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Abstract. We introduce and study a special class of Kato manifolds, which we call toric
Kato manifolds. Their construction stems from toric geometry, as their universal covers
are open subsets of toric algebraic varieties of non-finite type. This generalizes previous
constructions of Tsuchihashi and Oda, and in complex dimension 2, retrieves the properly
blown-up Inoue surfaces. We study the topological and analytical properties of toric Kato
manifolds and link certain invariants to natural combinatorial data coming from the toric
construction. Moreover, we produce families of flat degenerations of any toric Kato manifold,
which serve as an essential tool in computing their Hodge numbers. In the last part, we
study the Hermitian geometry of Kato manifolds. We give a characterization result for the
existence of locally conformally Kähler metrics on any Kato manifold. Finally, we prove that
no Kato manifold carries balanced metrics and that a large class of toric Kato manifolds of
complex dimension ≥ 3 do not support pluriclosed metrics.

1. Introduction

Kato manifolds are compact complex manifolds of non-Kähler type and were introduced by
M. Kato in 1977 [Kat77] as manifolds containing a global spherical shell. More specifically, he
showed that any such manifold, which we shall call henceforth a Kato manifold, is constructed
in the following way. Let π : B̂→ B be a modification of the standard unit ball in Cn at finitely
many points and let σ : B ↪→ B̂ be a holomorphic embedding. Glue small neighborhoods of
the two boundary components of B̂ \ σ(B) via the local biholomorphism σ ◦ π. The resulting
manifold X(π, σ) is a compact complex manifold with infinite cyclic fundamental group. The
couple (π, σ) is referred to as a Kato data.

A Kato manifold has an associated germ given by F := π ◦ σ : (Cn, 0) → (Cn, 0). Many
of its properties are encoded in F , however the germ alone does not fully characterize the
manifold, unless the complex dimension is 2. This comes from the fact that for n = 2, any
modification is a sequence of blow-ups at points, while in higher dimension modifications
can be much more complicated. As a result, Kato surfaces are much studied and fairly well
understood (see for instance [Nak84], [Dlo84], [DOT03],[Tel05], [FP10] etc.), while in higher
dimension very little is known.

One main motivation for studying Kato manifolds comes from the fact that a big part
of them carry locally conformally Kähler metrics, but no Vaisman metrics [Bru11], [IOP20].
They constitute therefore an immense source of manifolds where one can study the interplay
between the existence of special Hermitian metrics and different geometric and cohomological
properties.

In [IOP20] we considered the simplest class of Kato manifolds, which corresponds to the
case when π : B̂ → B is given by successive blow-ups at special points and σ is a standard
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chart of a blow-up. We studied several of their analytical invariants, but did not have the
tools to compute any Hodge number.

In the present paper, we introduce a much more general class, the toric Kato manifolds.
They are determined by a toric Kato data, namely a smooth toric modification π : Ĉn → Cn at
0 and a chart σ : Cn → Ĉn satisfying a natural (C∗)n-equivariance property. The corresponding
germ has the form
(1.1) F (z) = Fλ,A(z) := λzA = (λ1z

a11
1 · · · za1n

n , . . . , λnz
an1
1 · · · zannn )

where λ = (λ1, . . . , λn) ∈ (C∗)n and A = (ajk) ∈ GL(n,Z).
Starting from the fan of Ĉn, viewed as a toric variety, and the embedding σ, we construct

a natural infinite fan ΣA endowed with a Z-action. Then using the germ F , we define a
Z-invariant open set in the toric variety of non-finite type X̃λ,A ⊂ X(ΣA,Zn). Our starting
point is the following description of toric Kato manifolds (see Theorem 4.2 for a more precise
statement).

Theorem 1.1: If X is any toric Kato manifold with germ Fλ,A, then we have a biholomor-
phism:

X ∼= X̃λ,A/Z.

This second point of view of toric Kato manifolds generalizes the toric description of Inoue
surfaces given by Oda [Oda78, Section 14], and a construction given by Tsuchihashi in [Tsu87]
of a class of non-Kähler manifolds with infinite cyclic fundamental group. It allows for a better
conceptual understanding of our manifolds, and in particular unveils new ways for computing
different invariants using classical techniques from toric geometry.

For instance, denoting by aj the number of j-dimensional cones of the fan of Ĉn, we have
the following (see Theorem 6.1).

Theorem 1.2: The n-dimensional toric Kato manifold X has the following Betti numbers:
b0(X) = b1(X) = b2n−1(X) = b2n(X) = 1

b2j+1(X) = 0, 1 ≤ j ≤ n− 2

b2j(X) = −1 +
n∑
s=j

(−1)s−j
(
s

j

)(
an−s +

(
n

s+ 1

))
, 1 ≤ j ≤ n− 1.

The matrix A in (1.1) has only non-negative coefficients. Consider the maximal sub-matrix
P of A which is a permutation matrix. When P = A, the resulting toric Kato manifold is a
primary Hopf manifold. When P ∈ GL(n − 1,Z), the universal cover of the corresponding
toric Kato manifold X is all of X(ΣA,Zn), and we call X of parabolic type. In all the
other cases, X̃ is a proper subset of X(ΣA,Zn) and we call X of hyperbolic type. Imitating
Nakamura’s classification of Inoue surfaces [Nak84] in terms of curves, we have the following
characterization (see Theorem 5.2).

Theorem 1.3: Let X be a toric Kato manifold.
(1) X is a primary Hopf manifold if and only if any of its (C∗)n-invariant curves is

elliptic;
(2) X is of hyperbolic type if and only if any (C∗)n-invariant curve is rational;
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(3) X is of parabolic type if and only if X contains a unique (C∗)n-invariant elliptic curve,
and at least one rational (C∗)n-invariant curve.

Concerning analytic invariants, we determine explicitly the canonical line bundle in terms
of the maximal toric divisor and show that the Kodaira dimension of any toric Kato manifold
is negative (Proposition 5.7). Also, we compute several Hodge numbers (see Proposition 8.4,
Theorem 8.5 and Theorem 8.8).

Theorem 1.4: Let X be a toric Kato manifold with divisor D induced by the exceptional
divisor of π. Then one has H0(X,Ωp

X) = 0 for any p ≥ 1. If moreover X is of hyperbolic type,
then one has:

h0,0(X) = h0,1(X) = 1, h0,p(X) = 0, p ≥ 2
h1,p(X) = 0, p 6= 1

h1,1(X) = b2 = ]{irreducible components of D} > 0.

We note that the primary Hopf manifolds have the same Hodge numbers as above, and
that our proof also works for parabolic type manifolds with |λ| small enough (see Remark
8.9). In particular, for all these cases one has bk =

∑
p+q=k h

p,q for k ≤ 2. We suspect that all
Kato manifolds should have the Hodge numbers of the above theorem, however showing this is
beyond our means since much of our proof is based on the toric description of our manifolds.

A main tool for computing the Hodge numbers of toric Kato manifolds is developed in
Section 7, where we exhibit two different types of flat toric degenerations of toric Kato
manifolds. The first one generalizes a previous construction of Nakamura [Nak83] for surfaces.
In this case we deform, in a smooth family, any toric Kato manifold to a singular space
obtained by identifying two invariant hypersurfaces on a smooth compact toric variety. The
second type of degeneration exists only in the hyperbolic case and extends a construction given
by Tsuchihashi in [Tsu87]. In this case, the singular fiber is again given by the identification
of two invariant hypersurfaces in a compact, possibly singular, toric variety. A special feature
of this second family consists in the fact that all the smooth fibers are biholomorphic.

Finally, guided by the general principle of finding special Hermitian metrics on complex
manifolds of non-Kähler type, we investigate the case of Kato manifolds. Special Hermitian
metrics usually arise by imposing some power of the fundamental form Ω to be in the kernel
of some differential operator. The existence of such metrics is far from being guaranteed on a
generic compact complex manifold. As a consequence, constant effort has been put to find new
specific examples and to unravel the different restrictions that the existence of such metrics
might impose.

In this direction, our first result consists in a characterization for the existence of locally
conformally Kähler (lcK) metrics (see Theorem 10.3).

Theorem 1.5: Let (π : B̂ → B, σ : B → B̂) be a Kato data and let X = X(π, σ) be the
corresponding Kato manifold. The following are equivalent:

(1) X admits a locally conformally Kähler metric;
(2) X̃ admits a Kähler metric;
(3) B̂n admits a Kähler metric.
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We should note here that in the case of a toric Kato manifold X, although the compact
torus Tn acts on the universal cover X̃, this action never descends to X if X is not Hopf.
Therefore, X is not a toric manifold in any classical sense. On the other hand, if X admits an
lcK metric, then X̃ admits a Kähler metric with respect to which it becomes a toric Kähler
manifold. In this manner, lcK toric Kato manifolds give interesting generalizations of the class
of toric lcK manifolds.

Our last result is concerned with the non-existence of other special Hermitian metrics (see
Section 10 for the definitions, Theorem 10.6 and Theorem 10.8).

Theorem 1.6:

(1) A Kato manifold admits no strongly Gauduchon metric, and in particular no balanced
metric and no Hermitian symplectic metric.

(2) If X is a Kato manifold of dimension n ≥ 3 satisfying H1,2
∂

(X) = 0, then it cannot be
endowed with a pluriclosed metric. In particular, a toric Kato manifold of hyperbolic
type does not admit pluriclosed metrics, unless it is a surface.

The paper is organized as follows. We begin by some necessary preliminaries on Kato
manifolds. The first definition of toric Kato manifolds, together with the elementary but
technical properties of toric Kato data, are given in Section 3. In the next section, we
describe and prove the second characterization of toric Kato manifolds. Next, in Section 5,
we study geometrical properties of toric Kato manifolds, such as the invariant complex
submanifolds, or the different natural divisors. Section 6 is dedicated to the topological
invariants, while Section 8, to the computation of the Hodge numbers. In Section 7, we
describe the degenerations of toric Kato manifolds needed for the next section. In Section 9,
we tackle the problem of the classification of toric Kato manifolds. Finally, Section 10 deals
with the existence of special Hermitian metrics on a general Kato manifold. We conclude the
section with an explicit family of examples of toric Kato manifolds in any complex dimension
n ≥ 4 that do not admit any lcK metrics.

2. Preliminaries on Kato manifolds

In the present paper, a Kato manifold will be a compact complex manifold obtained as
follows [Kat77], [Dlo84]. We let B := {(z1, . . . , zn) ∈ Cn||z1|2 + . . .+ |zn|2 < 1} be the standard
open ball in Cn. Consider a modification at 0 π : B̂ → B and a holomorphic embedding
σ : B ↪→ B̂. Glue the two boundaries of B̂ \ σ(B) via the real analytic CR-diffeomorphism
γ := σ ◦ π. The result is a compact complex manifold X(π, σ), named here a Kato manifold.
Any small neighborhood of the image of ∂B̂ in X(π, σ) is a global spherical shell. We shall
refer to the couple (π, σ) as Kato data and to F := π ◦ σ : (B, 0)→ (B, 0) as the corresponding
germ.

The class of Kato manifolds introduced in [Kat77] is slightly more general, as π is allowed
to be a modification at more than one point, so that the resulting manifolds are proper
modifications of the ones we described above [Dlo84, Lemme 2.7, Part I]. However, for the
present discussion this generality will not make any difference.
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We denote by q : X̃ → X the universal cover of a Kato manifold X = X(π, σ). The deck
group Γ of q is canonically isomorphic to Z, and we will denote also by γ the positive generator
of Γ, which is indeed induced by the map σ ◦ π.

We start by settling several general facts that will be needed in the paper.

Lemma 2.1: Let F : (B, 0) → (B, 0) be a holomorphic germ with F (B) ⊂ B. Then⋂
m∈N F

m(B) = {0}.

Proof. By hypothesis there exists 0 < r < 1 so that F (B) ⊂ Br. By the Schwarz lemma
[Sha92, Theorem 6], we have ||F (z)|| ≤ r||z|| for any z ∈ B, hence ||Fm(z)|| ≤ rm for
any m > 0 and any z ∈ B. This implies that limm→∞ supz∈B ||Fm(z)|| = 0, and hence
diam (

⋂
m∈N F

m(B)) = 0. The conclusion then follows.
Given a map F : (Cn, 0)→ (Cn, 0), define its stable set:

W s(F ) = {z ∈ Cn | lim
m→∞

||Fm(z)|| = 0}.

Lemma 2.2: For any holomorphic map F : (Cn, 0) → (Cn, 0) with F (B) ⊂ B, we have
W s(F ) =

⋃
m∈Z F

m(B), where for m = −k < 0, F−k(B) is the preimage of B via F k.

Proof. The previous lemma shows that B ⊂W s(B). Clearly Fm(B) ⊂W s(F ) for any m > 0
and also for any m < 0. Conversely, if z ∈W s(F ) then there exists m > 0 so that Fm(z) ∈ B,
which shows the desired equality.

Suppose that F : (Cn, 0) → (Cn, 0) is given by a Kato data (π, σ), F = π ◦ σ, so that
π is a modification at 0. For any k > 0, let Hk := F−k(0) so that Hk ⊆ Hk+1 and put
H∞ :=

⋃
k>0Hk. Suppose that H∞ ⊂ Cn is closed – this is the case for instance if H∞ = Hm

for some m > 0. Let us set Inv(F ) := Cn \H∞ and W ∗(F ) := W s(F ) ∩ Inv(F ).

Proposition 2.3: Let F : (Cn, 0)→ (Cn, 0) be a holomorphic map with F (0) = 0 given by a
Kato data (π, σ), F = π◦σ, so that π is a modification at 0 with exceptional divisor E. Suppose
that each component of E induces a compact analytic subset of X(π, σ) and let D be the divisor
obtained by their formal sum. Then we have a biholomorphism X(π, σ) \D ∼= W ∗(F )/〈F 〉.

Proof. By hypothesis, Hm = H∞ for some m > 0. If we put B∗ := B∩ Inv(F ), then by Lemma
2.2 we have W ∗(F ) =

⋃
m∈Z F

m(B∗). Furthermore, by Lemma 2.1, we have:⋃
m∈Z

(
Fm(B∗) \ Fm+1(B∗)

)
=
⋃
m∈Z

Fm(B∗) \
⋂
m∈Z

Fm(B∗) = W ∗(F ).

