Université Paris Cité

Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR 7586 École doctorale de sciences mathématiques de Paris Centre, ED 386

Dynamical singularities

Matteo Ruggiero

MÉMOIRE D'HABILITATION À DIRIGER DES RECHERCHES

Paris, 06/03/2025

A short Curriculum Vitae

Education and diplomas

- 01.2008-12.2010: PhD student in Mathematics at Scuola Normale Superiore (Pisa, Italy).
- 15.03.2011: PhD degree in Mathematics at Scuola Normale Superiore di Pisa, with thesis: "The valuative tree, rigid germs and Kato varieties", advisor M. Abate.

Past academic positions

 09.2011-08.2013: Post-doc of the FMJH at the École Polytechnique, CMLS lab (Palaiseau, France).

Current academic position

 09.2013-present: Maître de conférences at the Université Paris Cité, UFR de Mathématiques, research unit IMJ-PRG, group Géométrie et Dynamique.

Dynamical systems

n times

- Discrete: $f: X \cap$, study the behavior of iterates $f^n = \overbrace{f \circ \cdots \circ f}$.

Dynamical systems

- $n \ {\sf times}$
- Discrete: $f: X \cap$, study the behavior of iterates $f^n = \overbrace{f \circ \cdots \circ f}$.

Additional structure:

- X is a (complex) analytic space : $X=P^{-1}(0), P:\mathbb{C}^N\to\mathbb{C}^M, P$ analytic.
- $f: X \bigcirc$ analytic selfmap : $F = (f_1, \dots, f_M): \mathbb{C}^M \bigcirc$ analytic, $f = F|_X: X \bigcirc$.
- $f^t \colon X \circlearrowleft$ is the flow of an analytic vector field $\chi \colon \chi = \chi_1 \partial_1 + \dots + \chi_M \partial_M$ tangent to X.

Dynamical systems

- $n \ \mathsf{times}$
- Discrete: $f: X \cap$, study the behavior of iterates $f^n = \overbrace{f \circ \cdots \circ f}$.

Additional structure:

- X is a (complex) analytic space : $X=P^{-1}(0), P:\mathbb{C}^N\to\mathbb{C}^M, P$ analytic.
- $f: X \bigcirc$ analytic selfmap : $F = (f_1, \dots, f_M): \mathbb{C}^M \bigcirc$ analytic, $f = F|_X: X \bigcirc$.
- $f^t \colon X \circlearrowleft$ is the flow of an analytic vector field $\chi \colon \chi = \chi_1 \partial_1 + \dots + \chi_M \partial_M$ tangent to X.

Local aspects: $Z \subset X$ an f-invariant subvariety, we study the germ $f\colon (X,Z) \ \$ (typically: $Z=\{x_0\}$, $x_0=f(x_0)$ a fixed point).

Singularities of varieties and maps

Varieties

- $x \in X$ is regular if $(X, x) \cong (\mathbb{C}^d, 0)$.
- $x \in X$ is singular otherwise.

$$X = X^{\mathsf{reg}} \sqcup X^{\mathsf{sing}}.$$

Singularities of varieties and maps

Varieties

- $x \in X$ is regular if $(X, x) \cong (\mathbb{C}^d, 0)$.
- $x \in X$ is singular otherwise.

$$X = X^{\mathsf{reg}} \sqcup X^{\mathsf{sing}}.$$

Maps

X, Y varieties of dimension d.

- Regular: $(X^{\text{reg}}, x) \xrightarrow{f} (Y^{\text{reg}}, y)$ $\psi_x \not \simeq \qquad \simeq \not \downarrow \psi_y$ $(\mathbb{C}^d, 0) \xrightarrow{\text{id}} (\mathbb{C}^d, 0)$
- Singular : $x \in X^{\text{sing}} \cup f^{-1}(Y^{\text{sing}}) \cup \mathcal{C}(f)$. Critical set : $\mathcal{C}(f) = \{x \in X \mid f \text{ is not locally invertible at } x\}$.

Dynamical singularities

Selfmaps

X varieties of dimension d.

$$(X^{\mathsf{reg}}, x) \xrightarrow{f} (X^{\mathsf{reg}}, y)$$
• "Regular":
$$\psi_x \not \simeq \qquad \simeq \not \downarrow \psi_y \qquad \qquad \text{(want } \psi_y = \psi_x \text{)}.$$

$$(\mathbb{C}^d, 0) \xrightarrow{\mathrm{id}} (\mathbb{C}^d, 0)$$

• Periodic points are "singular".

Generalized critical set :
$$\mathcal{C}(f^{\infty}) = \bigcup_{n=1}^{\infty} \mathcal{C}(f^n) = \bigcup_{n=0}^{\infty} f^{-n}(\mathcal{C}(f)).$$

Dynamical singularities

Selfmaps

X varieties of dimension d.

$$(X^{\mathsf{reg}}, x) \xrightarrow{f} (X^{\mathsf{reg}}, y)$$
• "Regular":
$$\psi_x \not \simeq \qquad \simeq \not \psi_y \qquad \qquad \text{(want } \psi_y = \psi_x \text{)}.$$

$$(\mathbb{C}^d, 0) \xrightarrow{\mathrm{id}} (\mathbb{C}^d, 0)$$

• Periodic points are "singular".

$$\text{Generalized critical set}: \ \mathcal{C}(f^{\infty}) = \bigcup_{n=1}^{\infty} \mathcal{C}(f^n) = \bigcup_{n=0}^{\infty} f^{-n}(\mathcal{C}(f)).$$

Vector fields

- Regular point : $\chi(x) \neq 0$: $\chi \cong \partial_1$.
- Singular set: $\operatorname{Sing}(\chi) := \{x \mid \chi(x) = 0\}.$

Conjugacy and normal forms

Let $f:(X,x_0)$ be a selfmap. Assume x_0 regular point. Classical strategy: search of normal forms up to conjugacy.

$$(X, x_0) \xrightarrow{f} (X, x_0)$$

$$\psi \upharpoonright \simeq \qquad \simeq \upharpoonright \psi$$

$$(\mathbb{C}^d, 0) \xrightarrow{\widetilde{f}} (\mathbb{C}^d, 0)$$

 $(X,x_0) \xrightarrow{f} (X,x_0)$ Want a simple expression for f. The classification depends on the regularity of the change of $(\mathbb{C}^d,0) \xrightarrow{\widetilde{f}} (\mathbb{C}^d,0)$ coordinates.

Conjugacy and normal forms

Let $f:(X,x_0)$ be a selfmap. Assume x_0 regular point. Classical strategy: search of normal forms up to conjugacy.

$$(X, x_0) \xrightarrow{f} (X, x_0)$$

$$\psi \uparrow \simeq \qquad \simeq \uparrow \psi$$

$$(\mathbb{C}^d, 0) \xrightarrow{\widetilde{f}} (\mathbb{C}^d, 0)$$

Simplest candidate normal form: the linear part df_0 of f (linearization problem).

What happens when df_0 gives the least informations possible?

Matteo Ruggiero

My research interests

Local dynamics:

- superattracting: $df_0 = 0$ (or nilpotent);
- tangent to the identity (Tld): $df_0 = id$ (or unipotent).

My research interests

Local dynamics:

- superattracting: $df_0 = 0$ (or nilpotent);
- tangent to the identity (Tld): $df_0 = id$ (or unipotent).

Tools:

- valuation spaces;
- resolution of singularities;

My research interests

Local dynamics:

- superattracting: $df_0 = 0$ (or nilpotent);
- tangent to the identity (TId): $df_0 = id$ (or unipotent).

Tools:

- valuation spaces;
- resolution of singularities;

Interplay Geometry-Dynamics:

- compactification of orbit spaces;
- dynamical symmetries: singularities admitting special dynamical systems.

Plan

- Introduction
- Germs tangent to the identity
- Superattracting germs
- Valuation spaces
- 4 Valuation dynamics
- Dynamical symmetries

We modify the space via blow-ups (modifications):

We modify the space via blow-ups (modifications): The global geometry gets more complicated, the local geometry simplifies.

We modify the space via blow-ups (modifications):

We modify the space via blow-ups (modifications):

The global geometry gets more complicated, the local geometry simplifies.

Resolution of singularities of varieties

- 1D (curves) Newton-Puiseux.
- 2D (surfaces) Walker, Zariski, Abhyankhar, Lipman.
- Local uniformization ZARISKI.
- 3D Zariski.
- Algebraic varieties HIRONAKA.
- Analytic varieties Aroca-Hironaka-Vicente.

