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Abstract. We characterize sandwiched singularities in terms of their link in two different
settings. We first prove that such singularities are precisely the normal surface singularities
having self-similar non-archimedean links. We describe this self-similarity both in terms
of Berkovich analytic geometry and of the combinatorics of weighted dual graphs. We
then show that a complex surface singularity is sandwiched if and only if its complex link
can be embedded in a Kato surface in such a way that its complement remains connected.
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1. Introduction

Let X be any complex algebraic variety of dimension d and let 0 ∈ X be an isolated
singular point. A classical way to analyze the geometry of X near its singular point is to
consider its (archimedean) link, which is defined by embedding the complex analytic germ
(X, 0) in the germ of a complex affine space (Cn, 0) and taking the intersection with the
boundary of a small ball around the origin. More precisely, if z1, ..., zn are coordinates for
Cn at zero, the intersection of X with any sphere centered at 0 of small enough radius ε > 0
is transversal, so that LεC(X, 0) =

{
x ∈ X(C) s.t.

∑n
i=1 |zi(x)|2C = ε

}
is a smooth manifold

of real dimension 2d − 1. Its diffeomorphism type does not depend on the embedding
nor on ε, provided that ε is small enough, and we define the link of (X, 0) to be this
diffeomorphism type. Note that the topology of a neighborhood of 0 in X is completely
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determined by its link, since one can show that the intersection of X with a small ball
is homeomorphic to the cone over LεC(X, 0). The complex structure on X also induces a
canonical contact structure on the link which has attracted a lot of attention recently, see
for example [CNPP06, McL15].

When the algebraic variety X is defined over an algebraically closed field k, then a
non-archimedean version of the link can be defined as follows. Endow k with the trivial
absolute value | · |, that is the one such that |k×| = 1, and denote by Xan the non-
archimedean analytic space associated with X, in the sense of Berkovich [Ber90]. Then,
the space NLε(X, 0) =

{
x ∈ Xan such that maxi |zi(x)| = ε

}
, with the topology induced

from the one of Xan, does not depend on the embedding nor on ε ∈ ]0, 1[. We will call
it the non-archimedean link of (X, 0) and we will simply denote it by NL(X, 0). Observe
that, thanks to the non-archimedean triangular inequality, the equation maxi |zi(x)| = ε
defines the boundary of the ball of radius ε in the non-archimedean analytification of Cn,
making the definition of the non-archimedean link completely analogous to the classical

one. Concretely, NL(X, 0) is the set of semi-valuations v on the complete local ring ÔX,0
of X at 0 that are normalized by the condition minf∈M v(f) = 1, where M is the maximal

ideal of ÔX,0, endowed with the pointwise convergence topology.
The homotopy type of the non-archimedean link NL(X, 0) is well understood in terms of

the resolutions of singularities of (X, 0), whenever those exist. Recall that any resolution
of singularities π : Xπ → X of (X, 0) whose exceptional divisor π−1(0) has simple normal
crossing singularities gives rise to a dual simplicial complex ∆π, which is a finite simplicial
complex encoding the incidence relations between the components of π−1(0). It follows from
the work of Thuillier [Thu07] that ∆π can be embedded in NL(X, 0) and that there is a
deformation retraction of the latter onto the former. Since every connected finite simplicial
complex is the dual complex of an isolated normal singularity by Kollár [Kol13], the
homotopy type of NL(X, 0) can be arbitrarily complicated. However, de Fernex–Kollár–Xu
[dFKX12] have proved that ∆π is contractible for isolated log terminal singularities.

On the other hand, the topology of non-archimedean links is poorly understood and
has been analyzed in depth only in the case of surfaces. One can show that NL(A2

k, 0) is
a compact real tree, that is a union of segments which does not contain any non-trivial
loop, see [Ber90, Jon15, FJ04]. Its structure is however quite intricate since it has a dense
set of ramification points (corresponding to points of type 2 as in [Ber90]), and the set of
branches at such a point is naturally parameterized by P1(k), which may be uncountable.
When k is a countable field, NL(A2

k, 0) is metrizable and homeomorphic to the Ważewski
universal dentrite by [HLP14].

The non-archimedean link of a surface singularity (X, 0) can be obtained by gluing copies
of NL(A2

k, 0) to a finite graph. This picture has enabled de Felipe [dF17] to completely
describe the homeomorphism types of non-archimedean links of surface singularities, but
her result shows that the topology of NL(X, 0) fails to encode much information about the
singularity. For example, NL(X, 0) is homeomorphic to NL

(
A2
k, 0
)

when (X, 0) is a rational
singularity, or when X admits a good resolution whose exceptional locus is irreducible.
The topology of NL(X, 0) thus forgets the function fields of exceptional components of a
resolution. In order to characterize interesting classes of singularities one needs to retain
some of this information.
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To do so, we consider the sheaf on NL(X, 0) which is induced by the sheaf of analytic
functions onXan. The resulting ringed space was studied by the first author in [Fan14]. Note
that we cannot expect NL(X, 0) with this additional analytic structure to be isomorphic
to a proper subspace of itself, as any such isomorphism would have to send the endpoints
of NL(X, 0) to endpoints, forcing it to be surjective. In particular, already in the case of a
smooth point in a surface the non-archimedean link is isomorphic to a proper subspace
of itself only after removing finitely many endpoints (more precisely, finitely many points
of type 1, that are the endpoints corresponding to semi-valuations with nontrivial kernel).
Whenever such an isomorphism exists we will say that the non-archimedean link NL(X, 0)
is self-similar (see the condition (†) on page 24).

In this paper we show that the non-archimedean link NL(X, 0) of a normal surface
singularity (X, 0) is self-similar if and only if (X, 0) is a sandwiched singularity. Over the
complex numbers, sandwiched singularities were defined by Spivakovisky in [Spi90] as those
normal surface singularities whose complex analytic germs dominate bimeromorphically a
smooth germ; in loc. cit. they play a crucial role in the proof of the desingularization of
surfaces via Nash transformations. Several authors have further contributed to the study
of sandwiched singularities, for example their deformation theory has been investigated
by T. de Jong and van Straten [dv98], while their Milnor fibers have been described by
Némethi and Popescu-Pampu [NPP10]. In order to work over an algebraically closed field
k of arbitrary characteristic we will need to replace complex analytic germs with formal
germs, that is we will work with complete local rings; a precise definition will be given in
Section 4.

Our main result is the following theorem which give several characterizations of sand-
wiched singularities.

Theorem A. Let (X, 0) be a normal surface singularity. The following are equivalent:

(i) (X, 0) is sandwiched;
(ii) there exists a finite set T of type 1 points of NL(X, 0) such that every point of

NL(X, 0) that is not of type 2 has a basis of neighborhoods each isomorphic to
NL(X, 0) \ T ;

(iii) there exists a finite set T of type 1 points of NL(X, 0) such that NL(X, 0) \ T is
isomorphic to an open subspace of NL(A2

k, 0);
(iv) there exists a finite set T of type 1 points of NL(X, 0) such that every open subset

of NL(X, 0) contains an open subset isomorphic to NL(X, 0) \ T ;
(v) there exists a good resolution of (X, 0) whose weighted dual graph is self-similar;

(vi) there exists a proper birational morphism of algebraic k-surfaces π : X ′ → X
which is not an isomorphism above 0, together with a point p ∈ π−1(0) and an

isomorphism of complete local rings ÔX′,p ∼= ÔX,0.

Both (ii) and (iv) can be interpreted as self-similarity properties for NL(X, 0), and
imply the condition (†). In (v), a vertex of a dual graph has as weights the genus and
the self intersection of the corresponding component; such a weighted graph is said to
be self-similar if it is isomorphic to a graph modification of itself, see Section 5 for more
details. A datum like the one of (vi) will be called a Kato datum for (X, 0).

Let us now illustrate the main ingredients of the proof of Theorem A, which requires a
combination of methods from resolution of singularities, non-archimedean analytic geometry,
formal geometry, and combinatorics.
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Begin by observing that any sandwiched singularity can be obtained by performing a
composition of point blowups (Y,D)→ (A2

k, 0), followed by the contraction of a connected
divisor E on Y that is supported on D. This procedure yields two maps Y → X → A2

k that
shows that the contracted surface X, whose singular point 0 is the image of E through the
contraction map, is “sandwiched” between two smooth surfaces, justifying the terminology.
By picking any point y in E and performing on it the same sequence of blowups and
contraction (see the subsection 8.1 for a detailed explanation of how this can be done),

one obtains a surface X ′ above Y with a singular point p such that ÔX′,p ∼= ÔX,0, that is a
Kato datum. This proves the implication (i) =⇒ (vi).

In the sections 2 and 3 we study in detail the structure of non-archimedean links.
In particular, with any modification (Y ′, D′) of (X, 0) is associated a center map
cY ′ : NL(X, 0) → D′, and if y′ is a closed point of D′ then its inverse image c−1

Y ′ (y
′)

is an open subspace of NL(X, 0) that is isomorphic to the complement of finitely many
points of type 1 in the non-archimedean link NL(Y ′, y′) of y′ in Y ′ (see Proposition 3.5).
When applied to the Kato datum X ′ → X above, this shows that NL(X, 0) contains a
strict open subspace that is isomorphic to the complement of finitely many points of type 1

in NL(X, 0) itself, since ÔX′,p ∼= ÔX,0 implies that NL(X ′, p) and NL(X, 0) are isomorphic,
that is the condition (†) holds. Similar arguments based on the study of the structure of
non-archimedean links permit to obtain the implications (i) =⇒ (iii) =⇒ (ii) =⇒ (iv)
of Theorem A, as is explained in Section 4.

Showing that singularities having self-similar links have also self-similar weighted dual
graphs, that is the implication (†) =⇒ (v) of Theorem A, is a slightly more delicate matter,
undertaken in Section 6. We prove an extension result for morphisms of a punctured disc
into NL(X, 0), Proposition 6.1, and deduce that we can assume that the boundary ∂U of
an open subset U of NL(X, 0) isomorphic to the complement of finitely many points of type
1 in NL(X, 0) consists only of finitely many points of type 2. We then use other results on
the structure of NL(X, 0), proven in subsection 3.4, to produce a (formal) modification
(Y ′, D′) of (X, 0) together with a closed point y′ of D′ such that U ∼= c−1

Y ′ (y). Finally,
we show that the dual graph associated with (X, 0) is self-similar by carefully choosing
compatible resolutions of (Y ′, y) and (X, 0).

The proof of the remaining implication, that is (v) =⇒ (i), requires two distinct steps
that we believe to be of independent interest. First of all, we prove a purely combinatorial
result, Theorem 5.6, showing that every self-similar weighted graph is sandwiched, which
means that it can be embedded in a graph modification of the trivial graph (the dual
graph of the blowup of A2

k at 0). We then show in Theorem 7.1 that, if (X, 0) is a normal
surface singularity admitting a good resolution whose associated weighted dual graph is
sandwiched, then (X, 0) is a sandwiched singularity. Over the complex numbers this result
was originally proven by Spivakovsky in [Spi90], but his proof relies on plumbing techniques
for complex analytic spaces; we proceed in a similar way, using an analogue of plumbing in
formal geometry.

�

Since sandwiched singularities can be characterized in terms of their non-archimedean
links, it is also natural to look for a characterization of them in terms of their archimedean
links. We have not been able to find a self-similar property reminiscent of Theorem A,
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(ii) or (iv). However, building on Theorem A, (vi), in Section 9 we observe that links of
sandwiched singularities are exactly those arising on a specific class of smooth compact
complex surfaces.

To state precisely our results, we need to introduce some terminology. A compact
complex surface S contains a global spherical shell if it admits a biholomorphic copy of a
neighborhood of the 3-sphere in C2 that does not disconnect S. Surfaces containing a global
spherical shell have been completely described by Kato [Kat78] (see also the subsequent
work of G. Dloussky [Dlo84]). They are non-kähler compact surfaces of Kodaira dimension
equal to −∞ that play a special role in the Kodaira classification of compact complex
surfaces, see the introduction of [Tel10]. Primary Hopf surfaces are the most emblematic
examples of such surfaces: they are obtained as the orbit space of a contracting germ of
biholomorphism of (C2, 0), and are diffeomorphic to the product of spheres S3 × S1. Any
surface containing a global spherical shell is a deformation of a modification of a primary
Hopf surface.

Theorem B. Let (X, 0) be a complex sandwiched singularity, and choose a local embedding
X ⊂ Cn. Then, for any ε small enough, there exist a smooth compact complex surface S
having a global spherical shell and a holomorphic embedding

ı : X ∩ {z ∈ Cn, ε/2 < ‖z‖ < 2ε} −→ S

such that S \ LεC(X, 0) is connected.

Observe that the link LεC(X, 0) is included in the domain X ∩ {z ∈ Cn, ε/2 < ‖z‖ < 2ε}
so that one can phrase the property in the previous theorem as an embedding property for
the archimedean link of a sandwiched singularity. Following the terminology of M. Kato,
this says that LεC(X, 0) can be realized as a real-analytic global strongly pseudoconvex
3-fold in a surface containing a global spherical shell, see Section 9 for a discussion of these
notions.

We prove that this property characterizes sandwiched singularities.

Theorem C. Let (X, 0) be a complex normal surface singularity, and choose a local
embedding X ⊂ Cn. Suppose that for some small enough ε > 0, the archimedean link
LεC(X, 0) can be realized as a real-analytic global strongly pseudoconvex 3-fold in a compact
complex surface S. Then we are in exactly one of the following situations:

(i) (X, 0) is a weighted homogeneous singularity which is not rational, and S is an
elliptic surface of Kodaira dimension either 0 or 1;

(ii) (X, 0) is a quotient singularity, and S is a secondary Hopf surface;
(iii) (X, 0) is a sandwiched singularity, and S carries a global spherical shell.

An elliptic surface is a compact complex surface carrying an elliptic fibration [BHPVdV04,
p.200]. A Hopf surface is a compact complex surface whose universal cover is biholomorphic
to C2 \ {0}. When its fundamental group is cyclic, then it is a primary Hopf surface in
the previous sense. Otherwise it admits a non-trivial finite cyclic cover by a primary Hopf
surface, in which case it is called secondary Hopf surface.