Now it is clear thatD∩(B̂\σ(B)) = π−1(H∞)∩(B̂\σ(B)) and that π :
(
B̂ \ σ(B)

)
\π−1(H∞)→

B∗ \ F (B∗) establishes a biholomorphism satisfying π ◦ γ = F ◦ π, where γ = σ ◦ π. This
implies in particular that the group 〈F 〉 acts freely and properly on W ∗(F ) and that π induces
the desired isomorphism X(π, σ) \D ∼= W ∗(F )/〈F 〉.

Proposition 2.4: Let (π : B̂ → B, σ : B → B̂) be a Kato data with germ F = π ◦ σ and
let X = X(π, σ) be the corresponding Kato manifold. Then there exists a holomorphic open
embedding ϕ : B̂ \ {σ(0)} → X̃.

Proof. We recall that X̃ =
⊔
m∈ZWm, where Wm = B̂ \ σ(B) for any m ∈ Z and Wm is glued

to Wm+1 via γ = σ ◦ π.
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Let us put, for any l ≥ 1, X̃l :=
⊔

1≤m≤lWm ⊂ X̃. Also, following [IOP20, Section 1],
denote by (πl : B̂(l) → B, σl : B→ B̂(l)) the Kato data obtained by composing (π, σ) with itself
l times. Then it is easy to see that X̃l = B̂(l) \ σl(B).

If we denote by π(l) : B̂(l) → B̂(l−1) the induced map, then using that π(l) ◦ σl = σl−1 ◦ F we
find that π−1

(l) gives an embedding of B̂(l−1) \ σl−1(F (B)) into B̂(l) \ σl(B). Therefore we find
inductively, for any l ≥ 1, open embeddings

ϕl : Ql := B̂ \ σ(F l(B))→ B̂(l) \ σl(B) ⊂ X̃

which satisfy ϕl+1|Ql = ϕl. Now since
⋂
l≥1 F

l(B) = {0} by Lemma 2.1, this means that⋃
l≥1Ql = B̂ \ {σ(0)}, and thus the family {ϕl}l≥1 naturally defines an open embedding

ϕ : B̂ \ {σ(0)} → X̃, which concludes the proof.

3. Toric Kato manifolds

We refer the reader to [Ful93], [Oda78], [Oda88] or any other classical reference for the
theory of toric algebraic varieties. Here, we will only fix notation.

We denote by N := Zn, M := HomZ(N,Z), NR := N ⊗Z R, and

T := N ⊗Z S1 = (S1)n ⊂ TN := N ⊗Z C∗ = (C∗)n.

We recall that any toric algebraic variety X is a TN -equivariant compactification of TN ,
and its algebraic structure is encoded by a fan Σ with support in NR. We write X = X(Σ, N).
Traditionally, Σ is a finite collection of rational cones with some compatibility properties, so
that X is covered by a finite number of affine open sets (Xτ )τ∈Σ. However, in the present
text, the fan Σ is allowed to be infinite, and then X is of non-finite type.

We denote by |Σ| :=
⋃
τ∈Σ τ the support of Σ. We will let Σ(k) ⊂ Σ denote the subset of

k-dimensional cones of Σ. Also, for a collection of vectors vj ∈ NR, j ∈ J , we will denote by
〈vj | j ∈ J〉 := ⊕j∈JR≥0vj the cone generated by it.

Given a cone τ ∈ Σ(k), we recall the notation τ̌ := {l ∈ MR | 〈l, v〉 ≥ 0 ∀v ∈ τ}, which is
a k-codimensional cone in MR, τ⊥ := {l ∈MR | 〈l, v〉 = 0 ∀v ∈ τ}, which is a face of τ̌ , and
Sτ := τ̌ ∩M . Then one has

Xτ = SpecC[Sτ ] = Homu.s.g.(Sτ ,C)

where u.s.g. stands for unit semi-groups. We also recall [Oda78, Theorem 4.2] that there
exists a one-to-one correspondence between cones τ ∈ Σ and TN -orbits on X(Σ, N), given by
orb τ = Homgr.(τ⊥ ∩M,C∗), so that dim τ = codim orb τ .

Finally, the map
ord : C→ R ∪ {∞}, z 7→ − log |z|

restricts to a group homomorphism from C∗ onto R, and induces a surjective map of fiber T

ord : TN → NR.

3.1. Toric Kato data. We let z = (z1, . . . , zn) denote the standard holomorphic coordinates
on Cn. In all that follows, Cn is viewed as a toric variety with the standard action of TN . We
will denote an element of the complex torus by λ = (λ1, . . . , λn) ∈ TN , and for a toric variety
X and x ∈ X, we simply write λx to denote the action of λ on x.
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We will call a proper modification π : Ĉn → Cn at 0 ∈ Cn a toric modification if Ĉn is a
TN -toric variety and π is TN -equivariant.

Definition 3.1: A Kato data (π : B̂ → B, σ : B → B̂) is called a toric Kato data if the
extension π : Ĉn → Cn is a smooth toric modification at 0 and there exists ν ∈ Autgr.(TN ) so
that σ(λz) = ν(λ)σ(z) for any z ∈ B and λ ∈ TN for which this is defined. In this case, we
say that σ is ν-equivariant. A Kato manifold will be called a toric Kato manifold if it admits
a toric Kato data.

Let π : Ĉn → Cn be a toric modification at 0, let Σ be the fan of Cn and let Σ̂ be the fan of
Ĉn. Note that Σ̂ is uniquely determined by π|π−1(B). Then |Σ̂| = |Σ| = (R≥0)n =: C0 [Oda88].
Moreover, since π is a biholomorphism outside 0, it follows that

(3.1) |Σ̂(1) \ Σ(1)| ⊂ Int|Σ|

i.e. each new ray of Σ̂ has only positive components. Conversely, any finite refinement with
regular cones Σ̂ of Σ satisfying (3.1) defines a toric modification of Cn at 0.

For every cone τ ∈ Σ̂(n), there exists a unique Z-basis of N eτ := {eτ1 , . . . , eτn}, such that
〈eτj 〉 ≺ τ , j = 1, . . . , n. If f τ := {f τ1 , . . . , f τn} is the corresponding dual basis of M , then the
map

(3.2) Sτ =
{ n∑
j=1

ujf
τ
j | u1 . . . , un ∈ N

}
→ N〈e∗1, . . . , e∗n〉,

n∑
j=1

ujf
τ
j 7→

n∑
j=1

uje
∗
j

gives rise to a holomorphic chart

ϕτ : Cn = SpecC[e∗1, . . . , e∗n]→ SpecC[Sτ ] ⊂ Ĉn.

This chart is uniquely determined up to composing with a permutation of the coordinates. In
what follows, we will call such a chart a toric chart.

Express the vectors of eτ in the standard basis e1, . . . , en ofN , and put Aτ :=
(
eτ1 · · · eτn

)
∈

GL(n,Z). Then Aτ completely determines the chart ϕτ , so we will also use the notation
ϕτ = ϕAτ . Note that since τ ⊂ C0, Aτ has only non-negative coefficients. Since Aτ = (akl)k,l
satisfies

e∗j =
n∑
k=1

ajkf
τ
k , 1 ≤ j ≤ n

it follows that the map π ◦ ϕτ : Cn → Cn, which is induced by

N〈e∗1, . . . , e∗n〉 → N〈e∗1, . . . , e∗n〉, e∗j 7→
n∑
k=1

ajke
∗
k

satisfies

(3.3) π ◦ ϕτ (z) = zAτ := (za11
1 · · · za1n

n , . . . , zan1
1 · · · zannn ), z ∈ Cn.

Using the equivariance of π, we immediately infer the equivariance relation:

(3.4) ϕτ (λz) = λAτϕτ (z), ∀λ ∈ TN .
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Any other toric chart ϕ′τ for Xτ is given by ϕ′τ = ϕτ ◦ ŝ, where s ∈ Sn is a permutation and
ŝ(z) = (zs(1), . . . , zs(n)) = zPs , with Ps =

(
es(1) · · · es(n)

)T
. Then the corresponding matrix

for ϕ′τ is given by A′τ = AτPs.

Lemma 3.2: Let (π, σ) be a toric Kato data. Let Σ̂ be the fan determined by π, and let
τ ∈ Σ̂(n) be the cone representing the TN -fixed point σ(0) ∈ B̂. Then there exists λ0 ∈ TN and
a toric chart ϕA : Cn → Xτ so that σ = λ0 ◦ ϕA. In particular, the germ F := π ◦ σ satisfies
F (z) = Fλ0,A

(z) := λ0z
A for all z ∈ Cn.

Proof. Note that Autgr.(TN ) ∼= AutZ(N) ∼= GL(n,Z), and a matrix A determines the group
automorphism λ 7→ λA. Hence, by hypothesis, there exists A ∈ GL(n,Z) so that σ(λz) =
λAσ(z), for all λ ∈ TN and z ∈ B for which this is defined.

Let B ∈ GL(n,Z) be a matrix giving a toric chart ϕB : Cn → Xτ . Then f := ϕ−1
B ◦ σ : B→

Cn is a biholomorphism onto its image, and it satisfies, for any λ ∈ TN ∩ B:

f(λ) = f(λ1(λλ−1
1 )) = ϕ−1

B (λAλ−A1 σ(λ1)) = λB
−1Aλ−B

−1A
1 f(λ1)

where λ1 is some fixed element from TN ∩ B. Thus, putting λ2 := λ−B
−1A

1 f(λ1) ∈ TN , we find
that f(z) = λ2z

B−1A on B. Now since f has an holomorphic inverse, it is easy to check that
B−1A is a permutation matrix Ps for some s ∈ Sn. Therefore A = BPs is a toric matrix and
σ = λ0 ◦ ϕA for λ0 := λB2 , as expected.

Lemma 3.3: If (π, σ) is a toric Kato data with germ Fλ0,A
and d > 1 is a natural number,

then there exist a toric Kato data (πd, σd) naturally associated to (π, σ), with corresponding
germ F dλ0,A

. Moreover, X(πd, σd) is a cyclic unramified covering of X(π, σ) of degree d.

Proof. The Kato data (πd, σd) is obtained by composing (π, σ) with itself d times, as it was
described in [IOP20, Section 1], so that the resulting germ is the d-th power of the initial one.
From the construction, it is clear that the resulting Kato data is again toric, and that the fan
corresponding to πd is given by

Σ̂d := {Akτ | 0 ≤ k ≤ d− 1, τ ∈ Σ̂0} ∪ {Ad−1τA}

where Σ̂0 := Σ̂ \ {τA}, with Σ̂ the fan of π and τA ∈ Σ̂(n) the cone representing σ(0).
Furthermore, by [IOP20, Lemma 1.7], X(πd, σd) is a cyclic unramified covering of X(π, σ) of
degree d.

3.2. Properties of toric Kato matrices.

Definition 3.4: A matrix A ∈ GL(n,Z) will be called a toric Kato matrix if there exists a
toric modification π : Ĉn → Cn at 0 and a toric chart ϕA : Cn → Ĉn with ϕA(λz) = λAϕA(z)
for all z ∈ Cn and λ ∈ TN .

Proposition 3.5: A matrix A ∈ GL(n,Z) is a toric Kato matrix if and only if its columns
are either positive or standard vectors.

Proof. The fact that a toric Kato matrix satisfies the desired properties is a direct consequence
of (3.1). For the other implication, we need to prove that for any A ∈ GL(n,Z) with either
positive or standard columns, there exists a smooth toric modification π : Ĉn → Cn at 0, such
that the cone τA generated by the columns of A belongs to the corresponding fan Σ̂ of Ĉn.
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This can be achieved by first considering any simplicial fan containing the cone τA and whose
rays are generated either by the standard vectors or positive vectors, and then regularizing it
via barycentric subdivision (which adds only positive rays, see, e.g., [Ful93, p. 48]).

Proposition 3.5 shows that our setting is more general than the one considered in [IOP20].
In fact, toric modifications of 0 ∈ Cn need not dominate the blow-up of the origin, as the
following example shows.

Example 3.6: Consider the toric Kato matrix A =

3 2 3
2 1 2
2 2 1

 ∈ GL(3,Z). Then the

cone τA generated by the three columns of A intersects in its interior the cone generated by
e1 = (1, 0, 0) and e1 + e2 + e3 = (1, 1, 1). Hence no toric modification π : Ĉ3 → C3 over 0 for
which the fan Σ̂ of Ĉ3 contains the cone τA dominates the blow-up of the origin.

In Figure 1 we explicit two different realizations of the toric modification π containing τA.
In particular, the one on the right is obtained as a composition of three point blow-ups,

followed by the blow-up of four equivariant lines, and by the contraction of the exceptional di-
visor associated to the ray generated by (5, 3, 3). The last blow-up and contraction corresponds
to a flip in the language of Minimal Model Program.

τA

111

211

321

212

100 010

001

322

221
432

τA

111

211

321

212

100 010

001

322
221

Figure 1. Toric Kato data with π not dominating the blow-up of the origin.

Let (π, σ = λ0 ◦ ϕA) be a toric Kato data, and let τA ∈ Σ̂(n) be the cone generated by the
columns of A, or equivalently, the cone corresponding to the fixed point σ(0). Then A is a
positive matrix if and only if τA ⊂ IntC0. In general, we have:

Lemma 3.7: Let A =
(
A1 A2 · · · An

)
be a toric Kato matrix. There exists a unique

maximal subset P (A) ⊂ {1, . . . , n} satisfying that there exists a permutation s : P (A)→ P (A)
so that Aj = es(j) for any j ∈ P (A). Furthermore, there exists m0 ≥ 1 so that for any m ≥ m0
and for any j ∈ {1, . . . , n} \ P (A), the j-th column of Am has strictly positive components.

Proof. Let us define
S1(A) := {j ∈ {1, . . . , n} | Aj ∈ {e1, . . . , en}}
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and let k : S1(A) → {1, . . . , n} be the injective map satisfying Aj = ek(j) for all j ∈ S1(A).
Moreover, define inductively, for all m ≥ 2, Sm(A) := Sm−1(A) ∩ k−1(Sm−1(A)). Then one
has:

. . . ⊆ Sm(A) ⊆ Sm−1(A) ⊆ . . . ⊆ S1(A)
and so there exists m0 ≥ 1 with Sm(A) = Sm0(A) for all m ≥ m0. One clearly has then
P (A) = Sm0(A) and s = k|P (A).

On the other hand, it is easy to check that Sm(A) = S1(Am) for all m ≥ 1. Moreover, by
eq. (3.1), a j-th column of Am has only positive components exactly when j /∈ S1(Am), from
which the conclusion follows.

