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CMLS lab (Palaiseau, France).

Current academic position
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Dynamical systems

Discrete: f : X
yy

, study the behavior of iterates fn =

n times︷ ︸︸ ︷
f ◦ · · · ◦ f .

Continuous: f t : X
yy

, f t+t
′
= f t ◦ f t′ , t real or complex.

Additional structure:

X is a (complex) analytic space : X = P−1(0), P : CN → CM , P
analytic.

f : X
yy

analytic selfmap : F = (f1, . . . , fM ) : CM yy analytic,
f = F |X : X

yy
.

f t : X
yy

is the flow of an analytic vector field χ:
χ =

loc
χ1∂1 + · · ·+ χM∂M tangent to X.

Local aspects: Z ⊂ X an f -invariant subvariety, we study the germ
f : (X,Z)

yy
(typically: Z = {x0}, x0 = f(x0) a fixed point).
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Singularities of varieties and maps

Varieties

x ∈ X is regular if (X,x) ∼= (Cd, 0).
x ∈ X is singular otherwise.

X = Xreg ⊔Xsing.

Maps
X,Y varieties of dimension d.

Regular: (Xreg, x)
f

≃
// (Y reg, y)

(Cd, 0)
≃ψx

OO

id // (Cd, 0)
≃ ψy

OO

Singular : x ∈ Xsing ∪ f−1(Y sing) ∪ C(f).
Critical set : C(f) = {x ∈ X | f is not locally invertible at x}.
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Dynamical singularities

Selfmaps
X varieties of dimension d.

“Regular”:

(Xreg, x)
f

≃
// (Xreg, y)

(Cd, 0)
≃ψx

OO

id // (Cd, 0)
≃ ψy

OO Issue when y = x
(want ψy = ψx).

Periodic points are “singular”.

Generalized critical set : C(f∞) =

∞⋃
n=1

C(fn) =
∞⋃
n=0

f−n(C(f)).

Vector fields

Regular point : χ(x) ̸= 0: χ ∼= ∂1.

Singular set: Sing(χ) := {x | χ(x) = 0}.
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Conjugacy and normal forms

Let f : (X,x0)
yy

be a selfmap. Assume x0 regular point.
Classical strategy: search of normal forms up to conjugacy.

(X,x0)
f // (X,x0)

(Cd, 0)
≃ψ

OO

f̃ // (Cd, 0)
≃ ψ

OO Want a simple expression for f .The classifica-
tion depends on the regularity of the change of
coordinates.

Simplest candidate normal form: the linear part df0 of f (linearization
problem).

What happens when df0 gives the least informations possible ?
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My research interests

Local dynamics:

superattracting: df0 = 0 (or nilpotent);

tangent to the identity (TId): df0 = id (or unipotent).

Tools:

valuation spaces;

resolution of singularities;

Interplay Geometry-Dynamics:

compactification of orbit spaces;

dynamical symmetries: singularities admitting special dynamical
systems.
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Plan

Introduction

1 Germs tangent to the identity

2 Superattracting germs

3 Valuation spaces

4 Valuation dynamics

5 Dynamical symmetries
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Resolution of singularities of varieties

We modify the space via blow-ups (modifications):

The global geometry gets more complicated, the
local geometry simplifies.

π0←− π1←− π2←−

π

Resolution of singularities of varieties

1D (curves) Newton-Puiseux .

2D (surfaces) Walker , Zariski , Abhyankhar , Lipman .

Local uniformization Zariski .

3D Zariski .

Algebraic varieties Hironaka .

Analytic varieties Aroca-Hironaka-Vicente .

Other proofs by: Villamayor Encinas-Villamayor

Bierstone-Milman W lodarczyk
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Time-1 flow of vector fields

Let χ ∈ X≥2(Cd, 0) be a vector field, ord0χ = h ≥ 2.