A secondary Hopf surface is never elliptic and does not contain any global spherical
shell, so that the three classes of surfaces arising in Theorem C are really disjoint.

Observe that Theorems B and C imply immediately the following result.
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Corollary D. A normal surface singularity is sandwiched if and only if its archimedean
link can be realized as a real-analytic global strongly pseudoconvex 3-fold in a compact
complex surface containing a global spherical shell.

Acknowledgements. We would like to warmly thank B. Teissier, who asked us about a
characterization of singularities having self-similar Riemann-Zariski spaces. This paper is a
tentative answer to his question in the framework of normalized Berkovich analytic spaces.

2. Preliminaries on non-archimedean links

In this section we recall the construction of the non-archimedean link NL(X,Z) of
a subscheme Z in an algebraic variety X from [Fan14] (where it is called normalized
non-archimedean link).

2.1. Berkovich analytifications. We begin by recalling the definition of the Berkovich
analytification of an algebraic variety, following [Ber90]. Let K be a field complete with
respect to a non-archimedean absolute value | · |, that is an absolute value such that
|a+ b| ≤ max{|a|, |b|} for every a and b in K. We denote by K◦ = {|a| ≤ 1} the valuation
ring of K. In the sequel K will either be the field of Laurent series k((t)) with a t-adic
absolute value for some algebraically closed field k, or any field endowed with the trivial
absolute value, that is the absolute value such that |K×| = 1.

Let X = Spec(A) be an affine algebraic variety over K. The analytification Xan of X is
defined as the following set of multiplicative semi-norms:

Xan =
{
x : A→ R≥0

∣∣x(ab) = x(a)x(b), x(a+b) ≤ x(a)+x(b), x(c) = |c| ∀a, b ∈ A, c ∈ K
}
,

with the topology of the pointwise convergence, that is the topology induced by the product
topology of (R≥0)A. The definition extends by gluing to any algebraic variety over K (and
more generally to any K-scheme of finite type).

If x is a point of Xan then its kernel kerx is a prime ideal of A and x induces an absolute
value on the quotient A/ kerx, which is the residue field of X at kerx. The completion of
A/ kerx with respect to this absolute value is a complete valued field extension of K which
will be denoted by H (x) and called the complete residue field of Xan at x. If f is an
algebraic function on X, we will denote by f(x) its image in H (x), and by |f(x)| ∈ R≥0

the image of f(x) through the absolute value of H (x).
More generally, Xan comes equipped with a sheaf of K-algebras of analytic functions,

consisting of the functions which can be written locally as a uniform limit of rational
functions without poles. If U is an open subspace of Xan, then an analytic function
f ∈ OXan(U) can be evaluated in a point x of U , yielding an element f(x) ∈ H (x),
and therefore a positive real number |f(x)|. An analytic funtion f on U is said to be
bounded if |f(x)| ≤ 1 for every x in U . Bounded analytic functions form a subsheaf O◦Xan

of K◦-modules of OXan .
Moreover, Xan can be endowed with an additional Grothendieck topology. We will not

discuss this last aspect in the rest of the paper since we will only be considering open
subspaces of analytic spaces.

2.2. The center map. For the remaining of this section we work with an algebraic variety
X over a trivially valued and algebraically closed field k.
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Any point x of Xan comes together with a morphism α : Spec
(
H (x)

)
→ X. We say

that x has center on X if α extends to a morphism α : Spec
(
H (x)◦

)
→ X, where H (x)◦

is the valuation ring of H (x). The center of x is then defined as the point cX(x) = α(s) of
X, where s is the closed point of Spec

(
H (x)◦

)
. This coincides with the notion, classical

in valuation theory, of the center of the valuation ring H (x)◦. Observe that, since X is
separated by hypothesis, whenever x has center on X then its center cX(x) is a well defined
point of X. If moreover X is proper over k, then by the valuative criterion of properness
every point of Xan has center on X, but this is not true in general.

The center map cX :
{
x ∈ Xan having center on X} → X is anticontinuous, which

means that c−1
X (Z) is open whenever Z is a closed subvariety of X. The notion of center

describes the property for a point of Xan to be close to a point of X, so whenever Z is a
closed subvariety of X the subset c−1

X (Z) of Xan can be thought of as a tubular neighborhood

of Z in Xan. The complement c−1
X (Z) \ Zan of Zan in the tubular neighborhood can then

be thought of as a punctured tubular neighborhood of Z in Xan.

Remark 2.1. In the terminology of [Thu07], the punctured tubular neighborhood c−1
X (Z) \

Zan coincides with the analytic space
(
X̂/Z

)
η

associated with the formal completion X̂/Z

of X along Z.

2.3. Non-archimedean links. We fix an algebraic variety X over k, and a nonempty
and nowhere dense closed subscheme Z of X.

An element λ of R>0 acts on a point x of Xan by raising the semi-norm x to the power
λ. Indeed, the condition for xλ to be in Xan, that is the fact that it is trivial on k, is
satisfied since the trivial absolute value is invariant under exponentiation by elements of
R>0. Observe that as an abstract field the completed residue field H (x) is isomorphic to
H (xλ), but the absolute value of the latter is obtained by raising to the power λ the one
of the former. Therefore, neither the abstract valuation ring H (x)◦ nor the morphism of
schemes Spec

(
H (x)

)
→ X associated with x change when replacing x by xλ. It follows

that the action of R>0 on Xan induces an action on the punctured tubular neighborhood
c−1
X (Z) \ Zan.

We define the non-archimedean link NL(X,Z) of Z in X as the quotient of the punctured
tubular neighborhood of Z in Xan by this action:

NL(X,Z) =
(
c−1
X (Z) \ Zan

)/
R>0.

We endow NL(X,Z) with the quotient topology, and see it as a ringed space by endowing
it with the following two sheaves. The sheaf of analytic functions ONL(X,Z) on NL(X,Z) is
by definition the push-forward to NL(X,Z) of the sheaf of analytic functions Oc−1

X (Z)\Zan

on the Berkovich analytic space c−1
X (Z) \Zan via the quotient map. Analogously, the sheaf

of bounded analytic functions O◦NL(X,Z) on NL(X,Z) is the push-forward of the sheaf of

bounded analytic functions O◦
c−1
X (Z)\Zan . Both are local sheaves of k-algebras and O◦NL(X,Z)

is a subsheaf of ONL(X,Z). We will say more about the analytic structure of NL(X,Z) in
the subsequent subsections. Observe that NL(X,Z) is a compact topological space by
[Fan14, Proposition 5.9].

It is worth noticing that by Remark 2.1 the space c−1
X (Z) \ Zan only depends on the

formal completion of X along Z, so the same is true for NL(X,Z). In particular, if 0 and 0′
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are closed points of algebraic k-varieties X and X ′ respectively, then the non-archimedean
links NL(X, 0) and NL(X ′, 0′) are isomorphic (as locally ringed spaces) if and only if the

corresponding complete local rings ÔX,0 and ÔX′,0′ are isomorphic. It follows that if k = C
then analytically isomorphic singularities have isomorphic non-archimedean links.

One important feature of non-archimedean links is their invariance under modifications.
We use the following non-conventional terminology: we define a modification of (X,Z) to
be a pair (Y,D), where Y is a normal algebraic k-variety and D is a Cartier divisor of Y ,
together with a proper morphism π : Y → X which is an isomorphism out of D and such
that D = π−1(Z) is the (schematic) inverse image of Z through π.

The following result is then a consequence of the valuative criterion of properness.

Proposition 2.2 ([Thu07, Proposition 1.11]). If π : (Y,D)→ (X,Z) is a modification of

(X,Z), then π induces an isomorphism of locally ringed spaces NL(Y,D)
∼→ NL(X,Z).

The map cX induces an anticontinuous map cX : NL(X,Z)→ Z which we still call the
center map. Thanks to the result above, we also have a center map cY : NL(X,Z)→ D
associated with any modification (Y,D) of (X,Z).

2.4. Analytic structure of non-archimedean links. We fix an algebraic variety X
over k, and a nonempty and nowhere dense closed subscheme Z of X. We now explain
some properties of the ringed space structure of the non-archimedean link NL(X,Z).

Some caution is needed when working with analytic functions on NL(X,Z), as they
cannot be evaluated at points of NL(X,Z), given that such a point is only a R>0-equivalence
class of semi-norms.

However, it is possible to say whether the value of a function f ∈ ONL(X,Z)(U) at a point
x ∈ U lies in {0}, ]0, 1[, {1}, or ]1,+∞[, as those are the orbits of R≥0 under the action of
R>0 by exponentiation. In particular it makes sense to ask whether a function vanishes at
a point. Moreover, for any open set U one can interpret O◦NL(X,Z)(U) as the ring of those

functions on U which are bounded by 1.

As follows from the definition, with any point x of NL(X,Z) is associated a field extension
H (x) of k, endowed with a rank 1 valuation (but not with an absolute value) trivial on k,
with respect to which H (x) is complete, and therefore a rank 1 valuation ring which we
still denote by H (x)◦. Conversely, every complete (rank 1) valuation ring on the residue
field of a scheme-theoretic point of X \ Z such that its center on X is in Z comes from
a point of NL(X,Z). Observe that a function f ∈ ONL(X,Z)(U) is bounded by 1 on U if
and only if f(x) ∈H (x)◦ for every x in U . The valued field H (x) can be defined more
intrinsically, in a way that only depends on the ringed space structure of NL(X,Z), as the
completion of the residue field of the local ring ONL(X,Z),x with respect to the valuation
induced by O◦NL(X,Z),x.

The analytic structure of NL(X, 0) contains abundant information about the pair (X, 0),
as is clear from the following result of [Fan14], which we recall for the reader’s convenience.

Proposition 2.3 ([Fan14, Corollary 4.14]). Let 0 be any closed point in an algebraic
variety X and assume that X is normal at 0. Then the canonical morphism

ÔX,0 → O◦NL(X,0)

(
NL(X, 0)

)
is an isomorphism.
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2.5. Non-archimedean links and k((t))-analytic spaces. A crucial property of non-
archimedean links is that they are locally isomorphic to analytic spaces over a field of
Laurent series k((t)) with t-adic absolute value, in the following sense. Choose ε ∈]0, 1[
and endow k((t)) with the t-adic absolute value such that |t| = ε. As we have seen,
any Berkovich analytic space X over k((t)), for example an open or closed subspace of
the analytification of an algebraic k((t))-variety, comes equipped both with a sheaf of
k((t))-algebras OX and with a sheaf of k[[t]]-algebras O◦X. We can see these two sheafs only
as sheaves in k-algebras, yielding a triple which we denote by For(X) =

(
X,OX,O

◦
X

)
. It

then makes sense to ask whether a non-archimedean link is isomorphic as such a triple to a
triple of the form For(X). In general, this is true only locally, in the following sense. If X
is affine, then NL(X,Z) can be covered by finitely many open subspaces which, as ringed
spaces in k-algebras, are of the form For(X) for some k((t))-analytic space X. Observe that
this is also the case if Z is a single point of X, since X can then be replaced by an affine
neighborhood of Z. If X is not affine, then NL(X,Z) is covered by the compact domains
cX(U ∩ Z), for U ranging among an open affine cover of X, and each cX(U ∩ Z) is locally
isomorphic to a k((t))-analytic space in the sense above. Mind that the datum consisting
of such a covering and k((t))-analytic structures is non canonical.

A proof of this fact can be found in [Fan14, Corollary 4.10], but to help the reader
familiarize with the structure of non-archimedean links we illustrate here what happens
in the case when Z = {0} is a closed point of X. Let f be an element of the completed

local ring ÔX,0 of X at 0. This defines a k-analytic map from c−1
X (0) into the open unit

ball in A1,an
k . The latter is canonically homemorphic to the interval [0, 1[, and under this

homeomorphism this analytic map is given by the absolute value c−1
X (0)

|f |−→ [0, 1[. The
fiber |f |−1(ε) of |f | at ε ∈ ]0, 1[ is then an analytic space over k((t)), since the completed

residue field of A1,an
k at the point corresponding to ε is the field k((t)) with the t-adic

absolute value such that |t| = ε.
Then the projection π : c−1

X (0) \ {0}an → NL(X, 0) defining NL(X, 0) identifies

For
(
|f |−1(ε)

)
with its image in NL(X, 0), which is the complement NL(X, 0) \ V (f)

of the zero locus V (f) of f in NL(X, 0). Finally, by having f range among a finite set of

generators of the maximal ideal of ÔX,0, we obtain a cover NL(X, 0) with finitely many
open subspaces, each of which is isomorphic to a k((t))-analytic space.

Remark 2.4. Observe that the k((t))-analytic space |f |−1(ε) is the analytic Milnor fiber
Ff,0 of f at 0, an object defined and studied in [NS07]. The non-archimedean link NL(X, 0)
can be thought of as a global version of Ff,0, dependent only on the germ of X at 0 and
not on f .

2.6. Discs and annuli. Some specific subspaces of non-archimedean links of surfaces are
particularly important and deserve to be studied in depth. Let T denote a coordinate
function on the k((t))-analytic affine line A1,an

k((t)). We say that a subspace U of a non-

archimedean link NL(X,Z) is a disc if, as a ringed space in k-algebras, U is isomorphic to

For(D), where D =
{
x ∈ A1,an

k((t))

∣∣ |T (x)| < 1
}

is an open unit k((t))-analytic disc. We say

that U is an annulus if, as a ringed space in k-algebras, U is isomorphic to For(A), where

A =
{
x ∈ A1,an

k((t))

∣∣ |t| < |T (x)| < 1
}

is an open k((t))-analytic annulus of modulus one. We
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collect in the following statement some well known results about the topology of discs and
annuli.

Theorem 2.5 (See [Ber90, §4.1 and §4.2]). Let D =
{
x ∈ A1,an

k((t))

∣∣ |T (x)| < 1
}

and

A =
{
x ∈ A1,an

k((t))

∣∣ |t| < |T (x)| < 1
}

be a k((t))-analytic disc and a k((t))-analytic annulus

respectively. For any r ∈ (0, 1) (respectively for r ∈ (|t|, 1)), denote by xr the point of D
(respectively of A) defined by |P (xr)| = sup|z|≤r |P (z)| for any P ∈ k((t))[T ].

