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A short Curriculum Vitae

Education and diplomas

@ 01.2008-12.2010: PhD student in Mathematics at Scuola Normale
Superiore (Pisa, ltaly).

@ 15.03.2011: PhD degree in Mathematics at Scuola Normale Superiore
di Pisa, with thesis: “The valuative tree, rigid germs and Kato
varieties", advisor M. Abate.

Past academic positions

e 09.2011-08.2013: Post-doc of the FMJH at the Ecole Polytechnique,

CMLS lab (Palaiseau, France).
Current academic position

@ 09.2013-present: Maitre de conférences at the Université Paris Cité,
UFR de Mathématiques, research unit IMJ-PRG, group Géométrie et
Dynamique.
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Dynamical systems

n times

. . . ﬁ
@ Discrete: f: Xf), study the behavior of iterates f* = fo---o f.
e Continuous: f: X2, fit = fto ' ¢ real or complex.

Matteo Ruggiero Dynamical singularities 3/43



Dynamical systems

n times

. . . ﬁ
@ Discrete: f: X f) study the behavior of iterates f* = fo---o f.
e Continuous: f: X2, fit = fto ' ¢ real or complex.

Additional structure:
o X is a (complex) analytic space : X = P~1(0), P: CN —CM, P
analytic.
o f: X7 analytic selfmap : F = (f1y- s fm): CM %) analytic,
f=Flx: XD,
o fl: X 3 is the flow of an analytic vector field x:
X = X101 + - -+ + xmOn tangent to X.

loc
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Dynamical systems

n times

—
@ Discrete: f: X f) study the behavior of iterates f* = fo---o f.

e Continuous: f: X2, fit = fto ' ¢ real or complex.

Additional structure:
o X is a (complex) analytic space : X = P~1(0), P: CN —CM, P
analytic.
o f: X7 analytic selfmap : F = (f1y- s fm): CM %) analytic,
f=Flx: XD,
o fl: X f} is the flow of an analytic vector field x:
X = X101 + - -+ + xmOn tangent to X.

loc

Local aspects: Z C X an f-invariant subvariety, we study the germ
f:(X,2)5) (typically: Z = {0}, 2o = f(x0) a fixed point).
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Singularities of varieties and maps

Varieties
o x € X is regular if (X, z) = (C%,0).
@ x € X is singular otherwise.

X = Xreg | Xsing,
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Singularities of varieties and maps
Varieties
o x € X is regular if (X, z) = (C%,0).

@ x € X is singular otherwise.
X = Xreg | Xsing,

Maps
X,Y varieties of dimension d.

@ Regular: (X'& z) ——— f (Y& y)
v~ ~1y,
(€4,0) —9~ (cd,0)
e Singular : z € Xs"& U f1(Ysine) U C(f).
Critical set : C(f) = {z € X | f is not locally invertible at x}.
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Dynamical singularities

Selfmaps
X varieties of dimension d.

f
X'reg X'reg
( ) —= Y Issue when y = x

@ “Regular”: %T: . :szy (want ¥y, = 1,).
(C4,0) —*—(C,0)

@ Periodic points are “singular”.

(@
Q

Generalized critical set : C(f*°) = ") = U fr
n=1 n=0
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Dynamical singularities
Selfmaps

X varieties of dimension d.

(X7, ) —L~ (X", )
“Regular”: Issue when y =z
° egular: sz: y :szy (want Wby = V).
(C,0) —=—(C,0)
@ Periodic points are “singular”.

(o)
Generalized critical set : C(f*°) = U
Vector fields

@ Regular point : x(z) # 0: x = 0.
e Singular set: Sing(x) := {z | x(z) = 0}.
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Conjugacy and normal forms

Let f: (X, z0) “) be a selfmap. Assume xz regular point.
Classical strategy: search of normal forms up to conjugacy.

f
(X, z0) (X, z0) Want a simple expression for f.The classifica-

wT: N ﬁTd) tion depends on the regularity of the change of
(C?,0) . (C9,0) coordinates.
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Conjugacy and normal forms

Let f: (X, z0) “) be a selfmap. Assume xz regular point.
Classical strategy: search of normal forms up to conjugacy.

f
(X, 20) (X, 20) Want a simple expression for f.The classifica-

wT— N ﬁTd) tion depends on the regularity of the change of
(€4, 0) I (Cd,0)  coordinates.

Simplest candidate normal form: the linear part dfy of f (linearization
problem).

What happens when df; gives the least informations possible ?
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My research interests

Local dynamics:
@ superattracting: dfy = 0 (or nilpotent);
e tangent to the identity (Tld): dfy = id (or unipotent).
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Local dynamics:

@ superattracting: dfy = 0 (or nilpotent);

e tangent to the identity (Tld): dfy = id (or unipotent).
Tools:

@ valuation spaces;

@ resolution of singularities;
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My research interests

Local dynamics:

@ superattracting: dfy = 0 (or nilpotent);

e tangent to the identity (Tld): dfy = id (or unipotent).
Tools:

@ valuation spaces;

@ resolution of singularities;

Interplay Geometry-Dynamics:
@ compactification of orbit spaces;

@ dynamical symmetries: singularities admitting special dynamical
systems.
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Plan

@ Introduction

@ Germs tangent to the identity
© Superattracting germs

© Valuation spaces

@ Valuation dynamics

© Dynamical symmetries

=) =l = = = wvwaQ
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Resolution of singularities of varieties

We modify the space via blow-ups (modifications):
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We modify the space via blow-ups (modifications):
The global geometry gets more complicated, the
local geometry simplifies.
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Resolution of singularities of varieties

We modify the space via blow-ups (modifications):
The global geometry gets more complicated, the
local geometry simplifies.
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The global geometry gets more complicated, the
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Matteo Ruggiero Dynamical singularities



Resolution of singularities of varieties

We modify the space via blow-ups (modifications):
The global geometry gets more complicated, the
local geometry simplifies.

