A short proof of Klyachko's theorem about rational algebraic tori

Mathieu Florence

Abstract

In this paper, we give another proof of a theorem by Klyachko ([?]), which asserts that Zariski's conjecture holds for a special class of tori over an arbitrary ground field.

1 Introduction

The main purpose of this paper is to give a much simpler proof of a theorem due to Klyachko ([?]; see also [?], chap. 2, 6.3), which is here theorem ??. To achieve this, we first prove a generalization of a theorem due to Voskresenskii ([?], chap. 2, 5.1, corollary). To be more precise, we show stable rationality for a certain class of algebraic tori over a given field k, strictly containing the cyclotomic ones. What is more, we give an effective way of presenting the character module of these tori as the kernel of a surjection between permutation modules (that is, lattices that contain a basis which is permuted by the action of the absolute Galois group of k). Recall that, according to loc. cit., chap. 2, 4.7, theorem 2, the existence of such a surjection is a necessary and sufficient condition for a torus to be stably rational. All the basic material concerning algebraic tori and rationality questions related to these is contained in loc. cit., chap.2; we shall assume that the reader is familiar with this reference.
In the following section, the symbol \otimes alone means $\otimes_{\mathbb{Z}}$. If k is a field with separable closure k_{s}, we denote by Γ_{k} the profinite group $\operatorname{Gal}\left(k_{s} / k\right)$. Let Γ be a profinite group. By a Γ-lattice, we mean a free \mathbb{Z}-module of finite rank, endowed with a continuous action of Γ. We will say simply 'exact sequence' instead of 'exact sequence of Γ-lattices'.

2 Stably rational and rational algebraic tori

To begin this section, we prove an elementary but crucial lemma.

Lemma 2.1 Let Γ be a profinite group. Let $A_{i}, B_{i}, C_{i}, i=1,2$ be Γ-lattices, fitting into two exact sequences

$$
0 \longrightarrow A_{i} \xrightarrow{j_{i}} B_{i} \xrightarrow{\pi_{i}} C_{i} \longrightarrow 0 .
$$

Assume we are given $s_{i}: C_{i} \longrightarrow B_{i}$, and d_{1}, d_{2} two coprime integers, such that $\pi_{i} \circ s_{i}=d_{i} I d, i=1,2$. Let

$$
\begin{gathered}
A_{3}=A_{1} \otimes A_{2}, \\
B_{3}=\left(B_{1} \otimes B_{2}\right) \oplus\left(C_{1} \otimes C_{2}\right),
\end{gathered}
$$

and

$$
C_{3}=\left(C_{1} \otimes B_{2}\right) \oplus\left(B_{1} \otimes C_{2}\right) .
$$

Then there is an exact sequence

$$
0 \longrightarrow A_{3} \xrightarrow{j_{3}} B_{3} \xrightarrow{\pi_{3}} C_{3} \longrightarrow 0,
$$

together with a morphism $s_{3}: C_{3} \longrightarrow B_{3}$, satisfying $\pi_{3} \circ s_{3}=d_{1} d_{2} I d$.
Proof. We have an exact sequence
$0 \longrightarrow A_{1} \otimes A_{2} \longrightarrow B_{1} \otimes B_{2} \xrightarrow{\left(\pi_{1} \otimes I d\right) \oplus\left(I d \otimes \pi_{2}\right)}\left(C_{1} \otimes B_{2}\right) \oplus\left(B_{1} \otimes C_{2}\right) \xrightarrow{\pi} C_{1} \otimes C_{2} \longrightarrow 0$,
where $\pi=I d \otimes \pi_{2}-\pi_{1} \otimes I d$.
Select integers u, v such that $v d_{2}-u d_{1}=1$. Then the map

$$
\begin{gathered}
s: C_{1} \otimes C_{2} \longrightarrow\left(C_{1} \otimes B_{2}\right) \oplus\left(B_{1} \otimes C_{2}\right), \\
c_{1} \otimes c_{2} \mapsto\left(v c_{1} \otimes s_{2}\left(c_{2}\right), u s_{1}\left(c_{1}\right) \otimes c_{2}\right)
\end{gathered}
$$

is a splitting of π. Hence we have an exact sequence

$$
0 \longrightarrow A_{3} \xrightarrow{j_{3}} B_{3} \xrightarrow{\pi_{3}} C_{3} \longrightarrow 0
$$

as stated, where

$$
\pi_{3}:\left(B_{1} \otimes B_{2}\right) \oplus\left(C_{1} \otimes C_{2}\right) \xrightarrow{\left(\left(\pi_{1} \otimes I d\right) \oplus\left(I d \otimes \pi_{2}\right), s\right)}\left(C_{1} \otimes B_{2}\right) \oplus\left(B_{1} \otimes C_{2}\right) .
$$