(i) D and A are uniquely arcwise connected: any two distint points x, y are included
in a unique closed subset I which is homeomorphic to the closed interval [0, 1] and
such that I \ {x, y} is homeomorphic to the open interval (0, 1).

(ii) D has a single endpoint. Given a continuous, proper, and injective map γ : R+ →
D, there exists a constant C > 0 such that γ

(
[C,+∞)

)
= {xr, 1− ε ≤ r < 1} for

some 0 < ε < 1.
(iii) A has two endpoints. Given a continuous, proper, and injective map γ : R+ → D,

there exist constants C > 0 and |t| < ε < 1 such that γ
(
[C,+∞)

)
is either equal

to {xr, 1− ε ≤ r < 1}, or to {xr, |t| < r ≤ |t|+ ε}.

Now let U be a subset of a non-archimedean link NL(X,Z) and assume that U is an
annulus. Fix a k((t))-analytic annulus A such that U ∼= For(A), and denote by Σ(U) the
subset of U corresponding to the subset {xr s.t. |t| < r < 1} of A. It consists of points
of type 2 or 3 of A. The fact that the subset Σ(U) of U does not depend on the choice
of a k((t))-analytic annulus A such that U ∼= For(A) is a consequence of the following
proposition.

Proposition 2.6. The subset Σ(U) of U coincides with the set of points of U which have
no neighborhood isomorphic to a disc.

Proof. Any neighborhood of a point of Σ(U) in U has at least two endpoints, and thus can’t
be a disc. Conversely, let as above A be a k((t))-analytic annulus such that U ∼= For(A).
The complement of Σ(U) in A is the union of the open balls D(z, |z|), for z ranging among
the rigid points of A. If D = D(z, |z|) is such a ball, z is a defined over a finite extension
k((s)) of k((t)), and the analytic function s is globally defined on D. Having a rational
point as center and a rational radius, D can be seen as an open k((s))-analytic disc, and
therefore For(D) is a disc. �

The following lemma, which will be used in section 6, shows how discs and annuli appear
as open subspaces of NL(A2

k, 0).

Lemma 2.7. Let T and t denote two coordinates for A2
k at 0. Then:

(i) NL(A2
k, 0) \ V (t) is a disc;

(ii) NL(A2
k, 0) \ V (tT ) is an annulus.

Proof. Note that c−1
A2
k
(0) =

{
x ∈ A2,an

k

∣∣ |T (x)| < 1, |t(x)| < 1
}

. Therefore we have

NL(A2
k, 0) \ V (t) ∼=

{
x ∈ c−1

A2
k
(0)
∣∣ |t(x)| = ε

}
=
{
x ∈ A2,an

k

∣∣ |T (x)| < 1, |t(x)| = ε
}

∼= For
({
x ∈ A1,an

k((t))

∣∣ |T (x)| < 1
})

= For(D).
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The isomorphisms above respect the ringed space structure, proving (i).
Set now t′ = tT . Then we have

NL(A2
k, 0) \ V (t′) ∼=

{
c−1
A2
k
(0)
∣∣ |t(x)| = ε

}
=
{
x ∈ A2,an

k

∣∣ |T (x)| < 1, |t(x)| < 1, |t′(x)| = ε
}

=
{
x ∈ A2,an

k

∣∣ |t′(x)| < |T (x)| < 1, |t′(x)| = ε
}

∼= For
({
x ∈ A1,an

k((t′))

∣∣ |t′| < |T (x)| < 1
})

= For(A),

which concludes the proof of (ii). �

Remark 2.8. Note that V (t) and V (T ) are single points of NL(A2
k, 0). Observe that

the lemma also shows that a punctured open k((t))-analytic disc D \ {0} and an open
k((t))-analytic annulus of modulus one, which are not isomorphic as analytic spaces, have
isomorphic underlying ringed spaces in k-algebras.

2.7. Morphisms. A morphism NL(X,Z) → NL(X ′, Z ′) between two non-archimedean
links is a morphism of the underlying ringed spaces(

NL(X,Z),ONL(X,Z),O
◦
NL(X,Z)

)
−→

(
NL(X ′, Z ′),ONL(X′,Z′),O

◦
NL(X′,Z′)

)
which can be locally lifted to a morphism of k((t))-analytic spaces. Rather than giving the
precise definition from [Fan14, 6.1], we content ourselves with giving a list of example of
morphism of non-archimedean links, including all the morphisms which will be considered
in this paper.

(i) An isomorphism of non-archimedean links NL(X,Z)→ NL(X ′, Z ′) is an isomor-
phism of the underlying ringed spaces.

(ii) As noted in Proposition 2.2, if f : (X,Z) → (X ′, Z ′) is a modification then the
induced morphism f : NL(X,Z)→ NL(X ′, Z ′) is an isomorphism.

(iii) A morphism of k-varieties f : X → X ′ such that f−1(Z ′) = Z induces a morphism
of non-archimedean links f : NL(X,Z)→ NL(X ′, Z ′).

(iv) In particular, if Y ( X is a subvariety such that Y ∩ Z is nowhere dense in Y ,
then the induced morphism NL(Y, Y ∩ Z) → NL(X,Z) is a closed immersion,
that is a map which lifts to closed immersions of k((t))-analytic spaces in the
sense of Berkovich. Its image is the closed subspace of NL(X,Z) consisting of the
elements coming from elements of Y an; note that each such point is a semi-norm
with nontrivial kernel.

(v) If (X,Z) are as above and F is a closed subvariety of Z, then c−1
X (F ), which is

isomorphic to NL(X,F ) \ Zan, is an open subspace of NL(X,Z).

Remark 2.9. Observe that the converse to (ii) is partially true, in the following sense.
By [Fan14, Theorem 6.4], if NL(X,Z) is isomorphic to NL(X ′, Z ′) then there exist mod-
ifications (Y,D) → (X,Z) and (Y ′, D′) → (X ′, Z ′) such that the corresponding formal

completions Ŷ/D and Ŷ ′/D′ are isomorphic as formal schemes.

3. Non-archimedean links of surfaces

In this section we assume that X is a normal algebraic surface over an algebraically
closed field k and that 0 is a closed point of X. Our approach follows the one of [Fan14,
Sections 7, 9, 10], but for some results we will provide more concrete proofs.
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3.1. Topology of NL(X, 0) and center maps. In dimension two the topology of NL(X, 0)
can be described in terms of its center maps as follows.

Proposition 3.1. Let (X, 0) be a normal surface singularity, and let x be a point of

NL(X, 0). Then the family of all sets of the form c−1
Y

(
cY (x)

)
, for (Y,D) ranging over all

the modifications of (X, 0), is a basis of neighborhoods of x in NL(X, 0).

Proof. Let m be the maximal ideal of OX,0, which consists of the functions vanishing at
0, let V be any affine neighborhood of 0 in X, and denote by L(X,m) the subset of Uan

consisting of the multiplicative semi-norms x on OX(U) whose restriction to k is trivial
and such that minf∈m− log |f(x)| = 1. It is a compact subset of

(
c−1
X (0) \ {0}an

)
and the

natural projection L(X,m)→ NL(X, 0), is bijective hence a homeomorphism. It is then

sufficient to prove that the family of all subsets of L(X,m) of the form c−1
Y

(
cY (x)

)
, for

(Y,D) ranging over all the modifications of (X, 0), is a basis of neighborhoods of any given

point x of L(X,m). Any set of the form c−1
Y

(
cY (x)

)
contains x, and it is open because the

center map is anti-continuous. We have to prove that, given any open subset U of L(X,m)

containing x, there exists a modification (Y,D) → (X, 0) such that c−1
Y

(
cY (x)

)
⊂ U .

Since Xan is endowed with the weakest topology making all evaluations maps y 7→ |f(y)|
continuous, it is sufficient to prove it assuming that U is a finite intersection of sets of the
form U<(f, p, q) = {y, |f(y)| < e−p/q} or U> = {y, |f(y)| > e−p/q}, where f is an element of
OX(U) and p, q are coprime integers. Moreover, since |f | = 1 on L(X,m) whenever f /∈ m,
we can also assume that f ∈ m. It is sufficient to find a modification (Y,D)→ (X, 0) such
that U<(f, p, q) (resp. U>(f, p, q)) is included in a set of the form c−1

Y (E<) (resp. c−1
Y (E>)),

for some closed subschemes E< and E> of D. In order to do so we proceed as follows. Let
g1, . . . , gN be a finite set of generators of m, and choose a modification π : (Y,D)→ (X, 0)
such that gpi /f

q ◦ π defines a regular map Y → P1
k for all i = 1, . . . , N . Let E> be the

union of all (scheme-theoretic) points ξ of D such that

(1) ordξ(f
q ◦ π) > ordξ(m

p) := ming∈Mp{ordξ(g ◦ π)} = ming∈M{ordξ(g
p ◦ π)} .

Observe that z ∈ E> if and only if the value of the rational function gpi /f
q(π(z)) is equal to

∞ ∈ P1
k for at least one index i, which implies that E> is a finite union of closed points in

D together with those irreducible components E of D whose generic point ξE satisfies (1).
In particular E> is closed in D. One defines in the same way E< as the set of points ξ ∈ D
satisfying

ordE(f q ◦ π) < ordE(mp),

and similarly E< is closed (it is in fact a finite union of irreducible components of D).
Since gpi /f

q ◦ π is regular, we have that E> ∩ E< = ∅, and moreover

U<(f, p, q) = {y, − log |f q(y)| > p} = c−1
Y (E<)

U>(f, p, q) = {y, − log |f q(y)| < p} = c−1
Y (E>) ,

which concludes the proof. �

3.2. Types of points. Observe that a point x of NL(X, 0) corresponds to an equivalence
class of semi-norms on X; being centered in 0, those induce semi-norms on the completed

local ring ÔX,0. The points of NL(X, 0) can then be divided into four different types
by looking at the associated valued field H (x), its trascendence degree over k, and its
valuative invariants.
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We say that a point x of NL(X, 0) is a rigid point (or of type 1 ) if the transcendence
degree trdegkH (x) of H (x) over k is equal to 1. Equivalently, x is a rigid point if it

corresponds to an equivalence class of semi-norms on ÔX,0 with nontrivial kernel. Moreover,

this kernel is generated by an irreducible element of ÔX,0, so that x corresponds to an
irreducible germ of a formal curve on (X, 0); then x can be seen as the equivalence class of
the order of vanishing along this germ. When this is the case, the rational rank

rankQ
(
|H (x)×|/|k×| ⊗Z Q

)
of H (x) is equal to 1 and its residue field H̃ (x) is equal to k.

In every other case we have trdegkH (x) = 2. We say that x is a divisorial point (or

of type 2 ) if the residue field H̃ (x) is a nontrivial extension of k, while we say that x is
of type 3 if the rational rank of H (x) is equal to 2. Finally, we say that x is of type 4 if

it satisfies rankQ
(
|H (x)×|/|k×| ⊗Z Q

)
= 1 and H̃ (x) = k but it is not of type 1 (that is,

the corresponding semi-norms on ÔX,0 are norms).
Every point of NL(X, 0) is of one (and only one) of the four types above, since by

Abhyankar’s inequality [Abh56] we have

rankQ
(
|H (x)×|/|k×| ⊗Z Q

)
+ trdegkH̃ (x) ≤ trdegkH (x) ≤ 2,

and rankQ
(
|H (x)×|/|k×| ⊗Z Q

)
≥ 1 because the valuation associated with x is nontrivial.

Observe that an isomorphism of non-archimedean links respects the complete residue
fields, and therefore must send a point to a point of the same type.

Remark 3.2. Recall that NL(X, 0) is locally isomorphic to a k((t))-analytic curve. Under
any such isomorphism the type of a point as defined above coincides with its type as
defined by Berkovich. For a definition of types of points in Berkovich curves in terms of
their valuative invariants see e.g. [Duc14, 3.3.2].

Remark 3.3. Let (Y,D) be a modification of (X, 0) and let x be a point of NL(X, 0). The
existence of a morphism α : Spec

(
H (x)◦

)
→ Y associated with x implies that the residue

field H̃ (x) of H (x) is a field extension of the schematic residue field of Y at cY (x). It
follows that cY (x) is a closed point of Y if x is not divisorial. Proposition 3.1 implies
then that such a point x has a basis of neighborhoods of the form c−1

Y

(
cY (x)

)
, for (Y,D)

ranging over all the modifications of (X, 0).

Remark 3.4. Let (Y,D) be a modification of (X, 0) and let x be a point of NL(X, 0). If x
is divisorial, then cY (x) is either a closed point of Y or the generic point of an irreducible
curve in Y . Moreover, it is always possible to find a modification (Y ′, D′) of (X, 0) that
dominates (Y,D) and such that cY ′(x) is the generic point of an irreducible curve E in

Y ′, which explains our terminology. Furthermore, the residue field H̃ (x) of H (x) is then
isomorphic to the function field k(E) of E.

3.3. Formal modifications and fibers of the center maps. Let X be a normal k-
surface and let 0 be a closed point of X. We start by fixing some notation.

A modification (Y,D) of (X, 0) is said to be a resolution of (X, 0) if Y is regular. If
moreover the irreducible components of D are all non-singular, intersect transversally
and no three of them meet at a point, then (Y,D) is said to be a good resolution of
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(X, 0). Whenever C is a germ of (formal) curve in (X, 0), then a good resolution (Y,D) of
(X, 0) is also said to be a good resolution of C if the strict transform of C in Y meets D
transversally.

We mentioned that the non-archimedean link of a pair (Y,D) only depends on an
infinitesimal neighborhood of D in Y . The notions above can then be slightly generalized
by working in a suitable category of formal k-schemes. A formal k-scheme Y is called
special if it is covered by formal subschemes Yi such that each Yi can be written as the
formal completion of a k-scheme of finite type Yi along a closed subscheme Di. We can
then define the non-archimedean link NL(Y ) of Y by gluing the non-archimedean links

NL(Yi, Di). Observe that when Y = Ŷ/D is the formal completion of Y along D, then
NL(Y ) = NL(Y,D) ∼= NL(X, 0). We also obtain a center map cY : NL(Y )→ Y0, where
the reduction Y0 of Y is a scheme of finite type over k covered by the reduced schemes
associated to the Di.