Other proofs by: VILLAMAYOR ENCINAS-VILLAMAYOR

BIERSTONE-MILMAN WŁODARCZYK

Plan

- Introduction
- Germs tangent to the identity
- Superattracting germs
- Waluation spaces
- 4 Valuation dynamics
- 5 Dynamical symmetries

Time-1 flow of vector fields

Let $\chi \in \mathcal{X}^{\geq 2}(\mathbb{C}^d,0)$ be a vector field, $\operatorname{ord}_0\chi = h \geq 2$. Its time-1 flow $f = \exp \chi = \sum_{n=0}^\infty \frac{\chi^n}{n!}$ is tangent to the identity: $f(z) = z + f^{(h)}(z) + o\big(\|z\|^h \big).$

$$f(z) = z + \overbrace{f^{(h)}(z)} + o(\|z\|^h).$$

Is the converse true?

Matteo Ruggiero

Time-1 flow of vector fields

Let $\chi \in \mathcal{X}^{\geq 2}(\mathbb{C}^d, 0)$ be a vector field, $\operatorname{ord}_0 \chi = h \geq 2$.

Its time-1 flow $f=\exp\chi=\sum_{n=0}^{\infty}\frac{\chi^n}{n!}$ is tangent to the identity: $f(z)=z+f^{(h)}(z)+o\big(\,\|z\|^h\,\big).$

$$f(z) = z + f^{(h)}(z) + o(||$$

Is the converse true? **Almost!**

For any $f \in \mathrm{Diff}_1(\mathbb{C}^d,0)$, there exists a unique $\chi \in \widehat{\mathcal{X}}^{\geq 2}(\mathbb{C}^d,0)$ such that $f = \exp \chi$, called the infinitesimal generator.

Remarks

- χ is a formal vector field.
- χ induces (by saturation) a foliation \mathcal{F} by complex curves. The foliation does not retain the informations on the real orbits.

Matteo Ruggiero

$$\chi(z) = -z^h \partial_z + \text{h.o.t.} \rightsquigarrow f(z) = z(1 - z^{h-1} + \text{h.o.t.}).$$

Goal: describe $\mathcal{B} = \{z \mid z_n := f^n(z) \to 0\}.$

Matteo Ruggiero Dynamical singularities 12 /

$$\chi(z) = -z^h \partial_z + \text{h.o.t.} \rightsquigarrow f(z) = z(1 - z^{h-1} + \text{h.o.t.}).$$

Goal: describe $\mathcal{B} = \{z \mid z_n := f^n(z) \to 0\}.$

 $\zeta : \zeta^{h-1} = 1$ attracting directions.

Matteo Ruggiero

$$\chi(z) = -z^h \partial_z + \text{h.o.t.} \leadsto f(z) = z(1 - z^{h-1} + \text{h.o.t.}).$$

Goal: describe $\mathcal{B} = \{z \mid z_n := f^n(z) \to 0\}.$

 $\zeta \ : \ \zeta^{h-1} = 1 \ \text{attracting directions}.$ attracting petal $\Delta_\zeta \ni z \colon \frac{z_n}{\|z_n\|} \to \zeta \ z_n \overset{\zeta}{\to} 0.$

Matteo Ruggiero

Dynamical singularities

$$\chi(z) = -z^h \partial_z + \text{h.o.t.} \leadsto f(z) = z(1 - z^{h-1} + \text{h.o.t.}).$$

Goal: describe $\mathcal{B} = \{z \mid z_n := f^n(z) \to 0\}.$

 $\zeta: \zeta^{h-1}=1$ attracting directions. attracting petal $\Delta_{\zeta}\ni z\colon rac{z_n}{\|z_n\|} \to \zeta \ z_n \stackrel{\zeta}{ o} 0.$

$$\mathcal{B}_{\zeta} := \bigcup_{n} f^{-n}(\Delta_{\zeta}) = \{ z \mid z_n \stackrel{\zeta}{\to} 0 \}.$$

Matteo Ruggiero

Dynamical singularities

$$\chi(z) = -z^h \partial_z + \text{h.o.t.} \leadsto f(z) = z(1 - z^{h-1} + \text{h.o.t.}).$$

Goal: describe
$$\mathcal{B} = \{z \mid z_n := f^n(z) \to 0\}.$$

$$\zeta \ : \ \zeta^{h-1} = 1 \ \text{attracting directions}.$$
 attracting petal $\Delta_{\zeta} \ni z \colon \frac{z_n}{\|z_n\|} \to \zeta \ z_n \overset{\zeta}{\to} 0.$

$$\mathcal{B}_{\zeta} := \bigcup_{n} f^{-n}(\Delta_{\zeta}) = \{ z \mid z_n \stackrel{\zeta}{\to} 0 \}.$$

- ullet Topological classification: $f(z) \stackrel{\mathrm{top}}{\cong} z z^h$ Camacho , Shcherbakov
- Analytic classification ÉCALLE, VORONIN.

Matteo Ruggiero

Motivations

 Dynamics 1D: description of parabolic Fatou components for rational/transcendental maps.

Motivations

- Dynamics 1D: description of parabolic Fatou components for rational/transcendental maps.
- Parabolic implosion 1D: Lavaurs, Douady, Shishikura.
 Applications to:
 - Julia sets of quadratic polynomials with positive area:
 BUFF-CHERITAT, AVILA-LYUBICH;
 - ► Construction of wandering domains for polynomial endomorphisms of

 P²: ASTORG-BUFF-DUJARDIN-PETERS-RAISSY.

Motivations

- Dynamics 1D: description of parabolic Fatou components for rational/transcendental maps.
- Parabolic implosion 1D: Lavaurs, Douady, Shishikura.
 Applications to:
 - ► Julia sets of quadratic polynomials with positive area: Buff-Cheritat . Avila-Lyubich:
 - ▶ Construction of wandering domains for polynomial endomorphisms of \mathbb{P}^2 : ASTORG-BUFF-DUJARDIN-PETERS-RAISSY.
- Semi-parabolic and parabolic implosion 2D: Bedford-Smillie-Ueda, Bianchi, Astorg-LopezHernanz-Raissy.

≥2 picture: parabolic manifolds

Goal: to describe $\mathcal{B}_{\star} = \{z : f^n(z) \stackrel{\star}{\to} 0\}$, with \star being:

- ullet $\zeta \in \mathbb{S}^{2d-1}$ (\mathbb{R} -direction),
- $v \in \mathbb{P}^{d-1}_{\mathbb{C}}$ (\mathbb{C} -direction),
- ullet C (formal) irreducible curve,

≥2 picture: parabolic manifolds

Goal: to describe $\mathcal{B}_{\star} = \{z : f^n(z) \stackrel{\star}{\to} 0\}$, with \star being:

- ullet $\zeta \in \mathbb{S}^{2d-1}$ (\mathbb{R} -direction),
- $v \in \mathbb{P}^{d-1}_{\mathbb{C}}$ (\mathbb{C} -direction),
- C (formal) irreducible curve,

Petals \rightsquigarrow *-parabolic manifold: Δ immersed (connected) submanifold,

$$0 \in \partial \Delta, \quad f(\Delta) \subseteq \Delta, \quad \Delta \subseteq \mathcal{B}_{\star}.$$

Matteo Ruggiero

ynamical singularities

≥2 picture: parabolic manifolds

Goal: to describe $\mathcal{B}_{\star} = \{z : f^n(z) \stackrel{\star}{\to} 0\}$, with \star being:

- $\zeta \in \mathbb{S}^{2d-1}$ (\mathbb{R} -direction),
- $v \in \mathbb{P}^{d-1}_{\mathbb{C}}$ (\mathbb{C} -direction),
- C (formal) irreducible curve,

Petals \rightsquigarrow *-parabolic manifold: Δ immersed (connected) submanifold,

$$0 \in \partial \Delta, \quad f(\Delta) \subseteq \Delta, \quad \Delta \subseteq \mathcal{B}_{\star}.$$

- $\mathcal{B}_v \neq \emptyset \Rightarrow v$ is characteristic $\Leftrightarrow v \in \operatorname{Sing} \overline{\chi}_{\pi_0} := z^{1-h} \chi_{\pi_0}$.
- $\mathcal{B}_C \neq \emptyset \Rightarrow C$ is f-invariant $\Leftrightarrow C$ is χ -invariant.

Matteo Ruggiero

≥2 picture: parabolic manifolds

Goal: to describe $\mathcal{B}_{\star} = \{z : f^n(z) \stackrel{\star}{\to} 0\}$, with \star being:

- $\zeta \in \mathbb{S}^{2d-1}$ (\mathbb{R} -direction),
- $ullet v \in \mathbb{P}^{d-1}_{\mathbb{C}}$ (\mathbb{C} -direction),
- ullet C (formal) irreducible curve,

Petals \leadsto *-parabolic manifold: Δ immersed (connected) submanifold,

$$0 \in \partial \Delta, \quad f(\Delta) \subseteq \Delta, \quad \Delta \subseteq \mathcal{B}_{\star}.$$

- $\mathcal{B}_v \neq \emptyset \Rightarrow v$ is characteristic $\Leftrightarrow v \in \operatorname{Sing} \overline{\chi}_{\pi_0} := z^{1-h} \chi_{\pi_0}$.
- $\mathcal{B}_C \neq \emptyset \Rightarrow C$ is f-invariant $\Leftrightarrow C$ is χ -invariant.