Resolution of singularities of varieties
@ 1D (curves) NEWTON-PUISEUX .
@ 2D (surfaces) WALKER, ZARISKI, ABHYANKHAR, LIPMAN.
@ Local uniformization ZARISKI.
@ 3D Zariskr.
@ Algebraic varieties HTRONAKA .
@ Analytic varieties AROCA-HIRONAKA-VICENTE .

Other proofs by: VILLAMAYOR ENCINAS-VILLAMAYOR
BIERSTONE-MILMAN WLODARCZYK
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Plan

@ Germs tangent to the identity

o (w1 =
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Time-1 flow of vector fields
Let x € XZ2(C%,0) be a vector field, ordgy = h > 2.

x© on
Its time-1 flow f =expyx = g X—' is tangent to the identity:
n!
n=0 #0

— L
F2) =24 D) +o(2]").

Is the converse true?
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Time-1 flow of vector fields
Let x € XZ2(C%,0) be a vector field, ordgy = h > 2.

oo n
Its time-1 flow f =expyx = Z X s tangent to the identity:

n!
n=0 Z0
h) h
F(z) =2+ fP () +o(|2I").

Is the converse true? Almost!

For any f € Diff(C%,0), there exists a unique y € X=2(C%,0) such that
f = expy, called the infinitesimal generator.
Remarks

@ Y is a formal vector field.

@ x induces (by saturation) a foliation F by complex curves. The
foliation does not retain the informations on the real orbits.

Matteo Ruggiero Dynamical singularities 11 / 43



Dynamics 1D

x(2) = —2"0, + hot. ~ f(2) = 2(1 — 2" T+ hot.).
Goal: describe B ={z | z, :== f"(z) — 0}.

o = = =
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x(2) = —2"0, + hot. ~ f(2) = 2(1 — 2" T+ hot.).
Goal: describe B ={z | z, :== f"(z) — 0}.

¢ : ¢h1 =1 attracting directions.
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x(2) = —2"0, + hot. ~ f(2) = 2(1 — 2" T+ hot.).
Goal: describe B ={z | z, :== f"(z) — 0}.

¢ : ¢h1 =1 attracting directions.
attracting petal A¢ > z: Hj—"” —( 2zn 0.
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Dynamics 1D

x(2) = =2"0, + hot. ~ f(z) = 2(1 — 2" +hot).
Goal: describe B ={z | z, :== f"(z) — 0}.
¢ : ¢"1 =1 attracting directions.
attracting petal A¢ > z: H;—:” —( 2zn 0.
B¢ = Uf_”(Ag) ={z| 2z 5 0}.
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Dynamics 1D

x(2) = —2"0, + hot. ~ f(2) = 2(1 — 2" T+ hot.).
Goal: describe B ={z | z, :== f"(z) — 0}.

¢ : ¢P1 =1 attracting directions.

attracting petal A¢ > z: —( zy 5 0.

HZ ||

Be:=JF ™A = {z] 2 5 0}.

top
o Topological classification: f(z) = z — 2" CamacHO, SHCHERBAKOV

@ Analytic classification ECALLE, VORONIN .
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Motivations

@ Dynamics 1D: description of parabolic Fatou components for
rational/transcendental maps.
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Motivations

@ Dynamics 1D: description of parabolic Fatou components for
rational/transcendental maps.

@ Parabolic implosion 1D: LAVAURS, DOUADY, SHISHIKURA .
Applications to:

> Julia sets of quadratic polynomials with positive area:
BUFF-CHERITAT, AVILA-LYUBICH;

» Construction of wandering domains for polynomial endomorphisms of
P?: ASTORG-BUFF-DUJARDIN-PETERS-RAISSY .
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Motivations

@ Dynamics 1D: description of parabolic Fatou components for
rational/transcendental maps.
@ Parabolic implosion 1D: LAVAURS, DOUADY, SHISHIKURA .
Applications to:
> Julia sets of quadratic polynomials with positive area:
BUFF-CHERITAT, AVILA-LYUBICH;
» Construction of wandering domains for polynomial endomorphisms of
P2:  ASTORG-BUFF-DUJARDIN-PETERS-RAISSY .
@ Semi-parabolic and parabolic implosion 2D: BEDFORD-SMILLIE-UEDA
, BIANCHI, ASTORG-LOPEZHERNANZ-RAISSY .
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>2 picture: parabolic manifolds

Goal: to describe B, = {z : f"(z) = 0}, with * being:
o ( € S?¢~1 (R-direction),
eveE IP’fé_1 (C-direction),

e C (formal) irreducible curve,
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Goal: to describe B, = {z : f"(z) = 0}, with * being:
o ( € S?¢~1 (R-direction),
eveE IP’(%_l (C-direction),
e C (formal) irreducible curve,

Petals ~~ *-parabolic manifold: A immersed (connected) submanifold,

0€dA, f(A)CA, ACB,.
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Goal: to describe B, = {z : f"(z) = 0}, with * being:
o ( € S?¢~1 (R-direction),
eveE IP’(%_l (C-direction),
e C (formal) irreducible curve,

Petals ~~ *-parabolic manifold: A immersed (connected) submanifold,
0€0A, f(A)CA, ACB,.

o B, # 0 = v is characteristic < v € Sing X, := 27

@ Bo #0 = Cis f-invariant < C' is y-invariant.
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>2 picture: parabolic manifolds

Goal: to describe B, = {z : f"(z) = 0}, with * being:
o ( € S?¢~1 (R-direction),
eveE sz_l (C-direction),
e C (formal) irreducible curve,

Petals ~~ *-parabolic manifold: A immersed (connected) submanifold,
0€0A, f(A)CA, ACBE,.
o B, # 0 = v is characteristic < v € Sing X, := 27
@ Bo #0 = Cis f-invariant < C' is y-invariant.