For any matrix A = (akl)1≤k,l≤n ∈ GL(n,Z) and J ⊂ {1, . . . , n}, we denote by Jc =
{1, . . . , n} \ J and we put AJ := (akl)k,l∈J ∈M(|J |,Z), which is the matrix obtained from A

by erasing the lines and columns prescribed by Jc. We also use the notation τJ ∈ Σ(|J |) for
the cone generated by ej with j ∈ J and we put NJ := spanZ{ej |j ∈ J} ⊂ N , respectively
TJ := NJ ⊗Z C∗, CJ = NJ ⊗ C etc. Finally, we denote by pJ the natural projection from N
to NJ , as well as its R or C-linear extension, and for v ∈ Cn, we also write vJ := pJ(v).

Lemma 3.8: Let A = (akl)1≤k,l≤n be a toric Kato matrix and let J ⊆ P (A) be any subset
with |J | < n− 1 which is fixed by the permutation s given in Lemma 3.7. Then AJc is again a
toric Kato matrix.

Proof. Let π : Ĉn → Cn be a toric modification at 0 so that A gives a toric chart in Ĉn. Let
ĈJc := orb τJ ⊂ Ĉn be the strict transform of CJc = orb τJ ⊂ Cn via π. Note that since A
preserves NJ , it follows that also the morphism of TN given by νA(λ) = λA fixes TJ . Since ĈJc
is uniquely determined as the subset of Ĉn on which TJ acts trivially, by the νA-equivariance
of ϕA it follows that ϕA(CJc) ⊂ ĈJc . Moreover, by the definition (3.2) of ϕA we find that
ϕA|CJc = ϕAJc . Hence AJc gives a toric chart in the toric modification π|ĈJc : ĈJc → CJc .

Lemma 3.9: Let A = (akl)1≤k,l≤n ∈ GL(n,Z) be a toric Kato matrix with |P (A)| < n − 1.
Then A has a simple real eigenvalue α > 1 so that for any other α 6= β ∈ Spec(A), we have
|β| < α. Moreover, A admits a Perron eigenvector fA with AfA = αfA so that 〈e∗j , fA〉 > 0
for all 1 ≤ j ≤ n.

Proof. Let s be the permutation of P (A) given by Lemma 3.7 and let d = ord s. Then for
m = m0d big enough, (Am)P (A)c = id and B := AmP (A) is a positive matrix. After eventually
replacing A by some of its power, we suppose that this happens for m = 1.

By the Perron-Frobenius theorem, B has a simple real eigenvalue α and a Perron eigenvector
fB with positive components. Since | det(B)| = 1 and |P (A)c| > 1, we have α > 1.

For any β ∈ C and k × k matrix M , denote by VM (β) ⊂ Ck the generalized eigenspace
of M for the eigenvalue β. Put P = P (A) and write p := pP c : Cn → CP c for the natural
projection. Then p is compatible with the splitting

Cn =
⊕
β∈C

VA(β)→
⊕
β∈C

VB(β) = CP c

and Spec(A) = Spec(B) ∪ Spec(AP ), where Spec(AP ) = {1}. In particular, we infer that
α ∈ Spec(A) is a simple eigenvalue and there exists an eigenvector fA ∈ Cn with p(fA) = fB.
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For any k ∈ P , we find:

〈e∗k, fA〉 = 1
α− 1

∑
j∈P c

akj〈e∗j , fB〉 > 0

from which the conclusion follows.
For a toric Kato matrix A with |P (A)| < n−1, let fA be a Perron vector for A with positive

components. Then AT acting on (Cn)∗ also has a Perron vector f∗A with 〈f∗A, fA〉 = 1. We note
that since ±1 are the only possible rational eigenvalues of A, f∗A cannot be chosen rational.
We also observe that since CP (A) is spanned by eigenvectors of A with eigenvalue different
from α, for any k ∈ P (A) we have 〈f∗A, ek〉 = 0, while for k ∈ P (A)c, we have 〈f∗, ek〉 > 0.
Define the half-space:

H(A) := {v ∈ NR | 〈f∗A, v〉 > 0} ⊂ NR.

Also, for a toric Kato matrix with P (A)c = {j}, put

H(A) := {v ∈ NR | 〈e∗j , v〉 > 0} ⊂ NR.

3.3. Toric Kato germs. Note that for any toric Kato germ F = Fλ0,A
, if m0 > 0 is so that

Am0 has strictly positive components on the columns j ∈ P (A)c, by Lemma 3.7 we have

H∞ =
⋃
m>0

F−m(0) = F−m0(0) =
⋃

j∈P (A)c
C{j}c

Inv(F ) = {z ∈ Cn | zj 6= 0, j ∈ P (A)c} = CP (A) × TP (A)c ⊇ TN .

Let us put WT (F ) := W s(F ) ∩ TN ⊆W ∗(F ). Then we have the following:

Lemma 3.10: Let F = Fλ0,A
be a toric Kato germ. Let B := AP (A)c , λ′ := (λ0)P (A)c and let

F ′ = Fλ′,B be the induced toric Kato germ acting on TP (A)c . Then we have a biholomorphism:

WT (F ) = TP (A) ×WT (F ′).

In particular, if |P (A)| = n− 1 then WT (F ) = TN .

Proof. As WT (F ) = WT (Fm) for any m ∈ N, we can suppose without loss of generality that
AP (A) = id. Let us denote by p := pP (A)c and by p′ := pP (A) the two projections. Since
p ◦ F = F ′ ◦ p, it is clear that p(WT (F )) ⊆WT (F ′). Denote by λ′′ := (λ0)P (A). Then we have

(3.5) (Fm(z))P (A) = (λ′′)mzP (A)z
Qm
P (A)c , m ∈ N

where Qm is an integer valued matrix determined by A, whose coefficients are each at least m.
From this, it is clear that the fiber of p : WT (F )→ p(WT (F )) ⊂WT (F ′) is TP (A). It remains
to show that this restriction of p is surjective.

Let w ∈WT (F ′) and let 0 < ε < 1. Since w ∈ p(WT (F ))⇔ (F ′)m(w) ∈ p(WT (W )) ∀m ∈ N,
we can suppose that w satisfies |λj |

∏
k∈P (A)c |wk| < ε for each j ∈ P (A). Then (3.5) implies

that for any z ∈ TN with p(z) = w and each j ∈ P (A), m ∈ N, we have |Fm(z)j | < |zj |εm.
Thus every such z is in WT (F ) and so w ∈ p(WT (F )).

Finally, if P (A)c = {j}, then F ′(w) = λ′w with |λ′| < 1, from which it follows that
WT (F ′) = C∗ and so WT (F ) = TN .
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4. A different construction of toric Kato manifolds

In this section, we wish to give a different realization of toric Kato manifolds using toric
geometry. In particular, we will see that the universal cover of a toric Kato manifold is an
open subset of a toric variety of non-finite type. The construction generalizes the one did by
Tsuchihashi in [Tsu87], as well as the known toric constructions for Kato surfaces [Oda78].

In all that follows, we fix a smooth toric modification π : Ĉn → Cn at 0 with π 6= id and
denote by Σ̂ the fan of Ĉn. We fix a toric chart ϕA : Cn → XτA ⊂ Ĉn for some toric Kato
matrix A ∈ GL(n,Z) and τA ∈ Σ̂(n). Finally, we fix λ0 ∈ TN so that σ := λ0 ◦ ϕA satisfies
σ(B) ⊂ π−1(B) =: B̂. In particular, (π|B̂, σ|B) is a toric Kato data.

Let Σ̂0 := Σ̂ \ {τA}, and define the infinite fan

(4.1) ΣA := {Amτ | τ ∈ Σ̂0, m ∈ Z}

on which the group ΓA := {Am | m ∈ Z} acts naturally. Let X(ΣA, N) be the toric variety
associated to the fan ΣA, let D̃T :=

∑
ν∈Σ(1)

A

orb ν be the associated toric divisor and let

D+ :=
∑

ν∈Σ(1)
A

ν 6≺τP (A)

orb(ν)

where we recall that τP (A) = 〈ek | k ∈ P (A)〉. Define the open set

X̃λ0,A
:= Int(WT (Fλ0,A

)X(ΣA,N)) ⊂ X(ΣA, N).

Recall that WT (Fλ0,A
) ⊂ TN ⊂ X(ΣA, N) is Fλ0,A

-invariant. Also note that the map FA
extends to an automorphism of the toric variety X(ΣA, N) as the map induced by N → N ,
v 7→ Av. Similarly, λ0 ∈ TN extends to an automorphism of X(ΣA, N). Therefore, we have a
natural action of U := 〈Fλ0,A

〉 on X̃λ0,A.
Before giving the main theorem of the section, we show the following technical lemma

needed in the proof.

Lemma 4.1: Let V ⊂ NR be an open subset which satisfies ∀a ∈ R with a ≥ 1, ∀v ∈ V ,
av ∈ V , and let Ω := ord−1(V ) ⊂ TN . Let Σ be a fan in N and let X(Σ, N) be the associated
toric variety. Denote by ΩΣ the closure of Ω in X(Σ, N), and by V N the closure of V in NR.
Then for any cone τ ∈ Σ(k) with 1 ≤ k ≤ n, one has:

(i) if τ ∩ V 6= ∅, then orb τ ⊂ ΩΣ;
(ii) if furthermore V is a cone and (τ \ {0}) ∩ V N = ∅, then orb τ ∩ ΩΣ = ∅.

In particular, if |Σ| ⊆ V ∪ {0}, then Ω ∪ DT is an open subset of X(Σ, N), where DT =⋃
τ∈Σ(1) orb τ is the support of the maximal toric divisor of X(Σ, N).

Proof. Let us fix such a cone τ ∈ Σ(k). In what follows, we let Int(Sτ ) := Sτ \ (τ⊥ ∩M) =
{l ∈ Sτ | ∃v ∈ τ 〈l, v〉 > 0}.
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Recall that one has a natural map given by extension by 0:

j : orb τ = Homgr.(τ⊥ ∩M,C∗)→ Xτ = Homu.s.g.(Sτ ,C)

j(u)(l) =
{
u(l), l ∈ τ⊥ ∩ Sτ
0, otherwise.

Applying the map ord to the above, j induces a natural injection:

jR : orb τR := Homgr.(τ⊥ ∩M,R)→ Xτ,R := Homu.s.g.(Sτ ,R ∪ {∞})

given this time by extension by ∞. Moreover, its image is given by

(4.2) jR(orb τR) = {u ∈ Homu.s.g.(Sτ ,R ∪ {∞}) | u−1(∞) = Int(Sτ )}.

On the other hand, the natural inclusion Ω ⊂ TN ⊂ Xτ reads, after applying the map ord,
as follows:

k : V → Xτ,R, k(v)(l) = 〈l, v〉, l ∈ Sτ .

Since orb τ ⊂ Xτ , one has orb τ ∩ ΩΣ = orb τ ∩ Ωτ , where the latter closure is taken
in Xτ . Furthermore, since ord is surjective, this intersection is nonempty precisely when
jR(orb τR) ∩ k(V ) 6= ∅.

Suppose first that τ ∩V 6= ∅ and let u ∈ jR(orb τR). In order to show (i), it suffices to prove
that u ∈ k(V ). There exists q ∈ NR so that u|τ⊥∩Sτ = 〈·, q〉|τ⊥∩Sτ . Since V is open, there
exists v ∈ V which is in the relative interior of τ , which is equivalent to u0 := 〈·, v〉|IntSτ > 0.
Furthermore, for m ≥ 1, since mv ∈ V and using the properties of V , there exists cm > m big
enough so that vm := q + cmmv = cm( 1

cm
q +mv) ∈ V . We find:

k(vm)|τ⊥∩Sτ = 〈·, q〉|τ⊥∩Sτ = u|τ⊥∩Sτ
k(vm)|IntSτ > 〈·, q〉|IntSτ +m2u0 →∞

hence limm→∞ k(vm) = u ∈ k(V ).
For the second part, suppose that V is a cone and that there exists u = limm→∞ k(vm) ∈

jR(orb τR) with vm ∈ V
N for each m ≥ 1. Let us fix the standard scalar product on NR and the

orthogonal splitting NR = N0⊕Rτ , so that the map d : N0 → Hom(τ⊥,R), q 7→ 〈·, q〉 becomes
a continuous isomorphism. In particular, it follows that u|τ⊥∩Sτ = d(q)|Sτ for a unique q ∈ N0.
With respect to the splitting, we write vm = v0

m + vτm with v0
m ∈ N0 and vτm ∈ Rτ . Since

d(v0
m)|τ⊥∩Sτ = k(vm)|τ⊥∩Sτ → d(q)|Sτ as m→∞, it follows that ∃ limm→∞ v

0
m = q. On the

other hand, we have:

∞ = lim
m→∞

k(vm)|IntSτ − 〈·, q〉|IntSτ = lim
m→∞

k(vm − v0
m)|IntSτ = lim

m→∞
〈·, vτm〉|IntSτ .

Hence there exists m0 ≥ 1 so that 〈·, vτm〉|IntSτ > 0 for all m ≥ m0. In particular, vτm ∈ τ \ {0}
for all m ≥ m0 and am := ||vτm|| → ∞. Since the sequence ( 1

am
vτm)m≥m0 ⊂ τ is bounded, up

to passing to a subsequence, it converges to an element vτ∞ ∈ τ \ {0} with ||vτ∞|| = 1. Now,
since V N is a cone, we infer that wm := 1

am
vm ∈ V

N and limm→∞wm = vτ∞ ∈ V
N ∩ (τ \ {0}),

which concludes (ii).
Finally, if |Σ| ⊆ V ∪ {0}, it follows by (i) that DT =

⋃
06=τ∈Σ orb τ ⊂ ΩΣ, hence X(Σ, N) \

(Ω ∪DT ) = TN \ Ω is closed in X(Σ, N), which concludes the proof.
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We are now ready to prove:

Theorem 4.2: Let (π, σ) be a toric Kato data with corresponding germ Fλ0,A
. Then the group

U acts freely and properly discontinuously on X̃λ0,A
and we have a biholomorphism

X(π, σ) ∼= X̃λ0,A
/U .

Furthermore, if D denotes the divisor of X(π, σ) induced by the exceptional divisor of π and
D̃ is the preimage of D in the universal cover, then D̃ = D+. Finally, we have the following:

i) If P (A) = ∅, then X̃λ0,A
= WT (Fλ0,A

) ∪ D̃T . If furthermore λ0 = 1, then X(π, σ) is one
of the manifolds constructed in [Tsu87];

ii) If |P (A)| = n− 1, then X̃λ0,A
= X(ΣA, N).