Assume χ non-dicritical, $(\widehat{\chi}_{\pi_0})$ is tangent to E_{π_0} .

A characteristic direction v is called non-degenerate if the eigenvalues of the linear part of $\overline{\chi}_{\pi_0}$ transverse to E_{π_0} is $\neq 0$.

Theorem (Bendixson, Seidenberg)

There exists a sequence $\pi\colon X_{\pi}\to (\mathbb{C}^2,0)$ of blow-ups of singular points such that the saturated lift $\widehat{\chi}_{\pi}$ has only elementary singularities (the linear part is non-nilpotent).

Theorem (Bendixson, Seidenberg)

There exists a sequence $\pi\colon X_\pi\to(\mathbb{C}^2,0)$ of blow-ups of singular points such that the saturated lift $\widehat{\chi}_\pi$ has only elementary singularities (the linear part is non-nilpotent).

HAKIM: $\forall v$ non-degenerate ($\Rightarrow \widehat{\chi}_{\pi_0}$ elementary), $\exists v$ -parabolic curves.

Theorem (Bendixson, Seidenberg)

There exists a sequence $\pi\colon X_\pi\to(\mathbb{C}^2,0)$ of blow-ups of singular points such that the saturated lift $\widehat{\chi}_\pi$ has only elementary singularities (the linear part is non-nilpotent).

HAKIM : $\forall v$ non-degenerate ($\Rightarrow \widehat{\chi}_{\pi_0}$ elementary), $\exists v$ -parabolic curves.

Theorem (CAMACHO-SAD)

Any saturated vector field $\chi \in \mathcal{X}(\mathbb{C}^2, 0)$ admits a separatrix.

Idea: there exist non-degenerate characteristic directions after blow-up.

Theorem (Bendixson, Seidenberg)

There exists a sequence $\pi\colon X_\pi\to(\mathbb{C}^2,0)$ of blow-ups of singular points such that the saturated lift $\widehat{\chi}_\pi$ has only elementary singularities (the linear part is non-nilpotent).

HAKIM: $\forall v$ non-degenerate ($\Rightarrow \widehat{\chi}_{\pi_0}$ elementary), $\exists v$ -parabolic curves.

Theorem (CAMACHO-SAD)

Any saturated vector field $\chi \in \mathcal{X}(\mathbb{C}^2, 0)$ admits a separatrix.

Idea: there exist non-degenerate characteristic directions after blow-up.

ABATE: any isolated fixed point Tld germ admits a parabolic curve.

Parabolic curves are understood in 2D: LAPAN, LOPEZHERNANZ, MOLINO, RAISSY, RIBON, ROSAS, SANZSANCHEZ, VIVAS.

Matteo Ruggiero

What happens in higher dimensions

Positive news:

- HAKIM: Non-degenerate characteristic directions always have parabolic curves along possibly transcendental separatrices.
- LOPEZHERNANZ-RIBON-SANZSANCHEZ-VIVAS: separatrices C always have parabolic manifolds. Ingredients: local uniformization of (χ,C) , Ramis-Sibuya normal forms.

What happens in higher dimensions

Positive news:

- HAKIM: Non-degenerate characteristic directions always have parabolic curves along possibly transcendental separatrices.
- LOPEZHERNANZ-RIBON-SANZSANCHEZ-VIVAS: separatrices C always have parabolic manifolds. Ingredients: local uniformization of (χ,C) , Ramis-Sibuya normal forms.

New phenomena:

- McQuillan-Panazzolo: reduction of singularities in dimension 3; SanchoDeSalas-SanzSanchez: need to allow mild singularities for X_{π} .
- Separatrices might not exist GómezMont-Luengo . ABATE-Tovena : examples without C-parabolic manifolds (but they have v-parabolic curves).

What happens in higher dimensions

Positive news:

- HAKIM: Non-degenerate characteristic directions always have parabolic curves along possibly transcendental separatrices.
- LOPEZHERNANZ-RIBON-SANZSANCHEZ-VIVAS: separatrices C always have parabolic manifolds. Ingredients: local uniformization of (χ,C) , Ramis-Sibuya normal forms.

New phenomena:

- McQuillan-Panazzolo: reduction of singularities in dimension 3; SanchoDeSalas-SanzSanchez: need to allow mild singularities for X_{π} .
- Separatrices might not exist GÓMEZMONT-LUENGO . ABATE-TOVENA: examples without C-parabolic manifolds (but they have v-parabolic curves).

Theorem (Mongodi-R.)

There exists examples in \mathbb{C}^3 with no non-degenerate characteristic directions for any modifications.

Matteo Ruggiero Dynamical singularities 16 / 4

Plan

- Introduction
- Germs tangent to the identity
- Superattracting germs
- Waluation spaces
- 4 Valuation dynamics
- Dynamical symmetries

Let $f: (\mathbb{C}^2, 0)$ be superattracting. Example: $f(x, y) = (y + x^3, x^2y)$. Rough dynamics: orbits converge to 0 super-exponentially fast.

Let $f: (\mathbb{C}^2, 0)$ be superattracting. Example: $f(x, y) = (y + x^3, x^2y)$. Rough dynamics: orbits converge to 0 super-exponentially fast.

Remark: Cannot get explicit normal forms up to conjugacy, due to the complexity of $\mathcal{C}(f^\infty)$.

We want to control the speed of convergence:

Let $f: (\mathbb{C}^2, 0)$ be superattracting. Example: $f(x, y) = (y + x^3, x^2y)$. Rough dynamics: orbits converge to 0 super-exponentially fast.

Remark: Cannot get explicit normal forms up to conjugacy, due to the complexity of $\mathcal{C}(f^\infty)$.

We want to control the speed of convergence:

Let $f: (\mathbb{C}^2, 0)$ be superattracting. Example: $f(x, y) = (y + x^3, x^2y)$. Rough dynamics: orbits converge to 0 super-exponentially fast.

Remark: Cannot get explicit normal forms up to conjugacy, due to the complexity of $\mathcal{C}(f^\infty)$.

We want to control the speed of convergence:

• Sequence of $c_n = c(f^n)$ of attraction rates, where

$$c(f) := \operatorname{ord}_0(f^*\mathfrak{m}) = \min\{\operatorname{ord}_0(x \circ f), \operatorname{ord}_0(y \circ f)\}.$$

Let $f: (\mathbb{C}^2, 0)$ be superattracting. Example: $f(x, y) = (y + x^3, x^2y)$. Rough dynamics: orbits converge to 0 super-exponentially fast.

Remark: Cannot get explicit normal forms up to conjugacy, due to the complexity of $\mathcal{C}(f^\infty)$.

We want to control the speed of convergence:

• Sequence of $c_n = c(f^n)$ of attraction rates, where

$$c(f) := \operatorname{ord}_0(f^*\mathfrak{m}) = \min\{\operatorname{ord}_0(x \circ f), \operatorname{ord}_0(y \circ f)\}.$$

• Its growth $c_{\infty}(f) := \lim_{n} \sqrt[n]{c(f^n)}$: the (first) dynamical degree.

 $f \colon X \to Y$ a map. We look for modifications π, ϖ that simplify the expression of f (around critical points).

 $f\colon X\to Y$ a map. We look for modifications π,ϖ that simplify the expression of f (around critical points).

Matteo Ruggiero

 $f \colon X \to Y$ a map. We look for modifications π, ϖ that simplify the expression of f (around critical points).

 $f \colon X \to Y$ a map. We look for modifications π, ϖ that simplify the expression of f (around critical points).

Local monomialization

- Algebraic maps **Cutkosky**.
- Analytic maps **Cutkosky**.
- Quasianalytic maps **Belotto-Bierstone**.

Global results: 2D Akbulut-King, 3D→2D Cutkosky.

Matteo Ruggiero Dynamical singularities 19 / 43

When consider dynamical systems, we have X=Y, and we require $\pi=\varpi$ in order to have a dynamical system f_π acting on X_π .

• We create indeterminacy points (set $\operatorname{Ind}(f_{\pi})$).

When consider dynamical systems, we have X=Y, and we require $\pi=\varpi$ in order to have a dynamical system f_π acting on X_π .

• We create indeterminacy points (set $\operatorname{Ind}(f_{\pi})$).

When consider dynamical systems, we have X=Y, and we require $\pi=\varpi$ in order to have a dynamical system f_π acting on X_π .

- We create indeterminacy points (set $\operatorname{Ind}(f_{\pi})$).
- Indeterminacies cannot be eliminated dynamically.

