√
a]. It is first shown that α is represented by a central simple algebra

A/k, of degree p, containing K; this appears to be a classical fact. Put x = p
√
a ∈ K. Using a

simple but clever construction, one then exhibits a maximal Z/pZ-Galois algebra M ⊂ A such
that , for each m ∈ M , one has xmx−1 = σ(m), where σ is the class of 1 in Z/pZ. This shows
that A = (M/k, a).
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