Assume x non-dicritical, (X, is tangent to Er).
A characteristic direction v is called non-degenerate if the eigenvalues of
the linear part of x,, transverse to Er, is # 0.
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Reduction of singularities of vector fields in 2D

Theorem ( BENDIXSON, SEIDENBERG )

There exists a sequence 7: X — (C2,0) of blow-ups of singular points

such that the saturated lift X has only elementary singularities (the linear
part is non-nilpotent).
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Reduction of singularities of vector fields in 2D

Theorem ( BENDIXSON, SEIDENBERG )

There exists a sequence 7: X — (C2,0) of blow-ups of singular points
such that the saturated lift X has only elementary singularities (the linear
part is non-nilpotent).

HakiM : Vv non-degenerate (= X, elementary), 3 v-parabolic curves.

Theorem ( CAMACHO-SAD )
Any saturated vector field x € X(C?,0) admits a separatrix. J

Idea: there exist non-degenerate characteristic directions after blow-up.
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Reduction of singularities of vector fields in 2D

Theorem ( BENDIXSON, SEIDENBERG )

There exists a sequence 7: X — (C2,0) of blow-ups of singular points
such that the saturated lift X has only elementary singularities (the linear
part is non-nilpotent).

Hakv @ Vv non-degenerate (= X, elementary), 3 v-parabolic curves.

Theorem ( CAMACHO-SAD )

Any saturated vector field x € X(C?,0) admits a separatrix.

Idea: there exist non-degenerate characteristic directions after blow-up.
ABATE : any isolated fixed point Tld germ admits a parabolic curve.
Parabolic curves are understood in 2D: LaAPAN, LOPEZHERNANZ, MOLINO,
RaAtssy, RIBON, ROSAS, SANZSANCHEZ, VIVAS.
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What happens in higher dimensions

Positive news:
o HaxiMm: Non-degenerate characteristic directions always have
parabolic curves along possibly transcendental separatrices.
@ LoPEZHERNANZ-RIBON-SANZSANCHEZ-VIVAS : separatrices C' always

have parabolic manifolds. Ingredients: local uniformization of (x,C),
Ramis-Sibuya normal forms.
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What happens in higher dimensions

Positive news:

o HaxiMm: Non-degenerate characteristic directions always have
parabolic curves along possibly transcendental separatrices.

@ LoPEZHERNANZ-RIBON-SANZSANCHEZ-VIVAS : separatrices C' always
have parabolic manifolds. Ingredients: local uniformization of (x,C),
Ramis-Sibuya normal forms.

New phenomena:

@ McQUILLAN-PANAZZOLO : reduction of singularities in dimension 3;
SANCHODESALAS-SANZSANCHEZ : need to allow mild singularities for
Xr.

@ Separatrices might not exist GOMEZMONT-LUENGO .
ABATE-TOVENA : examples without C-parabolic manifolds (but they
have v-parabolic curves).
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What happens in higher dimensions

Positive news:

o HaxiMm: Non-degenerate characteristic directions always have
parabolic curves along possibly transcendental separatrices.

@ LoPEZHERNANZ-RIBON-SANZSANCHEZ-VIVAS : separatrices C' always
have parabolic manifolds. Ingredients: local uniformization of (x,C),
Ramis-Sibuya normal forms.

New phenomena:

@ McQUILLAN-PANAZZOLO : reduction of singularities in dimension 3;
SANCHODESALAS-SANZSANCHEZ : need to allow mild singularities for
Xr.

@ Separatrices might not exist GOMEZMONT-LUENGO .
ABATE-TOVENA : examples without C-parabolic manifolds (but they
have v-parabolic curves).

Theorem ( MonGoDI-R. )

There exists examples in C3 with no non-degenerate characteristic
directions for any modifications.
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Plan

© Superattracting germs

o (w1 =
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Goals for superattracting germs

Let f: ( f) be superattracting. Example: f(z,y) = (y + 22, 2%y).
Rough dynamlcs. orbits converge to 0 super-exponentially fast.
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Goals for superattracting germs

Let f: (C2,0)7) be superattracting. Example: f(z,y) = (y + 23, 2%y).
Rough dynamlcs. orbits converge to 0 super-exponentially fast.

Remark: Cannot get explicit normal forms up to con- C(f)
jugacy, due to the complexity of C(f°).

We want to control the speed of convergence:
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Goals for superattracting germs

Let f: (C2,0)7) be superattracting. Example: f(z,y) = (y + 23, 2%y).
Rough dynamlcs orbits converge to 0 super—exponent|ally fast.

e

Remark: Cannot get explicit normal forms up to con- \
jugacy, due to the complexity of C(f°). //

We want to control the speed of convergence:
@ Sequence of ¢, = ¢(f™) of attraction rates, where

c(f) == ordp(f*m) = min{ordg(z o f),ordo(y o f)}.
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Goals for superattracting germs

Let f: (C2,0)7) be superattracting. Example: f(z,y) = (y + 23, 2%y).
Rough dynamlcs orbits converge to 0 super—exponent|ally fast.

e

Remark: Cannot get explicit normal forms up to con- \
jugacy, due to the complexity of C(f°). //

We want to control the speed of convergence:
@ Sequence of ¢, = ¢(f™) of attraction rates, where

c(f) == ordp(f*m) = min{ordg(z o f),ordo(y o f)}.

@ lts growth coo(f) := lim,, {/c(f™): the (first) dynamical degree.
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Reduction of singularities of maps: monomialization

f: X =Y a map. We look for modifications 7, w that simplify the
expression of f (around critical points).

(XWL, p),ml(YT q)
x—71 .y
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Reduction of singularities of maps: monomialization

f: X =Y a map. We look for modifications 7, w that simplify the
expression of f (around critical points).

(XWL : p)ml(YT q) .
x—1 .y -

lw

@X (y + 23, 22%y) my
N

Local monomialization
@ Algebraic maps CUTKOSKY .
@ Analytic maps CUTKOSKY .