When consider dynamical systems, we have X=Y, and we require $\pi=\varpi$ in order to have a dynamical system f_π acting on X_π .

- We create indeterminacy points (set $\operatorname{Ind}(f_{\pi})$).
- Indeterminacies cannot be eliminated dynamically.

When consider dynamical systems, we have X=Y, and we require $\pi=\varpi$ in order to have a dynamical system f_π acting on X_π .

- We create indeterminacy points (set $\operatorname{Ind}(f_{\pi})$).
- Indeterminacies cannot be eliminated dynamically.

Hope: We can avoid them with large iterates: algebraically stable models.

Motivations

- The sequence $(c_n)_n$ and c_∞ are local analogous of global concepts. They are invariants of conjugacy.
- Algebraic stability and related results give more insights on the subtle dynamical properties.

Motivations

- The sequence $(c_n)_n$ and c_∞ are local analogous of global concepts. They are invariants of conjugacy.
- Algebraic stability and related results give more insights on the subtle dynamical properties.

About global dynamical degrees

- Existence and first properties Russakovskii-Shiffman Dinh-Sibony , Truong , Dang ; Khovanskii-Teissier .
- They estimate entropy Gromov-Yomdin, Dinh-Sibony.
- Arithmetic properties BLANC, CANTAT, XIE.

Motivations

- The sequence $(c_n)_n$ and c_∞ are local analogous of global concepts. They are invariants of conjugacy.
- Algebraic stability and related results give more insights on the subtle dynamical properties.

About global dynamical degrees

- Existence and first properties Russakovskii-Shiffman Dinh-Sibony , Truong , Dang ; Khovanskii-Teissier .
- They estimate entropy GROMOV-YOMDIN, DINH-SIBONY.
- Arithmetic properties BLANC, CANTAT, XIE.

About algebraic stability

- Introduced by Fornaess-Sibony. Allows control to construct invariant objects.
- Existence results: Bedford, Cantat, Dang, Diller, Favre, Jonsson, Lin, Truong, Wulcan.

Matteo Ruggiero Dynamical singularities 21 /

(Divisorial) valuations encode exceptional primes in X_{π} for any modification $\pi\colon X_{\pi}\to (X,x_0)$, up to natural identifications.

Matteo Ruggiero

(Divisorial) valuations encode exceptional primes in X_{π} for any modification $\pi\colon X_{\pi}\to (X,x_0)$, up to natural identifications.

• Set of all valuations: Zariski-Riemann space $\mathcal{ZR}(X,x_0)$. Main tool in Zariski's approach to resolution of singularities.

(Divisorial) valuations encode exceptional primes in X_{π} for any modification $\pi\colon X_{\pi}\to (X,x_0)$, up to natural identifications.

- Set of all valuations: Zariski-Riemann space $\mathcal{ZR}(X,x_0)$. Main tool in Zariski's approach to resolution of singularities.
- Rank 1 semi-valuations: \mathcal{V}_X . Link with Berkovich spaces (Berkovich). Use in dynamics initiated by Favre-Jonsson.

(Divisorial) valuations encode exceptional primes in X_{π} for any modification $\pi\colon X_{\pi}\to (X,x_0)$, up to natural identifications.

- Set of all valuations: Zariski-Riemann space $\mathcal{ZR}(X,x_0)$. Main tool in Zariski's approach to resolution of singularities.
- Rank 1 semi-valuations: \mathcal{V}_X . Link with Berkovich spaces (Berkovich). Use in dynamics initiated by Favre-Jonsson.

Related objects and applications

Matteo Ruggiero

- Farey blowups Hubbard-Papadopol;
- Picard-Manin space Manin to study the Cremona group (Cantat, Blanc, Déserti, Lamy, etc.).
- *Hybrid spaces* Berkovich: used to study degenerations Boucksom-Jonsson, Dujardin-Favre;
- Applications to K-stability CHI LI, CHENYANG XU, BLUM.

4 D F 4 B F 4 E F 9) Q (*

Application of valuation spaces to study the dynamics of $f:(X,x_0)$:

Application of valuation spaces to study the dynamics of $f:(X,x_0)$:

 $m{\cdot}$ \mathcal{V}_X encodes exceptional primes, infinitely-near points, strict transforms of irreducible curves of any possible modification.

Application of valuation spaces to study the dynamics of $f:(X,x_0)$:

- $m{\cdot}$ \mathcal{V}_X encodes exceptional primes, infinitely-near points, strict transforms of irreducible curves of any possible modification.
- ullet f induces an action $f_ullet\colon \mathcal{V}_X \stackrel{\leftarrow}{\circlearrowleft}$ which encodes the maps $f_\pi: X_\pi \stackrel{\leftarrow}{\hookleftarrow} \iota$.

Application of valuation spaces to study the dynamics of $f:(X,x_0)$:

- $m{\cdot}$ \mathcal{V}_X encodes exceptional primes, infinitely-near points, strict transforms of irreducible curves of any possible modification.
- ullet f induces an action $f_ullet\colon \mathcal{V}_X \buildrel$ which encodes the maps $f_\pi: X_\pi \buildrel$
- Dynamical properties of f_{\bullet} translates to existence of special models X_{π} where we can control the dynamics of f_{π} .

Matteo Ruggiero

Application of valuation spaces to study the dynamics of $f:(X,x_0)$:

- $m{\cdot}$ \mathcal{V}_X encodes exceptional primes, infinitely-near points, strict transforms of irreducible curves of any possible modification.
- ullet f induces an action $f_ullet\colon \mathcal{V}_X \stackrel{ riangle}{\frown}$ which encodes the maps $f_\pi: X_\pi \stackrel{ riangle}{\frown}$.
- Dynamical properties of f_{\bullet} translates to existence of special models X_{π} where we can control the dynamics of f_{π} .

Global dynamics: Favre, Jonsson, Boucksom, Xie, Dang, Abboud. **Local dynamics**: Favre, Jonsson, R., Gignac.

Plan

- Introduction
- Germs tangent to the identity
- Superattracting germs
- Valuation spaces
- 4 Valuation dynamics
- Dynamical symmetries

Modifications and resolutions of singularities

 (X,x_0) normal surface singularity,

 $(\mathcal{O}_X,\mathfrak{m}_X)$ its associated local ring.

Definition

• A modification is a proper bimeromorphic map $\pi\colon X_\pi\to (X,x_0)$, which is an isomorphism outside of the exceptional divisor $E_\pi:=\pi^{-1}(x_0)$.

Modifications and resolutions of singularities

 (X,x_0) normal surface singularity,

 $(\mathcal{O}_X,\mathfrak{m}_X)$ its associated local ring.

Definition

- A modification is a proper bimeromorphic map $\pi\colon X_\pi\to (X,x_0)$, which is an isomorphism outside of the exceptional divisor $E_\pi:=\pi^{-1}(x_0)$.
- A modification $\pi\colon X_\pi\to (X,x_0)$ is
 - ▶ a resolution if X_{π} is non-singular;
 - a good resolution if moreover E_{π} is a SNC divisor:
 - ▶ a log-resolution of \mathfrak{m}_X the maximal ideal if $\pi^*\mathfrak{m}_X = \mathcal{O}_{X_\pi}(-\sum b_E E)$ is locally principal.

Modifications and resolutions of singularities

 (X,x_0) normal surface singularity,

 $(\mathcal{O}_X,\mathfrak{m}_X)$ its associated local ring.

Definition

- A modification is a proper bimeromorphic map $\pi\colon X_\pi\to (X,x_0)$, which is an isomorphism outside of the exceptional divisor $E_\pi:=\pi^{-1}(x_0)$.
- A modification $\pi\colon X_\pi\to (X,x_0)$ is
 - ▶ a resolution if X_{π} is non-singular;
 - a good resolution if moreover E_{π} is a SNC divisor;
 - ▶ a log-resolution of \mathfrak{m}_X the maximal ideal if $\pi^*\mathfrak{m}_X = \mathcal{O}_{X_\pi}\big(-\sum b_E E\big)$ is locally principal.
- Another modification π' dominates π if $\pi^{-1} \circ \pi' \colon X_{\pi'} \to X_{\pi}$ is regular.

Definition

A (normalized rank-1 semi-)valuation on (X, x_0) is a map $\nu \colon \widehat{\mathcal{O}}_X \to [0, +\infty]$ such that:

- $\nu(\phi\psi) = \nu(\phi) + \nu(\psi)$,
- $\nu(\phi + \psi) \ge \min{\{\nu(\phi), \nu(\psi)\}}$,
- $\nu(0) = +\infty$, $\nu(\mathbb{C}^*) = 0$, $\nu(\mathfrak{m}_X) = 1$.

The set of all valuations is denoted by \mathcal{V}_X .

