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1 Introduction

Let K be a field. Let L be a finite Galois extension of K, with Galois group G. An element
x ∈ L is called a normal basis generator of L over K, or simply a normal element of L over K,
if the conjugates of x under G form a basis of L as a vector space over K. The normal basis
theorem states that such an element exists.

Assume that K (resp. L) is a local field, i.e., that it is complete with respect to a discrete
valuation vK : K∗ � Z (resp. vL : L∗ � Z). We consider the following question, suggested by
Byott and Elder [2].

Question. Is there an element d ∈ Z so that every x ∈ L with vL(x) = d is normal over K?

Note that, if such an integer d exists, then all integers that are congruent to d modulo the
ramification index eL/K satisfy the same property.

For example, when K = Q2 and L = Q2(
√
−1), then all elements of odd valuation in L are

normal. However, for L = Q2(
√

2), the powers of
√

2 give elements of L of all possible valuations
which are not normal, so the answer to the question is no.

If x ∈ L is normal over K, then the Galois conjugates are linearly independent, so their sum,
the trace TrL/K(x), is non-zero. It turns out that it is quite easy to give a valuation criterion,
formulated in the next Proposition, for this weaker property of having a non-zero trace.
We denote the valuation of the different of L/K by dL/K .

Proposition 1.1. Let L/K be a finite separable extension of local fields, and let d ∈ Z. Every
element of L of valuation d has non-zero trace over K if and only if the following two properties
hold.

(1) L/K is totally ramified.
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(2) d ≡ −dL/K − 1 mod [L : K].

The proof is given in Section 2.

In particular, Proposition 1.1 implies that the answer to the question is positive if and only
if the following statement holds:

VC(L/K) : all x ∈ L∗ with vL(x) ≡ −dL/K − 1 mod eL/K are normal over K.

We will call this statement the valuation criterion for normal basis generators of L over K.

Proposition 1.2. Let L/K be a finite Galois extension of local fields. The valuation criterion
VC(L/K) holds if and only if the following two conditions hold.

(1) L/K is totally ramified and [L : K] is a power of the residue characteristic p.

(2) Every non-zero K[G]-submodule of L contains an element of valuation 0.

The proof will be given in Section 3. It is based on a duality result for the set of valuations
of elements of a sub-K-vector space of L.

Note that, if the residue field of K has characteristic zero, then proposition 1.2 can be
restated as: VC(L/K) holds if and only if L = K.

Note also that, in condition (2), we may restrict to the minimal non-zero K[G]-submodules
of L. The condition in (1) that [L : K] is a power of p can be omitted — we will see in the proof
that it is implied by condition (2). The condition that L/K should be totally ramified can not
be omitted.

If K has characteristic p > 0 and condition (1) in Proposition 1.2 holds, then condition
(2) also holds because every nonzero G-stable K-vector subspace of L then contains K; see [7,
Ch. IX, Th. 2]. In the equal characteristic case Proposition 1.2 therefore tells us that condition
(1) implies VC(L/K), which was shown already by Thomas [6] and by Elder [3].

In the unequal characteristic case, condition (1) of Proposition 1.2 is not sufficient for
VC(L/K). For example, consider the extension Q2(

√
2))/Q2. More generally, elements in

extensions of K that are strictly contained in L are never normal elements of L, so one sees that
the condition p - −dL/K − 1 is necessary for VC(L/K) to hold. For cyclic extensions of degree p
this condition is also sufficient; cf. [2]. However, we will see in Example 4.1 that this condition
is not sufficient for cyclic extensions of degree p2.

By condition (2) in Proposition 1.2, we can easily identify the Kummer extensions for which
the valuation criterion holds. Recall that L/K is a Kummer extension if there is a number m so
that K contains a primitive root of unity of order m, and Gal(L/K) is abelian of exponent m.
Then the characteristic of K does not divide m, and by Kummer theory we have L = K( m

√
W )

for W = L∗m∩K∗. If, in addition, we have vK(W ) ⊂ mZ, then L is obtained by adjoining m-th
roots of units of the valuation ring of K, and we say that L is a unit root Kummer extension
of K. For example, Q2(

√
−1) is a unit root Kummer extension of Q2, whereas Q2(

√
2) is not.
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Theorem 1.3. Let L/K be a totally ramified Kummer extension of local fields whose degree is
a power of the residue characteristic p. Then VC(L/K) holds if and only if L is a unit root
Kummer extension of K.