Proof. Let us put Ω := WT (Fλ0,A
) ⊆ TN and F := Fλ0,A

. Then H∞ =
⋃
j∈P (A)c C{j}c ⊂

WT (F )C
n

= W s(F ). Define the fan:

Σ+
A := {Amτ | τ ∈ Σ̂0,m ∈ N}

so that |Σ+
A| ⊂ C0 = |Σ| and X(Σ+

A, N) is an open subset of X(ΣA, N). The identity map of
N induces a (non-proper) map of toric varieties ϕ : X(Σ+

A, N)→ Cn = X(Σ, N) and we have

D+
+ :=

⋃
ν∈Σ+(1)

A
ν 6≺τP (A)

orb ν = ϕ−1(H∞) ⊂ ϕ−1(ΩCn) = ΩX(Σ+
A,N)

from which it follows that D+
+ ⊂ X̃λ0,A

. Since for each irreducible component Q of D+ there
exists m ∈ Z so that Fm(Q) is an irreducible component of D+

+, it follows then that also
D+ ⊂ X̃λ0,A

. Therefore, if P (A) = ∅ then D+ = D̃T and we have X̃λ0,A
= WT (Fλ0,A

) ∪ D̃T .
If |P (A)| = n− 1 then WT (F ) = TN by Lemma 3.10 so X̃λ0,A

= X(ΣA, A).

Let B∗ := B ∩ TN , Ω0 := B∗ \ F (B∗) ⊂ TN and W0 := Ω0
X(ΣA,N). Since by the proof of

Proposition 2.3, Ω0 is a fundamental domain for the action of U on Ω, it follows that W0 is a
fundamental domain for the action of U on X̃λ0,A

.
Let V := ord(B∗) ⊂ NR and note that it is open and satisfies the condition v ∈ V, a ≥ 1⇒

av ∈ V . Let C0 ⊂ NR be the standard cone, so that V ⊂ C0. By Lemma 4.1 (ii), we have
that orb τ ∩ ord−1(C0)

X(ΣA,N)
= ∅ for any τ ∈ ΣA with τ 6⊂ C0, which implies that

D̃T ∩W0 ⊂
⋃

ν∈Σ(1)
A

ν⊂C0

orb ν.

Furthermore, since any ray ν ∈ Σ(1)
A with ν ⊂ IntC0 satisfies ν ∩ V 6= ∅, Lemma 4.1 (i) implies

that orb ν ⊂ B∗X(ΣA,N). In particular, applying A, we infer that⋃
ν∈Σ(1)

A
ν⊂IntAC0

orb ν ⊂ FA(B∗)X(ΣA,N)
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and hence:

λ0 ·
⋃

ν∈Σ(1)
A

ν⊂IntAC0

orb ν =
⋃

ν∈Σ(1)
A

ν⊂IntAC0

orb ν ⊂ λ0 · FA(B∗)X(ΣA,N) = F (B∗)X(ΣA,N)
.

Therefore D̃T ∩W0 = DΣ̂0 ∩W0, where DΣ̂0 =
⋃
ν∈Σ̂(1)

0
orb ν, and so W0 = Ω0

X(Σ̂0,N). But

X(Σ̂0, N) = Ĉn \ {σ(0)}, hence W0 = π−1(B) \ σ(B), which is precisely a fundamental domain
for the deck group action on X̃(π, σ). Clearly this identification of X̃λ0,A

and of X̃(π, σ) is
equivariant, which shows thus that the action of U is free and proper, and that we have the
desired isomorphism.

Finally, it is clear from the isomorphism that D̃ = D+.
For later use, we also show:

Lemma 4.3: The support of ΣA is given by

|ΣA| =
{
H(A) ∪ τP (A) \

(
R>0fA + τP (A)

)
, |P (A)| < n− 1

H(A) ∪ τP (A), |P (A)| = n− 1
where for the case |P (A)| < n− 1, fA is a Perron vector for A with positive components.

Proof. Since |Σ̂0| = C0 \ Int(AC0), we find

|ΣA| =
⋃
m∈Z

Am|Σ̂0| =
⋃
m∈Z

AmC0 \
⋂
m∈Z

Int(AmC0).

As in the proof of Lemma 3.7, we can suppose without loss of generality that AP (A)c = id and
that B := AP (A)c is a positive matrix.

We first show that
(4.3)

⋃
m∈Z

AmC0 = H(A) ∪ τP (A).

Indeed, the inclusions
⋃
m∈ZA

mC0 ⊆ H(A) ∪ τP (A) and τP (A) ⊆
⋃
m∈ZA

mC0 are straightfor-
ward. Let now v ∈ H(A). We shall prove there exists l > 0 such that Alv ∈ C0. For the case
|P (A)| < n− 1, fB = (fA)P (A)c is the Perron vector of B. Let f∗B be a Perron vector for BT

with 〈f∗B, fB〉 = 1. For the case P (A)c = {j}, we put fB = ej and f∗B = e∗j . If α > 0 is the
dominant eigenvalue of A, or also of B, then we have:

(4.4) lim
m→∞

1
αm

Bm = fB · (f∗B)T

which is obvious in the case |P (A)| = n− 1 and implied by the Perron-Frobenius theorem for
the case |P (A)| < n− 1. In particular, we have:

lim
m→∞

( 1
αm

Amv

)
P (A)c

= 〈f∗B, v〉fB.

Since 〈f∗B, v〉 > 0, then there is some l0 ∈ N so that for any l > l0, (Alv)P (A)c has positive
components. For any m ∈ N, put Qm := (a(m)

jk ) j∈P (A)
k∈P (A)c

, where a(m)
·· denote the components of

Am. Then we have:
(Al+mv)P (A) = (Alv)P (A) +Qm(Alv)P (A)c
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and since Qm is a positive matrix, we obtain that for big enough m, Al+mv ∈ C0.
In order to compute the intersection, we distinguish between the two cases. Suppose first

that |P (A)| < n− 1. Then we wish to show that

(4.5)
⋂
m∈Z

Int(AmC0) = R>0fA + τP (A).

It is clear that R>0fA + τP (A) is invariant by A and is contained in IntC0. Moreover, for any
vector v ∈ C0 \ τP (A) ⊂ H(A), we have that

lim
m→+∞

Amv

αm
= fA〈f∗A, v〉 = kfA

for a suitable k > 0. It follows that the cones AmC0 = 〈Ame1, . . . , A
men〉 tend to R>0fA+τP (A)

when m→ +∞, and so we have:

R>0fA + τP (A) ⊆
⋂
m∈Z

AmIntC0 ⊆
⋂
m≥0

AmC0 = R>0fA + τP (A)

which proves (4.5).
Suppose now that P (A)c = {j}. Then we have:⋂

m∈Z
AmC0 = τP (A).

Indeed, clearly τP (A) ⊂ AmC0 for any m ∈ Z. Conversely, let v ∈
⋂
m∈ZA

mC0, so that for
each m ∈ Z there exist vm ∈ RP (A) and am ∈ R≥0 with

v = Am(vm + amej) = vm + amQmej + amej .

In particular, we find that vj = amej so that am = a0 for any m ∈ Z. If a0 > 0, then
||amQmej || tends to ∞ with m, so ||v|| is unbounded, which is absurd. Thus a0 = 0 and so
v ∈ τP (A).

Finally, we have ⋂
m∈Z

Int(AmC0) ⊆ IntC0 ∩
⋂
m∈Z

AmC0 = ∅.

which concludes the proof.

Example 4.4: Consider the toric Kato data (π, σ), where π is associated to the fan depicted

in the left side of Figure 2, and σ = λ0ϕA with A =

1 1 1
0 2 1
0 1 1

. In this case, P (A) = {1},

and a direct computation shows that the eigenvalues of A are 1, ξ2, ξ−2, where ξ = 1+
√

5
2 is the

golden ratio. The right side of Figure 2 shows the fan Σ̂2 associated to the toric modification
π2 given by Lemma 3.3.

A Perron vector fA is given by (ξ, ξ, 1), while the dual vector f∗A is a positive multiple of
(0, ξ, 1). In this case H(A) = {x, y, z ∈ R3| ξy+ z > 0}, and |ΣA| = H(A)∪R≥0(1, 0, 0) \ {(s+
tξ, tξ, t) | s ∈ R≥0, t ∈ R>0}.
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Figure 2. Toric Kato data with P (A) = {1}.

5. Geometric properties of toric Kato manifolds

In complex dimension n = 2, the germ Fλ0,A
determines the toric Kato surface. In the case

P (A) = ∅, the corresponding toric Kato surfaces are precisely the properly blow-up Inoue-
Hirzebruch surfaces. As we will see later, X(Fλ0,A

) ∼= X(FA) for any compatible λ0 ∈ TN . In
the case |P (A)| = 1, the corresponding toric Kato surfaces are precisely the properly blown-up
parabolic Inoue surfaces, and for fixed A, they are parametrized by D∗. Finally, the case
|P (A)| = 2 gives finite quotients of diagonal Hopf surfaces. In higher dimension n, it is still
true that the case |P (A)| = n gives finite quotients of diagonal Hopf manifolds, while the
dichotomy persists between the cases |P (A)| = n− 1 and |P (A)| < n− 1. For this reason, we
propose the following definition:

Definition 5.1: We call a toric Kato manifold X of matrix A ∈ GL(n,Z) of parabolic type if
|P (A)| = n− 1. If |P (A)| < n− 1, then we call X of hyperbolic type.

In analogy to Nakamura’s result in dimension n = 2 [Nak84], we can detect the type of a
toric Kato manifold by looking at its curves. This shows in particular that the above definition
makes sense, and does not depend on the chosen Kato data. In order to make this precise, we
first introduce one more definition.

We will call a compact complex subspace Y of a toric Kato manifold X T -invariant if its
preimage in the universal cover is invariant under the Tn- action, or equivalently, under the
(local) TN -action. All such subspaces correspond to cones in ΣA, and are of two types: either
they are immersed toric Kato manifolds, if the corresponding cone is A-invariant, or they are
complete toric algebraic varieties, if the corresponding cone is not A-invariant. In particular,
we have the following description of T -invariant curves:

Theorem 5.2: Let X be a toric Kato manifold. Then we have the following characterization
in terms of T -invariant curves:

(1) X is a finite quotient of a diagonal Hopf manifold if and only if any of its T -invariant
curves is elliptic;

(2) X is of hyperbolic type if and only if any T -invariant curve is rational;
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(3) X is of parabolic type if and only if X contains a unique T -invariant elliptic curve E,
and at least one rational T -invariant curve. In this case, E is smooth and any other
of the T -invariant curves are rational. Moreover, we have [E] · [D] = 0 in H•(X,Z).

Proof. Let A ∈ GL(n,Z) denote the Kato matrix of X and suppose, without loss of generality,
that AP (A) = id. Any T -invariant curve C of X is given by a cone τ ∈ Σ(n−1)

A , either as
orb τ/Γ, in case τ is Γ-invariant, or as the image of orb τ ∩ X̃. If Moreover, C is an elliptic
curve in the first case, and toric, thus rational, in the second case.

If |P (A)| = n, then ΣA = Σ \ {C0}, so it is clear that X contains n T -invariant elliptic
curves and no T -invariant rational curve. If |P (A)| < n− 1, then there is no A-invariant cone
τ ∈ Σ(n−1)

A , so all T -invariant curves of X are rational.
Suppose now that P (A)c = {j}. Then the only A-invariant cone τ ∈ Σ(n−1)

A is τP (A), so
E := orb τP (A)/Γ ∼= C∗/λj is the only elliptic curve in this last case, and is clearly smooth.
Moreover, it is clear that there exits at least one τP (A) 6= τ ∈ Σ(n−1)

A , giving rise to a T -invariant
rational curve.

Recall that by Theorem 4.2, D is the image in X of

D+ =
∑

ν∈Σ(1)
A

ν 6⊂τP (A)

orb ν ∩ X̃.

Thus, in order to see that [E] · [D] = 0, it is enough to see that orb τP (A) does not intersect
orb ν for any ν ∈ Σ(1)

A with ν 6⊂ τP (A). But this is equivalent to say that any such ν is not a
face of τP (A), which is obvious.

Next we want to give an explicit description of the divisors defined by

D̃X
T : = D̃T ∩ X̃ = X̃λ0,A

\WT (Fλ0,A
),

DT = D̃X
T /Γ.

It is clear that D̃X
T = D+ +

∑
k∈P (A)Xk, where Xk := orb〈ek〉

X(ΣA,N) ∩ X̃λ0,A
. We will call

DT the toric divisor of X. It satisfies q∗DT = D̃X
T , where q : X̃ → X is the universal cover

map.
Suppose first that the permutation s given by Lemma 3.7 corresponding to A is the identity.

Fix k ∈ P (A), let Ĉ{k}c = orb〈ek〉 ⊂ Ĉn and let πk := π|Ĉ{k}c : Ĉ{k}c → C{k}c . Then the proof
of Lemma 3.8 shows that the toric chart ϕA of Ĉn induces a toric chart ϕA{k}c of Ĉ{k}c . Let
Σ̂k be the fan of Ĉ{k}c and let ΣA{k}c := {Am{k}cτ | τ ∈ Σ̂k \ {τA{k}c},m ∈ Z}. Then we find
that

orb〈ek〉
X(ΣA,N) ∼= X(ΣA{k}c , N{k}c)

and it is easy to check that Fλ0,A
|orb〈ek〉

= F(λ0){k}c ,A{k}c . In particular, we have:

Xk
∼= p{k}c(WT (Fλ0,A

))orb〈ek〉 = WT (F(λ0){k}c ,A{k}c )
X(ΣA{k}c ,N)

.
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We have thus found:

Lemma 5.3: If A is a toric Kato matrix with s = id, and k ∈ P (A), then Xk is Γ-
equivariantly biholomorphic to X̃(λ0){k}c ,A{k}c , where Γ acts by Fλ0,A

on the first manifold and by
F(λ0){k}c ,A{k}c on the second one. In particular, Xk/Γ ∼= X(πk, σk), where σk = (λ0){k}cϕA{k}c .