Definition

A (normalized rank-1 semi-)valuation on (X, x_0) is a map $\nu \colon \widehat{\mathcal{O}}_X \to [0, +\infty]$ such that:

- $\nu(\phi\psi) = \nu(\phi) + \nu(\psi)$,
- $\nu(\phi + \psi) \ge \min{\{\nu(\phi), \nu(\psi)\}}$,
- $\nu(0) = +\infty$, $\nu(\mathbb{C}^*) = 0$, $\nu(\mathfrak{m}_X) = 1$.

The set of all valuations is denoted by \mathcal{V}_X .

• divisorial valuation: $\nu_E(\phi) = \frac{1}{b_E} \mathrm{ord}_E(\phi \circ \pi)$, $\pi \colon X_\pi \to (X, x_0)$ modification, $E \in \Gamma_\pi^*$ exceptional prime. Notice that $\nu_E = \nu_{E'}$ if E' is the strict transform of E by a modification.

Definition

A (normalized rank-1 semi-)valuation on (X, x_0) is a map $\nu \colon \widehat{\mathcal{O}}_X \to [0, +\infty]$ such that:

- $\nu(\phi\psi) = \nu(\phi) + \nu(\psi)$,
- $\nu(\phi + \psi) \ge \min{\{\nu(\phi), \nu(\psi)\}}$,
- $\nu(0) = +\infty$, $\nu(\mathbb{C}^*) = 0$, $\nu(\mathfrak{m}_X) = 1$.

The set of all valuations is denoted by \mathcal{V}_X .

- divisorial valuation: $\nu_E(\phi) = \frac{1}{b_E} \mathrm{ord}_E(\phi \circ \pi)$, $\pi \colon X_\pi \to (X, x_0)$ modification, $E \in \Gamma_\pi^*$ exceptional prime. Notice that $\nu_E = \nu_{E'}$ if E' is the strict transform of E by a modification.
- curve (semi-)valuation: $\nu_C(\phi) = \frac{1}{m(C)}C \cdot (\phi = 0)$, C irreducible curve.

◆ロ > ◆部 > ◆き > ◆き > き の Q (*)

Definition

A (normalized rank-1 semi-)valuation on (X, x_0) is a map $\nu \colon \widehat{\mathcal{O}}_X \to [0, +\infty]$ such that:

- $\nu(\phi\psi) = \nu(\phi) + \nu(\psi)$,
- $\nu(\phi + \psi) \ge \min\{\nu(\phi), \nu(\psi)\},$
- $\nu(0) = +\infty$, $\nu(\mathbb{C}^*) = 0$, $\nu(\mathfrak{m}_X) = 1$.

The set of all valuations is denoted by \mathcal{V}_X .

- divisorial valuation: $\nu_E(\phi) = \frac{1}{b_E} \mathrm{ord}_E(\phi \circ \pi)$, $\pi \colon X_\pi \to (X, x_0)$ modification, $E \in \Gamma_\pi^*$ exceptional prime. Notice that $\nu_E = \nu_{E'}$ if E' is the strict transform of E by a modification.
- curve (semi-)valuation: $\nu_C(\phi) = \frac{1}{m(C)}C \cdot (\phi = 0)$, C irreducible curve.

Other two types: irrational and infinitely singular.

These are points of type II, I, III, IV in the sense of Berkovich.

Matteo Ruggiero Dynamical singularities 26 /

Let $\pi\colon X_\pi \to (X,x_0)$ be a log-resolution of \mathfrak{m}_X . The vector space of real exceptional divisors $\mathcal{E}(\pi)_\mathbb{R}$ is endowed with a negative definite intersection form (GRAUERT). In particular, to any exceptional prime $E\in\mathcal{E}(\pi)_\mathbb{R}$ is associated its dual divisor \check{E} .

Let $\pi\colon X_\pi\to (X,x_0)$ be a log-resolution of \mathfrak{m}_X . The vector space of real exceptional divisors $\mathcal{E}(\pi)_\mathbb{R}$ is endowed with a negative definite intersection form (Grauert). In particular, to any exceptional prime $E\in\mathcal{E}(\pi)_\mathbb{R}$ is associated its dual divisor \check{E} . We realize the dual graph Γ_π of π inside $\mathcal{E}(\pi)_\mathbb{R}$, as follows:

follows:

Let $\pi\colon X_\pi \to (X,x_0)$ be a log-resolution of \mathfrak{m}_X . The vector space of real exceptional divisors $\mathcal{E}(\pi)_\mathbb{R}$ is endowed with a negative definite intersection form (GRAUERT). In particular, to any exceptional prime $E\in \mathcal{E}(\pi)_\mathbb{R}$ is associated its dual divisor \check{E} . We realize the dual graph Γ_π of π inside $\mathcal{E}(\pi)_\mathbb{R}$, as

ullet vertices: to each exceptional primes E of π , we associate $Z_\pi(\nu_E):=rac{\check E}{b_F}\in\mathcal E(\pi)_\mathbb R.$

Let $\pi\colon X_\pi \to (X,x_0)$ be a log-resolution of \mathfrak{m}_X . The vector space of real exceptional divisors $\mathcal{E}(\pi)_\mathbb{R}$ is endowed with a negative definite intersection form (GRAUERT). In particular, to any exceptional prime $E\in\mathcal{E}(\pi)_\mathbb{R}$ is associated its dual divisor \check{E} .

We realize the dual graph Γ_{π} of π inside $\mathcal{E}(\pi)_{\mathbb{R}}$, as follows:

- ullet vertices: to each exceptional primes E of π , we associate $Z_\pi(\nu_E):=rac{\check E}{b_E}\in\mathcal E(\pi)_\mathbb R.$
- ullet edges: to any intersection point in $E\cap F$ we get the segment $\left[\frac{\check{E}}{b_E},\frac{\check{F}}{b_F}\right]$.

Matteo Ruggiero

Dynamical singularities

Let $\pi\colon X_\pi \to (X,x_0)$ be a log-resolution of \mathfrak{m}_X . The vector space of real exceptional divisors $\mathcal{E}(\pi)_\mathbb{R}$ is endowed with a negative definite intersection form (Grauert). In particular, to any exceptional prime $E\in \mathcal{E}(\pi)_\mathbb{R}$ is associated its dual divisor \check{E} . We realize the dual graph Γ_π of π inside $\mathcal{E}(\pi)_\mathbb{R}$, as follows:

- vertices: to each exceptional primes E of π , we associate $Z_{\pi}(\nu_E):=\frac{\check{E}}{b_E}\in\mathcal{E}(\pi)_{\mathbb{R}}.$
- edges: to any intersection point in $E\cap F$ we get the segment $\left[\frac{\check{E}}{b_E},\frac{\check{F}}{b_F}\right]$.

We obtain a graph $\Gamma_{\pi} \hookrightarrow \mathcal{E}(\pi)_{\mathbb{R}}$.

Matteo Ruggiero

Dynamical singularities

Matteo Ruggiero Dynamical

• To any $\nu \in \mathcal{V}_X$ is associated $Z(\nu)$ the b-divisor (in the sense of Shokurov): if $\pi' = \pi \circ \eta$, then $\eta_* Z_{\pi'}(\nu) = Z_{\pi}(\nu)$.

$$X_{\pi'} \supset E' \qquad Z_{\pi'}(\nu_{E'}) = \eta^* Z_{\pi}(\nu_{E}) \in \Gamma_{\pi'} \longrightarrow \mathcal{E}(\pi')_{\mathbb{R}}$$

$$\downarrow^{\eta_*} \qquad \qquad \downarrow^{\eta_*}$$

$$Z_{\pi}(\nu_{E}) \qquad \in \Gamma_{\pi} \longrightarrow \mathcal{E}(\pi)_{\mathbb{R}}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi} \qquad \qquad \downarrow^{\pi} \qquad \downarrow^{$$

- To any $\nu \in \mathcal{V}_X$ is associated $Z(\nu)$ the b-divisor (in the sense of Shokurov): if $\pi' = \pi \circ \eta$, then $\eta_* Z_{\pi'}(\nu) = Z_{\pi}(\nu)$.
- $\bullet \ \ \mathsf{We have} \ \mathcal{V}_X \simeq \varprojlim_\pi \Gamma_\pi \supset \varinjlim_\pi \Gamma_\pi \simeq \mathcal{V}_X^\mathsf{qm}.$

• The dual graph of a good resolution π reads into \mathcal{V}_X .