In Section 4 we give the proof, and we show how the general abelian case can be reduced to
the Kummer case. Precisely, we will show the following theorem.

Theorem 1.4. Let L/K be a totally ramified abelian extension of local fields whose degree is a
power of the residue characteristic p > 0. Let m be the exponent of Gal(L/K), and let r | m
be the number of m-th roots of unity inside K. If p = 2 and 8 | m, assume that r 6= 2. Then
VC(L/K) holds if and only if every cyclic subextension F/E of L/K of degree r is a unit root
Kummer extension.

If r = 1 in Theorem 1.4, then the condition in the theorem is trivially satisfied, so that the
valuation criterion holds. In particular, if K does not contain a primitive pth root of unity, then
the valuation criterion holds for every abelian p-extension L of K.

When p = 2, the additional hypothesis is due to the fact that (Z/2kZ)∗ is not cyclic for
k ≥ 3. If K = Q2(

√
−2) and L = Q2(µ32), then we have m = 8 and p = r = 2. Theorem 1.4

implies that VC(F/E) holds for all extensions E ⊂ F with K ⊂ E ⊂ F ⊂ L of degree at most 4.
We will see in Example 3.3 that VC(L/K) does not hold. Thus, we cannot omit the condition
when p = 2 in Theorem 1.4.

2 The valuation criterion for having non-zero trace

The purpose of this section is to prove Proposition 1.1.

As before, K denotes a local field and vK : K∗ � Z is the normalized valuation. Inside K
we consider the valuation ring OK = {x ∈ K∗ : vK(x) ≥ 0} ∪ {0}, its maximal ideal pK and
its unit group O∗K = {x ∈ K∗ : vK(x) = 0}. The valuation vL(a) of a fractional ideal a is the
valuation of any of its generators, so vK(piK) = i for all i ∈ Z.

Suppose now that L is a finite separable field extension of K. Then L has the structure
of a local field as well. We denote by TrL/K the trace map from L to K. Two integers are
naturally attached to the extension L/K. The first one is its ramification index eL/K , given by
the equality vL(K∗) = eL/KZ. The second one is dL/K , the valuation of the different of L over
K, which is characterized by the property that

i ≥ −dL/K ⇐⇒ TrL/K(piL) ⊂ OK

for all i ∈ Z; cf. [7, Ch. III]. Using this it is easy to identify the traces of ideals: for every i ∈ Z
we have

TrL/K(p
−dL/K+i

L ) = p

—
i

eL/K

�
K , (2.1)

where bxc denotes the largest integer n with n ≤ x.

Proof of Proposition 1.1. For any d ∈ Z let us consider the map

ϕ : pdL/p
d+1
L −→ TrL/K(pdL)/TrL/K(pd+1

L ).
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induced by the trace map. Denoting the residue field of K by k, and the degree of the residue
field extension of L/K by f = [L : K]/eL/K , we see that the domain of ϕ is an f -dimensional
vector space over k. By (2.1) above, the codomain of f is a vector space over k which is of
dimension 1 if d ≡ −dL/K − 1 mod [L : K] and of dimension 0 if d 6≡ −dL/K − 1 mod [L : K].
Since ϕ is a k-linear surjective map it follows that ϕ is an isomorphism if and only if both
conditions (1) and (2) in the Proposition are satisfied.

We now distinguish two cases. If ϕ is an isomorphism, then for any element x ∈ L∗ with
vL(x) = d we have TrL/K(x) 6∈ TrL/K(pd+1

L ), which implies that TrL/K(x) 6= 0.

If, on the other hand, ϕ is not an isomorphism, then we can choose x ∈ pdL so that (x mod
pd+1
L ) is a non-zero element of the kernel of ϕ. We then have TrL/K(x) ∈ TrL/K(pd+1

L ), so that
TrL/K(x) = TrL/K(y) for some y ∈ pd+1

L . But this implies that x − y is an element of L of
valuation d and trace 0. This completes the proof of Proposition 1.1.

3 The set of valuations of elements in a linear subspace

In this section we prove Propostion 1.2. The key tools we develop for this, and for applications
in the next section, are basic properties of the set of valuations of elements in subspaces of a
field extension.