A special formal k-scheme Y is called a formal modification of the pair (X, 0) if it is

normal and it comes endowed with an adic morphism f : Y → X = X̂/0 that induces

an isomorphism of non-archimedean links NL(Y )
∼−→ NL(X, 0) and such that the fiber

product Y ×X {0} is a Cartier divisor of Y . If (Y,D)→ (X, 0) is a modification, then the

formal completion Y = Ŷ/D →X of Y along D is a formal modification of (X, 0). Such
a formal modification Y of (X, 0) is said to be algebraizable, and a modification (Y,D) of

(X, 0) such that Y →X is isomorphic to Ŷ/D →X is called an algebraization of Y . If Y
is a formal modification of (X, 0) such that Y is regular, then by [Fan14, Proposition 7.6]
Y is algebraized by a resolution of (X, 0). Observe that a formal modification Y of (X, 0)
induces an isomorphism of non-archimedean links NL(Y ) ∼= NL(X, 0), and therefore also
a center map cY : NL(X, 0)→ Y0.

If Y is a formal modification of (X, 0), we denote by Div(Y ) the finite nonempty
subset of NL(X, 0) consisting of the divisorial points associated with the components of
Y0. Whenever Y is algebraized by a modification (Y,D), we will also denote Div(Y ) by
Div(Y ).

The following proposition is a simple consequence of Lemmas 7.14 and 9.3 of [Fan14].

Proposition 3.5. Let (X, 0) be a normal surface singularity and let Y be a formal
modification of (X, 0). Then the following properties hold:

(i) The map c−1
Y gives a bijection between the set of closed points of Y0 and the set of

connected components of NL(X, 0) \Div(Y ).
(ii) Let W be a connected component of NL(X, 0) \Div(Y ), let p be the corresponding

closed point of Y0, let Yp = Spf
(
ÔY ,p

)
be the formal completion of Y along

p, let Ip be the ideal of ÔY ,p which defines Y0 locally around p, and denote by
ϕ : NL(Yp) → NL(X, 0) the map induced by the composition Yp → Y → X .
Then ϕ maps the zero locus V (Ip) of Ip in NL(Y , p) to a finite set of type 1 points
of NL(X, 0), and it induces an isomorphism NL(Yp) \ V (Ip) ∼= W ⊂ NL(X, 0).

Remark 3.6. Let Y and W be as above. It follows from the first part of the proposition
that the closure W of W in NL(X, 0) is obtained by adding to W a subset of Div(Y ).
Indeed, the union of all the connected components of NL(X, 0) \Div(Y ) different from W ,
that is the complement of W ∪Div(Y ) in NL(X, 0), is an open subset of NL(X, 0).
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3.4. Existence of formal modifications and resolutions. We will now explain how
to produce formal modifications of (X, 0) with prescribed exceptional divisors and how to
detect when such a modification is a good resolution of (X, 0).

Theorem 3.7. Let S be a finite subset of divisorial points of NL(X, 0). Then there exists
a formal modification Y of (X, 0) such that Div(Y ) = S.

Proof. As it readily follows from the observation made in Remark 3.4, there exists a
resolution (Y,D) of (X, 0) such that S ⊂ Div(Y ). The contractibility criterion of Grauert-
Artin [Art70] guarantees that we can contract every component of D which does not
correspond to an element of S, yielding a normal algebraic space over k with a proper
morphism f to X. Indeed, the intersection matrix of the divisor that we want to contract
is negative definite because the entire exceptional divisor of Y can be contracted to the
point 0 in X. By taking the formal completion of this algebraic space along f−1(0) we
obtain the formal modification Y that we wanted. �

Remark 3.8. If we are working over the field of complex numbers, we can apply Grauert
contractibility criterion [Gra62] instead of Artin’s and obtain Y as a complex analytic
space. Of course this is the same as analytifying the algebraic space given by Artin’s
criterion. On the other hand, observe that if k is the algebraic closure of Fp for some prime
p or if (X, 0) is a rational singularity, then the contractibility results [Art62, 2.3, 2.9] grant
that Y is an algebraic variety.

Recall that each type 1 point can be seen as the equivalence class of the order of vanishing
along an irreducible germ of a formal curve on (X, 0). In particular, with a finite set of
type 1 points of NL(X, 0) is associated the germ of a curve on (X, 0).

Theorem 3.9. Let Y be a formal modification of (X, 0), let T be a finite set of type 1
points of NL(X, 0) and let C be the germ of curve on (X, 0) associated with T . Then Y
can be algebraized by a good resolution of both (X, 0) and the germ C if and only if each
connected component V of NL(X, 0) \Div(Y ) has one of the following three forms:

(i) V is a disc and V ∩ T = ∅;
(ii) V is an annulus and V ∩ T = ∅;

(iii) V is a disc and V ∩ T can be taken to be its origin.

Observe that in the statement can take T to be empty, so that there is no curve C and
we simply obtain a good resolution of (X, 0). The following proof follows the lines of the
proof of Proposition 10.2 of [Fan14], where more details are given.

Proof. By Proposition 3.5.(i) the connected components of NL(X, 0) \ Div(X) are the
inverse images through the center map of the closed points of Y0. Let W be such a
component, let p be a closed point of Y0, and let Ip be the image of the ideal defining

Y0 in OY ,p. By Cohen theorem, Y is regular at p if and only if ÔY ,p
∼= k[[x, y]], that is

if and only if NL(Yp) ∼= NL(A2
k, 0). Moreover, p is a smooth point of Y0 if and only we

can take Ip = (x) in the isomorphism above, while p is an ordinary double point of Y0

if and only if we can take Ip = (xy). Since by Proposition 3.5.(ii) we have a canonical

isomorphism c−1
Y (p) ∼= NL(Yp) \ V (Ip), it follows from Proposition 2.3 that Y is a (formal)

good modification of (X, 0) if and only if every connected component of NL(X, 0) \Div(Y )
is either a disc or an annulus. Whenever this is the case, Y is algebraized by a good



16 L. FANTINI, C. FAVRE, AND M. RUGGIERO

resolution (Y,D) of (X, 0) by [Fan14, Proposition 7.6]. Finally, by definition (Y,D) is
also a good resolution of the germ C if and only if the strict transform of C in Y meets
D transversally. This means that if p is a point of D contained in the strict transform

of C we can find an isomorphism ÔY,p ∼= k[[x, y]] as above with Ip = (x), and the strict
transform locally defined by y at p. This corresponds precisely to the conditions on T in
the statement. �

3.5. Structure of NL(X, 0). The structure of the non-archimedean link NL(X, 0) can be
described using a resolution of the singularities of the pair (X, 0) and the results of the
previous section.

Corollary 3.10. Let (Y,D) be a good resolution of (X, 0) and let y be a closed point of D.
If D is smooth (respectively singular) at y then c−1

Y (y) is a disc (resp. an annulus), and

the boundary of c−1
Y (y) in NL(X, 0) consists of one type 2 point (resp. two type 2 points).

In particular, NL(X, 0) \Div(Y ) is a disjoint union of discs and finitely many annuli.

Proof. As above, the space Y is smooth at y, so by Cohen theorem we can find an

isomorphism ÔY,y ∼= k[[U, V ]] ∼= ÔA2
k,0

such that a local equation for D at y is either U (if y

is a smooth point of D) or UV (if y is a double point of D). Since NL
(
Yy
) ∼= NL

(
A2
k, 0
)
,

Proposition 3.5.(ii) and Lemma 2.7 imply that c−1
Y

(
y
)

is isomorphic to an open k((t))-
analytic disc in the first case and an annulus in the second case, where the k((t))-analytic
structure is defined by sending t to a local equation of D at y. The fact that the boundary
c−1
Y (y) consists of one or two points follows from Remark 3.6. The last statement is now a

consequence of Proposition 3.5.(i). �

We can now deduce some results about the type 1 points of NL(X, 0).

Corollary 3.11. Any type 1 point x of NL(X, 0) admits a basis of neighborhoods consisting
of discs centered in x. Moreover, the set of type 1 points is dense in NL(X, 0).

Proof. By Proposition 3.1 a basis of neighborhoods of x consists of the open subsets of
NL(X, 0) of the form

{
c−1
Y

(
cY (x)

)}
, for (Y,D) ranging among the good resolutions of

(X, 0), since the family of good resolutions is cofinal among the partially ordered set of
modifications of (X, 0). Since x is not of type 2, cY (x) is a closed point of D, and we can

find an isomorphism ÔY,y ∼= k[[U, V ]] ∼= ÔA2
k,0

such that U is a local equation for D at y

and V defines the germ of curve at y associated to the type one point x. This shows that
c−1
Y

(
cY (x)

)
= c−1

Y

(
cY (x)

)
is an open k((t))-analytic disc centered in x.

It remains to prove the density of the set of type 1 points of NL(X, 0). As noted
in Remark 3.6, each of the divisorial points associated with a good resolution of (X, 0)
is not isolated in NL(X, 0). The result then follows from Corollary 3.10, Lemma 2.7,
and the fact that the set of its points of type 1 is dense in a k((t))-analytic annulus

A =
{
x ∈ A1,an

k((t))

∣∣ |t|k((t)) < |T (x)| < 1
}

. The latter is a classical fact that can be proven

directly by exhibiting suitable type 1 points; as an example, the semi-norm that sends an
element P of k((t))[T ] to |P (x)| = |P (t1/2)|k((t)) is a type 1 point x of A. �

Remark 3.12. It is also true that each of the sets consisting of type 2, type 3 or type 4
points is dense in NL(X, 0), but we will not need this fact.
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Any bounded analytic function on the complement of finitely many type 1 points
extends to NL(X, 0). This follows from the fact that NL(X, 0) is locally a k((t))-analytic
space combined with the more general result [Ber90, Proposition 3.3.14]. However, we
include a proof here since it is simpler to deduce the result in our very special case from
Corollary 3.11.

Lemma 3.13. Let U be an open subset of NL(X, 0) and let S be a finite subset of U
consisting of type 1 points. Then the inclusion U \ S ↪→ U induces an isomorphism

O◦NL(X,0)

(
U
) ∼= O◦NL(X,0)

(
U \ S

)
.

Proof. Since O◦NL(X,0) is a sheaf it is enough to prove the result for T = {x} a single type

1 point, and U some neighborhood of x in NL(X, 0). Hence, by Corollary 3.11 we can
assume without loss of generality that U is a disc centered in x. Then the ring of bounded
analytic functions on U \ {x} is isomorphic to k((t))[[T ]], where T is a coordinate function
on U , and all such functions extend to x = V (T ). �

The results of this section can also be used to deduce a characterization of the essential
valuations of a surface singularities, as appearing in the Nash problem (see [Fan14, Theorems
10.4 and 10.8]), and to give another proof of the existence of resolutions for surfaces (see
[FT17, Theorem 8.6]).

4. Self-similarity of sandwiched singularities

In this section we introduce sandwiched singularities and prove the implications (i) =⇒
(ii) =⇒ (iii) =⇒ (iv) of Theorem A.

4.1. Sandwiched singularities.

Definition 4.1. Let O be a normal 2-dimensional complete local ring with algebraically
closed residue field k. We say that O is sandwiched if there exist two algebraic surfaces
X0 and Y over k, with X0 smooth over k and Y normal, a proper birational morphism

Y → X0, and a point y in Y such that O ∼= ÔY,y. If X is an algebraic surface over k and 0
is a normal point of X, we say that (X, 0) is a sandwiched singularity if the complete local

ring ÔX,0 of X in 0 is sandwiched.

Note that when working over C our definition is equivalent to [Spi90, Definition II.1.1]
thanks to Artin’s approximation theorem [Art68, Corollary 1.6].

Fix any smooth algebraic surface X0 over k, such as for example X0 = A2
k. Let p be

a point of X0, let ϕ : Y → X0 be a sequence of point blowups centered above p, and let
E be a connected divisor on Y obtained by removing some irreducible components from
ϕ−1(p). Since the divisor ϕ−1(p) can be contracted to (X0, p) and X0 is smooth, Artin’s
contractibility criterion [Art62, Theorem 2.3] ensures that the divisor E can be contracted
to a point 0 in a normal algebraic variety X. The normal singularity (X, 0) is sandwiched,
and any sandwiched surface singularities is isomorphic étale locally (or analytically, if
k = C) to such a singularity.

Remark 4.2. Suppose (X, 0) is sandwiched. Then in the category of analytic spaces over k,
or in the complex analytic category when working over C, one can always find a morphism
X → X0 to a smooth surface. If µ : Y → X is a resolution of (X, 0), we get back (X, 0) by
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contracting the divisor µ−1(0) of Y . This explains the terminology, as X is sandwiched
between the smooth surfaces X0 and Y .

We start by proving a stronger form of the implication (i) =⇒ (iii).

Lemma 4.3. Suppose (X, p) is a sandwiched singularity and y is a point of NL(A2
k, 0).

Then there exists a finite set T of type 1 points in NL(X, p) such that NL(X, p) \ T is
isomorphic to an open subset of NL(A2

k, 0) containing y.

Proof. We may assume that OX,p is not a regular ring.
Recall that NL(X, p) only depends on the formal completion of its local ring. We may

thus assume that there exist a proper birational map from a smooth algebraic variety Y
to the affine plane ϕ : Y → A2

k which is an isomorphism outside ϕ−1(0), and a connected
divisor E ⊂ ϕ−1(0) such that X is the surface obtained from Y by contracting E to a
point. We denote by µ : Y → X the contraction map so that p = µ(E). Note that ϕ factors
through µ, so there exists a regular birational map π : X → A2

k mapping p to 0.
It follows from [Spi90, Corollary 1.14] that we may further impose that any irreducible

component of ϕ−1(0) that is not included in E has self-intersection −1. Since Y is regular, ϕ
is a sequence of point blow-ups hence factors through the blow-up of the origin $ : Y1 → A2

k.
The map Y → Y1 is not an isomorphism, therefore the strict transform E0 of $−1(0) in Y
has self-intersection at most −2, hence is included in E.

Let T be the zero locus in NL(X, 0) of the ideal defining π−1(0) around p and let Y be
the formal completion of X along π−1(0). By Proposition 3.5.(ii) T is a finite set of type
1 points of NL(X, 0), and π induces an isomorphism between NL(X, p) \ T and the open
subset U of NL(A2

k, 0) consisting of the points whose center in X is equal to p. Note that,
by the commutativity of the center maps, U is also equal to the set of points of NL(X, p)
whose center on Y is contained in E = µ−1(p).