@ Quasianalytic maps BELOTTO-BIERSTONE .
Global results: 2D AxkBuLuT-KInG, 3D—2D CUTKOSKY .
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Reduction of dynamical singularities, some issues

When consider dynamical systems, we have X =Y, and we require 7 = @
in order to have a dynamical system f; acting on X.
o We create indeterminacy points (set Ind(f;)).
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When consider dynamical systems, we have X =Y, and we require 7 = @
in order to have a dynamical system f; acting on X.
o We create indeterminacy points (set Ind(f;)).
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Reduction of dynamical singularities, some issues

When consider dynamical systems, we have X =Y, and we require 7 = @
in order to have a dynamical system f; acting on X.

o We create indeterminacy points (set Ind(f;)).

@ Indeterminacies cannot be eliminated dynamically.
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Reduction of dynamical singularities, some issues

When consider dynamical systems, we have X =Y, and we require 7 = @
in order to have a dynamical system f; acting on X.

o We create indeterminacy points (set Ind(f;)).

@ Indeterminacies cannot be eliminated dynamically.

X fm
X f X7"0 fm)
‘) /\ " B
% = —
1
en T Bo O
Xy Jra
, B =
<2 2
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Reduction of dynamical singularities, some issues

When consider dynamical systems, we have X =Y, and we require 7 = @
in order to have a dynamical system f; acting on X.

o We create indeterminacy points (set Ind(f;)).

@ Indeterminacies cannot be eliminated dynamically.

Hope: We can avoid them with large iterates: algebraically stable models.

Xm fr
F 1
@, /\ o S a
¢z /Eo\gio Eo O P
Xy fra
, B %
el Er

Matteo Ruggiero
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Motivations

@ The sequence (¢,)n and co are local analogous of global concepts.
They are invariants of conjugacy.

@ Algebraic stability and related results give more insights on the subtle
dynamical properties.
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@ The sequence (¢,)n and co are local analogous of global concepts.
They are invariants of conjugacy.

@ Algebraic stability and related results give more insights on the subtle
dynamical properties.

About global dynamical degrees

@ Existence and first properties RUSSAKOVSKII-SHIFFMAN DINH-STBONY
, TRUONG, DANG; KHOVANSKII-TEISSIER .

@ They estimate entropy GROMOV-YOMDIN, DINH-SIBONY .

@ Arithmetic properties BranNc, CANTAT, XIE.
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Motivations

@ The sequence (¢,)n and co are local analogous of global concepts.
They are invariants of conjugacy.

@ Algebraic stability and related results give more insights on the subtle
dynamical properties.

About global dynamical degrees

@ Existence and first properties RUSSAKOVSKII-SHIFFMAN DINH-STBONY
, TRUONG, DANG; KHOVANSKII-TEISSIER .

@ They estimate entropy GROMOV-YOMDIN, DINH-SIBONY .
@ Arithmetic properties BranNc, CANTAT, XIE.
About algebraic stability

@ Introduced by FoORrRNAESs-SIBONY . Allows control to construct
invariant objects.

@ Existence results: BEDFORD,CANTAT,DANG,DILLER,
FAVRE,JONSSON,LIN, TRUONG, WULCAN .
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Valuation spaces

(Divisorial) valuations encode exceptional primes in X for any
modification 7: X; — (X, z¢), up to natural identifications.
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Valuation spaces

(Divisorial) valuations encode exceptional primes in X for any
modification 7: X; — (X, z¢), up to natural identifications.

@ Set of all valuations: Zariski-Riemann space ZR(X, xy).
Main tool in Zariski's approach to resolution of singularities.
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modification 7: X; — (X, z¢), up to natural identifications.

@ Set of all valuations: Zariski-Riemann space ZR(X, xo).
Main tool in Zariski's approach to resolution of singularities.

@ Rank 1 semi-valuations: V.
Link with Berkovich spaces ( BErRkOvICH ).
Use in dynamics initiated by FAVRE-JONSSON .
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Valuation spaces
(Divisorial) valuations encode exceptional primes in X for any
modification 7: X; — (X, z¢), up to natural identifications.

@ Set of all valuations: Zariski-Riemann space ZR(X, xy).
Main tool in Zariski's approach to resolution of singularities.

@ Rank 1 semi-valuations: V.
Link with Berkovich spaces ( BErkovich ).
Use in dynamics initiated by FAVRE-JONSSON .

Related objects and applications
o Farey blowups HUBBARD-PAPADOPOL ;

@ Picard-Manin space MANIN to study the Cremona group ( CANTAT,
BrLanc, DESERTI, LAMY, etc.).

@ Hybrid spaces BERKOVICH : used to study degenerations
BoucksoM-JONSSON, DUJARDIN-FAVRE ;
@ Applications to K-stability Cur L1, CHENYANG XU, BLUM.
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Valuative dynamics

Application of valuation spaces to study the dynamics of f: (X, zg) f):
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Application of valuation spaces to study the dynamics of f: (X, zg) f):

@ Vy encodes exceptional primes, infinitely-near points, strict
transforms of irreducible curves of any possible modification.
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Valuative dynamics

Application of valuation spaces to study the dynamics of f: (X, zg) f):

@ Vy encodes exceptional primes, infinitely-near points, strict

transforms of irreducible curves of any possible modification.

@ f induces an action fo: Vy 5 which encodes the maps f; : wa».

Vytas

e

I/ E2 Uy
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Valuative dynamics

Application of valuation spaces to study the dynamics of f: (X, zg) f}:

@ Vy encodes exceptional primes, infinitely-near points, strict

transforms of irreducible curves of any possible modification.

@ f induces an action fo: Vy f) which encodes the maps f; : Xﬂf».

@ Dynamical properties of f, translates to existence of special models
X, where we can control the dynamics of f7r
Vytad
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Valuative dynamics

Application of valuation spaces to study the dynamics of f: (X, zg) f}:

@ Vy encodes exceptional primes, infinitely-near points, strict

transforms of irreducible curves of any possible modification.

@ f induces an action fo: Vy f) which encodes the maps f; : X,Tf».