Let L/K be a finite separable totally ramified extension of local fields of degree n.

Let v : L∗ → Z/nZ be given by x 7→ vL(x) mod n.

For any sub-K-vector space V of L we define the set s(V ) by

s(V ) = {v(x) : x ∈ V, x 6= 0} ⊂ Z/nZ.

Since L is totally ramified over K, Proposition 1.1 implies that exactly one residue class
modulo eL/K does not occur as the valuation of an element of the “trace zero” hyperplane. This
is a general fact that holds for all sub-K-vector spaces of L.

Lemma 3.1. For every sub-K-vector space V of L, we have #s(V ) = dimK(V ).

Proof. Let S be a subset of V such that v maps S bijectively to s(V ). We will show that S is a
basis of V over K.

Note that in a non-trivial K-linear combination of elements of S, all non-zero terms have
valuations which are distinct modulo n. Thus, these valuations are distinct and their minimum
is the valuation of the sum. In particular, this sum is not zero in L, and it follows that S is a
linearly independent set over K.

Now let W be the sub-K-vector space of V generated by S. Consider the finitely generated
OK-submodules W 0 = W ∩ OL ⊂ V 0 = V ∩ OL of OL. Using the fact that v(W 0\{0}) =
v(V 0\{0}) one sees that V 0 = W 0 + pKV

0. Nakayama’s lemma then implies that V 0 = W 0. It
follows that V = KV 0 = KW 0 = W .
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Recall that we have a non-degenerate symmetric K-bilinear form on L given by (x, y) 7→
TrL/K(xy). For any sub-K-vector space V of L, the orthogonal space V ⊥ ⊂ L is isomorphic to
the K-dual of L/V .

Lemma 3.2. Let d = (−dL/K − 1 mod nZ) ∈ Z/nZ. For every sub-K-vector space V of L the
set s(V ⊥) is the complement in (Z/nZ) of the set d− s(V ).

Proof. For non-zero x ∈ V and y ∈ V ⊥ we have TrL/K(xy) = 0, so that v(x) + v(y) = v(xy) 6=
d by Proposition 1.1. It follows that d 6∈ s(V ) + s(V ⊥), so that s(V ⊥) is contained in the
complement in (Z/nZ) of the set d− s(V ). One sees with Lemma 3.1 that these two sets have
the same cardinality, the codimension over K of V in L, so they are equal.

For example, taking V = K the orthogonal space V ⊥ is the kernel of the trace, and s(V ⊥) =
(Z/nZ)\{d}.

Proof of Proposition 1.2. If L/K is not totally ramified, then Proposition 1.1 implies that VC(L/K)
is false; we may thus assume that L/K is totally ramified of degree n.

Clearly, VC(L/K) holds if and only if no K[G]-submodule V strictly contained in L contains
an element x with v(x) = d, where d = (−dL/K−1 mod nZ) ∈ Z/nZ. This means that d 6∈ s(V )
for all such V . By duality, the map V 7→ W = V ⊥ gives a bijection from the set of K[G]-
submodules V of L that are strictly contained in L to the set of non-zero K[G]-submodules W
of L. By Lemma 3.2, we have d 6∈ s(V ) ⇐⇒ 0 ∈ s(V ⊥), so we deduce that VC(L/K) holds if
and only if 0 ∈ s(W ) for every non zero K[G]-submodule W of L. Thus we see that VC(L/K)
is equivalent to condition (2).

It remains to show that condition (2) implies that [L : K] is a power of the residue char-
acteristic p. To see this, let L′/K be the maximal tamely ramified subextension of L over K.
Then condition (2) also holds for L′/K. So, by what we proved already, VC(L′/K) holds. Since
L′/K is tamely ramified, we have dL′/K = eL′/K − 1 [7, Ch. III, §6, Prop. 13]. Then VC(L′/K)
implies that non-zero elements of K are normal basis generators for L′ over K, so L′ = K.

Example 3.3. Let K = Q2(
√
−2) and for n a power of 2 let ζn denote a root of unity of order

n in a fixed algebraic closure of K. For d = 2, 4, 8, 16, . . . the field Ld = Q2(ζ4d) is cyclic of order
d over K, and its Galois group Gd is generated by the automorphism σ : ζ4d 7→ ζ3

4d.