If U contains y there is nothing left to prove. If this is not the case, observe that the linear
group GL(2, k) acts naturally on NL(A2

k, 0) in such a way that any element g ∈ GL(2, k)
defines an isomorphism of non-archimedean links g• : NL(A2

k, 0)→ NL(A2
k, 0). The linear

map g also lifts to an automorphism Lg : Y1 → Y1 whose action on the exceptional divisor
$−1(0) is given by the projectivization of g, and satisfies cY1(g•(y)) = Lg(cY1(y)). We
may thus find g ∈ GL(2, k) such that Lg(cY1(y)), and hence cY1(g•(y)), does not belong
to the indeterminacy locus of the birational map ϕ−1 ◦ $ : Y1 → Y . In particular, the
single irreducible component of ϕ−1(0) containing the point cY (g•(y)) is E0, so that
cY (g•(y)) ∈ E, and g•(y) belongs to U .

It follows that the open subset g−1
• (U) in NL(A2

k, 0), which is isomorphic to NL(X, p)\T
because U is and g• is an isomorphism, contains y as required. This concludes the proof of
the Lemma. �

4.2. The implication (i) =⇒ (ii). Pick any point x ∈ NL(X, 0) which is not of type 2
and an open set U containing x. By Proposition 3.1 one may choose a good resolution
Y → X and a point p on its exceptional divisor such that x ∈ c−1

Y (p) ⊂ U .
Proposition 3.5 (ii) implies that the good resolution Y → X induces an isomorphism

c−1
Y (p) ∼= NL(Yp) \ V (Jp). Observe that the latter non-archimedean link is isomorphic to

NL(A2
k, 0) \ S where S is a set of type 1 points of cardinality 1 or 2 depending on whether

p is a smooth point of the exceptional divisor or not. Denote by y the image of x under
this isomorphism.
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By Lemma 4.3 there exists a finite set T of type 1 points and an isomorphism of non-
archimedean links ψ between NL(X, 0) \ T and an open subset of NL(A2

k, 0) containing y.
Adding ψ−1(S) to T if necessary we may suppose that ψ(NL(X, 0) \ T ) ⊂ NL(A2

k, 0) \ S.

We conclude observing that ϕ−1 ◦ ψ is an isomorphism mapping NL(X, 0) \ T to c−1
Y (p)

and containing x. �

4.3. The implication (ii) =⇒ (iii). By Corollary 3.11, one can find a disc D in
NL(X, 0). By (ii), there exists a finite set T of type 1 points and an open subset of D
which is isomorphic to NL(X, 0) \ T . By Lemma 2.7, D can be realized as an open subset
of NL(A2

k, 0). �

4.4. The implication (iii) =⇒ (iv). Let V be any open subset of NL(X, 0). By
Corollary 3.11, V contains a point of type 1, and therefore it contains a disc D by the
same corollary. Now fix a finite set T of type 1 points in NL(X, 0) such that condition
(iii) holds. Adding one more point to T if necessary, one may assume that NL(X, 0) \ T
is isomorphic to an open subset of NL(A2

k, 0) \ V (t), which is a disc by Lemma 2.7. We
conclude that NL(X, 0) \ T can be realized as an open subset of D ⊂ V . �

5. Self-similar graphs

In this section we introduce the notions of self-similar and sandwiched graphs and prove
that these notions are in fact equivalent.

5.1. Modifications of graphs. Let us introduce some terminology first. A graph Γ is
the data of a finite set of vertices V = V (Γ) and a subset E = E(Γ) of pairs in V (the set
of edges). In particular our graph has no loop. Two vertices are said to be connected (or
joined) by an edge when v1−−v2 ∈ E. In that case, we write v1 ∼ v2. A graph is connected
if for any two vertices v0, v1 there exists a sequence of edges v0−−w1, w1−−w2, . . . , wn−−v1

joining them. A weighted graph is a graph together with a function V → N×N∗. We shall
write this function as v 7→ (g(v), e(v)).

The link of a vertex v of a graph Γ is by definition the set L(v) of vertices w such that
v−−w is an edge. The cardinality of L(v) is the valency of v.

Remark 5.1. In order to motivate our further definitions, let us indicate in which situation
graphs will arise in the sequel. We shall consider the dual graph of a resolution of a
normal surface singularity, so that vertices are in bijection with exceptional components
of this resolution. The weight function is then given by genus and the opposite of the
self-intersection of a component.

If Γ is a graph, a simple modification of Γ centered at a vertex v is a graph Γ′ such that
its set of vertices is V ′ = V ∪ {v′}, its set of edges is E′ = E ∪

{
v−−v′

}
, and its weight

function (g′, e′) satisfies g′(w) = g(w) and e′(w) = e(w) for all w ∈ V \ {v}, g′(v) = g(v),
g′(v′) = 0, e′(v) = e(v) + 1, and e(v′) = 1.

A simple modification of Γ centered at an edge v0−−v1 ∈ E is a graph Γ′ such that its
set of vertices is V ′ = V ∪{v′}, its set of edges is E′ =

(
E \
{
v0−−v1

})
∪
{
v0−−v′, v1−−v′

}
,

and its weight function (g′, e′) satisfies g′(w) = g(w) for all w ∈ V , g(v′) = 0, e′(w) = e(w)
for all w ∈ V \ {v0, v1}, e′(v0) = e(v0) + 1, e′(v1) = e(v1) + 1, and e(v′) = 1.

A modification of a graph Γ is a graph Γ′ which is obtained from Γ by a finite sequence
of simple modifications (centered either at a vertex or at an edge). A modification is
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nontrivial whenever it is not an isomorphism. We shall write Γ′  Γ to say that Γ′ is a
modification of Γ. Note the following transitivity property: if Γ′′  Γ′ and Γ′  Γ are
modifications, then Γ′′  Γ is also a modification.

Observe that a modification Γ′  Γ yields a canonical inclusion ı : V (Γ)→ V (Γ′) of the
set of vertices of Γ into Γ′. The image of a vertex v by ı is called its strict transform. Note
that in general two vertices in V joined by an edge need not have strict transforms joined
by an edge in Γ′.

We can also define the total transform of a connected subgraph ∆ of Γ by a modification
Γ′  Γ. It is sufficient to explain the construction of the total transform in the case of a
simple modification. If the center of the modification is a vertex not belonging to ∆ or
an edge v−−w with v, w /∈ ∆, then the total transform of ∆ is the copy of ∆ in Γ′ whose
vertices are the strict transform of the vertices of ∆. If the center is a vertex of ∆, then its
total transform is obtained from ∆ by adding the new edge and the new vertex. If the
center is an edge v−−w of ∆, then its total transform is the graph whose vertices are the
vertices of ∆ together with the new vertex, and edges are edges of ∆ different from v−−w
together with the two new edges. Finally, if the center is an edge v−−w with v ∈ ∆ and
w /∈ ∆, then the vertices of the total transform are the vertices of ∆ together with the new
vertex, and edges are edges of ∆ together with the only new edge that contains v. It is
not difficult to see that the total transform of a connected subgraph of Γ is a connected
subgraph of Γ′.

We also introduce the notion of embedding of a (weighted) graph of Γ into another
one Γ′. This is an injective map ϕ : V (Γ)→ V (Γ′) such that v ∼ w implies ϕ(v) ∼ ϕ(w),
g′(ϕ(v)) = g(v) and e′(ϕ(v)) = e(v). We shall write ϕ : Γ ↪→ Γ′, and denote by ϕ(Γ)
the subgraph of Γ′ whose vertices are ϕ(v) with v ∈ V (Γ) and edges ϕ(v)−−ϕ(w) with
v−−w ∈ E(Γ). An isomorphism is an embedding such that the induced maps on vertices
and edges are bijective.

Suppose we are given two modifications Γ′  Γ and ∆′  ∆ and two embeddings
ϕ : ∆ ↪→ Γ, ϕ′ : ∆′ ↪→ Γ′. Then we say that the pair (Γ′  Γ,∆′  ∆) is (ϕ′, ϕ)-compatible
whenever there exist simple modifications Γi+1  Γi and embeddings ϕi : ∆i ↪→ Γi such
that Γ0 = Γ, Γl = Γ′, ∆0 = ∆, ∆l = ∆′, ϕ0 = ϕ, ϕl = ϕ′, and the following holds.

(i) When Γi+1  Γi is centered at a vertex ϕi(v) for some v ∈ ∆i, then ∆i+1 is
obtained from ∆i by the simple modification centered at v.

(ii) When Γi+1  Γi is centered at a vertex v /∈ ϕi(∆i), then ∆i+1 = ∆i.
(iii) When Γi+1  Γi is centered at an edge ϕi(v)−−ϕi(w) for some edge v−−w in ∆i,

then ∆i+1 is obtained from ∆i by the simple modification centered at v−−w.
(iv) When Γi+1  Γi is centered at an edge v−−ϕi(w) for some v /∈ ∆i and w ∈ ∆i,

then ∆i+1 is obtained from ∆i by the simple modification centered at w.
(v) When Γi+1  Γi is centered at an edge v−−w for some v, w /∈ ∆i, then ∆i+1 = ∆i.

Proposition 5.2. Suppose the pair (Γ′  Γ,∆′  ∆) is (ϕ′, ϕ)-compatible, where Γ′  Γ
and ∆′  ∆ are modifications, and ϕ : ∆ ↪→ Γ, ϕ′ : ∆′ ↪→ Γ′ are embeddings.

(i) The image by ϕ′ of the total transform in ∆′ of any subgraph G ⊂ ∆ is the total
transform of ϕ(G). In particular, the total transform of ϕ(∆) is ϕ′(∆′).

(ii) If ı∆ and ıΓ denote the strict transform maps induced by the modifications, then
ϕ′ ◦ ı∆ = ıΓ ◦ ϕ.
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Proof. It is only necessary to check these properties when Γ′  Γ is a simple modification
in which case ∆′  ∆ is described by one of the rules (i)-(v) above. It is a routine argument
to verify the proposition in each of these cases. �

Proposition 5.3. Suppose ∆′  ∆ is a modification, and let ϕ : ∆ ↪→ Γ be any embedding.

• Then there exists a modification Γ′  Γ, called the induced modification, and an
embedding ϕ′ : ∆′ ↪→ Γ′ such that the pair (Γ′  Γ,∆′  ∆) is (ϕ′, ϕ)-compatible.

• Suppose we are given another embedding ψ : Γ ↪→ Γ̃. Then the two modifications of

Γ̃ induced by ψ or ψ ◦ϕ are isomorphic. We denote either of them by Γ̃′  Γ̃. The

embedding ∆′ ↪→ Γ̃′ is the composition of the embeddings ∆′ ↪→ Γ′ and Γ′ ↪→ Γ̃′.

Proof. Decompose ∆′  ∆ into simple modifications ∆i+1 → ∆i, such that ∆0 = ∆,
∆l = ∆′. To simplify notation we assume ∆0 ⊂ Γ0 := Γ. We define by induction a graph
Γi that contains ∆i as follows. If ∆i+1 is the modification centered at an edge v−−w with
v, w ∈ ∆i, then set Γi to be the modification centered at v−−w. If ∆i+1 is the modification
centered at a vertex v ∈ ∆i, then we set Γi to be the modification centered at v. It is clear
from the definitions that we obtain compatible modifications in this way. The second point
is proven in the same way; details are left to the reader. �

Remark 5.4. A graph Γ′ satisfying the first point of Proposition 5.3 is in general not unique.
When ∆i+1 is the modification centered at a vertex v ∈ ∆i that is connected to a vertex
w /∈ ∆i, we could also have defined Γi+1 to be the modification centered at the edge v−−w.
Note however that the construction given in the proof of the previous proposition yields
a graph Γ′ that is minimal in the sense that the sum of the weights at all its vertices is
minimal (among all possible graphs).

5.2. Characterization of self-similar graphs.

Definition 5.5. A connected graph is said to be regular if it is a modification of the graph
with one vertex and weight (0, 1). It is said to be sandwiched if it can be embedded into a
regular graph.

A connected graph Γ is said to be self-similar if it admits a nontrivial modification Γ′

that contains a subgraph Γ0 that is isomorphic (as a weighted graph) to Γ.

Theorem 5.6. Suppose Γ is a connected weighted graph. If Γ is self-similar then it is
sandwiched.

In fact the reverse implication is also true. We leave it as an exercise to the reader since
we shall not need it in the sequel.

Proof. We fix a modification Γ′ of Γ, and an embedding ϕ : Γ ↪→ Γ′. Recall that the strict
transform yields an inclusion ı : V (Γ)→ V (Γ′).

Step 1. There exists a sequence of graphs Γn with Γ0 := Γ, and Γ1 := Γ′, such that

(i) Γn+1 is a modification of Γn;
(ii) there exist embeddings ϕn : Γn ↪→ Γn+1;
(iii) the pair (Γn+1  Γn,Γn  Γn−1) is (ϕn, ϕn−1)-compatible.

Since Γ′  Γ is a modification and Γ is a subgraph of Γ′ via the embedding ϕ, Proposition 5.3
gives a modification Γ2  Γ′ and an embedding ϕ1 : Γ′ ↪→ Γ2 with the right compatibility
properties.
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To build the sequence Γn we proceed in the same way and use repeteadly Proposition 5.3.
More precisely suppose Γn has been defined. For each n there exists an embedding Γ ↪→ Γn
obtained by the map Φn := ϕn−1 ◦ . . . ◦ ϕ0 (with ϕ = ϕ0). Then we construct Γn+1 from
this embedding and the modification Γ′  Γ using Proposition 5.3.

Observe that Γn is obtained by the modification Γ′  Γ using Φn−1 whereas Γn+1 is
obtained by the modification Γ′  Γ using ϕn−1 ◦ Φn−1. This implies the existence of an
embedding ϕn : Γn → Γn+1 satisfying the compatibility property (c) (see the second point
of Proposition 5.3).

Step 2. Suppose that there exists a vertex v ∈ V (Γ) such that ı(v) = ϕ(v). We claim that
the modification is trivial.