Its time-1 flow f = expχ =

∞∑
n=0

χn

n!
is tangent to the identity:

f(z) = z +

̸≡0︷ ︸︸ ︷
f (h)(z)+o

(
∥z∥h

)
.

Is the converse true?

Almost!

For any f ∈ Diff1(Cd, 0), there exists a unique χ ∈ X̂≥2(Cd, 0) such that
f = expχ, called the infinitesimal generator.
Remarks

χ is a formal vector field.

χ induces (by saturation) a foliation F by complex curves. The
foliation does not retain the informations on the real orbits.
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Dynamics 1D

χ(z) = −zh∂z + h.o.t.⇝ f(z) = z(1− zh−1 + h.o.t.).

Goal: describe B = {z | zn := fn(z)→ 0}.

ζ : ζh−1 = 1 attracting directions.

attracting petal ∆ζ ∋ z: zn
∥zn∥ → ζ zn

ζ→ 0.

Bζ :=
⋃
n

f−n(∆ζ) =
{
z | zn

ζ→ 0
}
.

Topological classification: f(z)
top∼= z − zh Camacho , Shcherbakov

.
Analytic classification Écalle , Voronin .
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Motivations

Dynamics 1D: description of parabolic Fatou components for
rational/transcendental maps.

Parabolic implosion 1D: Lavaurs , Douady , Shishikura .
Applications to:

▶ Julia sets of quadratic polynomials with positive area:
Buff-Cheritat , Avila-Lyubich ;

▶ Construction of wandering domains for polynomial endomorphisms of
P2: Astorg-Buff-Dujardin-Peters-Raissy .

Semi-parabolic and parabolic implosion 2D: Bedford-Smillie-Ueda

, Bianchi , Astorg-LopezHernanz-Raissy .
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≥2 picture: parabolic manifolds

Goal: to describe B⋆ = {z : fn(z)
⋆→ 0}, with ⋆ being:

ζ ∈ S2d−1 (R-direction),
v ∈ Pd−1C (C-direction),
C (formal) irreducible curve,

Petals ⇝ ⋆-parabolic manifold: ∆ immersed (connected) submanifold,

0 ∈ ∂∆, f(∆) ⊆ ∆, ∆ ⊆ B⋆.

Bv ̸= ∅ ⇒ v is characteristic ⇔ v ∈ Singχπ0 := z1−hχπ0 .

BC ̸= ∅ ⇒ C is f -invariant ⇔ C is χ-invariant.

Assume χ non-dicritical, (χ̂π0 is tangent to Eπ0).
A characteristic direction v is called non-degenerate if the eigenvalues of
the linear part of χπ0 transverse to Eπ0 is ̸= 0.
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Reduction of singularities of vector fields in 2D

Theorem ( Bendixson , Seidenberg )

There exists a sequence π : Xπ → (C2, 0) of blow-ups of singular points
such that the saturated lift χ̂π has only elementary singularities (the linear
part is non-nilpotent).

Hakim : ∀v non-degenerate (⇒ χ̂π0 elementary), ∃ v-parabolic curves.

Theorem ( Camacho-Sad )

Any saturated vector field χ ∈ X (C2, 0) admits a separatrix.

Idea: there exist non-degenerate characteristic directions after blow-up.
Abate : any isolated fixed point TId germ admits a parabolic curve.
Parabolic curves are understood in 2D: Lapan, LopezHernanz, Molino,

Raissy, Ribon, Rosas, SanzSanchez, Vivas .
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What happens in higher dimensions

Positive news:

Hakim : Non-degenerate characteristic directions always have
parabolic curves along possibly transcendental separatrices.
LopezHernanz-Ribon-SanzSanchez-Vivas : separatrices C always
have parabolic manifolds. Ingredients: local uniformization of (χ,C),
Ramis-Sibuya normal forms.

New phenomena:

McQuillan-Panazzolo : reduction of singularities in dimension 3;
SanchoDeSalas-SanzSanchez : need to allow mild singularities for
Xπ.
Separatrices might not exist GómezMont-Luengo .
Abate-Tovena : examples without C-parabolic manifolds (but they
have v-parabolic curves).