@ Dynamical properties of f, translates to existence of special models
X, where we can control the dynamics of f7r
Vytad

Global dynamics . FAVRE, JONSSON, BoucksoM, XIE, DANG, ABBOUD .
Local dynamics : FAVRE, JONSSON, R., GIGNAC.
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© Valuation spaces
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Modifications and resolutions of singularities

(X, z¢) normal surface singularity,
(Ox,my) its associated local ring.

Definition

@ A modification is a proper bimeromorphic map
m: Xz — (X, z0), which is an isomorphism
outside of the exceptional divisor

Er =7 1(xo).

X
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Modifications and resolutions of singularities

(X, z¢) normal surface singularity,
(Ox,mx) its associated local ring.
Definition
@ A modification is a proper bimeromorphic map
m: Xz — (X, z0), which is an isomorphism
outside of the exceptional divisor
Er =1 1(x0).
e A modification 7: X, — (X, xo) is
> a resolution if X is non-singular; l”’

» a good resolution if moreover E, is a SNC
divisor;

> a log-resolution of mx the maximal ideal if X
m*mx = Ox, (— Y bgE) is locally principal.

Matteo Ruggiero Dynamical singularities 25 /43




Modifications and resolutions of singularities

(X, z¢) normal surface singularity,
(Ox,mx) its associated local ring.

Definition

@ A modification is a proper bimeromorphic map
7: X — (X, ), which is an isomorphism
outside of the exceptional divisor

Er =1 1(x0).

e A modification 7: X, — (X, xo) is
> a resolution if X is non-singular;

X/

ﬂ',
» a good resolution if moreover E, is a SNC T
divisor;

> a log-resolution of mx the maximal ideal if X
m*mx = Ox, (— Y bgE) is locally principal.

@ Another modification 7’ dominates 7 if
alon': X — X, is regular.
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Valuations

Definition

A (normalized rank-1 semi-)valuation on (X, zg) is a map

v: Ox — [0,400] such that:
o v(¢y) = v(9) +v(¥),

o v(¢+¢) > min{r(e), v(4)},
e v(0) = 400, ¥(C*) =0, v(mx) = 1.

The set of all valuations is denoted by V.

Matteo Ruggiero
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Valuations

Definition
A (normalized rank-1 semi-)valuation on (X, z) is a map
v: Ox — [0,400] such that:
o v(¢y) = v(¢) +v(¥),
o v(¢+1¢) = min{v(),v(¥)},
e v(0) = +oo, ¥»(C*) =0, v(mx) = 1.
The set of all valuations is denoted by V.

e divisorial valuation: vg(¢) = LEordE(gZ)o ), m: Xz — (X, x0)
modification, F € "% exceptional prime. Notice that vy = v if F’
is the strict transform of E by a modification.

Matteo Ruggiero Dynamical singularities 26 / 43



Valuations

Definition
A (normalized rank-1 semi-)valuation on (X, z) is a map
v: Ox — [0,400] such that:
o v(¢y) = v(¢) +v(¥),
o v(¢+1¢) = min{v(),v(¥)},
e v(0) = +oo, ¥»(C*) =0, v(mx) = 1.
The set of all valuations is denoted by V.

e divisorial valuation: vg(¢) = LEordE(gZ)o ), m: Xz — (X, x0)
modification, F € "% exceptional prime. Notice that vy = v if F’
is the strict transform of E by a modification.

e curve (semi-)valuation: vo(¢) = ﬁC’- (¢ =0), C irreducible curve.
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Valuations

Definition
A (normalized rank-1 semi-)valuation on (X, z) is a map
v: Ox — [0,400] such that:
o v(¢y) = v(¢) +v(¥),
o v(¢+1¢) = min{v(),v(¥)},
e v(0) = +oo, ¥»(C*) =0, v(mx) = 1.
The set of all valuations is denoted by V.

e divisorial valuation: vg(¢) = LEordE(gZ)o ), m: Xz — (X, x0)
modification, F € "% exceptional prime. Notice that vy = v if F’
is the strict transform of E by a modification.

e curve (semi-)valuation: vo(¢) = ﬁC’- (¢ =0), C irreducible curve.

Other two types: irrational and infinitely singular.
These are points of type Il, I, lIl, IV in the sense of BERKOVICH.
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Dual graphs and divisors

Let m: X; — (X, z0) be a log-resolution of my.
The vector space of real exceptional divisors &(m)g
is endowed with a negative definite intersection form
( GRAUERT ). In particular, to any exceptional prime
E € &(m)R is associated its dual divisor E.
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Dual graphs and divisors

Let m: X; — (X, z0) be a log-resolution of my.
The vector space of real exceptional divisors &(m)g
is endowed with a negative definite intersection form
( GRAUERT ). In particular, to any exceptional prime

E € &(m)R is associated its dual divisor E. Xn
We realize the dual graph T'; of 7 inside £(m)g, as
follows:
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Dual graphs and divisors

Let m: X; — (X, z0) be a log-resolution of my.
The vector space of real exceptional divisors &(m)g
is endowed with a negative definite intersection form
( GRAUERT ). In particular, to any exceptional prime
E € &(m)R is associated its dual divisor E.

We realize the dual graph T'; of 7 inside £(m)g, as
follows:

@ vertices: to each exceptional primes E of w, we

Xn

E
associate Z(vg) := o € E(m)R.
E
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Dual graphs and divisors
Let m: X; — (X, z0) be a log-resolution of my.
The vector space of real exceptional divisors &(m)g
is endowed with a negative definite intersection form
( GRAUERT ). In particular, to any exceptional prime
E € &(m)r is associated its dual divisor E.
We realize the dual graph T'; of 7 inside £(m)g, as
follows:

@ vertices: to each exceptional primes E of w, we

E
associate Z(vg) := o € E(m)R.
E

@ edges: to any intersection point in £ I we
E F]

et the segment | —, —
g gmen |:bE7bF
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Dual graphs and divisors

Let m: X; — (X, z0) be a log-resolution of my.
The vector space of real exceptional divisors &(m)g
is endowed with a negative definite intersection form
( GRAUERT ). In particular, to any exceptional prime
E € &(m)R is associated its dual divisor E.