To see this define the edge distance on V (Γ) by setting d(x, y) to be the least integer
n ∈ N such that there exists v0, . . . , vn ∈ V (Γ) with the property v0 = x, vn = y and
v0−−v1, . . . , vn−1−−vn ∈ E(Γ).

We first prove by induction on n := d(w, v), that there exists an integer k ≥ 1 such
that Ik(w) = Φk(w) for any w ∈ V (Γ) at distance at most n to v where Ik is the strict
transform map induced by the modification Γk  Γ, and Φk := ϕk−1 ◦ . . . ◦ ϕ0.

Our claim for n = 0 is our standing assumption (with k = 1). Assume the induction
hypothesis for vertices at distance n − 1 to v. Pick w at distance n to v. By definition
there exists (at least one) w0 ∈ V at distance n− 1 to v and 1 to w. Replacing Γk by Γ′

we may suppose that ı(w0) = ϕ(w0). In particular we have e(ı(w0)) = e(w0).
Decompose the modification from Γ′  Γ′ into a sequence of simple modifications

∆i+1 → ∆i with ∆0 := Γ, and Γ′ := ∆l. The equality of weights e(ı(w0)) = e(w0) implies
that the center of all simple modifications ∆i+1 → ∆i cannot be an edge that contains
the strict transform of w0 in ∆i or a vertex that is joined to this strict transform by an
edge. It follows that the strict transform of any vertex at distance 1 from w0 in Γ′ is again
joined to ı(w0) by an edge, and no new edge starting from ı(w0) are created. In particular,
ı induces a bijection from the link L(w0) to L(ı(w0)), and the valency of w0 is equal to the
valency of ı(w0). Since ϕ is an isomorphism from Γ onto its image, ϕ(L(w0)) is included
in L(ϕ(w0)). The two sets having the same cardinality, we conclude that ϕ is a bijection
(hence an isomorphism) from L(w0) to L(ϕ(w0)) = ϕ(L(w0)). Denote by f := ı−1 ◦ ϕ the
bijection on L(w0).

Observe that the quantity
∑

v∈L(w0) e(v) is equal to
∑

v∈L(ϕ(w0)) e(v). Since this quantity

can only increase along the sequence of simple modifications ∆i+1 → ∆i it remains constant.
This implies that the total transform of L(w0) is equal to L(ϕ(w0)).

By Proposition 5.2 (i) and Property (iii) of Step 1, it follows that the total transform
of L(ϕ(w0)) = ϕ(L(w0)) by Γ2  Γ1 is also equal to ϕ1(ϕ(L(w0))). In other words, the
total transform of L(w0) by the composite modification Γ2  Γ is isomorphic to itself. In
particular the injective map I2 induced by this strict transform defines a bijection from
L(w0) to ϕ1(ϕ(L(w0))), and we get as before a bijection f2 : L(w0)→ L(w0).

Denote by ı1 the strict transform map induced by Γ2  Γ so that f2 = ı−1 ◦ ı−1
1 ◦ϕ1 ◦ϕ.

By Proposition 5.2 (ii), we have ϕ1 ◦ ı = ı1 ◦ ϕ, whence f2 = ı−1 ◦ ϕ ◦ ı−1 ◦ ϕ = f ◦ f .
By repeating this argument, we see that the strict tranform of L(w0) by the modification

Γk  Γ is equal to Φk(L(w0)) and that I−1
k ◦ Φk = f◦k. Since L(w0) is finite, it follows

that f◦k = id for some k. Observe that we may choose k to be the least common multiple
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of all integers less than the cardinality of Γ, which is then independent of w0. This proves
our claim.

We now explain how this claim implies Step 2. Replacing Γ′ by some Γk for k sufficiently
large, we have ı(w) = ϕ(w) for all w. Since ϕ preserves the weights, we get e(ı(w)) = e(w)
for all w which is only possible when the modification is trivial.

Step 3. If Γ is self-similar, then there exists an integer k ≥ 1 such that for all v ∈ V (Γ)
one has Ik(v) /∈ Φk(V (Γ)).

We first prove that if Ik(v) /∈ Φk(V (Γ)) then Ik+l(v) /∈ Φk+l(V (Γ)) for all l ≥ 0. Indeed
suppose Ik(v) /∈ Φk(V (Γ)), and recall from Step 1 that Γk+1 is built from the embedding
Φk : Γ ↪→ Γk and the modification Γ′  Γ. It follows that the strict tranform Ik+1(v) of
Ik(v) in Γk+1 is not contained in the image of Γ′ in Γk+1 which contains the image of Γ in
Γk+1. Therefore Ik+1(v) /∈ Φk+1(V (Γ)) which proves Ik+l(v) /∈ Φk+l(V (Γ)) for all l ≥ 0 by
induction as required.

It is thus sufficient to find for any vertex v of Γ an integer k such that Ik(v) /∈ Φk(V (Γ)).
To prove this we proceed by contradiction, and pick a vertex v of Γ for which Ik(v) ∈
Φk(V (Γ)) for all k. Since Φk is an embedding, for each k there exists a unique vertex vk of
Γ such that Ik(v) = Φk(vk). Choose k, l > 0 such that vk+l = vk.

Observe that we have a modification Γk+l  Γk and an embedding Φ: Γk ↪→ Γk+l

obtained by composing ϕk+l−1 ◦ . . . ◦ϕk. Denote by I the strict transform map induced by
Γk+l  Γk, and let w := Φk(vk) = Φk(vk+l) = Ik(v). Then we get

I(w) = ık+l−1 ◦ . . . ◦ ık(Ik(v)) = Ik+l(v) = Φk+l(vk+l) = Φ(Φk(vk+l)) = Φ(w) .

Step 2 then implies that Γk+l  Γk is an isomorphism which is only possible if Γ′  Γ is
also an isomorphism. This is a contradiction.

Step 4. Finally we prove that Γ being self-similar implies the graph to be sandwiched.

By Step 3, replacing Γ′ by Γk for a sufficiently large k we may assume that ı(v) /∈ ϕ(V (Γ))
for all vertices v of Γ. It remains to prove that this implies the graph to be sandwiched.

This is a consequence of the following general fact. Suppose Γ′  Γ is a modification.

Look at the (not necessarily connected) graph Γ̂′ obtained by removing the strict transforms
of all vertices in Γ and all edges connected to any of these.

Lemma 5.7. The graph Γ̂′ is a union of regular graphs.

Now ϕ(Γ) is a subgraph that does not contain any of the strict transform ı(v) for v ∈ Γ,

hence is a subgraph of Γ̂′. In particular, ϕ(Γ) (hence Γ) is sandwiched. �

Proof of Lemma 5.7. We argue by induction on the number k of simple modifications

needed to define Γ′  Γ. When k = 1 then Γ̂′ is reduced to the sole vertex added to Γ and
by definition its weight is (0, 1), hence is regular. Suppose the lemma is proved for k − 1,
and suppose Γ′  Γ is decomposed into k simple modifications ∆i  ∆i−1.

Consider the modification ∆k−1  Γ. By the inductive assumption, the corresponding

graph ∆̂k−1 is a disjoint union of regular graphs. When ∆k is a modification centered

at a vertex that does not lie in ∆̂k−1 then Γ̂′ is the disjoint union of ∆̂k−1 and a single

vertex with weight (0, 1). When ∆k is a modification centered at a vertex v ∈ ∆̂k−1 then

Γ̂′ is obtained by a modification of ∆̂k−1 centered at v and it still regular. When ∆k is

a modification centered at an edge v−−w with v, w /∈ ∆̂k−1, then Γ̂′ is the disjoint union
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of ∆̂k−1 and a single vertex with weight (0, 1). When ∆k is a modification centered at

an edge v−−w with v ∈ ∆̂k−1 and w /∈ ∆̂k−1, then Γ̂′ is obtained by a modification of

∆̂k−1 centered at v. Finally, when ∆k is a modification centered at an edge v−−w with

v, w ∈ ∆̂k−1, then Γ̂′ is obtained by a modification of ∆̂k−1 centered at v−−w. In all cases,

all connected components of Γ̂′ remain regular which completes the proof. �

6. Self-similar links have self-similar skeletons

In this section we prove the implication (iv) =⇒ (v) of Theorem A. For technical
reasons we introduce the following condition.

(†) There exists a finite set T of type 1 points of NL(X, 0) such that NL(X, 0) \ T is
isomorphic to an open subset U of NL(X, 0) satisfying U ( NL(X, 0).

Observe that (iv) implies (†), so that we are reduced to prove (†) =⇒ (v). To do so,
we rely on the following result.

6.1. Extending morphisms from the punctured disc.

Proposition 6.1. Let D be an open k((t))-analytic disc and let 0 denote its origin. Let
ϕ : D \ {0} → NL(X, 0) be any map that induces an isomorphism of locally ringed spaces
between D \ {0} and its image. Then the map ϕ extends continuously to 0, and ϕ(0) is
either a divisorial point or a rigid point of NL(X, 0). In the latter case ϕ extends to an
isomorphism of locally ringed spaces from D to ϕ(D).

Let us first take for granted the following lemma.

Lemma 6.2. The map ϕ : D \ {0} → NL(X, 0) extends uniquely to a continuous map
D → NL(X, 0).

Proof of Proposition 6.1. We continue to denote by ϕ the continuous map on D obtained
via Lemma 6.2. We will prove by contradiction that ϕ(0) is either a divisorial point or a
rigid point of NL(X, 0).

Suppose that ϕ(0) is a point of type 3 of NL(X, 0). Then there exist an open subspace
U of ϕ(D \ {0}) with ϕ(0) ∈ U and two non constant functions f and g on U such that

lim
y∈U,y→ϕ(0)

log |f(y)|
log |g(y)|

exists and is an irrational number. Therefore the same holds for the ratio of the logarithms
of the absolute values of the two nonconstant functions ϕ∗f and ϕ∗g on ϕ−1(U), tending
towards 0. This yields a contradiction since 0 is a rigid point of NL(X, 0), therefore its
valuation ring has rational rank 1 over k.

Now suppose that the point ϕ(0) is of type 4. Then we can find U as above, bounded
functions {fn}n∈N, and t on U such that the group

Γ =

〈
lim

y∈U,y→ϕ(0)

log |fn(y)|
log |t(y)|

〉
n∈N

is not a finitely generated subgroup of Q. Now consider the bounded functions Fn = ϕ∗fn
and T = ϕ∗t on ϕ−1(U). Since ϕ(U) ∪ {0} is an open neighborhood of 0 in D we can find
a smaller disc D′ centered in 0 such that all the Fn and T are defined on D′ \ {0}. The
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functions Fn and T extend to bounded functions on D′, therefore they can be expressed as
power series in a variable X. Observe now that we have

lim
y→ϕ(0),y∈U

log |fn(y)|
log |t(y)|

= lim
y→0,y∈D

log |Fn(y)|
log |T (y)|

=
valX(Fn(X))

valX(T (X))
.

This implies that Γ is a subgroup of 1
valX(T (X)Z, hence it is finitely generated, which is

a contradiction. It follows that ϕ(0) can only be a rigid point or a divisorial point of
NL(X, 0).

If ϕ(0) is a rigid point then it has a neighborhood U isomorphic to a disc thanks to
Corollary 3.11, and without loss of generality we can take a smaller disc D if needed
and assume that ϕ(D) is contained in U . We obtain an injective analytic map from a
punctured disc to disc, thus this map necessarily extends as an isomorphism from D onto
its image. �

Proof of Lemma 6.2. By Corollary 3.10, the compact set NL(X, 0) is a disjoint union of
discs, finitely many annuli and finitely many (type 2) points. Recall the definition of xr
for r ∈ (0, 1) from Theorem 2.5 and define the injective continuous map γ(r) = ϕ(xr) from
(0, 1) to NL(X, 0). Since γ is injective, there exists a subset A of NL(X, 0) that is either
a disc or an annulus and such that γ(r) ∈ A for all r sufficiently small. Recall that A is
uniquely arcwise connected by Theorem 2.5 (i), and has either one or two endpoints by
Theorem 2.5 (ii). Moreover, the complement of A in its closure A in NL(X, 0) contains
either one or two points by Corollary 3.10. This implies that A is both uniquely arcwise
connected and compact. It follows that γ extends continuously as a map from [0, 1) to
A by setting γ(0) = limr→0 γ(xr). We set ϕ(0) = γ(0), and claim that the resulting map
ϕ : D → A ⊂ NL(X, 0) is continuous. Since A and D are uniquely arcwise connected, one
may define the segment joining any two points x, y, and we denote it by [x, y]. For any
0 < r < 1, consider the set Ur ⊂ A (resp. Vr ⊂ D) consisting of those points x such that
ϕ(xr) /∈ [x, ϕ(0)] (resp. xr /∈ [x, 0]). These sets form bases of neighborhoods of ϕ(0) in A
and 0 in D respectively. Since ϕ is continuous and injective on D \{0}, one has ϕ(Vr) ⊂ Ur,
which implies the continuity of ϕ at 0. �

6.2. The implication (†) =⇒ (v). Let T be a finite and nonempty set of rigid points
of NL(X, 0), let U be an open subset of NL(X, 0) whose closure U in NL(X, 0) is strictly
contained in NL(X, 0), and let ϕ : NL(X, 0) \ T → U be an isomorphism. We will show
that (X, 0) has a self-similar dual graph.

Since every point x of T has a neighborhood in NL(X, 0) that is a disc with origin x, by
repeatedly applying Lemma 6.1 we deduce that ∂U = U \ U is a finite subset of NL(X, 0)
consisting of rigid and divisorial points. Moreover, we can extend ϕ to each point of T
whose image is a rigid point and therefore assume without loss of generality that ∂U only
consists of divisorial points. Observe also that ∂U is nonempty since U is strictly contained
in NL(X, 0).

Let C be a germ of curve on (X, 0) whose components correspond to the points of T ,
let π : X ′ → X be the good resolution of (X, 0) that also resolves the germ C and that
is minimal with respect to this property (see e.g. [Lau71, Theorem 5.12]), and let Z be
another good resolution of (X, 0) resolving the germ C and whose divisorial set Div(Z)
contains ∂U .
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Set S =
(

Div(Z) \ U
)
∪ ϕ(Div(X ′)) and let Y ′ be the formal modification whose

divisorial set is S, as given by Theorem 3.7. We claim that Y ′ is algebraized by a good
resolution of (X, 0) which resolves the germ C. This boils down to verifying the conditions
of Theorem 3.9.