Theorem ( Mongodi-R. )

There exists examples in C3 with no non-degenerate characteristic
directions for any modifications.
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Goals for superattracting germs

Let f : (C2, 0)
yy

be superattracting. Example: f(x, y) = (y + x3, x2y).
Rough dynamics: orbits converge to 0 super-exponentially fast.

Remark: Cannot get explicit normal forms up to con-
jugacy, due to the complexity of C(f∞).

We want to control the speed of convergence:

Sequence of cn = c(fn) of attraction rates, where

c(f) := ord0(f
∗m) = min{ord0(x ◦ f), ord0(y ◦ f)}.

Its growth c∞(f) := limn
n
√
c(fn): the (first) dynamical degree.
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Reduction of singularities of maps: monomialization

f : X → Y a map. We look for modifications π,ϖ that simplify the
expression of f (around critical points).

(Xπ, p)

π

��

f̂

monomial
// (Yϖ, q)

ϖ

��
X

f // Y

Local monomialization

Algebraic maps Cutkosky .

Analytic maps Cutkosky .

Quasianalytic maps Belotto-Bierstone .

Global results: 2D Akbulut-King , 3D→2D Cutkosky .
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Reduction of dynamical singularities, some issues

When consider dynamical systems, we have X = Y , and we require π = ϖ
in order to have a dynamical system fπ acting on Xπ.

We create indeterminacy points (set Ind(fπ)).

Indeterminacies cannot be eliminated dynamically.

Hope: We can avoid them with large iterates: algebraically stable models.

fX

x0
π0←−−

fπ0

E0

Xπ0

p0

π′
1←−−

fπ1

E0

Xπ1

p1

E1

π′
2←−−

fπ2

E0

Xπ2

E1

E2
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Motivations

The sequence (cn)n and c∞ are local analogous of global concepts.
They are invariants of conjugacy.

Algebraic stability and related results give more insights on the subtle
dynamical properties.

About global dynamical degrees

Existence and first properties Russakovskii-Shiffman Dinh-Sibony

, Truong , Dang ; Khovanskii-Teissier .

They estimate entropy Gromov-Yomdin , Dinh-Sibony .

Arithmetic properties Blanc, Cantat, Xie .

About algebraic stability

Introduced by Fornaess-Sibony . Allows control to construct
invariant objects.

Existence results: Bedford,Cantat,Dang,Diller,

Favre,Jonsson,Lin,Truong,Wulcan .
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Valuation spaces

(Divisorial) valuations encode exceptional primes in Xπ for any
modification π : Xπ → (X,x0), up to natural identifications.

Set of all valuations: Zariski-Riemann space ZR(X,x0).
Main tool in Zariski’s approach to resolution of singularities.

Rank 1 semi-valuations: VX .
Link with Berkovich spaces ( Berkovich ).
Use in dynamics initiated by Favre-Jonsson .

Related objects and applications

Farey blowups Hubbard-Papadopol ;

Picard-Manin space Manin to study the Cremona group ( Cantat ,
Blanc , Déserti , Lamy , etc.).

Hybrid spaces Berkovich : used to study degenerations
Boucksom-Jonsson , Dujardin-Favre ;

Applications to K-stability Chi Li , Chenyang Xu , Blum .
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Valuative dynamics

Application of valuation spaces to study the dynamics of f : (X,x0)
yy

:

VX encodes exceptional primes, infinitely-near points, strict
transforms of irreducible curves of any possible modification.

f induces an action f• : VX
yy

which encodes the maps fπ : Xπ
yy

.

Dynamical properties of f• translates to existence of special models
Xπ where we can control the dynamics of fπ.

Global dynamics : Favre, Jonsson, Boucksom, Xie, Dang, Abboud .
Local dynamics : Favre, Jonsson, R., Gignac .
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Modifications and resolutions of singularities
(X,x0) normal surface singularity,
(OX ,mX) its associated local ring.