- The dual graph of a good resolution π reads into \mathcal{V}_X .
- The vertices correspond to the set of divisorial valuations $S_{\pi}^* := \{ \nu_E \mid E \subseteq \pi^{-1}(x_0) \}.$

- The dual graph of a good resolution π reads into \mathcal{V}_X .
- The vertices correspond to the set of divisorial valuations $\mathcal{S}_{\pi}^* := \{ \nu_E \mid E \subseteq \pi^{-1}(x_0) \}.$
- There is a 1-to-1 correspondence betweeen closed point $p \in \pi^{-1}(x_0)$ and connected components $U_{\pi}(p)$ of $\mathcal{V}_X \setminus \mathcal{S}_{\pi}^*$.

- The dual graph of a good resolution π reads into \mathcal{V}_X .
- The vertices correspond to the set of divisorial valuations $\mathcal{S}_{\pi}^* := \{ \nu_E \mid E \subseteq \pi^{-1}(x_0) \}.$
- There is a 1-to-1 correspondence betweeen closed point $p \in \pi^{-1}(x_0)$ and connected components $U_{\pi}(p)$ of $\mathcal{V}_X \setminus \mathcal{S}_{\pi}^*$.
- Topology: the weakest for which $\nu \mapsto \nu(\phi)$ is continuous $\forall \phi \in \widehat{\mathcal{O}}_X$. Equivalently, generated by connected components (in the sense of graphs) of complements of finite sets.

Intersection theory of valuations

The negative-definite intersection form on $\mathcal{E}(\pi)$ induces a (extended) scalar product on \mathcal{V}_X :

$$\langle \boldsymbol{\nu}, \boldsymbol{\mu} \rangle := -Z(\boldsymbol{\nu}) \cdot Z(\boldsymbol{\mu}) := \sup_{\boldsymbol{\pi}} -Z_{\boldsymbol{\pi}}(\boldsymbol{\nu}) \cdot Z_{\boldsymbol{\pi}}(\boldsymbol{\mu}) \in (0, +\infty].$$

Intersection theory of valuations

The negative-definite intersection form on $\mathcal{E}(\pi)$ induces a (extended) scalar product on \mathcal{V}_X :

$$\langle \boldsymbol{\nu}, \boldsymbol{\mu} \rangle := -Z(\boldsymbol{\nu}) \cdot Z(\boldsymbol{\mu}) := \sup_{\pi} -Z_{\pi}(\boldsymbol{\nu}) \cdot Z_{\pi}(\boldsymbol{\mu}) \in (0, +\infty].$$

Theorem (GIGNAC-R., Key technical result)

Let (X,x_0) be a normal surface singularity. Let $\nu,\mu_1,\mu_2\in\mathcal{V}_X$. Then

$$\langle \nu, \mu_1 \rangle \langle \nu, \mu_2 \rangle \le \langle \nu, \nu \rangle \langle \mu_1, \mu_2 \rangle$$
, (\bigstar)

with equality if and only if ν disconnects μ_1 and μ_2 in \mathcal{V}_X .

Independently by GarcíaBarroso-GonzálezPérez-PopescuPampu when \mathcal{V}_X is contractible.

◆ロ > ◆ 個 > ◆ 差 > ◆ 差 > り へ ②

Matteo Ruggiero Dynamical singularities 30 /

Application to intersection of branches

Definition

Let $\lambda \in \mathcal{V}_X$ be any valuation. For any $\nu_1, \nu_2 \in \mathcal{V}_X$, we set

$$u_{\lambda}(\nu_1, \nu_2) := \begin{cases} \frac{\langle \lambda, \nu_1 \rangle \cdot \langle \lambda, \nu_2 \rangle}{\langle \nu_1, \nu_2 \rangle} & \text{if } \nu_1 \neq \nu_2, \\ 0 & \text{if } \nu_1 = \nu_2. \end{cases}$$

PŁOSKI If $X = (\mathbb{C}^2, 0)$ then u_{λ} is an ultrametric: if $\lambda = \operatorname{ord}_0$, $\forall A, B, C$ curve branches, we have up to permutation

$$\frac{A \cdot B}{m(A)m(B)} = \frac{A \cdot C}{m(A)m(C)} \leq \frac{B \cdot C}{m(B)m(C)}.$$

Matteo Ruggiero

ynamical singularities

Application to intersection of branches

Definition

Let $\lambda \in \mathcal{V}_X$ be any valuation. For any $\nu_1, \nu_2 \in \mathcal{V}_X$, we set

$$u_{\lambda}(\nu_1,\nu_2) := \begin{cases} \frac{\langle \lambda,\nu_1 \rangle \cdot \langle \lambda,\nu_2 \rangle}{\langle \nu_1,\nu_2 \rangle} & \text{if } \nu_1 \neq \nu_2, \\ 0 & \text{if } \nu_1 = \nu_2. \end{cases}$$

PŁOSKI If $X=(\mathbb{C}^2,0)$ then u_λ is an ultrametric:

if $\lambda = \operatorname{ord}_0$, $\forall A, B, C$ curve branches, we have up to permutation

$$\frac{A \cdot B}{m(A)m(B)} = \frac{A \cdot C}{m(A)m(C)} \le \frac{B \cdot C}{m(B)m(C)}.$$

Theorem (GarcíaBarroso-GonzálezPérez-PopescuPampu-R.)

The function u_{λ} is an (extended) ultrametric for a/any λ if and only if \mathcal{V}_X is contractible.

Main tool (★).

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣魚(

Plan

- Introduction
- Germs tangent to the identity
- 2 Superattracting germs
- Waluation spaces
- 4 Valuation dynamics
- 5 Dynamical symmetries

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$f^* \colon \widehat{\mathcal{O}}_Y \to \widehat{\mathcal{O}}_X$$

$$\phi \mapsto \phi \circ f$$

$$\downarrow \text{duality,}$$

$$\uparrow \text{normalization}$$

$$\begin{array}{c} f_{\bullet} \colon\thinspace \mathcal{V}_{X} \to \underbrace{\mathcal{V}_{Y}}_{\nu \circ f^{*}} \\ \nu \ \mapsto \frac{\nu \circ f^{*}}{\nu (f^{*}\mathfrak{m}_{Y})} \end{array}$$

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$\begin{array}{ccc} f_{\bullet} \colon\thinspace \mathcal{V}_{X} \to & \mathcal{V}_{Y} \\ \nu & \mapsto \frac{\nu \circ f^{*}}{\nu (f^{*}\mathfrak{m}_{Y})} \end{array}$$

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$f^* \colon \widehat{\mathcal{O}}_Y \to \widehat{\mathcal{O}}_X$$

$$\phi \mapsto \phi \circ f$$

$$\downarrow \text{ duality,}$$

$$\uparrow \text{ normalization}$$

$$f_{\bullet} \colon \mathcal{V}_X \to \mathcal{V}_Y$$

$$\nu \mapsto \frac{\nu \circ f^*}{\nu (f^* m_Y)}$$

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$f^* \colon \widehat{\mathcal{O}}_Y o \widehat{\mathcal{O}}_X$$
 $\phi \mapsto \phi \circ f$
 $\phi \circ f \circ f$
 $\phi \circ f \circ f$
 $\phi \circ f \circ f \circ f$

Matteo Ruggiero Dynamical singularities

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$f^* \colon \widehat{\mathcal{O}}_Y o \widehat{\mathcal{O}}_X$$
 $\phi \mapsto \phi \circ f$
 $\phi \circ f \circ f$
 $\phi \circ f \circ f$
 $\phi \circ f \circ f \circ f$

Matteo Ruggiero Dynamical singularities

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$f^* \colon \widehat{\mathcal{O}}_Y o \widehat{\mathcal{O}}_X$$
 $\phi \mapsto \phi \circ f$
 $\phi \mapsto \phi \circ f$

Properness criterium:

$$\hat{f}(p) = q \Leftrightarrow f_{\bullet}U_{\pi}(p) \subseteq U_{\varpi}(q).$$

Assume for simplicity that $f:(X,x_0)\to (Y,y_0)$ is finite.

$$f^* \colon \widehat{\mathcal{O}}_Y o \widehat{\mathcal{O}}_X$$
 $\phi \mapsto \phi \circ f$
 quality,
 normalization
 $f_{ullet} \colon \mathcal{V}_X o \mathcal{V}_Y$
 $\psi \mapsto \psi \circ f^*$

Properness criterium:

$$\hat{f}(p) = q \Leftrightarrow f_{\bullet}U_{\pi}(p) \subseteq U_{\varpi}(q).$$

Eigenvaluations and rigidification

Theorem (Favre-Jonsson)

For any $f: (\mathbb{C}^2, 0)$ $f: (\mathbb{C}^2, 0)$ there exists an eigenvaluation: $\nu_* = f_{\bullet}\nu_*$ with an open $U_{\pi}(p)$ in its basin of attraction.

Eigenvaluations and rigidification

Theorem (FAVRE-JONSSON)

For any $f: (\mathbb{C}^2, 0)$ \circlearrowleft there exists an eigenvaluation: $\nu_* = f_{\bullet}\nu_*$ with an open $U_{\pi}(p)$ in its basin of attraction.