In order to do so, let V be any connected component of NL(X, 0) \ S. Recall that S
contains Div(Z) hence ∂U , so that V is either disjoint from U , or contained in it. In the
first case, V is a connected component of NL(X, 0) \Div(Z). Since Z is a good resolution
of (X, 0) and C, it follows that V has the form we want by Theorem 3.9. In the second
case, V is isomorphic through ϕ to a connected component of NL(X, 0) \ (Div(X ′) ∪ T ).
As X ′ is a resolution of C, such a component is a disc, an annulus, or a disc with the
origin removed (which is itself isomorphic to an annulus, as observed in Remark 2.8). This
completes the proof of the fact that Y ′ is algebraized by a good resolution Y ′ of (X, 0)
and C.

Now let Y be the formal modification of (X, 0) whose divisorial set is Div(Z) \ U and
denote by y the point of the reduction Y0 of Y corresponding as in Proposition 3.5.(ii)

to the connected component U of NL(X, 0) \Div(Y ). Let Jy be the ideal of ÔY ,y which
defines Y0 locally around y. Observe now that we have a sequence of isomorphisms of
complete local rings

ÔY ,y

Prop.2.3∼= O◦NL(Y ,y)

(
NL(Y , y)

) Lem.3.13∼= O◦NL(Y ,y)

(
NL(Y , y) \ V (Jy)

)
Prop.3.5∼= O◦NL(X,0)

(
U
) ϕ∼=O◦NL(X,0)

(
NL(X, 0) \ T )

Lem.3.13∼= O◦NL(X,0)

(
NL(X, 0))

Prop.2.3∼= ÔX,0,

which tells us that ϕ induces an isomorphism of formal schemes Ŷ /y ∼= Spf
(
ÔX,0

)
.

The inclusion Div(Y ) ⊂ Div(Y ′) yields a morphism of formal schemes ψ : Y ′ → Y
(geometrically this morphism is the contraction of the exceptional components of Y ′

corresponding to divisorial points in U). Then ϕ induces an isomorphism of formal schemes

between the formal completion Y ′′ = ̂Y ′/ψ−1(y) of Y ′ along ψ−1(y) and the formal

completion X ′ = ̂X ′/π−1(0) of X ′ along its exceptional divisor π−1(0).
Since X ′ is the minimal good resolution of (X, 0) and C, the resolution µ : Y ′ → X factors

through a morphism ρ : Y ′ → X ′. Now observe that since ̂Y ′/ψ−1(y) and ̂X ′/π−1(0) are
isomorphic as formal schemes, then Dual

(
ψ−1(y)

)
and Dual

(
π−1(0)

)
are isomorphic as

weighted graphs (see section 7.1 for the definition of the weighted graph associated to
a good resolution). Indeed, let x be a point of Div(X ′) corresponding to a component
E of π−1(0) and denote by ϕ(E) the component of ψ−1(y) corresponding to the point
ϕ(x) ∈ Div(Y ′). Then we have the following sequence of field isomorphisms

k(E) ∼= H̃ (x) ∼= ˜H
(
ϕ(x)

) ∼= k
(
ϕ(E)

)
since ϕ is an isomorphism of locally ringed spaces, hence E and ϕ(E) have the same

genus. Moreover, we have ̂Y ′/ϕ(E) = ̂Y ′′/ϕ(E) ∼= X̂ ′/E = X̂ ′/E, which implies that
(E ·E) = (ϕ(E) · ϕ(E)) because the degree of the normal bundle of E in X ′ is the same as
the degree of the formal normal bundle of E in X ′, and the same holds for the normal
bundle of ϕ(E) in Y ′.
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We now observe that the weighted dual graph Dual
(
ψ−1(y)

)
is a subgraph of

Dual
(
(π ◦ ρ)−1(0)

)
, and the latter is obtained by a sequence of simple modifications

from Dual
(
π−1(0)

)
since ρ : Y ′ → X ′ is a birational morphism between smooth surfaces.

This shows that (X, 0) has a self-similar dual graph, which is what we wanted to prove.
�

For the reader convenience, the following diagram summarizes the constructions made
in the course of the proof above.

Y ′

ρ
��

ψ

��

̂Y ′/(π ◦ ρ)−1(0)oo

∼=��

̂Y ′/ψ−1(y)? _oo

∼=
ϕ

uu
Y

��

X ′

π
��

̂X ′/π−1(0)oo

X

7. Sandwiched singularities are determined by their dual graphs

The goal of this section is two-fold. We first prove that a normal surface singularity
is sandwiched if its (weighted) dual graph is sandwiched. This is an extension of [Spi90,
Proposition 1.11] to arbitrary characteristic. We then explain how this allows to prove the
implication (v) =⇒ (i) of Theorem A.

7.1. Dual graphs of sandwiched singularities. Let (X, 0) be any normal surface
singularity, and let (Y,D)→ (X, 0) be a good resolution of the singularities of (X, 0). We
define the weighted dual graph Dual(D) as follows. Its set of vertices is the set of the
irreducible components of D, and there is an edge connecting two vertices if and only if
the corresponding components intersect. The weight of a vertex is the pair of positive
integers

(
g(E),−E2

)
consisting of the genus and of the opposite of the self-intersection of

the corresponding component E of D.

Theorem 7.1. Let (X, 0) be a normal surface singularity and assume there exists a good
resolution of (X, 0) whose associated weighted dual graph is sandwiched. Then (X, 0) is
sandwiched.

Over the complex numbers, this result is due to Spivakovsky. His proof is complex
analytic in nature, relying on plumbing constructions in an essential way. We proceed in
very much the same way, using an analogue of plumbing in formal geometry.

Proof. Suppose that (Y,D) is a good resolution of singularities of (X, 0), that the associated
weighted dual graph Dual(D) is sandwiched, and choose an embedding of Dual(D) in a
regular weighted graph Γ. We can assume without loss of generality that each of the
vertices of Γ \ Dual(D) has weight (0, 1) and valence 1, so that it is only adjacent to a
vertex of Dual(D). Indeed, each connected component of Γ \Dual(D) is itself regular and
can be contracted to a single vertex adjacent to Dual(D) and of weight (0, 1), see [Spi90,
Proposition 1.13]).

We will now build a smooth formal k-scheme Y ′ whose reduction Y ′0 is a curve with
simple normal crossings such that Dual(Y ′0 ) ∼= Γ, together with a closed immersion of
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formal schemes Ŷ/D → Y ′. We will do so by means of a patching procedure, using as
elementary building blocks the following smooth formal k-schemes of dimension 2. For
n > 0, let Fn = PP1

k

(
OP1

k
⊕ OP1

k
(n)
)

be the Hirzebruch surface of order n over k and let F

denote the rational curve of self-intersection −n in Fn. Pick a point p in Fn that does not
lie in F , call F ′ the curve in the canonical rational fibration passing through p, and denote

by F̃n the blowup of Fn at p. Define Xn to be the formal completion of F′n along the union

of F with the strict transform of F ′ in F̃n, so that the reduction of Xn consists of two
smooth and rational curves that intersect transversally and have self-intersection −n and
−1 respectively. Now take a vertex v in Γ \ Dual(D) and let E be the component of D
corresponding to the vertex of Dual(D) adjacent to v. Since Γ is regular, E is rational
and has negative self-intersection, say E2 = −m < 0. Consider the formal k-scheme Xm

constructed above and denote by F its rational curve of self-intersection −m and by q
the point of F that intersects the other component of (Xm)0. The formal completions

Ŷ/E and X̂m/F are isomorphic by [LN13, Theorem 2.11] (in characteristic zero this result
was obtained earlier in [Bri68, Satz 2.10]), and, after composing with an automorphism of

X̂m/F if necessary (for instance one induced by a suitable automorphism of the Hirzeburch

surface), we can choose such an isomorphism X̂m/F ∼= Ŷ/E sending q to a point of E that

is smooth in D. Therefore we can glue a copy of Xm to Ŷ/D, obtaining a smooth formal
k-scheme whose associated dual graph is the weighted graph spanned by Dual(D) and
the vertex v. By repeating this procedure for every vertex in Γ \Dual(D) we obtain the

formal scheme Y ′ as we wanted. Observe that by construction the formal scheme Ŷ/D
is isomorphic to the closed formal subscheme of Y ′ obtained by formally completing the
latter along D.

Since Γ ∼= Dual(Y0) is regular, Grauert-Artin contractibility criterion [Art70] gives a
formal modification π : Y ′ → Z contracting Y0 to a point {z} = Z0 in a smooth two-
dimensional formal k-scheme Z. Having only one point, Z is affine, therefore it can be
algebraized by a smooth surface Z over k. It follows that Y ′, being a formal good resolution
of (Z, z), is itself algebraized by a good resolution π : Y ′ → Z by [Fan14, Proposition 7.6].

Using the other contractibility criterion by Artin, [Art62, Theorem 2.3], one can then
also contract the divisor D of Y ′ to a (possibly singular) point z′ of a normal surface Z ′

over k, which yields a modification $ : Y ′ → Z ′ such that π factors as Y ′
$−→ Z ′

τ−→ Z.

Observe that the local ring ÔZ′,z′ is sandwiched since Z is smooth.
Finally, observe that we have

ÔX,0 ∼= O◦
(

NL(X, 0)
) ∼= O◦

(
NL(Y,D)

) ∼= O◦
(

NL(Y ′, D)
) ∼= O◦

(
NL(Z ′, z′)

) ∼= ÔZ′,z′ ,

where the first and the last isomorphisms come from Proposition 2.3 and the others follow

from the invariance of non-archimedean links under modifications. This proves that ÔX,0
is sandwiched, which is what we wanted to show. �

Remark 7.2. The converse to the theorem is also true: the dual graph Dual(D) is sandwiched
if (X, 0) is sandwiched. A direct proof of this fact will be given in Remark 8.1.

7.2. The implication (v) =⇒ (i). Let (X, 0) be any normal surface singularity such
that Dual(D) is self-similar for some good resolution of singularities (Y,D)→ (X, 0). By
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Theorem 5.6, the weighted graph Dual(D) is sandwiched, which implies that (X, 0) is
sandwiched by Theorem 7.1. �

8. End of the proof of Theorem A: Kato data

In this section, we prove the two implications (i) =⇒ (vi), and (vi) implies the condition
(†) from §6, concluding the proof of our main theorem.

8.1. The implications (i) =⇒ (vi). A Kato datum for a normal surface singularity
(X, 0) is a modification π : (X ′, D) → (X, 0), together with an isomorphism of complete

local rings ÔX′,p ∼= ÔX,0 for some p ∈ D. Note that in particular π is not an isomorphism.
Suppose (X, 0) is a sandwiched singularity. Proving (i) =⇒ (vi) amounts to constructing

a Kato datum for (X, 0). To do so, recall that we may find a proper birational morphism

h : Z → A2
k and a point z ∈ h−1(0) such that ÔZ,z ∼= ÔX,0. Choose a good resolution

of singularities g : Y → X of (X, 0), and pick an arbitrary point q ∈ g−1(0). Since Y is
smooth at q we can find an étale map ϕ : Y → A2

k mapping q to the origin. We consider
the fibered product X ′ = Y ×A2

k
Z, so that the following diagram is commutative

X ′ = Y ×A2
k
Z

$ //

ψ

��

Y

ϕ

��

g // X

Z
h // A2

k

Observe that the projection map $ : X ′ → Y is birational since h is, and ψ : X ′ → Z is
étale since étale morphisms are preserved by base change. The image of X ′ in Z contains
h−1(0) since ϕ(q) = 0. We may thus find a point p ∈ X ′ over q such that ψ(p) = z. Since

ψ is étale it induces an isomorphism of complete local rings ÔX′,p ∼= ÔZ,z, and the latter is

isomorphic to ÔX,0. It follows that the composition g ◦$ : X ′ → X, which is a modification
(that is, (g ◦ $)−1(0) is a Cartier divisor) because it factors through the resolution Y ,
defines a Kato datum for (X, 0). �

8.2. The implication (vi) =⇒ (†). Suppose that (X, 0) is a normal surface singularity
and that π : (X ′, D) → (X, 0) is a Kato datum for (X, 0), with p ∈ D a point such that

ÔX′,p ∼= ÔX,0. By Proposition 3.5.(ii) there exists a finite set T ′ of type 1 points of NL(X ′, p)

such that the open subspace U = c−1
X′ (p) of NL(X, 0) is isomorphic to NL(X ′, p) \T ′. Since

ÔX′,p ∼= ÔX,0, it follows that U ∼= NL(X, 0) \ T for some finite set T of type 1 points of

NL(X, 0). Finally, the closure U of U in NL(X, 0) is strictly contained in the latter, since
it is contained in U ∪Div(X ′) as observed in Remark 3.6. �

Remark 8.1. Let us sketch a proof of the implication (vi) =⇒ (v). Although not necessary
to complete the proof of Theorem A, we obtain in this way a direct argument showing the
implication (i) =⇒ (v), which is equivalent to saying that every sandwiched singularity
has a sandwiched dual graph, as mentioned in Remark 7.2. Suppose that (X, 0) is a
normal surface singularity and that π : (X ′, D)→ (X, 0) is a Kato datum for (X, 0), with

p ∈ D a point such that ÔX′,p ∼= ÔX,0. Without loss of generality we may assume that D
has simple normal crossings away from p, so that in particular X ′ is smooth away from
p. Let µ : Y → X and µ′ : Y ′ → X ′ be the minimal good resolutions of the singularities
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of (X, 0) and (X ′, p) respectively. Since Y ′ is a good resolution of (X ′, p′) it is also a
good resolution of (X, 0) so that there exists a birational morphism π′ : Y ′ → Y satisfying
µ ◦ π′ = π ◦ µ′. This morphism is not an isomorphism, or π would be an isomorphism as
well. Moreover, since Y ′ and Y are smooth, π′ is a composition of point blow-ups. The
graph Dual

(
(π ◦ µ′)−1(0)

)
is thus a nontrivial modification of Dual

(
µ−1(0)

)
and contains

Dual
(
(µ′)−1(p)

)
which is isomorphic (as a weighted graph) to Dual

(
µ−1(0)

)
. This proves

that the latter graph is sandwiched as required.