In the general case, i.e. when s 6= id, Xk need not be invariant by F := Fλ0,A
, however F

still acts on
∑
k∈P (A)Xk. In this case, there exists d ∈ N with sd = id. Then it is easy to

see that WT (F ) = WT (F d) and that F d = Fλ′,Ad where λ′ = λid +...+Ad−1

0 . Consider the toric
Kato data (πd, σd) given by Lemma 3.3, with corresponding germ F d. Then clearly ΣAd = ΣA.
The above argument thus implies that Xk

∼= X̃(λ′){k}c ,Ad{k}c
. To each cycle J ⊂ P (A) of s then

corresponds a compact hypersurface which autointersects transversely

YJ =
⋃
k∈J

Xk/Γ ⊂ X(π, σ)

so that the divisor DJ := |J | · YJ on X(π, σ) satisfies q∗DJ =
∑
k∈J Xk. Finally, we have

found:

Proposition 5.4: Let (π, σ) be a toric Kato data with germ F = Fλ0,A
and let s be the

permutation corresponding to A. Let C := {J ⊂ P (A) | J is a cycle of s}. Then we have:

DT = D +
∑
J∈C
|J | · YJ .

Moreover, for each J ∈ C, YJ is a compact (possibly singular) hypersurface whose normalization
is a toric Kato manifold.

We also want to establish when the divisors D, D̃,DT , D̃
X
T are connected. In complex

dimension 2, the situation is well known by the works of Nakamura [Nak84] and Dloussky
[Dlo84], and can be easily read off from the fan Σ0. Namely, in the case of parabolic Inoue
surfaces, i.e. when |P (A)| = 1, if P (A) = {j}, then orb〈ej〉 is fixed by A and disconnected from
D̃, which itself is connected. It follows that both D̃X

T and DT have two connected components,
respectively D̃ and orb〈ej〉 for D̃T , and D and the elliptic curve orb〈ej〉/Γ for DT . In the
case of Inoue-Hirzebruch surfaces, D̃X

T = D̃ has two connected components, given by the two
connected components of |Σ0| \ {0}. When detA = 1, A fixes the components, so that D has
also two connected components. When detA = −1, A interchanges the components, and in
this case D is connected. In higher dimension, things are much simpler:

Lemma 5.5: Let X = X(π, σ) be a toric Kato manifold of complex dimension n ≥ 3. Then
the divisors D̃X

T , D̃,DT and D are connected.

Proof. Given a divisor F on a toric variety X(Σ, N), F =
∑
j∈I orb νj , let GF,Σ = (V,E) be

the graph whose vertexes are given by V = {νj | j ∈ I} and edges given by E = {(νi, νj) | i, j ∈
I, νi ⊕ νj ∈ Σ(2)}. It is clear that F is connected if and only if the graph GF,Σ is connected.

Let A be the matrix of X. Consider first Ĉn = X(Σ̂, N), the exceptional divisor E of π,
and the divisors D1 = E +

∑n
j=1 orb〈ej〉 and D2 = E +

∑
j /∈P (A) orb〈ej〉. Since E is connected

and intersects each component orb〈ej〉, 1 ≤ j ≤ n, also D1 and D2 are connected, so their
graphs GD1,Σ̂, GD2,Σ̂ are connected. Next, consider Ĉn \ {σ(0)} = X(Σ̂0, N) ⊂ Ĉn and
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D′j = Dj ∩X(Σ̂0, N), j = 1, 2. As n ≥ 3, we have GDj ,Σ̂ = GD′j ,Σ̂0
, so D′j are also connected,

j = 1, 2. From this we infer that D̃T =
∑
m∈Z γ

mD′1 and D̃ =
∑
m∈Z γ

mD′2 are connected on
X(Σ̂, N), hence also their respective restrictions to X̃ are connected and their images in X
are connected. This concludes the proof.

We also have the following geometric description of Kato manifolds with P (A) 6= ∅:

Proposition 5.6: Let XA := X(π, σ) be a toric Kato manifold with σ = λ0σA. Let
B = AP (A)c and let (π′, σ′ = λ′σB) be the naturally induced Kato data from (π, σ) and B. Let
j : XB := X(π′, σ′) → XA be the natural embedding. We denote by DA the divisor of XA

induced by the exceptional divisor of π, and by DB = j∗DA the corresponding divisor of XB.
Then XA \DA has a natural structure of a holomorphic vector bundle V of rank |P (A)| over
XB \DB. Moreover, up to passing to a finite unramified cover of XA, we have V = ⊕k∈P (A)Lk,
where each Lk ∈ Pic(XB \DB). In particular, if P (A)c = {j}, then XB = XB \DB is the
unique elliptic curve E = C∗/λj of XA, and for each k ∈ P (A), Lk has positive Chern class
determined by A.

Proof. Putting
Σ′ := ΣA \

⋃
ν∈Σ(1)

A
ν 6⊂τP (A)

Stν = {τ ∈ ΣA | τ ≺ τP (A)}

we have that

X(ΣA, N) \DA,+ = X(Σ′, N) ∼= X(Σ′, NP (A))×X({0}, NP (A)c).

Moreover, X({0}, NP (A)c) = X(ΣB, NP (A)c) \ DB,+, and the natural projection uZ : N →
NP (A)c induces a toric morphism u : X(Σ′, N)→ X({0}, NP (A)c) satisfying u(γz) = γ′(u(z))
for any z ∈ X(Σ′, N), where γ is the positive generator of Γ acting on X(ΣA, N) and γ′ is the
positive generator of Γ acting on X(ΣB, NP (A)c). Since moreover WT (FA) = TP (A) ×WT (FB)
by Lemma 3.10, it follows that we have an induced vector bundle:

u|V : V := XA \DA → XB \DB.

With respect to the standard basis e1, . . . en of N = Zn, we have a natural splitting

X(Σ′, NP (A)) = ⊕k∈P (A)Cek.

Up to taking a finite cover of XA, which corresponds to taking a positive power of A, suppose
that AP (A) = id. Then the action of Γ preserves each Cek ×WT (FB) and γ acts on it by

γ(zk, w) = (λkwlkzk, γ′(w)), (zk, w) ∈ Cek ×WT (FB),

where lk ∈ N|P (A)c| is the line (Aks)s∈P (A)c . It follows that Cek descends to a line bundle Lk
over XB \DB and that V = ⊕k∈P (A)Lk.

In particular, when P (A)c = {j}, each line bundle Lk is given by the multiplier εk,γ(t) =
λkt

Akj , t ∈ C∗ = WT (FB). From this we infer that

c1(Lk) = Akj ∈ H2(E,Z) = Z.
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Finally, we also have:

Proposition 5.7: Let X be a toric Kato manifold with toric divisor DT and matrix A, and
let LdetA be the flat line bundle on X determined by ρ : Γ→ C∗, ρ(γ) = (−1)detA. Then we
have

KX ⊗ LdetA = OX(−DT ).
In particular, X has negative Kodaira dimension.

Proof. Let e∗1 . . . e∗n be the standard basis of M and consider the meromorphic n-form on X̃:

ω := dẽ∗1
ẽ∗1
∧ . . . ∧ dẽ

∗
n

ẽ∗n
.

Then [Ful93, Proposition at page 85] shows that div(ω) = −D̃T . Since moreover γ∗ω =
(−1)detAω, the conclusion follows.

6. Betti numbers

In this section, we fix a toric Kato manifold X = X(π, σ) of matrix A, with π : Ĉn → Cn.
Let D be the divisor of X induced by the exceptional divisor of π. We also let Σ̂ denote the
fan of Ĉn, we put ˆCPn = Ĉn ∪H, where H is the divisor at infinity, and we let ΣP be the
corresponding fan of ˆCPn. Let us put aj := |Σ̂(j)|, for each 0 ≤ j ≤ n. Then we can express
the Betti numbers of X purely in terms of the combinatorial data a0, . . . , an.

Theorem 6.1: The n-dimensional toric Kato manifold X has the following Betti numbers:
b0(X) = b1(X) = b2n−1(X) = b2n(X) = 1

b2j+1(X) = 0, 1 ≤ j ≤ n− 2

b2j(X) = −1 +
n∑
s=j

(−1)s−j
(
s

j

)(
an−s +

(
n

s+ 1

))
, 1 ≤ j ≤ n− 1.

In particular, we have
b2(X) = ]D, χ(X) = an − 1

where ] denotes the number of irreducible components, and χ(X) denotes the Euler character-
istic of X.

Proof. Let us suppose that n > 2, since the statement for n = 2 is well known. In this proof,
we use the notation H•(M) to denote the cohomology of M with coefficients in C.

We will first show that bj(X) = bj(Ĉn) for 2 ≤ j ≤ 2n − 2. By [Kat77], X = X(π, σ) is
diffeomorphic to a Kato manifold X ′ = X(π, σ′), so that σ′(0) no longer meets the exceptional
divisor of π. In particular, there exists a Hopf manifold Y ∼= S2n−1 × S1, p ∈ Y and a
modification µ : X ′ → Y at p induced by π. Let B ⊂ Y be a ball centered at p, so that
V := µ−1(B) ⊂ X ′ is a neighborhood of the exceptional divisor F of µ which is homotopy
equivalent to Ĉn, and let U := X ′ \ F ∼= Y \ {p}. Using the fact that U ∩ V ∼= S2n−1 and that
bj(U) = bj(Y ) for 0 ≤ j ≤ 2n− 1, the Mayer-Vietoris sequence in cohomology for (U, V ) gives
Hj(X) = Hj(X ′) = Hj(Ĉn) for 2 ≤ j ≤ 2n− 2.

Next, we wish to compare the cohomology of Ĉn with that of ˆCPn. Let U be a neighborhood
of H in ˆCPn biholomorphic to a D-bundle over H inside N ˆCPnH, let V := Ĉn ⊂ ˆCPn
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and let U∗ := U ∩ V , which is a D∗-bundle over H. We have H•(U) = H•(H), while
Hj(U∗) = Hj(H)⊕Hj−1(H) = C for j ≤ 2n− 2. Using this, the Mayer-Vietoris sequence in
cohomology then gives:

// Hj( ˆCPn) // Hj(H)⊕Hj(Ĉn)
r∗U−r

∗
V
// C // Hj+1( ˆCPn) //

where rU , rV are the corresponding restriction maps, so that r∗V = 0 and r∗U is injective. From
this we infer

(6.1) bj(Ĉn) = bj( ˆCPn), j odd , bj(Ĉn) = bj( ˆCPn)− 1, j even.

Finally, since ˆCPn = X(ΣP, N) is a complete toric algebraic variety, it satisfies [Dan78,
Theorem 10.8]

b2j+1( ˆCPn) = 0, b2j( ˆCPn) =
n∑
s=j

(−1)s−j
(
s

j

)
ân−s, j ∈ N

where âj := |Σ(j)
P | = aj +

( n
j−1
)
, j ∈ {1, . . . , n}, â0 = a0. Together with (6.1), this gives the

desired formula for b•(X).
In particular, since a1 = ]D + n, we find

b2(X) = b2n−2(X) = −1 + (a1 + 1)− (n · a0) = ]D.

Furthermore, we have:

χ( ˆCPn) =
n∑
j=0

n∑
s=j

ân−s(−1)s−j
(
s

j

)
=

n∑
s=0

ân−s

s∑
j=0

(−1)s−j
(
s

j

)
= ân = an + n

χ(X) =
n−1∑
j=1

b2j(X) =
n−1∑
j=1

(b2j( ˆCPn)− 1) = an + n− 2− (n− 1) = an − 1

which concludes the proof.

7. Toric degenerations

7.1. Nakamura degenerations. In this section, we describe how the Nakamura degenera-
tions [Nak83] of toric Kato surfaces, generalizing constructions of Miyake-Oda [Oda78], can
be generalized to any dimension. Let us fix a toric Kato manifold X = X(π, σ) with germ
F = λFA. Recall that X̃ can be seen as a partial compactification of ΩF = WT (F ) inside the
toric manifold X(ΣA, N).

Also recall that we denoted by Σ̂0 the fan of the toric manifold Ĉn \ {σ(0)}, which is then a
fundamental domain of the action of Γ on ΣA. Here Γ is the deck group of X̃ → X, generated
by γ. Let ˆCPn be Ĉn with the hyperplane at infinity H, and let C̃Pn be the blowup of ˆCPn
along σ(0), with exceptional divisor E. Then C̃Pn = X(Σc, N) is a toric manifold, with fan
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Σc given by the completion of Σ0 with the n-dimensional cones:

τj = 〈Ac,Ae1, . . . , Âej , . . . Aen〉, 1 ≤ j ≤ n
τ ′j = 〈−c, e1, . . . , êj , . . . , en〉, 1 ≤ j ≤ n

c :=
n∑
j=1

ej .

We now wish to construct a manifold X̃N as a subset in a toric variety, together with an
action of Γ, giving rise to the Nakamura degeneration. Consider then Ñ = N ⊕Ze, and define
an action Ã on Ñ by putting Ã|N = A and Ãe = e+ Ac. Put νk := Ãke, k ∈ Z, and define
regular fans Σ̃0, Σ̃ in Ñ as follows:

Σ̃0 := {τ̃ := τ ⊕ 〈e〉 | τ ∈ Σ0} ∪ {τ̃ ′ := τ ⊕ 〈e, ν−1〉 | τ ∈ Σ0, τ ⊂ ∂C0}

Σ̃ :=
⋃
k∈Z

ÃkΣ̃0.

Let us also put λ̃ = (λ, 1) ∈ T
Ñ

and let γ̃ be the automorphism of X(Σ̃, Ñ) given by λ̃Ã,
where we also denote by Ã the natural action induced by Ã on the toric variety. Note that for
z ∈ T

Ñ
, γ̃(z) = F̃ (z) := λ̃zÃ.

Let pZ : Ñ → Ze be the natural projection, and let Σ1 = {0, 〈e〉} be the fan of C in Ze. Then
pZ is a map of fans, and so defines naturally a map of toric varieties p : X(Σ̃, Ñ)→ X(Σ1,Ze).
We have

p−1(C∗) = p−1(orb 0) =
⋃

τ∈Σ̃,pZ(τ)=0

orb τ = X(Σ̃ ∩N, Ñ) = X(ΣA, N)× C∗

and for (x, t) ∈ X(ΣA, N) × C∗ we have γ̃(x, t) = (tAγ(x), t), where t := (t, . . . , t) ∈ TN .
Moreover

p−1(0) = p−1(orb e) =
⋃

τ∈Σ̃,pZ(τ)=〈e〉

orb τ =
⋃
m∈Z

orb νm

and γ̃(orb νm) = orb νm+1. Let us note that orb e is the toric variety X(Ŝte, Ne), where
Ne := Ñ/Ze and

Ste = {τ ∈ Σ̃ | 〈e〉 ≺ τ}, Ŝte = {τ mod Ze | τ ∈ Ste}.