Consequences

- There exists $\pi\colon X_\pi\to(\mathbb{C}^2,0),\ p\in\pi^{-1}(0)$, such that $f_\pi\colon (X_\pi,p)$ is rigid : $\mathcal{C}(f^\infty)$ is SNC and f-invariant.
- The first dynamical degree $c_{\infty}(f)$ is a quadratic integer.
- Existence of Green functions: u psh, $u \not\equiv -\infty$, and $g \circ f = c_{\infty}g$.

Eigenvaluations and rigidification

Theorem (FAVRE-JONSSON)

For any $f: (\mathbb{C}^2, 0)$ there exists an eigenvaluation: $\nu_* = f_{\bullet}\nu_*$ with an open $U_{\pi}(p)$ in its basin of attraction.

Consequences

- There exists $\pi\colon X_\pi\to(\mathbb{C}^2,0)$, $p\in\pi^{-1}(0)$, such that $f_\pi\colon (X_\pi,p)$ is rigid : $\mathcal{C}(f^\infty)$ is SNC and f-invariant.
- The first dynamical degree $c_{\infty}(f)$ is a quadratic integer.
- Existence of Green functions: u psh, $u \not\equiv -\infty$, and $g \circ f = c_{\infty}g$.

Related works

FAVRE-JONSSON: polynomial endomorphisms of \mathbb{C}^2 .

GIGNAC-R.: local version on surface singularities.

ABBOUD: global version on affine surfaces.

Bell-Diller-Jonsson +Krieger: examples of $\lambda_1(f)$ transcendental.

DANG-FAVRE: higher dimensional results.

Matteo Ruggiero Dynamical singularities 34 / 43

Theorem (GIGNAC-R.)

For any superattracting $f:(X,x_0)$ at a normal surface singularity, there exists an invariant subset $S\subset \mathcal{V}_X$ (either a point, a segment, or a circle) that attracts the orbit $(f_{\bullet}^n\nu)$ of any quasimonomial valuation $\nu\in\mathcal{V}_X^{qm}$.

Theorem (GIGNAC-R.)

For any superattracting $f\colon (X,x_0)$ \circlearrowleft at a normal surface singularity, there exists an invariant subset $S\subset \mathcal{V}_X$ (either a point, a segment, or a circle) that attracts the orbit $(f_{\bullet}^{\mathbf{n}}\nu)$ of any quasimonomial valuation $\nu\in\mathcal{V}_X^{\mathbf{qm}}$.

Consequences

- There exists $\pi \colon X_{\pi} \to (\mathbb{C}^2, 0)$ such that $f_{\pi} \colon (X_{\pi}, p) \circlearrowleft$ is algebraically stable : $\forall E \subseteq \pi^{-1}(x_0), \forall n \gg 0, f_{\pi}^n(E) \notin \operatorname{Ind}(f_{\pi}).$
- The sequence $c(f^n)$ eventually satisfies a \mathbb{Z} -linear recursion relation.

Theorem (GIGNAC-R.)

For any superattracting $f\colon (X,x_0)$ \circlearrowleft at a normal surface singularity, there exists an invariant subset $S\subset \mathcal{V}_X$ (either a point, a segment, or a circle) that attracts the orbit $(f_{\bullet}^{\mathbf{n}}\nu)$ of any quasimonomial valuation $\nu\in\mathcal{V}_X^{\mathbf{qm}}$.

Consequences

- There exists $\pi\colon X_{\pi}\to (\mathbb{C}^2,0)$ such that $f_{\pi}\colon (X_{\pi},p)$ is algebraically stable : $\forall\ E\subseteq \pi^{-1}(x_0), \forall n\gg 0, f_{\pi}^n(E)\not\in \mathrm{Ind}(f_{\pi}).$
- \bullet The sequence $c(f^n)$ eventually satisfies a $\mathbb{Z}\text{-linear}$ recursion relation.

Recent applications: description of "super-stable manifold" for skew-products, in relation with DMM problem DURJARDIN-FAVRE-R.

Theorem (GIGNAC-R.)

For any superattracting $f\colon (X,x_0)$ \circlearrowleft at a normal surface singularity, there exists an invariant subset $S\subset \mathcal{V}_X$ (either a point, a segment, or a circle) that attracts the orbit $(f_{\bullet}^{\mathbf{n}}\nu)$ of any quasimonomial valuation $\nu\in\mathcal{V}_X^{\mathbf{qm}}$.

Consequences

- There exists $\pi \colon X_{\pi} \to (\mathbb{C}^2, 0)$ such that $f_{\pi} \colon (X_{\pi}, p) \circlearrowleft$ is algebraically stable : $\forall E \subseteq \pi^{-1}(x_0), \forall n \gg 0, f_{\pi}^n(E) \notin \operatorname{Ind}(f_{\pi}).$
- \bullet The sequence $c(f^n)$ eventually satisfies a $\mathbb{Z}\text{-linear}$ recursion relation.

Recent applications: description of "super-stable manifold" for skew-products, in relation with DMM problem DURJARDIN-FAVRE-R.

Notable exception

S is a circle, $f_{ullet}|_{S}$ is an irrational rotation $\Rightarrow (X,x_{0})$ is a cusp singularity, f is a finite germ.

Matteo Ruggiero Dynamical singularities 35 / 43

Angular distance

Definition (GIGNAC-R.)

The angular distance on \mathcal{V}_X is given by

$$\rho_X(\nu,\mu) := \log \frac{\langle \nu, \nu \rangle \langle \mu, \mu \rangle}{\langle \nu, \mu \rangle^2}.$$

This is an extended distance, that takes finite values on $\mathcal{V}_X^{\mathsf{qm}}$.

Angular distance

Definition (GIGNAC-R.)

The angular distance on \mathcal{V}_X is given by

$$\rho_X(\nu,\mu) := \log \frac{\left< \nu, \nu \right> \left< \mu, \mu \right>}{\left< \nu, \mu \right>^2}.$$

This is an extended distance, that takes finite values on $\mathcal{V}_X^{\mathsf{qm}}$. It plays the role of the Poincaré distance on valuation spaces.

Theorem (GIGNAC-R.)

For any dominant map $f:(X,x_0)\to (Y,y_0)$, we have

$$\rho_Y(f_{\bullet}\nu, f_{\bullet}\mu) \le \rho_X(\nu, \mu).$$

Using (\bigstar) : characterize the case of equality.

Non-finite vs finite

Dichotomy:

• Suppose f is non-finite. Then f_{\bullet} is a weak contraction:

$$\forall \nu \neq \mu \in \mathcal{V}_X^{\mathsf{qm}}, \quad \rho_X(f_{\bullet}\nu, f_{\bullet}\mu) < \rho_X(\nu, \mu).$$

In this case: construct an eigenvaluation ν_{\star} by fixed point theorems.

Matteo Ruggiero Dynamical singularities 37

Non-finite vs finite

Dichotomy:

• Suppose f is non-finite. Then f_{\bullet} is a weak contraction:

$$\forall \nu \neq \mu \in \mathcal{V}_X^{\mathsf{qm}}, \quad \rho_X(f_{\bullet}\nu, f_{\bullet}\mu) < \rho_X(\nu, \mu).$$

In this case: construct an eigenvaluation ν_{\star} by fixed point theorems.

• Suppose f is finite. WAHL: (X, x_0) is log-canonical: $(X, x_0) = (Y, y_0)/_G$, G finite group, (Y, y_0) is:

regular

 $(\mathbb{C}^2,0)$

cusp

simple elliptic

We conclude case by case.

Matteo Ruggiero

Ovnamical singularities

Plan

- Introduction
- Germs tangent to the identity
- 2 Superattracting germs
- Waluation spaces
- 4 Valuation dynamics
- Dynamical symmetries

 (X, x_0) singularity.

 (X,x_0) singularity. $\pi\colon X_\pi\to (X,x_0) \text{ resolution}.$

 (X, x_0) singularity.

$$\begin{array}{l} \pi\colon X_{\pi}\to (X,x_0) \text{ resolution.} \\ \operatorname{pr}\colon (X,x_0) \hookrightarrow (\mathbb{C}^N,0) \twoheadrightarrow (\mathbb{C}^2,0) \end{array}$$

generic projection.

 (X, x_0) singularity.

 $\pi: X_{\pi} \to (X, x_0)$ resolution.

pr:
$$(X, x_0) \hookrightarrow (\mathbb{C}^N, 0) \twoheadrightarrow (\mathbb{C}^2, 0)$$
 generic projection.

$$\sigma(\mathbb{C}^2,0) \to (X_{\pi},p)$$
 with $p \in \pi^{-1}(x_0)$.

$$f = \pi \circ \sigma \circ \operatorname{pr}(X, x_0) \circlearrowleft .$$

 (X, x_0) singularity.