To check whether condition (2) of Proposition 1.2 holds for the extension L4/K, note that
the minimal non-zero K[G4]-submodules of L4 are the kernels of the elements f(σ) acting on
L4, where f ranges over the irreducible factors X−1, X+1 and X2 +1 of X4−1 ∈ K[X]. Thus,
the minimal K[G4]-submodules of L4 are K and ker TrL2/K , and ker TrL4/L2

. These contain the
units: 1, ζ4 and ζ16. So, by Proposition 1.2, VC(L4/K) holds.

Let us try the same for L8/K. The polynomial X8 − 1 factors over K into irreducible
polynomials as follows:

X8 − 1 = (X − 1)(X + 1)(X2 + 1)(X2 +
√
−2X − 1)(X2 −

√
−2X + 1),

so in addition to the minimal submodules we found inside L4, which we know contain units, we
need to consider two sub-K[G8]-modules of K-dimension 2 inside ker TrL8/L4

.
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Now ζ32 is contained in kerL8/L4
, so let us put x = σ2(ζ32)−

√
−2σ(ζ32)−ζ32. Then the sub-K-

vector space V of L generated by x and σ(x) is a minimal K[G]-submodule of L. One now checks
with a computation that vL8(x) = 10 and vL8(σ(x)− x) = 14, so that {2, 6} ⊂ s(V ) ⊂ (Z/8Z).
With Lemma 3.1 we see that s(V ) = {2, 6}, and it follows from Proposition 1.2 that VC(L8/K)
does not hold. From the proof above we see that an element of L of valuation −dL8/K − 1 can
be found inside the K[G8]-submodule V ⊥ of L8.

We conclude this section with some easy consequences of Propostion 1.2.

Corollary 3.4. If K ⊂ L ⊂ M are finite extensions of local fields with M and L both Galois
over K, then VC(M/K) implies VC(L/K).

Note that, in the setting of this corollary, a normal element for M over K is not necessarily
normal over L; see [1] for an easy example, and [4, 5]. We do not know whether the implication
VC(M/K) =⇒ VC(M/L) always holds, even for abelian extensions. However, it does hold in
a particular setting of Kummer extensions — see Lemma 4.3.

Lemma 3.5. Let L/K be a totally ramified Galois extension of local fields whose degree n is a
power of the residue characteristic p > 0. For every finite tamely ramified extension K̃/K we
have

VC(K̃L/K̃) =⇒ VC(L/K).

Proof. Put L̃ = K̃L. Note first that [L̃ : K̃] = [L : K], because the tame part of L/K is trivial.
Let V be a K-submodule of L. Put Ṽ = K̃V ; it is a K̃-submodule of L̃. Note that we have the
obvious inclusion

e eK/Ks(V ) ⊂ s(Ṽ ).

Since e eK/K is coprime to p and therefore to n, and since s(V ) and s(Ṽ ) are both of cardinality
dimK(V ) (Lemma 3.1), it follows that this inclusion is in fact an equality. Thus, V contains a
unit of L (i.e., 0 belongs to s(V )) if and only if Ṽ contains a unit of L̃ (i.e., 0 belongs to s(Ṽ )).
Assume now that VC(L̃/K̃) holds. Then Proposition 1.2 implies that the space Ṽ contains
a unit, so that V contains a unit too. The K-submodule V of L being arbitrary, again by
Proposition 1.2 it follows that VC(L/K) holds.

4 Applications to abelian extensions

In this section we consider only abelian extensions L/K. We will show that Theorems 1.3 and
1.4 hold by using Proposition 1.2.

Proof of Theorem 1.3. Suppose that G = Gal(L/K) is of exponent m, and that K contains a
primitive mth root of unity. Put n = #G. By Kummer theory there exists a K-basis R of L
such that {rm : r ∈ R} is a full set of coset representatives of K∗ ∩ L∗m modulo K∗m. Thus,
L/K is a unit root Kummer extension if and only if m | vK(rm) for all r ∈ R.

The K-algebra K[G] is totally split, and L is free of rank 1 over K[G], so L is the direct
sum of its n distinct minimal non-zero K[G]-submodules, and they all have dimension 1 over
K. These submodules are therefore the modules Kr with r ∈ R.
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By Proposition 1.2, we know that VC(L/K) holds if and only if all minimal non-zero K[G]-
submodules of L contain an element of O∗L. The result now follows by noting that

Kr ∩ O∗L 6= ∅ ⇐⇒ n | vL(r) ⇐⇒ nm | vL(rm) ⇐⇒ m | vK(rm).