Definition

A modification is a proper bimeromorphic map
π : Xπ → (X,x0), which is an isomorphism
outside of the exceptional divisor
Eπ := π−1(x0).

A modification π : Xπ → (X,x0) is
▶ a resolution if Xπ is non-singular;
▶ a good resolution if moreover Eπ is a SNC

divisor;
▶ a log-resolution of mX the maximal ideal if
π∗mX = OXπ

(
−

∑
bEE

)
is locally principal.

Another modification π′ dominates π if
π−1 ◦ π′ : Xπ′ → Xπ is regular.

X

π

x0

Xπ

g = 2

Eπ
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Valuations

Definition

A (normalized rank-1 semi-)valuation on (X,x0) is a map
ν : ÔX → [0,+∞] such that:

ν(ϕψ) = ν(ϕ) + ν(ψ),

ν(ϕ+ ψ) ≥ min{ν(ϕ), ν(ψ)},
ν(0) = +∞, ν(C∗) = 0, ν(mX) = 1.

The set of all valuations is denoted by VX .

divisorial valuation: νE(ϕ) =
1
bE

ordE(ϕ ◦ π), π : Xπ → (X,x0)
modification, E ∈ Γ∗π exceptional prime. Notice that νE = νE′ if E′

is the strict transform of E by a modification.

curve (semi-)valuation: νC(ϕ) =
1

m(C)C · (ϕ = 0), C irreducible curve.

Other two types: irrational and infinitely singular.
These are points of type II, I, III, IV in the sense of Berkovich .
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Dual graphs and divisors
Let π : Xπ → (X,x0) be a log-resolution of mX .
The vector space of real exceptional divisors E(π)R
is endowed with a negative definite intersection form
( Grauert ). In particular, to any exceptional prime
E ∈ E(π)R is associated its dual divisor Ě.

We realize the dual graph Γπ of π inside E(π)R, as
follows:

vertices: to each exceptional primes E of π, we

associate Zπ(νE) :=
Ě

bE
∈ E(π)R.

edges: to any intersection point in E ∩ F we

get the segment

[
Ě

bE
,
F̌

bF

]
.

We obtain a graph Γπ ↪→ E(π)R.

Xπ

g = 2

g
=

1
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Valuations and b-divisors

Xπ′

η

��
π′

��

⊃ E′ = Eη Zπ′(νE′)

η∗
��

= η∗Zπ(νE) ∈ Γπ′
� � // E(π′)R

η∗
��

Xπ

π

��

⊃ E Zπ(νE)

��

∈ Γπ
� � //

��

lim←−
π

E(π)R

��
(X,x0) Z(νE) =

(
Zπ(νE)

)
π
∈ lim←−

π

Γπ
� � // b-E(X)

To any ν ∈ VX is associated Z(ν) the b-divisor (in the sense of
Shokurov ): if π′ = π ◦ η, then η∗Zπ′(ν) = Zπ(ν).

We have VX ≃ lim←−
π

Γπ ⊃ lim−→
π

Γπ ≃ VqmX .
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Valuation spaces

VX

The dual graph of a good
resolution π reads into VX .
The vertices correspond to the
set of divisorial valuations
S∗π := {νE | E ⊆ π−1(x0)}.
There is a 1-to-1 correspondence
betweeen closed point
p ∈ π−1(x0) and connected
components Uπ(p) of VX \ S∗π.

Topology: the weakest for which ν 7→ ν(ϕ) is continuous ∀ϕ ∈ ÔX .
Equivalently, generated by connected components (in the sense of
graphs) of complements of finite sets.
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Intersection theory of valuations

The negative-definite intersection form on E(π) induces a (extended)
scalar product on VX :

⟨ν, µ⟩ := −Z(ν) · Z(µ) := sup
π
−Zπ(ν) · Zπ(µ) ∈ (0,+∞].