The last assertion is obvious: if $r_{i}: B_{i} \longrightarrow A_{i}(i=1,2)$ are such that $r_{i} \circ j_{i}=d_{i} I d$, then

$$
r_{3}:=\left(r_{1} \otimes r_{2}, 0\right): B_{3} \longrightarrow A_{3}
$$

satisfies $r_{3} \circ j_{3}=d_{1} d_{2} I d . \square$
From this we can derive the following

Theorem 2.2 Let k be a field, and X_{1}, \ldots, X_{r} be finite Γ_{k}-sets. For $i=$ $1, \ldots, r$, denote by J_{i} the kernel of the canonical surjection $\mathbb{Z}^{X_{i}} \xrightarrow{\pi_{i}} \mathbb{Z}$. Let $J=\otimes_{i} J_{i}$. If the orders of the X_{i} are two by two coprime, then we have an exact sequence

$$
0 \longrightarrow J \longrightarrow \bigoplus_{I \in \mathcal{J}_{0}} \mathbb{Z}^{\Pi_{i \in I} X_{i}} \xrightarrow{\pi} \bigoplus_{I \in \mathcal{J}_{1}} \mathbb{Z}^{\Pi_{i \in I} X_{i}} \longrightarrow 0
$$

where \mathcal{J}_{i} is the set of subsets of $\{1, \ldots, r\}$ whose cardinality is congruent to $r-i \bmod 2$. In particular, a k-torus with character module isomorphic to J is stably rational over k. What is more, let d denote the product of the orders of the $X_{i}, i=1, \ldots, r$. Then there exists

$$
s: \bigoplus_{I \in \mathcal{J}_{1}} \mathbb{Z}^{\Pi_{i \in I} X_{i}} \longrightarrow \bigoplus_{I \in \mathcal{J}_{0}} \mathbb{Z}^{\Pi_{i \in I} X_{i}}
$$

such that $\pi \circ s=d I d$.
Proof. For $i=1, \ldots, r$, we have a canonical map

$$
\begin{gathered}
s_{i}: \mathbb{Z} \longrightarrow \mathbb{Z}^{X_{i}} \\
1
\end{gathered}
$$

which satisfies $\pi_{i} \circ s_{i}=d_{i} I d$, where d_{i} is the order of X_{i}. The proof is then an easy induction using the previous lemma and the obvious isomorphism $\mathbb{Z}^{X} \otimes \mathbb{Z}^{Y} \simeq \mathbb{Z}^{X \times Y}$, for any two finite sets X and Y.

As a particular case of this theorem, we recover a result due to Voskresenskii ([?], chap. 2, 5.1 corollary).

Corollary 2.3 Let k be a field, and l / k a Galois extension with cyclic $G a-$ lois group G of ordrer $n=p_{1} \ldots p_{r}$, where the p_{i} are prime numbers. Let σ be a generator of this Galois group, and T / k the $n^{t h}$ cyclotomic torus, i.e. the torus with character group isomorphic to $\mathbb{Z}[X] / \phi_{n}(X)$, where $\phi_{n}(X)$ is the $n^{\text {th }}$ cyclotomic polynomial, the action of σ being given by multiplication by X (in other words, the character group of T is isomorphic to the ring of integers of the $n^{t h}$ cyclotomic extension of \mathbb{Q}, with the action of σ being given by multiplication by a primitive $n^{\text {th }}$ root of unity). Then T is stably rational over k.

Proof. For $i=1, \ldots, r$, let X_{i} be the unique quotient of G isomorphic to \mathbb{Z} / p_{i}. With the notations of the preceding theorem, the Γ_{k}-module J is isomorphic to the character module of T (this is just the fact that the ring of integers of the $n^{\text {th }}$ cyclotomic extension of \mathbb{Q} is naturally isomorphic to the tensor product of the rings of integers of the $p_{i}^{t h}$ cyclotomic extensions of \mathbb{Q}), whence the claim.

We are now able to give a simple proof of the following theorem.
Theorem 2.4 (Klyachko) Let k be a field, and X, Y two finite Γ_{k}-sets, of coprime orders p and q, respectively. Consider the two basic exact sequences

$$
\begin{aligned}
& 0 \longrightarrow J_{X} \longrightarrow \mathbb{Z}^{X} \longrightarrow \mathbb{Z} \longrightarrow 0 \\
& 0 \longrightarrow J_{Y} \longrightarrow \mathbb{Z}^{Y} \longrightarrow \mathbb{Z} \longrightarrow 0
\end{aligned}
$$

Then, a k-torus T with character module isomorphic to $J:=J_{X} \otimes J_{Y}$ is rational over k.