We realize the dual graph T'; of 7 inside £(m)g, as
follows:

@ vertices: to each exceptional primes E of 7, we
. E
associate Z(vg) := o € E(m)R.
E
@ edges: to any intersection point in £ I we
E F
get the segment | —, —|.
bg br

We obtain a graph I'y — &(7)g.
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Valuations and b-divisors

X D E'
ln

| X: O E

(X7x0)

=] = = = DA
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Valuations and b-divisors

Xuv D E' ZF/(VE/) = H*Zﬂ(VE) el /—— 5(71")]1{
lﬁ lﬁ* ln*
o X, DO F Zﬂ-(VE) el',“—— 5(7‘(’)R
(X7 :Uo)
Dynamical singularities 28 / 43
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Valuations and b-divisors

X D E Zw(ve) =n"Zz(vg) €lp——E&()r

ln ln* ln*

o Xe D FE Z:(VE) el,——=&(m)r
) | A

(X, 20) Zvs) = (Zelvp)), €lmDycsbE(X)

e To any v € Vy is associated Z(v) the b-divisor (in the sense of
SHOKUROV ): if 7/ = won, then N Z (v) = Z,(v).
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Valuations and b-divisors

Xy D FE Zw(ve) =n"Zz(vg) €lp——E&()r

ln ln* ln*

o Xe D FE Z:(vE) el,——=&(m)r
) | A

(X, 20) Zvs) = (Zelvp)), €lmDycsbE(X)

e To any v € Vy is associated Z(v) the b-divisor (in the sense of
SHOKUROV ): if 7/ = won, then N Z (v) = Z,(v).
o We have Vy ~1limI'; D lim 'y ~ VY.
i
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Valuation spaces

Vx

b
'.'I'.%‘
e da

]
-]
]

P

o (w1 =
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Valuation spaces

@ The dual graph of a good
resolution 7 reads into V.
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Valuation spaces

@ The dual graph of a good
resolution 7 reads into V.

@ The vertices correspond to the
set of divisorial valuations
Sti={vp | ECn (z0)}.
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Valuation spaces

@ The dual graph of a good
resolution 7 reads into V.

@ The vertices correspond to the
set of divisorial valuations
Sti={vp | ECm Yz}

@ There is a 1-to-1 correspondence
betweeen closed point
p € m1(xp) and connected
components Ur(p) of Vy \ Si.
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Valuation spaces

@ The dual graph of a good
resolution 7 reads into V.

@ The vertices correspond to the
set of divisorial valuations
Sti={vp | ECm Yz}

@ There is a 1-to-1 correspondence
betweeen closed point
p € m1(xp) and connected
components Ur(p) of Vy \ Si.

@ Topology: the weakest for which v — v(¢) is continuous V¢ € @X.
Equivalently, generated by connected components (in the sense of
graphs) of complements of finite sets.
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Intersection theory of valuations

The negative-definite intersection form on £(7) induces a (extended)
scalar product on Vy:

(0.t) = =2(0) - Zs) = sup ~Za(v) - Ze(0) € (0, +c].
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Intersection theory of valuations

The negative-definite intersection form on £(7) induces a (extended)
scalar product on Vy:

(o) = —2(v) - Z(p) = sup = Zx(v) - Zn(p) € (0, +oc].

Theorem ( Gianac-R., Key technical result)

Let (X, x0) be a normal surface singularity. Let v, ji1, po € V. Then

<V7M1> <V7 M2> < <V7 V> <;U/17/L2> , (*)

with equality if and only if v disconnects j11 and pg in V.

Independently by GARCiABARROSO-GONZALEZPEREZ-POPESCUPAMPU
when Vy is contractible.

Matteo Ruggiero Dynamical singularities 30/ 43




Application to intersection of branches

Definition
Let A € Vy be any valuation. For any v, € Vy, we set
Am) - ve) if 11 # v,

ux(vi,10) = (v1,12)
0 if vVl = Vg.

Proskl If X = (C2,0) then u, is an ultrametric:
if A =ordg, VA, B, C curve branches, we have up to permutation

A-B A-C < B-C

m(A)m(B) — m(A)m(C) = m(B)m(C)’

Matteo Ruggiero Dynamical singularities
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Application to intersection of branches

Definition
Let A € V- be any valuation. For any v1,15 € Vy, we set
Am) - ve) if 11 # v,

ux(vi,10) = (v1,12)
0 if vVl = Vg.

Proskl If X = (C2,0) then u, is an ultrametric:
if A =ordg, VA, B, C curve branches, we have up to permutation

A-B A-C < B-C

m(A)m(B) — m(A)m(C) = m(B)m(C)’

Theorem ( GARCIABARROSO-GONZALEZPEREZ-POPESCUPAMPU-R.. )

The function uy is an (extended) ultrametric for a/any X\ if and only if V

is contractible.

Main tool (¥).
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Plan

@ Valuation dynamics

o (w1 =
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Action induced on Vy

Assume for simplicity that f: (X, z9) —

f*: 6y—> (5}(
¢ = pof

duality,
normalization

\|I\ {\|I hl\ {hl

\|!\ {\|l

AAEEEEEEARAEEEEEEAARARERRRRN

\[ /

[
\m»MMW

\[/

x[r x[r

‘\ ‘
‘Jhl\ ihl [ H\ ’H
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Action induced on Vy

Assume for simplicity that f: (X, z¢) — (Y, o) is finite.

f*: 61/ — 6}(
¢ —gof
duality,

normalization

Je: Vy = Vy c X Y
* f
o O
Vi) 7o)
Vy+ad v
fe
Va
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Action induced on Vy
Assume for simplicity that f: (X, z¢) — (Y, o) is finite.
~ ~ X7\'
f*: Oy — Ox
¢ —gof

duality,

normalization

f.: VX _> VY C

X £ Y
3 O ——
Vo ey @

<)

v 3
y+z v

Vg vE
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Action induced on Vy

Assume for simplicity that f: (X, z¢) — (Y, o) is finite.