9. Complex analytic sandwiched singularities

In this section we work with complex analytic varieties. In this context, a sandwiched
singularity (X, 0) is a germ of normal complex analytic surface such that the completion of
its analytic local ring is sandwiched in the sense of Definition 4.1. Our aim is to characterize
such singularities in terms of their complex link, proving Theorems B and C.

9.1. Pseudoconvex 3-folds. Let us recall some definitions and terminology from [Kat79].
A real-analytic strongly pseudoconvex 3-fold Σ is a smooth (real-analytic) hypersurface in
a smooth complex surface S such that for any p ∈ Σ there exists an open subset Uof S
containing p and a real-analytic strictly plurisubharmonic function ρ : U → R such that
Σ ∩ U = ρ−1(0). A real-analytic strongly pseudoconvex 3-fold bounds a Stein domain if
Σ is compact and there exists an embedding of a tubular neighborhood of Σ in S into a
normal (but possibly singular) complex surface X such that X \ Σ has one component
which is Stein.

We shall need one more piece of terminology. A compact real 3-fold Σ in a compact
complex surface S is said to be global when S \ Σ is connected.

Archimedean links are the main example of real-analytic strongly pseudoconvex 3-
folds bounding a Stein domain. Let (X, 0) be a normal surface singularity, and fix an
embedding of (X, 0) inside the unit ball in some complex affine space Cn such that 0 is
sent to the origin. The function ρ(z) = ρ(z1, . . . , zn) :=

∑n
i=1 |zi|2 is real-analytic and

strictly plurisubharmonic. There exists ε0 small enough so that for any 0 < ε < ε0

the intersection of the sphere of center 0 and radius ε with X is transversal, so that
LεC(X, 0) := X ∩ {ρ = ε} is a real-analytic strongly pseudoconvex 3-fold, and bounds the
Stein domain Xε := X ∩ {ρ < ε}. Such ε0 may be taken maximal satisfying the above
property, and any ε strictly smaller than the threshold ε0 above is said to be admissible.

Observe that the diffeomorphism type of LεC(X, 0) does not depend on the choice
of an admissible ε, but its embedding as a real-analytic 3-fold in X does. In fact the
diffeomorphism type of LεC(X, 0) is also independent on the choice of an embedding in Cn,
see [Loo13, Proposition 2.5].

9.2. Kato surfaces. A special case of real-analytic strongly pseudoconvex 3-folds is given
by spherical shells, corresponding to the boundary of the unit ball B in C2, i.e., to the link of
a regular point (X, 0). In [Kat78], M. Kato considers the following construction to produce
compact complex surfaces admitting a global spherical shell. Let Y be any connected open
neighborhood of B in C2, and let π : Y ′ → Y be a proper bimeromorphic map which is
an isomophism above Y \ {0}. Let y be a point in π−1(0), and pick a relatively compact
neighborhood U of y in π−1(B) such that there exists a biholomorphism σ : Y → U . We
call the pair (π, σ) a regular geometric Kato datum, to distinguish this definition from the
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one given in §8.1. One can define a compact complex surface S = S(π, σ), called Kato
surface, obtained from Y ′ \ σ(B) by gluing Y ′ \ π−1(B) and σ(Y \B) using σ ◦ π

Kato surfaces have been studied intensively in the literature, see for example the
monograph of G. Dloussky [Dlo84]. They are compact complex surfaces with negative
Kodaira dimension, b1 = 1, b2 > 0, and they admit a global spherical shell. In the Kodaira
classification of compact complex surfaces, they belong to the VII0 class, and it is believed
that they are the only examples of surfaces in this class having b2 > 0, see [Tel10].

9.3. Proof of Theorem B. In this section we fix a sandwiched singularity (X,x0). Our
aim is to realize its archimedean link as a global real-analytic strongly pseudoconvex 3-fold
in a compact complex surface S that has a global spherical shell.

Our first objective is to construct a complex analytic version of a Kato datum attached
to (X,x0).

Let Y be a connected neighborhood of the closed unit ball in C2. By Artin’s approx-
imation theorem and §4.1, we may find a proper bimeromorphism π : Y ′ → Y that is
an isomorphism over Y \ {0}, and a non-empty connected divisor D ⊂ π−1(0) such that
the normal complex analytic germ obtained by contracting D to a point is isomorphic to
(X,x0). We write µ : Y ′ → X for the contraction morphism. It is a proper bimeromorphism
that is a local isomorphism at any point of D and contracts D to the point x0.

Observe that we may (and shall) assume that the support of D is the union of all rational
curves in the exceptional divisor π−1(0) of self-intersection ≤ −2 by [Spi90, Corollary
1.14]. In that case the map µ is the minimal good resolution of (X,x0). Define the proper
bimeromorphism η : X → Y by setting η := π ◦ µ−1.

Consider any embedding of a local neighborhood of x0 in X into the unit ball in Cn
that sends x0 to the origin, so that we can talk about its complex link LεC(X,x0) for any
admissible ε� 1. Recall the definition of the Stein domain Xε from §9.1.

Now pick any point y ∈ µ−1(x0), and choose a neighborhood U of y such that µ(U) is
relatively compact in Xε and there exists a biholomorphism σ : Y → U (we possibly have
to shrink Y in order to do that). We construct a complex surface X ′ by patching together
Y ′ \ σ(B) and X using σ ◦ η : X \ η−1(B)→ σ(Y \B).

The identification of X with its copy inside X ′ induces a holomorphic map σ̃ : X → X ′

that is a biholomorphism onto its image, and such that σ̃(X) is relatively compact inside
X ′. We also have a proper bimeromorphic map π̃ : X ′ → X defined by π̃ = µ on Y ′ \ σ(B)
and by π̃ = µ ◦ σ ◦ η on X.

We proceed to construct a compact complex surface following Kato’s construction as in
the previous section. Pick three admissible positive real numbers ε− < ε < ε+, and set
X ′t = π̃−1(Xt) for every t in {ε−, ε, ε+}. Define the surface S̃ considering X ′ε+ \ σ̃(Xε−)

and gluing together X ′ε+ \X ′ε− and σ̃(Xε+ \Xε−) via the map σ̃ ◦ π̃. Observe that the

canonical map X ′ε \ σ̃(Xε)→ S̃ is surjective hence S̃ is compact. It is a smooth surface,
since the only singularity of X ′ε+ lies inside σ̃(Xε−).

By construction, S̃ contains a neighborhood of the archimedean link LεC(X,x0), that is
hence realized as a real-analytic strongly pseudo-convex 3-fold bounding a Stein domain in
S̃.
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To see that S̃ \ LεC(X,x0) is connected, it is enough to see that X ′ε \ σ̃(Xε) is connected.
But σ̃(LεC(X,x0)) is a compact and connected real 3-fold in X ′ε, hence X ′ε \ σ̃(LεC) has at

most two components, one of which is σ̃(Xε). This implies that X ′ε \ σ̃(Xε) is connected.

It remains to see that S̃ contains a global spherical shell. This follows from [Kat79,
Proposition 2], whose proof is given on pp. 541–546. The proof should be read by replacing
Z(δ) (resp. A, 0∗, and g) by X ′ε (resp. by π̃−1(x0), σ(x0) and σ̃ ◦ π̃).

One can also see it directly, by showing that S̃ is biholomorphic to the Kato surface
S = S(π, σ) associated with the regular Kato datum (π, σ). Define a map η′ : X ′ → Y ′ by
setting η′ = id on Y ′ \ σ(B) ⊂ X ′, and η′ = σ ◦ η on X ⊂ X ′. Denote by S∗ the surface
obtained from X ′ \ σ̃

(
η−1(B)

)
by gluing X ′ \ π̃−1

(
η−1(B)

)
and σ̃

(
Y \ η−1(B)

)
using σ̃ ◦ π̃.

The map η′ then induces a biholomorphism between S∗ and S. We show that S∗ and S̃
are biholomorphic.

To that end, consider the surface S′ obtained from X ′ \ σ̃(Xε−) by gluing X ′ \X ′ε− to

σ̃(X \ Xε−) via the map σ̃ ◦ π̃. The inclusions ı∗ : X ′ \ σ̃(η−1(B)) ↪→ X ′ \ σ̃(Xε−) and

ı̃ : X ′ε+ \ σ̃(Xε−) ↪→ X ′ \ σ̃(Xε−) induce biholomorphisms Φ∗ : S∗ → S′ and Φ̃ : S̃ → S′. �

9.4. Proof of Theorem C. As above, we fix a closed embedding of X in the open unit
ball in Cn, define ρ(z) :=

∑n
i=1 |zi|2, and we write LεC(X, 0) := X ∩ {ρ = ε} for any

admissible ε > 0, Xε := X ∩ {ρ < ε}, and Aε−,ε+ := Xε+ \Xε− .
We suppose that for some admissible ε the manifold LεC(X, 0) can be realized as a global

strongly pseudoconvex 3-fold in a smooth compact complex surface S. By assumption, there
exist ε− < ε < ε+ and a holomorphic embedding ı : Aε−,ε+ → S such that S \ ı(Aε−,ε+) is
connected.

Let X ′ be the surface obtained by gluing S \ ı(LεC(X, 0)) and Xε+ together along the
open subsets ı(Aε,ε+) and Aε,ε+ via the map ı−1. This surface has a single singularity at
the point 0′ corresponding to the point 0 of Xε+ , and (X ′, 0′) is a normal singularity which
is analytically isomorphic to (X, 0). Denote by σ the map induced by the identification of
Xε+ inside X ′. It is a holomorphic embedding mapping the singular point 0 to 0′.

Observe that there is a biholomorphic copy A of Aε−,ε that is included in X ′ and whose
complement in X ′ is compact. Since Xε is Stein, the natural biholomorphism A→ Aε−,ε
extends to a proper bimeromorphic map π : X ′ → Xε by a classical theorem of Hartogs.
Note that π could be a local isomorphism at 0, and it does not necessarily send 0′ to 0.

If π(0′) 6= 0, then π is a proper bimeromorphic map from (X ′, 0′) onto a smooth point
in Xε, therefore (X ′, 0′) (and hence (X, 0)) is a sandwiched singularity as was to be shown.
We may thus assume that π(0′) = 0 so that 0′ is fixed by the map f := σ ◦ π : X ′ → X ′.

First suppose that π does not induce a local biholomorphism from (X ′, 0′) to (X, 0). Then
the maps π : X ′ → Xε and σ : Xε → X ′ define a Kato datum in the sense of page 29. We
deduce that (X, 0) is sandwiched by the implication (vi)⇒(i) of Theorem A. The fact that

S̃ contains a global spherical shell follows similarly as before from [Kat79, Proposition 2].

Now suppose that π induces a local biholomorphism from (X ′, 0′) to (X, 0). Then
the map f induces a local biholomorphism from (X ′, 0′) to itself and we have K :=⋂
n∈N f

n(σ(Xε)) = {0′}. Indeed, K is a compact subset of σ(Xε), and, since the latter
can be realized as a bounded set in Cn, Montel’s theorem applies and all limits of the
sequence of iterates {fm}m≥0 should be constant (this argument is due to M. Kato, see
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the proof of [Kat78, Lemma 2]). But f is fixing 0′, hence K = {0′}. In other words,
f : (X ′, 0′)→ (X ′, 0′) is a contracting automorphism in the terminology of [FR14].

Let S(f) be the space of orbits of f , that is the quotient of X ′ \ {0′} by the equivalence
relation defined by x ' x′ if and only if fn(x) = fm(x′) for some positive n,m ∈ N. This
space is naturally a compact complex surface. Observe that one has a natural holomorphic
map S \ ı

(
LεC(X, 0)

)
⊂ X ′ to S(f), and that this map actually descends to a map S → S(f).

It follows that S is a modification of S(f).
The singularity (X, 0) and the geometry of S(f) are completely described in [FR14,

Theorem 7.5]. We are thus in one of the following situations.

Case 1. The singularity (X, 0) is a cyclic quotient singularity. In this case [FR14, Corol-
lary B] shows that S(f) is a Hopf surface. More precisely the universal cover of S(f) is
isomorphic to C2 \ {0} and its fundamental group is the subgroup of polynomial automor-

phisms generated by γ and f̃ in the notations of [FR14, Example 7.1]. In particular, this
fundamental group is not cyclic, so that S(f) is a secondary Hopf surface. We are in case
(ii) of the theorem.

Case 2. There exist a Riemann surface C, a line bundle L→ C of negative degree, and
a finite group G of automorphisms of C that acts linearly on L. Let X ′ be the surface
obtained by contracting the zero section in the total space of L, and let 0′ be the image
of the zero section in X ′. Then the germ (X, 0) is isomorphic to a neighborhood of the
image of 0′ in the quotient space X ′/G. Moreover, one can find a positive integer N ≥ 1
and a complex number α of norm smaller than 1 such that fN lifts to a linear map
acting by multiplication by α on the fibers of L. By [FR14, Lemma 8.1], the natural map
S(fN )→ S(f) is a Galois cyclic (unramified) holomorphic cover.

Case 2a. Suppose first that the genus of C is positive. Then (X ′, 0′) is not rational, hence
(X, 0) is not rational either by [Vie95, Claim 6.11]. In particular (X, 0) is not a quotient
singularity. By [FR14, Theorem A], it follows that (X, 0) is weighted homogeneous. Finally
the proof of [FR14, Corollary B] shows that S(fN ) is a principal elliptic fiber bundle of
Kodaira dimension 0 or 1 so that we are in case (i) of our theorem.

Case 2b. Suppose that C = P1 is the Riemann sphere. Then (X ′, 0′) is a cyclic singularity
and (X, 0) is a quotient singularity. Again the proof of [FR14, Corollary B] shows that
S(f) is a Hopf surface. If the group G acting on (X ′, 0′) is trivial, then (X, 0) is a cyclic
quotient singularity, and the surface is either a secondary Hopf or a primary Hopf. In the
latter case it contains a global spherical shell and we are in case (iii). In the former case
we are in case (ii) of our theorem. When G is non-trivial, then the fundamental group of
S(f) is not cyclic hence it is a secondary Hopf surface; and we are in case (ii).

This completes the proof of Theorem C. �
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