Proof. Select integers u, v such that $u p-v q=1$. Theorem ?? gives the following presentation of J :

$$
0 \longrightarrow J \longrightarrow \mathbb{Z}^{X \times Y} \oplus \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}^{X} \oplus \mathbb{Z}^{Y} \longrightarrow 0,
$$

where $\pi(x \otimes y, 0)=(x, y)$ and $\pi(0,1)=\left(u \sum_{x \in X} x, v \sum_{y \in Y} y\right)$. Let E / k (resp. F / k) be the etale extension of k corresponding to X (resp. to Y). Then, in terms of tori, this exact sequence reads as

$$
1 \longrightarrow \mathrm{R}_{E / k}\left(\mathbb{G}_{m}\right) \times \mathrm{R}_{F / k}\left(\mathbb{G}_{m}\right) \xrightarrow{i} \mathrm{R}_{E \otimes_{k} F / k}\left(\mathbb{G}_{m}\right) \times \mathbb{G}_{m} \longrightarrow T \longrightarrow 1,
$$

where R denotes Weil scalar restriction. The map i is given on the k-points of the considered tori by the following formula:

$$
i(x, y)=\left(x \otimes y, N_{E / k}(x)^{u} N_{F / k}(y)^{v}\right), x \in E^{*}, y \in F^{*}
$$

Thus, we have a generically free action of the algebraic k-group $H:=$ $\mathrm{R}_{E / k}\left(\mathbb{G}_{m}\right) \times \mathrm{R}_{F / k}\left(\mathbb{G}_{m}\right)$ on the k-vector space $V:=\left(E \otimes_{k} F\right) \oplus k$, such that T is birational to the quotient V / H (of course, such a quotient is defined up to birational equivalence only).
Assume that $p<q$. Let G / k be the algebraic k-group $\mathrm{GL}_{k}(E) \times \mathrm{R}_{F / k}\left(\mathbb{G}_{m}\right)$ (E being viewed as a k-vector space). I claim that the action of H on V can be naturally extended to an action of G on V (H being viewed as a
subgroup of G the obvious way). Indeed, this new action is given on the k-points by the formula, for $g=(\phi, y) \in G(k), v=(e \otimes f, \lambda) \in V$:

$$
g \cdot v=\left(\phi(e) \otimes y f, \operatorname{det}(\phi)^{u} N_{F / k}(y)^{v} \lambda\right)
$$

This action is generically free. Indeed, this is an easy consequence of the equality $u p-v q=1$ and of the following lemma.

Lemma 2.5 Let G act on $E \otimes_{k} F$ the obvious way. Then the stabilizer of a generic element is the subgroup \mathbb{G}_{m} of G given, on the level of k-points, by elements of the form $\left(x, x^{-1}\right) \in \mathrm{GL}_{k}(E) \times F^{*}$, for $x \in k^{*}$.

We postpone the proof until the end of this section. Assuming this lemma, we have a birational G-equivariant isomorphism $V \simeq(V / G) \times G$, where the action of G on the right is given by translation. Indeed, this is a direct consequence of Hilbert's theorem 90 , asserting that $H^{1}(l, G)=1$ for any field extension l of k. Hence we have birational isomorphisms

$$
T \simeq V / H \simeq V / G \times G / H
$$

It is clear that the k-variety $G / H=\mathrm{GL}_{k}(E) / \mathrm{R}_{E / k}\left(\mathbb{G}_{m}\right)$ is k-rational. As in Klyachko's original proof, the key point is here that the k-variety (defined up to birational equivalence) V / G is independent of E (seen as an etale k-algebra). Hence, the birational equivalence class of T is independent of E; we may therefore assume that E is split, i.e. that the action of Γ_{k} on X is trivial. But then J is isomorphic to $J_{Y}{ }^{p-1}$, hence T is birational to $\left(\mathrm{R}_{F / k}\left(\mathbb{G}_{m}\right) / \mathbb{G}_{m}\right)^{p-1}$, which is a rational variety (it is an open subvariety of $\left.\left(\mathbb{P}_{k}^{q-1}\right)^{p-1}\right)$.

Proof of lemma ??. We may assume that F is split, i.e. $F=k^{q}$ as an etale k-algebra. Let $f_{i}, i=1, \ldots, q$ denote the canonical k-basis of F. Consider an element $w=\sum_{i} e_{i} \otimes f_{i} \in E \otimes_{k} F$ in general position. Let $g=\left(\phi,\left(\lambda_{1}, \ldots, \lambda_{q}\right)\right) \in \mathrm{GL}_{k} E \times F^{*}$ be such that $g . w=w$. This amounts to saying that $\phi\left(e_{i}\right)=\lambda_{i}^{-1} e_{i}$ for all i. Since $p<q$ and since w is in general position, e_{1}, \ldots, e_{p} form a basis of E with respect to which the i 'th component of e_{p+1} is non zero for all $i=1, \ldots, p$. This readily implies that the λ_{i} are all equal to some scalar λ and that $\phi=\lambda^{-1} I d$, thus proving the claim.

References

[Vo] V. E. Voskresenskii. - Algebraic Groups and their Birational Invariants, Translations of Mathematical Monographs 179 (1991), Amer. Math. Soc.
[Kl] A. A. Klyachko. - On rationality of tori with a cyclic splitting field, Arithmetic and Geometry of Varieties, Kuibyshev Univ. Press (1988), 73-78 (russian).