f*: 61/ — 6}(
¢ —gof
duality,

normalization

fo: Vx — VY*
vo
Vo Umy)
Vy+ad v
fe
Vg 1250 Vg
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Action induced on Vy

Assume for simplicity that f: (X, z¢) — (Y, o) is finite.

f*: 61/ — 6}(
¢ = gof
duality,
énormalization
fo: Vx — Vy

vof*
Vo i(Fmy)

v 3
y+z v
fe

ATVTN

Vg 1250 Vg
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Action induced on Vy

Assume for simplicity that f: (X, z¢) — (Y, o) is finite.

f*: 6}/—) 6){
¢ = pof

duality,
normalization

()

Properness criterium:
f(p) =a < foUx(p) € Uz(q).
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Action induced on Vy

Assume for simplicity that f: (X, z¢) — (Y, o) is finite.

f*: 6}/—) 6){
¢ = pof

duality,
normalization

()

Properness criterium:
f(p) =a < foUx(p) € Uz(q).
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Eigenvaluations and rigidification

Theorem ( FAVRE-JONSSON )

For any f: (C2,0)0) there exists an eigenvaluation: v, = fev, with an
open Ux(p) in its basin of attraction.

Matteo Ruggiero
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Eigenvaluations and rigidification

Theorem ( FAVRE-JONSSON )

For any f: (C2,0)2) there exists an eigenvaluation: v, = fyv, with an
open Uy (p) in its basin of attraction.

Consequences

o There exists 7: X, — (C2,0), p € 7~ (0), such that fr: (Xr,p) D)
is rigid : C(f°°) is SNC and f-invariant.

@ The first dynamical degree co(f) is a quadratic integer.

@ Existence of Green functions: u psh, u Z —o0, and g o f = cxog.
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Eigenvaluations and rigidification

Theorem ( FAVRE-JONSSON )

For any f: (C2,0)2) there exists an eigenvaluation: v, = fyv, with an
open Uy (p) in its basin of attraction.

Consequences
o There exists 7: X, — (C2,0), p € 7~ (0), such that fr: (Xr,p) D)
is rigid : C(f°°) is SNC and f-invariant.
@ The first dynamical degree co(f) is a quadratic integer.

@ Existence of Green functions: u psh, u Z —o0, and g o f = cxog.

Related works

FAVRE-JONSSON : polynomial endomorphisms of C2.

GIGNAC-R. : local version on surface singularities.

ABBOUD : global version on affine surfaces.

BELL-DILLER-JONSSON +KRIEGER : examples of A1(f) transcendental.
DaNG-FAVRE : higher dimensional results.

Matteo Ruggiero Dynamical singularities 34 /43



Global attraction properties and algebraically stable models
Theorem ( Gienac-R.)

For any superattracting f: (X, xg) f) at a normal surface singularity, there
exists an invariant subset S C Vx (either a point, a segment, or a circle)
that attracts the orbit (f]'v) of any quasimonomial valuation v € V™.
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Global attraction properties and algebraically stable models
Theorem ( Gienac-R.)

For any superattracting f: (X, xg) f) at a normal surface singularity, there
exists an invariant subset S C Vx (either a point, a segment, or a circle)

that attracts the orbit (f]'v) of any quasimonomial valuation v € V™.

Consequences

o There exists 7: X, — (C2,0) such that fr: (Xr,p)7) is
algebraically stable : V E C 77 1(x),Vn > 0, fﬁ( ) & Ind(fr).

@ The sequence c(f™) eventually satisfies a Z-linear recursion relation.
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Global attraction properties and algebraically stable models

Theorem ( Gienac-R.)

For any superattracting f: (X, xg) f) at a normal surface singularity, there
exists an invariant subset S C Vx (either a point, a segment, or a circle)
that attracts the orbit (f]'v) of any quasimonomial valuation v € V™.

Consequences
o There exists 7: X, — (C2,0) such that fr: (Xr,p)7) is
algebraically stable : V E C 77 1(x),Vn > 0, fﬁ( ) & Ind(fr).
@ The sequence c(f™) eventually satisfies a Z-linear recursion relation.

Recent applications: description of “super-stable manifold” for
skew-products, in relation with DMM problem DURJARDIN-FAVRE-R .
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Global attraction properties and algebraically stable models

Theorem ( Gienac-R.)

For any superattracting f: (X, xg) f) at a normal surface singularity, there
exists an invariant subset S C Vx (either a point, a segment, or a circle)
that attracts the orbit (f]'v) of any quasimonomial valuation v € V™.

Consequences

o There exists 7: X — (C2,0) such that fr: (X;,p) ) is

algebraically stable : V E C 7= 1(xq),V¥n > 0, fﬁ( ) & Ind(fr).

@ The sequence c(f™) eventually satisfies a Z-linear recursion relation.
Recent applications: description of “super-stable manifold” for
skew-products, in relation with DMM problem DURJARDIN-FAVRE-R .
Notable exception
S is a circle, fo|s is an irrational rotation = (X, xg) is a cusp singularity,

f is a finite germ.
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Angular distance

Definition ( Gianac-R. )

The angular distance on Vy is given by

(v, v) {us 1)

px (v, p) == log 3
(v, 1)

This is an extended distance, that takes finite values on V{".
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Angular distance

Definition ( Gienac-R.)

The angular distance on Vy is given by

(v, v) {us 1)

px (v, p) == log 3
(v, 1)

This is an extended distance, that takes finite values on V{".
It plays the role of the Poincaré distance on valuation spaces.

Theorem ( Gienac-R.)
For any dominant map f: (X, xy) — (Y, yo), we have

py (fov, fopr) < px (v, ).

Using (% ): characterize the case of equality.
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Non-finite vs finite

Dichotomy:

@ Suppose f is non-finite. Then f, is a weak contraction:

Y #pe VY, px(fev, fop) < px (v, ).