Under the natural isomorphism Ne
∼= N given by the projection, we have Ŝte ∼= Σc. Thus

orb ν0 is equivariantly isomorphic to C̃Pn, so that orb〈ν−1, ν0〉 = E, orb〈ν0, ν1〉 = H and γ̃
sends E biholomorphically to H.

Let ∆ := {t ∈ C|F (tB) ⊂ B} ⊂ C, which is an open disk containing 1. Put
Ω := {(z, t) ∈ TN ×∆∗ | z ∈WT (F (t·))} ⊂ T

Ñ

and define the smooth manifold

X̃N := Int(ΩX(Σ̃,Ñ)) ⊂ X(Σ̃, Ñ)

together with a free and proper action of Γ = 〈γ̃〉 and a Γ-invariant map p : X̃N → ∆ so that
p−1(t) = ˜X(π, σ(t·)) for t 6= 0 and p−1(0) is given by Z copies of C̃Pn glued along H and E
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via γ̃. Thus we obtain a flat proper holomorphic map
pN : XN := X̃N/Γ→ ∆

with p−1
N (t) = X(π, σ(t·)) for t ∈ ∆ \ {0} and p−1

N (0) = C̃Pn/E∼
γ̃
H . This is precisely the

Nakamura degeneration.
Define the toric divisor on X̃N :

D̃ =
∑

ν∈Σ̃(1)

orb ν ∩ X̃N .

It is clear that D̃|∆∗ = D̃X
T ×∆∗, so that D̃ ∩ p−1(t) = D̃X

T is the maximal toric divisor of
˜X(π, σ(t·)) for each t ∈ ∆∗. Since moreover D̃ is Γ-invariant, we obtain a divisor D := D̃/Γ

on XN so that for each t ∈ ∆∗, D ∩ p−1
N (t) = DT and in particular KXt ⊗ LdetA = O(−D)t.

We have thus obtained:

Theorem 7.1: Let X(π, σ) be an n-dimensional toric Kato manifold, let C̃Pn = X(Σc, N)
be defined as above and let S = C̃Pn/E∼

γ̃
H , where γ̃ was defined above. There exists a flat

holomorphic proper family pN : (XN ,D)→ ∆ over some disk ∆ ⊂ C of radius R > 1, so that:
• XN is smooth
• D is an effective divisors on XN
• for each t ∈ ∆∗, p−1

N (t) ∼= X(π, σ(t·)) and D ∩ p−1
N (t) is the toric divisor of p−1

N (t)
• p−1

N (0) = S.
Note that by the discussion of Section 9, the smooth fibers of the family XN are all

isomorphic if c ∈ im(id−A).

7.2. Isotrivial degenerations. Nakamura degenerations are defined for all Kato manifolds,
however generally the smooth fibers are not all isomorphic. On the other hand, for most toric
Kato manifolds we can define other degenerations, whose smooth fibers will all be isomorphic,
but whose central fiber is less concrete and generally more singular. Moreover, the total space
of these degenerations needs not be smooth. These follow the same ideas as [Tsu87, Section 2].

In order to do so, we fist need the following:

Lemma 7.2: Let A be a toric Kato matrix. Then im(id−A) ∩ IntC0 ∩N 6= ∅ if and only if
|P (A)| < n− 1.

Proof. If |P (A)| = n − 1, so that j /∈ P (A), then it is clear that im(id−A) ⊂ ker e∗j , thus
im(id−A) ∩ IntC0 = ∅.

Suppose now that |P (A)| < n− 1, and let j 6= k /∈ P (A). Let Cj and Ck be the j-th and
k-th columns of A− id. Then Cj + Ck − ej − ek ∈ IntC0 ∩ im(id−A) ∩N 6= ∅.

Let us thus suppose that X = X(π, σ) is an n-dimensional toric Kato manifold with σ = λσA
and |P (A)| < n − 1. Let F = λFA be its corresponding germ. We will again define a toric
manifold X(Σ̃, Ñ) together with a toric map to C.

In order to do so, choose, via Lemma 7.2, a primitive element u ∈ im(id−A) ∩ IntC0 ∩N ,
and let v ∈ N with Au = Av− v ∈ IntAC0. Consider again Ñ = N ⊕Ze, and define an action
of Ã′ on Ñ by putting Ã′|N = A and Ã′e = e. Put νk := (Ã′)k(e+ v), k ∈ Z, and define fans
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Σ̃0, Σ̃u in Ñ as before. Putting again λ̃ = (λ, 1) ∈ T
Ñ
, we have the natural action of γ̃′ given

by λ̃Ã′, which restricted to T
Ñ

reads γ̃′(z) = F̃ ′(z) := λ̃.zÃ
′ .

Let again pZ : Ñ → Ze be the natural projection, and let Σ1 = {0, 〈e〉} be the fan of C in
Ze. Then pZ induces a map of toric varieties p : X(Σ̃u, Ñ)→ X(Σ1,Ze), with:

p−1(C∗) = X(ΣA, N)× C∗

p−1(0) =
⋃
m∈Z

orb νm.

For (x, t) ∈ X(ΣA, N)× C∗ we have γ̃′(x, t) = (γ(x), t).
The toric variety orb ν0 = X(Ŝtν0 , Nν0) is isomorphic to X(Σu, N), via the projection

q : Ñ → N , q|N = id, qe = −v which maps the fan Ŝtν0 isomorphically to Σu given by:
Σu := Σ0 ∪ {τ ′ = 〈Au〉 ⊕Aτ, τ ′′ = 〈−u〉 ⊕ τ | τ ∈ Σ0, τ ⊂ ∂C0}.

Under this isomorphism, γ̃′ sends E′ := orb〈−u〉 biholomorphically to H ′ := orb〈Au〉.
Taking now Ω

F̃ ′
:= WT (Fλ,A)× C∗ and

X̃u := Int(Ω
F̃ ′
X(Σ̃u,Ñ)) ⊂ X(Σ̃u, Ñ)

with the Γ = 〈γ̃′〉-invariant projection p : X̃u → C, we obtain a proper holomorphic family

pu : Xu := X̃u/Γ→ C

with p−1
u (t) = X for t ∈ C∗ and p−1

u (0) = X(Σu, N)/E′∼
γ̃′
H′ . Moreover, pu is a flat map by

[Gro65, 6.1.5] since it is equidimensional and Xu is Cohen-Macaulay.
As before, define the divisors

D̃ =
∑

ν∈Σ̃(1)

orb ν ∩ X̃N ∈ DivX̃ , D = D̃/Γ ∈ DivX

Then again one obtains that D ∩ p−1
u (t) is the toric divisor of X, for each t ∈ C∗.

Note that the central fiber of the family Xu depends on u, and that any primitive element
u ∈ im(id−A) ∩ IntC0 ∩N gives rise to such a family. However, we cannot in general ensure
that Xu is a smooth manifold, or equivalently that the normalization of the central fiber is
smooth, as the following result shows:

Proposition 7.3: The toric variety X(Σu, N) is smooth if and only if u = c =
∑n
j=1 ej. In

this case, the family (Xu,D) is equivalent to the Nakamura family (XN ,DN ), in the sense that
there exists a biholomorphism ϕX : XN → Xc|∆ = p−1

c (∆) with pc ◦ ϕX = pN , ϕ∗XD|∆ = DN .

Proof. It is clear that if u = c, then X(Σu, N) ∼= C̃Pn, so it is smooth. Conversely, suppose
that X(Σu, N) is smooth. Since for any j ∈ {1, . . . , n}, −u, e1, . . . , êj , . . . , en is a basis of N ,
and since u ∈ IntC0, this implies that u = c.

Suppose now that u = c. Define ϕZ : Ñ → Ñ by ϕZ|N = id, ϕZe = e + v, where v
is chosen to satisfy Ac = Av − v. We have then ϕZ(Σ̃) = Σ̃c and ϕZÃx = Ã′ϕZx for any
x ∈ Ñ . This implies that ϕZ induces a Γ-equivariant biholomorphism ϕ : X(Σ̃, Ñ)→ X(Σ̃c, Ñ)
commuting with the projections to C and satisfying ϕ ◦ F̃ = F̃ ′ ◦ ϕ. In particular, it is clear
that ϕ(Ω) = Ω

F̃ ′
∩ p−1(∆) and that with ϕ∗D̃ = D̃N , so ϕ also induces a biholomorphism
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between X̃N and X̃c|∆, and so a biholomorhism ϕX : XN → Xc|∆ with pc ◦ ϕX = pN and
ϕ∗XD|∆ = DN .

The conclusion of the discussion is the following:

Theorem 7.4: Let X be a toric Kato manifold of hyperbolic type of matrix A, and let
u ∈ im(id−A)∩ IntC0 ∩N be a primitive element. Then there exists a flat holomorphic proper
family pu : (Xu,D)→ C so that:

• D is an effective divisor on Xu
• for each t ∈ C∗, p−1

u (t) ∼= X and D ∩ p−1
u (t) is the toric divisor of X

• p−1
u (0) = X(Σu, N)/E′∼

γ̃′
H′.

Moreover, Xu is smooth if and only if u = c, in which case the family (Xu,D) is equivalent to
the Nakamura family (XN ,D) of Theorem 7.1.

8. Analytic invariants

Proposition 8.1: Let X̃ be the universal cover of a toric Kato manifold X. If X is of
hyperbolic type, then H0(X̃,O

X̃
) = C. If X is of parabolic type, then H0(X̃,O

X̃
) = OC(C).

Proof. Let A be the matrix of X. Let f ∈ H0(X̃,O
X̃

). Since Ω is a T-invariant domain of
TN , f expresses as a series on Ω:

f(z) =
∑
m∈M

cmz
m, z ∈ Ω.

Since the right hand side extends naturally to a meromorphic function on X̃, f writes on X̃ as

(8.1) f =
∑
m∈M

cmm̃

where for each m ∈M , m̃ is the natural meromorphic function induced by m on X(ΣA, N).
Now since for any τ ∈ Σ(1)

A , f has no poles on orb τ , it follows that for any m ∈ M with
cm 6= 0 we have

〈m, v〉 ≥ 0, ∀v ∈ τ.
Since C := |ΣA| = H(A) is a convex cone by Lemma 4.3, we readily infer:

f =
∑

m∈Č∩M

cmm̃.

Now from Lemma 4.3 we have Č∩M = R≥0f
∗
A∩M = {0} if |P (A)| < n−1 and Č∩M = Ne∗j

if P (A) = {j}. From this it follows that in the parabolic case, f is an entire function in the
zj-variable.

Remark 8.2: For a parabolic toric Kato manifold X with P (A)c = {j}, define

ρ : Γ ∼= Z〈Fλ0,A
〉 → C∗, ρ(Fλ0,A

) = λj

L = X̃(π, σ)×ρ C(8.2)
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where λj ∈ D is the j-th component of λ0. Then it follows that the holomorphic function on
the universal cover defined by f(z) = zj on TN gives rise to a holomorphic section of L.

Corollary 8.3: If X is a toric Kato manifold and L ∈ Pic0(X) is non-trivial, then
H0(X,L) 6= 0 if and only if X is of parabolic type and L is a positive power of the line
bundle defined in Remark 8.2. In this case, H0(X,L) ∼= C.

Next, let ΘX(− logDT ) denote the locally free subsheaf of the tangent sheaf given by
germs of holomorphic vector fields tangent to DT , let Ω1

X(logDT ) be the dual sheaf and let
Ωp(logDT ) :=

∧p(Ω1(logDT )) for p ≥ 2.

Proposition 8.4: If X is any toric Kato manifold, then H0(X,Ωp
X) = 0 for any p ≥ 1.

Proof. For Hopf manifolds the result is well known, so we only treat the other cases. We start
by noting that the map

M ⊗O
X̃
→ Ω1

X̃
(log D̃T ), m⊗ f → f · dm̃

m̃

where m̃ is the natural meromorphic function on X̃ associated to m, is an isomorphism of O
X̃
-

modules [Ful93, Propostion at page 87]. In particular, for any p ≥ 1, Ωp

X̃
(log D̃T ) ∼=

∧pM⊗O
X̃
.

Let f1, . . . , fn be a Z-basis of N so that νj := 〈fj〉 ∈ Σ(1)
A for each 1 ≤ j ≤ n and let

m1, . . . ,mn be the dual basis of M . For each J = (1 ≤ j1 < . . . < jp ≤ n), 1 ≤ p ≤ n, denote
by

ωJ := dm̃j1

m̃j1
∧ . . . ∧

dm̃jp

m̃jp

∈ H0(X̃,Ωp

X̃
(logDT )).

Using Proposition 8.1, we find that

H0(X̃,Ωp

X̃
(log D̃T )) =

{
spanC〈ωJ | |J | = p〉, |P (A)| < n− 1
spanOC(C)〈ωJ | |J | = p〉, P (A)c = {j}

where OC(C) denotes the ring of entire functions in zj = ẽ∗j .
Since Ωp

X̃
is a subsheaf of Ωp

X̃
(log D̃T ) and since each ωJ has poles along

∑
j∈J orb νj , it is

clear that in the case |P (A)| < n− 1 we have H0(X,Ωp
X) = H0(X̃,Ωp

X̃
) = 0 for any p ≥ 1. In

the case P (A)c = {j}, the same argument shows that H0(X,Ωp
X) = H0(X̃,Ωp

X̃
) = 0 for p ≥ 2.

For p = 1, we find that

H0(X̃,Ω1
X̃

) = {ω = f(zj)dzj | f ∈ OC(C)}.

Since γ = Fλ,A acts on such an element ω =
∑∞
k=0 ckz

k
j dzj by γ∗ω =

∑∞
k=0 λ

k+1
j ckz

k
j dzj and

as |λj | < 1, we find
H0(X,Ω1

X) = H0(X̃,Ω1
X̃

)Γ = 0
which concludes the proof.

Theorem 8.5: Let X be a toric Kato manifold of hyperbolic type. Then we have:

H0(X,OX) = H1(X,OX) = C, Hp(X,OX) = 0, p ≥ 2.
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Proof. Let A be a toric Kato matrix for X. Since |P (A)| < n− 1, there exists u ∈ im(id−A)∩
IntC0 ∩N a primitive element. Consider the family pu : Xu → C of Theorem 7.4, of central
fiber S and generic fiber X. Then by upper-semicontinuity [BS76, Theorem 4.12] we have:
(8.3) dimHp(X,OX) ≤ dimHp(S,OS), p ∈ N.