Example 4.1. Suppose that K contains µp2 , that u ∈ O∗K is not a p-th power and that π ∈ K∗

satisfies vK(π) = 1. Then uπp is not a p-th power in K, so L = K( p2√
uπp) is a cyclic extension

of degree p2. It is a Kummer extension, and by Theorem 1.4 it does not satisfy VC(L/K).
However, the intermediate field M = K( p

√
u) satisfies both VC(M/K) and VC(L/M). Note

that −1− dL/K ≡ −1− dL/M 6≡ 0 mod p.

In order to prove Theorem 1.4 we first present two auxilliary results.

Lemma 4.2. If L/K is an abelian extension, and K has characteristic 0, then VC(L/K) holds
if and only if VC(E/K) holds for all intermediate fields K ⊂ E ⊂ L for which E is cyclic
over K.

Proof. Let V be a minimal non-zero K[G]-submodule of L. Since the group ring K[G] is a
product of fields, the image F of K[G] in EndK(V ) is a field. Let H be the kernel of the
canonical map G→ F ∗, and let E = LH . Then V ⊂ E, and G/H = Gal(E/K) is cyclic because
it embeds into F ∗. We have just shown that every minimal non-zero K[G]-submodule of L is
contained inside a field E with K ⊂ E ⊂ L and E/K cyclic. The lemma now follows from
Proposition 1.2.

Lemma 4.3. Let M/K be a Galois extension of local fields and let L be a subfield of M which
is normal over K. If M/L is abelian of exponent r and K contains a root of unity of order r
then

VC(M/K) =⇒ VC(M/L).

Proof. Suppose that x ∈ M is normal over K. We will show that x is also normal over L. We
write G = Gal(M/K) and H = Gal(M/L). Then we know that x has trivial annihilator in the
ring K[G], so it also has trivial annihilator in K[H]. The latter is a totally split K-algebra.
Since L[H] is a totally split L-algebra with the same number of components, each of its nonzero
ideals contains a nonzero element of K[H]. Thus, x also has a trivial annihilator in L[H], and
x is normal over L.

If we assume that VC(M/K) holds, then for some d ∈ Z all x ∈M∗ of valuation d are normal
over K. We just showed that all these x are then normal for M/L too. With Proposition 1.1
this implies that d ≡ −dM/L − 1 mod [M : L], and it follows that VC(M/L) holds.

The core of our argument lies in the proof of the following two lemmas.

Lemma 4.4. Let L/K be a totally ramified abelian extension of local fields of mixed character-
istic (0, p), whose degree is a power of p. Let µp be the group of pth roots of unity in an algebraic
closure of K. If µp 6⊂ K and L(µp)/K(µp) is a Kummer extension then VC(L(µp)/K(µp))
holds.
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Proof. Put K̃ = K(µp), L̃ = L(µp) and G = Gal(L/K) = Gal(L̃/K̃). Let m be the exponent
of G. Note first that K̃[G] is a totally split K̃-algebra, so L̃ is the direct sum of its minimal
non-zero submodules, which are exactly the eigenspaces

Eχ = {x ∈ L : gx = χ(g)x for all g ∈ G},

where χ ranges over Hom(G, K̃∗). We will consider the sets s(Eχ), where s is as in Section 3
for the extension L̃/K̃. Since Eχ is 1-dimensional over K̃, these are one element sets.

By our assumptions, there is an element σ ∈ Gal(L̃/K) that acts non-trivially on µp, so it
acts on µm ⊂ K̃∗ by raising elements to the power c for some c ∈ Z, which is not 1 modulo p.

Now on the one hand s(σ(Eχ)) = s(Eχ), because σ preserves the valuation. On the other
hand, we have xc ∈ Eχc = σ(Eχ) for all x ∈ Eχ, so s(σ(Eχ)) ⊃ cs(Eχ). Since c − 1 is coprime
to [L̃ : K̃] and s(Eχ) is a set consisting of a single element, this implies that s(Eχ) = {0}. By
Proposition 1.2, it then follows that VC(L̃/K̃) holds.