In this case: construct an eigenvaluation v, by fixed point theorems.
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Non-finite vs finite

Dichotomy:

@ Suppose f is non-finite. Then f, is a weak contraction:

Y #pe VY, px(fev, fop) < px (v, ).

In this case: construct an eigenvaluation v, by fixed point theorems.

@ Suppose f is finite. 'WaHL: (X, zg) is log-canonical:
(X, w0) = (Ys90)/, G finite group, (Y, 1) is:

regular cusp simple elliptic

(C2,0) Yo Y,

We conclude case by case.
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Plan

© Dynamical symmetries
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Singularities admitting special endomorphisms

(X, o) singularity.
X
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Singularities admitting special endomorphisms
(X, o) singularity.

Xr .
m: Xz — (X, o) resolution.

|
iG,
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Singularities admitting special endomorphisms

(X, o) singularity.

m: Xz — (X, o) resolution.
pr: (X7 5170) — ((CNao) - (((2270)
generic projection.

X

y
X pr C2
\
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Singularities admitting special endomorphisms

(X, o) singularity.

m: Xz — (X, o) resolution.
pr: (X7 5170) — ((CNao) - (((2270)
generic projection.

X

f:ﬂoaopr(X,wg)f].
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a(C%,0) — (X, p) with p € 7 (xo).
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Singularities admitting special endomorphisms

(X, o) singularity.

m: Xz — (X, o) resolution.
pr: (X, zg) — (CV,0) — (C2,0)
generic projection.

X

f:ﬂoaopr(X,xg)f].
@ f contracts curves to 0.

&'A‘ 2
G

o Finite endomorphisms 2D WaHL, FAVRE, GIaNAcC-R.
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Singularities admitting special endomorphisms

(X, o) singularity.

m: Xz — (X, o) resolution.

pr: (X,z9) < (CN,0) — (C2,0)
generic projection.

a(C%,0) — (X, p) with p € 7 (xo).
f:ﬂoaopr(X,xg)f].

X

@ f contracts curves to 0.

&'A‘ 2
G

@ Finite endomorphisms 2D WaHL, FavRe, GIGNAC-R.
>3D BoucksoM-DE FERNEX-FAVRE, BROUSTET-HORING, ZHANG .
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Singularities admitting special endomorphisms

(X, o) singularity.

m: Xz — (X, o) resolution.

pr: (X,z9) < (CN,0) — (C2,0)
generic projection.

a(C%,0) — (X, p) with p € 7 (xo).
f:ﬂoaopr(X,xg)f].

X

@ f contracts curves to 0.

@ f has large topological degree.

&'A‘ 2
G

@ Finite endomorphisms 2D WaHL, FavRE, GIGNAC-R.
>3D BoucksoM-DE FERNEX-FAVRE, BROUSTET-HORING, ZHANG .

o Topological degree 1 FANTINI-FAVRE-R. .
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.

Sandwiched singularities SpivAKOVSKY

e w:Y' — Y = (C?0) modification;

™
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.

Sandwiched singularities SpivAKOVSKY

e w:Y' — Y = (C?0) modification;

@ D connected exceptional divisor;

O,
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.

Sandwiched singularities SpivAKOVSKY
e w:Y' =Y = (C?%0) modification;
@ D connected exceptional divisor;

@ i : Y — X contraction of D.
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.

Sandwiched singularities SpivAKOVSKY
e w:Y' =Y = (C?%0) modification;
@ D connected exceptional divisor;
@ i : Y — X contraction of D.
Strategy

o f=moo, m: X' — (X,x0)
modification, o local isomorphism.

x/

X@Jf
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.

Sandwiched singularities SpivAKOVSKY

e w:Y' — Y = (C?0) modification;

X/
@ D connected exceptional divisor;
e 4 :Y’' — X contraction of D. S
Strategy - \?\
o f=moo, m: X' — (X,x0) i \@Z
modification, o local isomorphism. £
e Does (X', z1) dominate a given * Y

w: Z — (X, xq) resolution?
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Kato germs and sandwiched singularities

Theorem ( FANTINI-FAVRE-R. )

A normal surface singularity (X, z¢) admits a non-invertible selfmap of
topological degree 1 <= (X, x¢) is sandwiched.

Sandwiched singularities SpivAKOVSKY

e w:Y' — Y = (C?0) modification;

x@
@ D connected exceptional divisor;
e 4 :Y’' — X contraction of D. e
Strategy o | @ T~
o f=moo, m: X' — (X,x0) *@Z
modification, o local isomorphism. /
e Does (X', z1) dominate a given * Yy r?

w: Z — (X, xq) resolution?
@ Yes, if we replace f by f*, n > 0.
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Singularities admitting contracting automorphisms

(X, o) singularity.
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Singularities admitting contracting automorphisms

(X, o) singularity.

There exists (infinitely many, pairwise non
commuting) singular vector fields y tan-
gent to X ( MULLER ).

Its time-1 flow map defines an automor-

phism f: (X, z0) ).
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Singularities admitting contracting automorphisms

7S egr /]
Tohi
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Theorem ( FAvre-R. )

(X, o) singularity.
There exists (infinitely many, pairwise non
commuting) singular vector fields y tan-
gent to X ( MULLER ).
Its time-1 flow map defines an automor-
phism f: (X, z0) ).

@ Usually, x has high order at 0, and

f is tangent to idx.

A normal surface singularity (X, xo) admits a contracting automorphism

< (X, x) is quasihomogeneous.
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Singularities admitting contracting automorphisms

//// o/
j///

\‘\X’ \\“\

Theorem ( FAvre-R. )

(X, o) singularity.
There exists (infinitely many, pairwise non
commuting) singular vector fields y tan-
gent to X ( MULLER ).
Its time-1 flow map defines an automor-
phism f: (X, z0) ).

@ Usually, x has high order at 0, and

f is tangent to idx.

A normal surface singularity (X, xo) admits a contracting automorphism
< (X, x) is quasihomogeneous.

Related results: ORLIK-VAGREICH, CAMACHO-MOVASATI-SCARDUA ,

FAVRE-R., MORVAN.
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