Let us first compute H•(S,OS). Let n : Ŝ = X(Σu, N) → S be the normalization map,
and let Y = n(E′) = n(H ′) be the double locus of S, with inclusion map j : Y → S. Then we
have an exact sequence of sheaves on S:
(8.4) 0 // OS // n∗OŜ // j∗OY // 0

and the corresponding long exact sequence in cohomology. Since Y and Ŝ are compact toric
varieties, we have Hp(Y,OY ) = Hp(Ŝ,OŜ) = 0 for any p ≥ 1 cf. [Dan78, Corollary 7.4]. This
implies that Hp(S,OS) = 0 for p ≥ 2 and gives rise to the exact sequence:

0 // H0(S,OS) // C 0
// C // H1(S,OS) // 0.

We infer that H0(S,OS) = H1(S,OS) = C.
The cohomology ofOS together with (8.3) immediately gives the desired result forHp(X,OX)

for p 6= 1. On the other hand, since h1,0(X) = 0 by Proposition 8.4, using again (8.3) we find:
1 = b1(X) ≤ h1,0(X) + h0,1(X) = h0,1(X) ≤ h0,1(S) = 1

hence we also have H1(X,OX) = C. This concludes the proof.

Corollary 8.6: Let X be a toric Kato manifold of hyperbolic type. Then we have an
isomorphism Pic0(X) ∼= H1(X,C∗) ∼= C∗ given by

λ ∈ C∗ 7→ Lλ := X̃ ×ρλ C, ρλ ∈ Hom(Γ,C∗), ρλ(n) = λn.

Moreover, we have a short exact sequence:

0 // C∗ // Pic(X) c1
// H2(X,Z) // 0.

Proof. Since by Theorem 8.5 we have H1(X,OX) = C = H1(X,C), we find that Pic0(X) :=
H1(X,O)/H1(X,Z) ∼= H1(X,C∗) = C∗. Since moreover H2(X,OX) = 0, the exponential
sequence gives rise to the exact sequence:

0 // C∗ // Pic(X) c1
// H2(X,Z) // H2(X,OX) = 0

from which we conclude.

Theorem 8.7: Let X be a toric Kato manifold with toric divisor DT and matrix A. Then we
have:

H0(X,ΘX(− logDT )) ∼= ker(A− id)
H0(X,Ω1

X(logDT )) ∼= ker(AT − id).
If moreover X is of hyperbolic type, then we also have:

H1(X,ΘX(− logDT )) ∼= coker(A− id), Hp(X,ΘX(− logDT )) = 0, p ≥ 2
H1(X,Ω1

X(logDT )) ∼= coker(AT − id), Hp(X,Ω1
X(logDT )) = 0, p ≥ 2.
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Proof. We only show the statements for the sheaf ΘX(− logDT ), since for Ω1
X(logDT ) the

proof is dual. We have

H0(X,ΘX(− logDT )) = H0(X̃,Θ
X̃

(− log D̃T ))Γ.

Since X̃ is an open set of the toric manifold X(ΣA, N), we find Θ
X̃

(− log D̃T ) ∼= O
X̃
⊗N and

so, by Proposition 8.1, the conclusion follows for the case |P (A)| < n− 1.
If P (A)c = {j}, then by Proposition 8.1, any element s ∈ H0(X̃,O

X̃
⊗N) expresses as:

s =
∑
m∈N

amz
m
j , am ∈ N ⊗ C.

The Γ-invariance of s reads:
Aam = λ−mj am, ∀m ∈ N

Using that |λj | < 1 and that for any µ ∈ Spec(A), |µ| = 1, we find:

H0(X,ΘX(− logDT )) ∼= ker(A− id).

Suppose next that |P (A)| < n− 1, so that there exists a primitive element u ∈ im(id−A)∩
IntC0 ∩N , and consider the family pu : (Xu,D)→ C of Theorem 7.4, of central fiber S and
generic fiber X. Consider the sheaf F := ΘX (− logD), and denote by Ft its restriction to
any fiber p−1

u (t), t ∈ C. Then for any t ∈ C∗, we have Ft ∼= ΘX(− logDT ) ⊕ OX , so by
upper-semicontinuity [BS76, Theorem 4.12] we find:

(8.5) dimHp(X,ΘX(− logDT )) + dimHp(X,OX) ≤ dimHp(S,F0), p ∈ N.

We must thus compute H•(S,F0). Consider again the exact sequence (8.4) and tensorize it
with the flat sheaf F0, obtaining:

0 // F0 // n∗OŜ ⊗ Ñ // j∗OY ⊗ Ñ // 0.

As before, passing to the long exact sequence in cohomology we find that Hp(S,F0) = 0
for p ≥ 2 and so Hp(X,ΘX(− logDT )) = 0 for p ≥ 2. Moreover, we have the short exact
sequence:

0 // H0(S,F0) // Ñ ⊗ C Ã′−id
// Ñ ⊗ C // H1(S,F0) // 0

which implies H1(S,F0) = coker(Ã′ − id) = coker(A− id)⊕C. Thus, from (8.5) and Theorem
8.5 we infer the inequality:

(8.6) dimH1(X,ΘX(− logDT )) ≤ dim coker(A− id).

At the same time, H1(X,ΘX(− logDT )) can be computed, as Γ-equivariant cohomology,
by a spectral sequence [Gro57, Subsection 5.2]. Namely, if q : X̃ → X denotes the covering
map, then Θ

X̃
(− log D̃T ) is a Γ-sheaf on X̃ and ΘX(− logDT ) = qΓ

∗Θ
X̃

(− log D̃T ). Therefore,
we have a spectral sequence

Ep,q2 = Hp(Γ, Hq(X̃,Θ
X̃

(− log D̃T )))⇒ Hp+q(X,ΘX(− logDT )).
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Moreover, since Γ ∼= Z, we have Ep,•2 = 0 for any p ≥ 2. Hence this spectral sequence
degenerates at the second page, implying that H1(X,ΘX(− logDT )) = E1,0

2 ⊕ E0,1
2 . In

particular, we have

(8.7) dimH1(X,ΘX(− logDT )) ≥ dimH1(Γ, H0(X̃,Θ
X̃

(− log D̃T ))).

But using Proposition 8.1, the fact that S1 is the Eilenberg–MacLane space of Γ and Poincaré
duality for local systems, we find:

H1(Γ, H0(X̃,Θ
X̃

(− log D̃T ))) = H1(Γ, N ⊗ C) ∼= H0(Γ, N∗ ⊗ C)∗

= (ker(AT − id))∗ = coker(A− id).

This, together with (8.7) and (8.6) gives us the desired conclusion.

Theorem 8.8: Let X be a toric Kato manifold of hyperbolic type, with divisor D induced by
the exceptional divisor of π. Then we have:

h1,p(X) = 0, p 6= 1
h1,1(X) = ]D > 0.

Proof. Let us write DT =
∑k
j=1Dj , where each Dj is an immersed irreducible hypersurface,

possibly equal to Ds for some s 6= j. Let D̂j be the normalization of Dj for each j = 1, . . . , k
and let α : D̂T =

⊔k
j=1 D̂j → X be the natural map given by inclusion and normalization.

Then we have an exact sequence:

(8.8) 0 // Ω1
X

// Ω1
X(logDT ) P

// α∗OD̂T
// 0

where P is the Poncaré residue map.
Each component of D̂T is either a compact toric variety, or a toric Kato manifold of

hyperbolic type, and we have precisely |P (A)| components of the last type. Using Theorem
8.5 and Theorem 8.7, we infer that Hp(X,Ω1

X) = 0 for p ≥ 3 and we find the following exact
sequence:

0 // H0(X,Ω1
X(logDT )) // Ck // H1(X,Ω1

X) //

// H1(X,Ω1
X(logDT )) P1

// C|P (A)| // H2(X,Ω1
X) // 0.(8.9)

Now the point is to show that the map P1 induced by P is surjective. This will readily
imply that h1,2(X) = 0. Furthermore, as the Euler characteristic of the exact sequence is 0,
and as dimH0(X,Ω1

X(logDT )) = dimH1(X,Ω1
X(logDT )) by Theorem 8.7, we also infer that

h1,1 = k − |P (A)| = ]D.
Let us thus show that P1 is surjective. We recall that for each j ∈ P (A), we denoted by

Xj := orb〈ej〉 ∩ X̃. We also denote by Yj the quotient of Xj by a finite index subgroup of
Γ, so that Yj is a smooth Kato manifold of hyperbolic type which is the normalization of
one of the components of DT . In particular, we have D̂T = D̂ t

⊔
j∈P (A) Yj , where D̂ is the
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normalization of D. The map P1 is induced by the Γ-equivariant map of Γ-sheaves on X̃:

P̃1 : Ω1
X̃

(log D̃T ) ∼= M ⊗O
X̃
→ ⊕j∈P (A)OXj

m⊗ f 7→ (〈m, ej〉 · f |Xj )j∈P (A)

so that

P1 = P̃ ∗1 : H1
Γ(X̃,Ω1

X̃
(log D̃T )) = H1(X,Ω1

X(logDT )→ ⊕j∈P (A)H
1(Yj ,OYj ).

On the other hand, using again the spectral sequence of [Gro57] which degenerates at the
second page, together with Theorem 8.5 and Theorem 8.7, we find

C = H1(Yj ,OYj ) = H1(Γ, H0(Xj ,OXj )) = H1(Γ,C)

coker(AT − id) = H1(X,Ω1
X(logDT )) = H1(Γ, H0(X̃,Ω1

X̃
(log D̃T ))) = H1(Γ,M ⊗ C)

and so P1 is the map induced in group cohomology by Q : M ⊗ C → C|P (A)|, m 7→
(〈m, ej〉)j∈P (A). Clearly Q is surjective, and let K = kerQ, so that we have an exact se-
quence

0 // K // M ⊗ C
Q
// C|P (A)| // 0.

This further induces an exact sequence

H1(Γ,M ⊗ C) P1
// H1(Γ,C|P (A)|) // H2(Γ,K).

But H2(Γ,K) = 0 since Γ = Z, so indeed P1 is a surjective map. This concludes the proof of
the theorem.

Remark 8.9: We note here that for toric Kato manifolds X(π, σA(t·)) of parabolic type, the
conclusions of Theorem 8.5, Theorem 8.7 and Theorem 8.8 also hold if |t| is small enough.
The arguments are exactly the same, except that one has to replace the families pu by the
Nakamura family pN in Theorem 8.5 and Theorem 8.7. Since in the Nakamura family the
smooth fibers need not be isomorphic, the semi-continuity argument then works only for
parabolic Kato manifolds close to the singular fiber.

9. Isomorphism classes of toric Kato manifolds

The aim of this section is to describe isomorphism classes of toric Kato manifolds, according
to the combinatorial data provided by the toric modification π : Ĉn → Cn (specifically the fan
Σ̂ of Ĉn), and the Kato germ F = Fλ,A.

9.1. Collapsing models. To this aim, we need first to introduce some more constructions
related to toric Kato manifolds, inspired by the collapsing models of [Dlo84], and generalizing
constructions introduced above.

Denote by Σ the fan of Cn, by Σ̂ the fan of Ĉn and set Σ̂0 = Σ̂\AΣ, where AΣ = {Aτ | τ ∈ Σ}.
For any ` ∈ Z ∪ {−∞} and m ∈ Z ∪ {+∞} with ` ≤ m we set

Σ` �m
A :=

⋃
`≤k<m

AkΣ̂0 ∪AmΣ,
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where we set A±∞τ = ∅ for any cone τ .

Lemma 9.1: The set Σ` �m
A defines a regular fan, which is finite if and only if `,m ∈ Z. When

` = −∞, the support is given by |Σ−∞ �m
A | = H(A)∪ τP (A) for any m ∈ Z. In general, we have

|Σ` �m
A | ⊇ |Σ` �m′

A | for all ` ∈ Z ∪ {−∞}, m ≤ m′ ∈ Z ∪ {+∞}, ` ≤ m, with strict inclusion if
and only if m ∈ Z and m′ = +∞.

Proof. The first part of the statement is trivial, the rest follows directly from (4.3).
To simplify notations, we will omit ` and m when they are infinite. Notice that Σ0 �d

A = Σ̂d

is the fan associated to πd as defined in the proof of Lemma 3.3; Σ �

A corresponds to the infinite
fan ΣA defined by (4.1), while Σ0 �

A corresponds to the infinite fan Σ+
A defined in the proof of

Theorem 4.2.
To the fan Σ` �m

A is associated the toric variety (possibly of non-finite type) X(Σ` �m
A , N).

When m ∈ Z, we denote by 0m the point associated to the cone Amτ0, where τ0 ∈ Σ is the
cone associated to the origin of Cn. Notice that when ` = 0 and m ∈ Z>0, the point 0m is
exactly the point σm(0), where σm is the second entry of the Kato data given by Lemma 3.3.

All these toric varieties are related one to the other via some natural morphisms.

Definition 9.2: Let ` ∈ Z ∪ {−∞}, and m ≤ m′ ∈ Z ∪ {+∞}, with ` ≤ m. The toric
morphism pm�m′

` : X(Σ` �m′
A , N) → X(Σ` �m

A , N), induced by the identity of N , is called the
collapsing map from X(Σ` �m′

A , N) to X(Σ` �m
A , N).

The F -invariant open set WT (F ) sits inside the torus TN , which is an open dense subset of
X(Σ` �m

A , N) for any ` ≤ m. Similarly to Section 4, we set

X̃` �m
F := Int(WT (F )X(Σ` �mA ,N)) ⊂ X(Σ` �m

A , N).

The variety X̃` �m
F is called the (` �m-)collapsed model associated to the Kato data (π, σ). When

` = −∞ and m ∈ Z, this corresponds to the collapsed model defined in [Dlo84, Chapter I.3].
We note that since for any ` ∈ Z, Σ` �

A ⊂ ΣA, X̃` �
F naturally sits inside X̃ �

F as an open subset.
Notice that pm�m′

` leaves WT (F ) invariant, and hence defines a regular map pm�m′
` : X̃` �m′

F →
X̃` �m
F , which is a proper modification of 0m.
Notice also that for any m ∈ Z≥1, the collapsing maps p0�m

0 : X̃0 �m
F → X̃0 �0

F = W s(F )
correspond to the toric modifications πm given by Lemma 3.3.

Remark 9.3: The natural diagrams involving collapsing maps commute, and in particular,
for any ` ≤ m ≤ m′ ≤ m′′, one has pm�m′′

` = pm�m′
` ◦pm′�m′′` . This allows to construct projective

limits of the families
(
X
(
Σ` �m
A , N

))
m∈Z≥`

and
(
X̃` �m
F

)
m∈Z≥`

. The spaces X
(
Σ` �
A , N

)
and X̃` �

F

sit naturally inside such projective limits as open dense subsets. Their complement can be
interpreted in terms of valuations (see, e.g., [Tei18]), and the whole projective limits in terms
of hybrid spaces (see, e.g., [Ber09, BJ17, Fav20]).