Theorem ( Gignac-R. , Key technical result)

Let (X,x0) be a normal surface singularity. Let ν, µ1, µ2 ∈ VX . Then

⟨ν, µ1⟩ ⟨ν, µ2⟩ ≤ ⟨ν, ν⟩ ⟨µ1, µ2⟩ , (⋆)

with equality if and only if ν disconnects µ1 and µ2 in VX .

Independently by GarćıaBarroso-GonzálezPérez-PopescuPampu

when VX is contractible.
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when VX is contractible.

Matteo Ruggiero Dynamical singularities 30 / 43



Application to intersection of branches

Definition

Let λ ∈ VX be any valuation. For any ν1, ν2 ∈ VX , we set

uλ(ν1, ν2) :=


⟨λ, ν1⟩ · ⟨λ, ν2⟩
⟨ν1, ν2⟩

if ν1 ̸= ν2,

0 if ν1 = ν2.

P loski If X = (C2, 0) then uλ is an ultrametric:
if λ = ord0, ∀A,B,C curve branches, we have up to permutation

A ·B
m(A)m(B)

=
A · C

m(A)m(C)
≤ B · C
m(B)m(C)

.

Theorem ( GarćıaBarroso-GonzálezPérez-PopescuPampu-R. )

The function uλ is an (extended) ultrametric for a/any λ if and only if VX
is contractible.

Main tool (⋆).
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Plan

Introduction

1 Germs tangent to the identity

2 Superattracting germs

3 Valuation spaces

4 Valuation dynamics

5 Dynamical symmetries
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Action induced on VX
Assume for simplicity that f : (X,x0)→ (Y, y0) is finite.

f∗ : ÔY → ÔX
ϕ 7→ ϕ ◦ f

duality,

normalization

��
f• : VX → VY

ν 7→ ν◦f∗
ν(f∗mY )

V

Properness criterium:
f̂(p) = q ⇔ f•Uπ(p) ⊆ Uϖ(q).
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ϕ 7→ ϕ ◦ f

duality,

normalization

��
f• : VX → VY

ν 7→ ν◦f∗
ν(f∗mY )

f
YXC

f(C)

π

Xπ

E

π

νx

f•

V
ν
y+x3

νE

Properness criterium:
f̂(p) = q ⇔ f•Uπ(p) ⊆ Uϖ(q).

Matteo Ruggiero Dynamical singularities 33 / 43



Action induced on VX
Assume for simplicity that f : (X,x0)→ (Y, y0) is finite.

f∗ : ÔY → ÔX
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Eigenvaluations and rigidification

Theorem ( Favre-Jonsson )

For any f : (C2, 0)
yy

there exists an eigenvaluation: ν⋆ = f•ν⋆ with an
open Uπ(p) in its basin of attraction.

Consequences

There exists π : Xπ → (C2, 0), p ∈ π−1(0), such that fπ : (Xπ, p)
yy

is rigid : C(f∞) is SNC and f -invariant.

The first dynamical degree c∞(f) is a quadratic integer.

Existence of Green functions: u psh, u ̸≡ −∞, and g ◦ f = c∞g.

Related works
Favre-Jonsson : polynomial endomorphisms of C2.
Gignac-R. : local version on surface singularities.
Abboud : global version on affine surfaces.
Bell-Diller-Jonsson +Krieger : examples of λ1(f) transcendental.
Dang-Favre : higher dimensional results.
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Global attraction properties and algebraically stable models

Theorem ( Gignac-R. )

For any superattracting f : (X,x0)
yy

at a normal surface singularity, there
exists an invariant subset S ⊂ VX (either a point, a segment, or a circle)
that attracts the orbit (fn• ν) of any quasimonomial valuation ν ∈ VqmX .

Consequences

There exists π : Xπ → (C2, 0) such that fπ : (Xπ, p)
yy

is

algebraically stable : ∀ E ⊆ π−1(x0),∀n≫ 0, fnπ (E) ̸∈ Ind(fπ).

