Quantum toroidal algebras

Construction
- Affinizations of Lie algebras:
 \[\hat{g} \rightarrow C[t, t^{-1}] \otimes g \rightarrow C[z^\pm 1, t^\pm 1] \otimes g \]
 - Simple Lie algebra: Loop algebra
 - Affinizations of quantum groups:
 \[U_q(g) \rightarrow U_q(C) \rightarrow U_q(U) \]

Properties
- Some fundamental elements about quantum toroidal algebras:
 - In type A, they are in Schur-Weyl duality with elliptic Cherednik algebras,
 - the quantum affine algebra is a subalgebra of the quantum toroidal algebra,
 - Quantum toroidal algebras have a "coproduct" which involves infinite sums

Motivations
- **Cherednik algebra**
- **Quantum toroidal algebra**
- **Representations**
- **Geometry**
- **Conformal field theory**
- **Combinatorics**

State of art
- No example of finite-dimensional representations were known until very recently.

Aim of my works

Aim Construct finite-dimensional representations of quantum toroidal algebras of type A at roots of unity. We have three different constructions:

- Construction via monomial crystals,
- Construction by fusion products,
- Construction via the affinization \(\hat{U}(\hat{g}_{\infty}) \) of type \(A_{\infty} \).

Extremal representations of Kashiwara

Facts
- The extremal fundamental representations:
 - are representations \(V_\ell \) of \(U_q(\hat{g}_{\infty}) \) \((\ell = 1, \ldots, n) \) with crystal bases \(B_\ell \),
 - are isomorphic to the global Weyl modules [Hatayama, Pressley 05],
 - admit an irreducible quotient of finite dimension [Kashiwara 02].

Idea
- Extend the action of the quantum affine algebra on \(V_\ell \) to an action of the quantum toroidal algebra: the representations of \(\hat{U}(\hat{g}_{\infty}) \) hence obtained should have finite-dimensional quotients.

First construction
- Crystal bases \(B_\ell \) can be realized by monomial crystals \(M_{\ell} \) [Hernandez, Nakajima 06].
- Monomials occurring in these crystals appear also in the theory of \(q \)-characters of quantum toroidal algebras [Frenkel, Reshetikhin 90].

Aim
- Construct a representation of \(\hat{U}(\hat{g}_{\infty}) \) satisfying the following properties:
 - its \(q \)-character is the sum of monomials in \(M_{\ell} \),
 - its restriction to the quantum affine subalgebra is \(V_\ell \).

Theorem
- Such a representation exists if and only if \(\ell \) is one of the nodes 1, \(r+1 \), or \(n \) of the Dynkin diagram, where \(n = 2r+1 \) is odd. It is denoted by \(V_\ell(a) \) with \(a \in \mathbb{C}^* \) and is called extremal loop weight representation.

Remark
- The extremal loop weight representations \(V_\ell(a) \), also called vector representations, are used in [Feigin, Jimbo, Miwa, Mukhin 13].

Finite-dimensional representations

Theorem
- Specializing \(q \) at a particular root of unity in the representations \(V_\ell(a) \), we get irreducible finite-dimensional representations by taking a quotient.

Remark
- This is the first systematic construction of finite-dimensional representations of quantum toroidal algebras at roots of unity.

Second construction

Motivation
- The extremal representations are related to tensor products of highest weight representations and lowest weight representations [Kashiwara 94].

Theorem
- Process of tensor products of highest weight representations and lowest weight representations of \(\hat{U}(\hat{g}_{\infty}) \).
- We recover the vector representation \(V_\ell(a) \).

Proof
- Drinfeld coproduct and related methods [Hernandez 07].

Theorem
- We get extremal loop weight representations as subquotients of \(\otimes V_\ell(a) \).
- We obtain new finite-dimensional representations at roots of unity.

Third construction

Conjecture
- Relation between the \(q \)-character of representations \(\hat{U}(\hat{g}_{\infty}) \) and the one of representations \(\hat{U}(\hat{g}_{\infty}) \).

Theorem
- Construction of \(\ell \)-extremal representations \(V_\ell^{+}\) for \(\hat{U}(\hat{g}_{\infty}) \).
- Proof of the conjecture: we recover the representations \(V_\ell(a) \) of \(\hat{U}(\hat{g}_{\infty}) \).

Perspectives

- Construction of finite-dimensional representations for quantum toroidal algebras of general type.
- Classification of irreducible finite-dimensional representations of quantum toroidal algebras at roots of unity.
- Description of finite-dimensional representations of elliptic Cherednik algebras at roots of unity by Schur-Weyl duality.

References