 $\pi\colon X_\pi\to (X,x_0)$ resolution.

 $\operatorname{pr}: (X, x_0) \hookrightarrow (\mathbb{C}^N, 0) \twoheadrightarrow (\mathbb{C}^2, 0)$

generic projection.

 $\sigma(\mathbb{C}^2,0) \to (X_{\pi},p) \text{ with } p \in \pi^{-1}(x_0).$ $f = \pi \circ \sigma \circ \operatorname{pr}(X,x_0) - 1.$

 \bullet f contracts curves to 0.

• Finite endomorphisms 2D WAHL, FAVRE, GIGNAC-R.

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 夕 Q G

 (X,x_0) singularity.

 $\pi\colon X_\pi\to (X,x_0)$ resolution.

pr: $(X, x_0) \hookrightarrow (\mathbb{C}^N, 0) \twoheadrightarrow (\mathbb{C}^2, 0)$ generic projection.

 $\sigma(\mathbb{C}^2,0) \to (X_{\pi},p) \text{ with } p \in \pi^{-1}(x_0).$ $f = \pi \circ \sigma \circ \operatorname{pr}(X,x_0) - .$

• f contracts curves to 0.

Finite endomorphisms 2D Wahl, Favre, Gignac-R.
 ≥3D Boucksom-De Fernex-Favre, Broustet-Höring, Zhang.

 (X, x_0) singularity.

 $\pi\colon X_\pi\to (X,x_0)$ resolution.

pr: $(X, x_0) \hookrightarrow (\mathbb{C}^N, 0) \twoheadrightarrow (\mathbb{C}^2, 0)$ generic projection.

 $\sigma(\mathbb{C}^2,0) \to (X_{\pi},p)$ with $p \in \pi^{-1}(x_0)$.

$$f = \pi \circ \sigma \circ \operatorname{pr}(X, x_0) \circlearrowleft$$
.

- \bullet f contracts curves to 0.
- f has large topological degree.

- Finite endomorphisms 2D Wahl, Favre, Gignac-R.
 ≥3D Boucksom-De Fernex-Favre, Broustet-Höring, Zhang.
- Topological degree 1 FANTINI-FAVRE-R..

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X,x_0) admits a non-invertible selfmap of topological degree $1 \iff (X,x_0)$ is sandwiched.

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X, x_0) admits a non-invertible selfmap of topological degree $1 \iff (X, x_0)$ is sandwiched.

Sandwiched singularities **SPIVAKOVSKY**

• $\varpi: Y' \to Y = (\mathbb{C}^2, 0)$ modification;

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X, x_0) admits a non-invertible selfmap of topological degree $1 \iff (X, x_0)$ is sandwiched.

Sandwiched singularities **SPIVAKOVSKY**

- $\varpi: Y' \to Y = (\mathbb{C}^2, 0)$ modification;
- D connected exceptional divisor;

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X, x_0) admits a non-invertible selfmap of topological degree $1 \iff (X, x_0)$ is sandwiched.

Sandwiched singularities **SPIVAKOVSKY**

- $\varpi: Y' \to Y = (\mathbb{C}^2, 0)$ modification;
- D connected exceptional divisor;
- $\mu: Y' \to X$ contraction of D.

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X, x_0) admits a non-invertible selfmap of topological degree $1 \iff (X, x_0)$ is sandwiched.

Sandwiched singularities **SPIVAKOVSKY**

- $\varpi: Y' \to Y = (\mathbb{C}^2, 0)$ modification;
- D connected exceptional divisor;
- $\mu: Y' \to X$ contraction of D.

Strategy

• $f = \pi \circ \sigma$, $\pi \colon X' \to (X, x_0)$ modification, σ local isomorphism.

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X,x_0) admits a non-invertible selfmap of topological degree $1 \iff (X,x_0)$ is sandwiched.

Sandwiched singularities **SPIVAKOVSKY**

- $\varpi: Y' \to Y = (\mathbb{C}^2, 0)$ modification;
- D connected exceptional divisor;
- $\mu: Y' \to X$ contraction of D.

Strategy

- $f = \pi \circ \sigma$, $\pi \colon X' \to (X, x_0)$ modification, σ local isomorphism.
- Does (X', x_1) dominate a given $\mu \colon Z \to (X, x_0)$ resolution?

◆ロト ◆部ト ◆差ト ◆差ト を めなべ

Theorem (FANTINI-FAVRE-R.)

A normal surface singularity (X, x_0) admits a non-invertible selfmap of topological degree $1 \iff (X, x_0)$ is sandwiched.

Sandwiched singularities **SPIVAKOVSKY**

- $\varpi: Y' \to Y = (\mathbb{C}^2, 0)$ modification;
- D connected exceptional divisor;
- $\mu: Y' \to X$ contraction of D.

Strategy

- $f = \pi \circ \sigma$, $\pi \colon X' \to (X, x_0)$ modification, σ local isomorphism.
- Does (X', x_1) dominate a given $\mu \colon Z \to (X, x_0)$ resolution?
- Yes, if we replace f by f^n , $n \gg 0$.

 (X, x_0) singularity.

 (X, x_0) singularity.

There exists (infinitely many, pairwise non commuting) singular vector fields χ tangent to X (MÜLLER).

Its time-1 flow map defines an automorphism $f:(X,x_0)$.

 (X, x_0) singularity.

There exists (infinitely many, pairwise non commuting) singular vector fields χ tangent to X (MÜLLER).

Its time-1 flow map defines an automorphism $f:(X,x_0)$.

• Usually, χ has high order at 0, and f is tangent to id_X .

Theorem (FAVRE-R.)

A normal surface singularity (X,x_0) admits a contracting automorphism $\iff (X,x_0)$ is quasihomogeneous.

 (X, x_0) singularity.

There exists (infinitely many, pairwise non commuting) singular vector fields χ tangent to X (MÜLLER).

Its time-1 flow map defines an automorphism $f: (X, x_0) \circlearrowleft$.

• Usually, χ has high order at 0, and f is tangent to id_X .

Theorem (FAVRE-R.)

A normal surface singularity (X,x_0) admits a contracting automorphism $\iff (X,x_0)$ is quasihomogeneous.

Related results: Orlik-Vagreich, Camacho-Movasati-Scardua, Favre-R., Morvan.

Matteo Ruggiero Dynamical singularities 41 / 43

Publications presented in the HDR (1)

- M.Ruggiero: "Rigidification of holomorphic germs with non-invertible differential". Michigan Mathematical Journal, Volume 61 Issue 1, pp. 161–185, 2012.
- M.Ruggiero: "Contracting rigid germs in higher dimensions". Annales de l'Institut Fourier, Volume 63 Issue 5, pp. 1913–1950, 2013.
- W.Gignac and M.Ruggiero: "Growth of attraction rates for iterates of a superattracting germ in dimension two". Indiana University Mathematics Journal, Volume 63, no.4, pp. 1195–1234, 2014.
- C.Favre and M.Ruggiero: "Normal surface singularities admitting contracting automorphisms". Annales Mathématiques de la faculté des sciences de Toulouse, Volume 23, no. 4, pp. 797–828, 2014.
- M.Ruggiero: "Classification of one dimensional superattracting germs in positive characteristic". Ergodic Theory and Dynamical Systems, Volume 35, Issue 7, pp. 2242–2268, 2015.
- M.Ruggiero and K.Shaw: "Tropical Hopf manifolds and contracting germs".
 Manuscripta Mathematica, Volume 152, Issue 1-2, pp. 1-60, 2017.

Publications presented in the HDR (2)

- W.Gignac and M.Ruggiero: "Local dynamics of non-invertible maps near normal surface singularities". Memoirs of the AMS 272, no. 1337, xi+100 pages, 2021.
- E.García Barroso, P. González Pérez, P. Popescu-Pampu and M.Ruggiero: "Ultrametric properties for valuation spaces of normal surface singularities".
 Transactions of the AMS, Volume 372, Issue 12, pp. 8423–8475, 15 December 2019.
- L.Fantini, C.Favre and M.Ruggiero: "Links of sandwiched surface singularities and self-similarity". Manuscripta Mathematica, Volume 162, Issue 1-2, pp. 23–65, 2020.
- N.Istrati, A.Otiman, M.Pontecorvo and M.Ruggiero: "Toric Kato manifolds".
 Journal de l'École polytechnique, Volume 9, pp. 1347–1395, 2022.
- S.Mongodi and M.Ruggiero: "Birational properties of tangent to the identity germs without non-degenerate singular directions". Journal of the London Mathematical Society, pp. 1–55, 2023.
- R.Dujardin, C.Favre and M.Ruggiero: "On the dynamical Manin-Mumford conjecture for plane polynomial maps". Preprint, pp. 20, 2023.