The sequence c(fn) eventually satisfies a Z-linear recursion relation.

Recent applications: description of “super-stable manifold” for
skew-products, in relation with DMM problem Durjardin-Favre-R .

Notable exception
S is a circle, f•|S is an irrational rotation ⇒ (X,x0) is a cusp singularity,

f is a finite germ.
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Angular distance

Definition ( Gignac-R. )

The angular distance on VX is given by

ρX(ν, µ) := log
⟨ν, ν⟩ ⟨µ, µ⟩
⟨ν, µ⟩2

.

This is an extended distance, that takes finite values on VqmX .

It plays the role of the Poincaré distance on valuation spaces.

Theorem ( Gignac-R. )

For any dominant map f : (X,x0)→ (Y, y0), we have

ρY (f•ν, f•µ) ≤ ρX(ν, µ).

Using (⋆): characterize the case of equality.

Matteo Ruggiero Dynamical singularities 36 / 43



Angular distance

Definition ( Gignac-R. )

The angular distance on VX is given by

ρX(ν, µ) := log
⟨ν, ν⟩ ⟨µ, µ⟩
⟨ν, µ⟩2
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Non-finite vs finite

Dichotomy:

Suppose f is non-finite. Then f• is a weak contraction:

∀ν ̸= µ ∈ VqmX , ρX(f•ν, f•µ) < ρX(ν, µ).

In this case: construct an eigenvaluation ν⋆ by fixed point theorems.

Suppose f is finite. Wahl : (X,x0) is log-canonical:
(X,x0) = (Y, y0)

/
G, G finite group, (Y, y0) is:

regular cusp simple elliptic

(C2, 0) Yπ Yπ
g = 1

We conclude case by case.
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Singularities admitting special endomorphisms

X x0

(X,x0) singularity.

π : Xπ → (X,x0) resolution.
pr: (X,x0) ↪→ (CN , 0)↠ (C2, 0)
generic projection.
σ(C2, 0)→ (Xπ, p) with p ∈ π−1(x0).
f = π ◦ σ ◦ pr(X,x0)

yy
.

f contracts curves to 0.

f has large topological degree.

Finite endomorphisms 2D Wahl , Favre , Gignac-R.

Topological degree 1 Fantini-Favre-R. .
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yy
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f contracts curves to 0.

f has large topological degree.

Finite endomorphisms 2D Wahl , Favre , Gignac-R.

≥3D Boucksom-De Fernex-Favre , Broustet-Höring , Zhang .

Topological degree 1 Fantini-Favre-R. .
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Kato germs and sandwiched singularities

Theorem ( Fantini-Favre-R. )

A normal surface singularity (X,x0) admits a non-invertible selfmap of
topological degree 1 ⇐⇒ (X,x0) is sandwiched.

Sandwiched singularities Spivakovsky

ϖ : Y ′ → Y = (C2, 0) modification;

D connected exceptional divisor;

µ : Y ′ → X contraction of D.

Strategy

f = π ◦ σ, π : X ′ → (X,x0)
modification, σ local isomorphism.

Does (X ′, x1) dominate a given
µ : Z → (X,x0) resolution?

Yes, if we replace f by fn, n≫ 0.
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Singularities admitting contracting automorphisms

X

x0

(X,x0) singularity.

There exists (infinitely many, pairwise non
commuting) singular vector fields χ tan-
gent to X ( Müller ).
Its time-1 flow map defines an automor-
phism f : (X,x0)

yy
.

Usually, χ has high order at 0, and
f is tangent to idX .

Theorem ( Favre-R. )

A normal surface singularity (X,x0) admits a contracting automorphism
⇐⇒ (X,x0) is quasihomogeneous.

Related results: Orlik-Vagreich , Camacho-Movasati-Scardua ,
Favre-R. , Morvan .
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