Lemma 4.5. Let L/K be a totally ramified cyclic extension of local fields of mixed characteristic
(0, p) whose degree n is a power of p. Let r | n be the number of n-th roots of unity in K∗. Assume
that p | r, and if p = 2 and 8 | n assume that r 6= 2. For the chain of fields K ⊂ Lr ⊂ Lp ⊂ L
where [L : Lp] = p and [L : Lr] = r we then have

VC(L/Lr) and VC(Lp/K) =⇒ VC(L/K).

Proof. If σ is a generator of G = Gal(L/K), then the minimal non-zero K[G]-submodules of L
are the spaces Vf = {x ∈ L : f(σ) · x = 0}, where f ranges over the monic irreducible factors
of Xn − 1 in K[X]. Let µn be the group of n-th roots of unity in some algebraic closure of K.
Every z ∈ µn either has order less than n, so that it is a zero of Xn/p − 1, or it has order n and
then zn/r is a root of unity of order r in K. Thus we see that

Xn − 1 = (Xn/p − 1)
∏

ζ ∈ K∗
#〈ζ〉 = r

(Xn/r − ζ).

We claim that the polynomials Xn/r − ζ are all irreducible in K[X]. In order to see this, note
first that Gal(K(µn)/K) ⊂ Aut(µn) = (Z/nZ)∗. Let H be the kernel of the map (Z/nZ)∗ →
(Z/rZ)∗. Then Gal(K(µn)/K) is a subgroup of H, not contained in the kernel of the map
(Z/nZ)∗ → (Z/prZ)∗. Under the assumption we made, H is the only such group, so that
Gal(K(µn)/K) = H and K(µn) has degree n/r = #H over K. This shows the claim.

Suppose now that f is an irreducible factor of Xn − 1. If f is a factor of Xn/p − 1 then Vf
is a K[G]-submodule of Lp. Otherwise, f = Xn/r − ζ for some ζ ∈ K∗ of order r, and Vf is
an eigenspace for the action of Gr = 〈σn/r〉 = Gal(L/Lr) on L, so it is an Lr[Gr]-submodule
of L. Thus, every minimal K[G]-submodule of L is a K[G]-submodule of Lp or it is an Lr[Gr]-
submodule of L. Our statement now follows with Proposition 1.2.

We can now prove our main theorem.
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Proof of Theorem 1.4. Let us first assume that VC(L/K) holds, and suppose that we have
intermediate fields K ⊂ E ⊂ F ⊂ L with F/E cyclic of degree r. Then VC(F/K) holds by
Corollary 3.4 and VC(F/E) holds by Lemma 4.3. With Theorem 1.3, we then see that F/E is
a unit root Kummer extension.

To show the other implication, we assume that F/E is a unit root Kummer extension for all
E, F as above, which by Theorem 1.3 implies that VC(F/E) holds too. We also assume that
we are not in the case where p = r = 2 and 8 | m. We will prove that VC(L/K) holds, and
by Lemma 4.2 it suffices to do this under the additional hypothesis that L/K is cyclic. So we
assume that L/K is cyclic of degree n. We now consider two cases: r = 1 and r > 1.

If r > 1 then we proceed with induction on n/r, where n = [L : K]. If n/r = 1, then we
may take E/F to be L/K, and we are done. If n/r > 1, then consider K ⊂ L ⊂ Lr ⊂ Lp ⊂ L
as in Lemma 4.5. By the induction hypothesis we then see that VC(Lp/K) holds. Taking F/E
to be L/Lr we see that VC(L/Lr) holds. Thus, Lemma 4.5 completes the proof in the case that
r > 1.

Now suppose that r = 1. Put K̃ = K(µp) and L̃ = L(µp). We claim that VC(F̃ /Ẽ) holds
whenever K̃ ⊂ Ẽ ⊂ F̃ ⊂ L̃ and F̃ /Ẽ is a Kummer extension. By Galois theory, Ẽ and F̃ are
of the form Ẽ = E(µp) and F̃ = F (µp) for certain intermediate fields K ⊂ E ⊂ F ⊂ L. We
then have µp 6⊂ E, because L/K has only a trivial tame part, so by Lemma 4.4 we see that
VC(Ẽ/F̃ ) holds, as claimed. By using the already proven case r > 1 of Theorem 1.4, it follows
that VC(L̃/K̃) holds. By Lemma 3.5 this implies that VC(L/K) holds.
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