9.2. Isomorphism classes. We will say that two toric Kato manifolds X and X ′ are equiv-
ariantly isomorphic if there exists a biholomorphism Φ : X → X ′ and a group isomorphism
ν ∈ Autgr.(TN ) so that the lift Φ̃ : X̃ → X̃ ′ satisfies Φ̃(λx) = ν(λ)Φ̃(x) for any x ∈ X and
λ ∈ TN for which this is defined.
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Also, recall that a holomorphic germ Φ satisfying Φ ◦ F = G ◦ Φ is called a semi-conjugacy
between F and G. When Φ is moreover an invertible germ, we call Φ a conjugacy.

We start by describing the compact hypersurfaces in the universal covering of a toric Kato
variety.

Lemma 9.4: Let X be a toric Kato manifold, and X̃ its universal covering. Then the compact
hypersurfaces of X̃ are exactly the toric hypersurfaces whose sum gives D+: they correspond
to the rays of the fan ΣA associated to X not contained in τP (A).

Proof. Let H be any compact hypersurface of X̃. Being compact, it must be contained in
the open set (pm�

` )−1
(
X̃` �m
F \ {0m}

)
⊂ X̃

�

F , for some ` ≤ m ∈ Z. Notice that p`�m` : X̃` �m
F →

X̃` �`
F ⊆ X(Σ` �`

A , N) ∼= Cn is a toric modification above the origin of Cn, and we infer that H
must correspond to one of the exceptional primes of the toric modification. This means that
H corresponds to one of the rays of Σ` �m

A , and so to one of the rays of ΣA. Finally, it is clear
that a ray ν of ΣA gives rise to a compact hypersurface in X̃ if and only if ν is not contained
in τP (A).

Theorem 9.5: Let X and X ′ be two isomorphic toric Kato manifolds, with associated Kato
germs F = Fλ,A and G = Fµ,B. Set H∞ =

⋃
m>0 F

−m(0) and H ′∞ =
⋃
m>0G

−m(0). Then
there exists a holomorphic germ Φ : (Cn, 0)→ (Cn, 0) which is an isomorphism on Cn \H∞,
satisfying Φ−1(Cn \H ′∞) = Cn \H∞ and Φ ◦ F = G ◦ Φ.

Proof. Let Ψ : X → X ′ be an isomorphism, and let Ψ̃ : X̃ → X̃ ′ be a lift of Ψ to the universal
coverings.

To distinguish collapsing maps for X and X ′, we denote collapsing maps for X with the
letter p, and collapsing maps for X ′ with the letter q. To simplify notations, we also set
pm := pm�

m and qm := qm�
m . Finally, we denote by D+ (resp., D′+) the union of the compact

hypersurfaces of X̃ (resp., X̃ ′), and set D̃′++ = q−1
m (0m) ⊂ D′+.

Let us take m� 0 small enough so that the images through Ψ̃ of the compact hypersurfaces
in p−1

0 (0) belong to (qm)−1(0m). This can be done since all such (infinitely many) compact
hypersurfaces project to finitely many hypersurfaces of X.

For any ` ∈ Z, let B̃−` : X̃` �`
G → Cn be the isomorphism induced by B−`, and let

q̃` := B̃−` ◦ q` : X̃` �
G → Cn. Note that for ` < `′, q̃`|X̃`′ �

G

= q̃`′ . Define

Φ := q̃m ◦ Ψ̃ ◦ p−1
0 : Cn \ {0} → Cn.

By Hartogs’ theorem, the map Φ extends to a holomorphic map on Cn. Moreover, it is
a biholomorphism outside p0(Ψ̃−1(D̃′++ )) ⊆ p0(D+). Thanks to the description of compact
hypersurfaces given by Lemma 9.4, we have Ψ̃(D+) = D′+, from which we infer that Φ(Cn \
H∞) = Cn \H ′∞ and that Φ is an isomorphism outside H∞.

We are left with verifying that Φ ◦ F = G ◦ Φ. Let γF be the deck group generator of X̃,
which is induced by F , and let γG be the deck group generator of X̃ ′. Being Ψ̃ the lift of Ψ,
we have Ψ̃ ◦ γF = γG ◦ Ψ̃.

Note that γF induce isomorphisms X̃` �
F → X̃`+1 �

F for any ` ∈ Z. Moreover, it is straight-
forward to check that F ◦ p0 = p0|X̃1 �

F

◦ γF , and similarly G ◦ q̃m = q̃m|X̃m+1 �
G

◦ γG. Then we
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have

Φ ◦ F = q̃m ◦ Ψ̃ ◦ p−1
0 ◦ F = q̃m ◦ Ψ̃ ◦ γF ◦ p−1

0

= q̃m ◦ γG ◦ Ψ̃ ◦ p−1
0 = G ◦ q̃m ◦ Ψ̃ ◦ p−1

0 = G ◦ Φ

which concludes the proof.
In general, the semi-conjugacy given by Theorem 9.5 is not necessarily equivariant (see

Example 9.7). The next proposition shows that this is the case, as soon as the union of the
coordinate hyperplanes is Φ-invariant. Notice that this condition is automatically satisfied
when P (A) = ∅.

Proposition 9.6: Let F = Fλ,A and G = Fµ,B be two Kato germs. Let Φ : (Cn, 0)→ (Cn, 0)
be a semi-conjugacy between F and G which is a local isomorphism on TN and so that
Φ−1(TN ) = TN .Then Φ is ν-equivariant for some ν ∈ Autgr.(TN ).

Proof. Being K := {z1 · · · zn = 0} totally invariant for the action of Φ, we infer that Φ takes
the form

Φ(z) = χzQ(1l + u(z)),

where 1l = (1, . . . , 1), u : (Cn, 0) → (Cn, 0), and Q is a suitable matrix in GL(n,Z), with
non-negative entries since Φ is regular.

From the conjugacy relation we get

(9.1) χλQzQA
(
1l + u

(
λzA

))
= µχBzBQ

(
1l + u(z)

)B.
By checking the lowest degrees of (9.1), we get QA = BQ and χλQ = µχB . After simplifying

the common factor in (9.1), we get

(9.2) 1l + u
(
λzA

)
=
(
1l + u(z)

)B.
Let uizi, with ui ∈ Cn and i ∈ Nn \ {0}, be any (n-uple of) monomial(s) appearing in the

formal power series expansion of u.
This monomial contributes with λiuiziA in the left-hand-side, and with Buizi +h.o.t. in the

right-hand-side of (9.2), where h.o.t. denotes a suitable formal power series with monomials
zj with |j| > |i|.

Since
∑
k ahk ≥ 1 for all h = 1, . . . , n, we have |iA| ≥ |i| for any i ∈ Nn.

Assume that this inequality is strict for any i ∈ Nn \ {0}. This implies that u ≡ 0. In
fact, if this is not the case, there exists i ∈ Nn \ {0} so that ui 6= 0. We may assume that
|i| is minimal among the multi-indices satisfying the above condition. In this case we get a
contradiction, since the left-hand-side of (9.2) contains a non-trivial monomial or order |i|,
while the right-hand side does not.

Assume now that |iA| = |i| for some i ∈ Nn \ {0}. Notice that
∑
k ajk = 1 for some

j ∈ {1, . . . , n} if and only if P (A)c = {j}. We infer that in this case P (A)c = {j} and i = mej
for some m > 0. Then the coefficient of the monomial zi in (9.2) gives λjui = Bui, where
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λ = (λ1, . . . , λn). Since |λj | < 1 and B has only eigenvalues of modulus 1, we deduce that
ui = 0, and hence u ≡ 0.

Example 9.7: Consider a Kato 4-fold X = X(π, σ) whose associated Kato germ is F = Fλ,A,
with

A =


1 1 1 1
0 1 1 1
0 1 2 1
0 1 1 2

 .

For any α ∈ C, let Hα be the hyperplane of equation z1 − αz4 = 0. Then Hα is F -invariant
if and only if λ1 = λ4. In this case, for any α ∈ C, the map Φ(z) = (z1 − αz4, z2, z3, z4)
commutes with F .

Suppose moreover that Φ lifts to an automorphism Φ̂ : Ĉn → Ĉn on the total space Ĉn of
the toric modification π. Then Φ induces a (non-equivariant) automorphism of X.

This example also shows that the vector space H0(X,ΘX) is generally larger than the vector
space H0(X,ΘX(− logDT )) ∼= ker(A− id) computed in Theorem 8.7.

Since the semi-conjugacy Φ induced by an equivariant isomorphism Ψ as in Theorem 9.5
automatically satisfies the hypothesis of Proposition 9.6, we deduce the following classification of
toric Kato manifolds, associated to the same toric modification, up to equivariant isomorphisms.

Corollary 9.8: Let X = X(π, σ) be a toric Kato manifold with Kato germ F = Fλ,A. Let
X ′ = X(π, σ′) be another toric Kato manifold associated to the same toric modification π, and
denote by G = Fµ,B its associated Kato germ. Set λ = e2πi` and µ = e2πim, where ` and m
belong to Cn.

Then X ′ is equivariantly isomorphic to X if and only if there exists Q ∈ GL(n,Z) such that
QA = BQ, Q(ΣA) = ΣB, and so that
(9.3) Q`−m ∈ Im(B − id) + Zn.

Proof. By Proposition 9.6, if X and X ′ are equivariantly isomorphic, then there exists a map
Φ(z) = χzQ conjugating F and G and so that QΣA = ΣB. Conversely, any such map Φ
induces a natural equivariant biholomorphism Φ̃ : X → X̃ ′ commuting with the deck group
action, and so an equivariant biholomorphism between X and X ′.

By Φ ◦ F = G ◦ Φ, we infer QA = BQ, and χλQ = µχB. By applying 1
2πi log to both sides,

we get
Q`+ v = m+Bv (mod Zn),

where v is such that χ = e2πiv. The statement follows.
Notice that, as in Theorem 9.5, we may assume that the matrix Q in the statement of

Corollary 9.8 has non-negative entries. As an immediate corollary, we get:

Corollary 9.9: Let X and X ′ be two toric Kato manifolds as in Corollary 9.8, both with the
same associated Kato matrix A. If 1 6∈ Spec(A), then X and X ′ are equivariantly isomorphic.

Proof. It suffices to apply Corollary 9.8 with A = B and Q = id.
The non-triviality of the moduli space of toric Kato varieties with prescribed toric modifica-

tion is related to the existence of (possibly non-equivariant) invariant families of subvarieties
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(or more generally foliations) for the associated Kato germs, which in turn corresponds to the
existence of families of compact subvarieties (or foliations) on the toric Kato variety.

Example 9.10: (Parabolic Inoue surfaces) For n = 2, the only toric Kato matrices A

with ker(id−A) 6= 0 are Aa :=
(

1 a
0 1

)
and A′a =

(
1 0
a 1

)
, which is GL2(Z)-conjugated to Aa,

where a ∈ N∗. Let π0 : Bl0 C2 → C2 be the blow-up of the origin, and σ0 : C2 → Bl0 C2 be
given by the chart τ := 〈e1, e1 + e2〉. Let now (π, σ) be the composition of (π0, σ0) with itself
a times, as given by Lemma 3.3.

Being e1 invariant, the locus {x = 0} is invariant by F = Fλ,Aa , and induces an elliptic
curve C∗/λ2 on the parabolic Inoue surface Xλ,Aa = X(π, σ). In particular if Xλ,Aa and Xµ,Aa

are isomorphic, then we must have λ2 = µ2.
A direct computation shows that the matrices Q satisfying the conditions of Corollary 9.8

for A = B = Aa are of the form Q = Ak for some k ∈ N. Then condition (9.3) is satisfied if
and only if there exists t ∈ R so that{

`1 + k`2 −m1 − km2 − t ∈ Z,
`2 −m2 ∈ Z,

which holds if and only if `2 −m2 ∈ Z, i.e., if and only if λ2 = µ2.

Example 9.11: Be π be a toric modification whose associated fan contains the cone generated

by A =

1 1 1
2 2 1
2 1 2

 Let X = X(π, σ) be a toric Kato data whose associated Kato germ takes

the form F = Fλ,A. In this example, 1 ∈ Spec(A), and Im(A− id) is generated by e1 + e2 + e3
and e1, hence it coincides with {v ∈ R3 | v2 − v3 = 0}. In fact, an eigenvector for 1 is given
by (0, 1,−1), and can be also interpreted by the fact that z2/z3 = const defines an invariant
family of surfaces for F . These families induce a regular foliation on X, whose geometrical
properties depend on the value of λ2/λ3 =: λ.

Let now X ′ = X(π, σ′) be another toric Kato data with associated germ G = Fµ,A. The
condition (9.3) to have X and X ′ isomorphic, when Q = id, gives

`2 − `3 − (m2 −m3) ∈ Z.
Hence X and X ′ are isomorphic if λ = µ := µ2/µ3.

Notice that the matrix A commutes with the permutation matrix Q =

1 0 0
0 0 1
0 1 0

 . If the
fan associated to π is invariant by the action of Q (see for example Figure 3), then Φ = χzQ

induces an isomorphism between X and X ′, as long as
`3 − `2 − (m2 −m3) ∈ Z.

Hence in this case X and X ′ are isomorphic also whenever λµ = 1.

9.3. Deformations of Kato manifolds of hyperbolic type.

Theorem 9.12: Let X = X(π, σ) be a toric Kato manifold of non-parabolic type, with toric
divisor DT . There exists a smooth versal family of deformations of the pair p : (X ,D)→ B,
where B is a centered ball in H1(X,ΘX(− logDT )) ∼= ker(A − id) ⊂ N ⊗ C. Moreover, for
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Figure 3. Fan associated to the toric modification π, invariant by the permu-
tation Q of Example 9.11.

each u ∈ B, (Xu,D ∩Xu) is the toric Kato manifold X(π, (expu).σ) together with its toric
divisor. In particular, the family p is versal for each of its fibers.

Proof. The existence of a smooth versal family of deformations of the pair follows simply form
the fact that H2(X,ΘX(− logDT )) = 0 and [KNS58], but we can in fact construct such a
family explicitly. Let A be the matrix of X. Note first that since

H1(X,ΘX(− logDT )) = coker(A− id) = H1(Γ, H0(X̃,Θ
X̃

(− log D̃T )))
the family (X ,D) must come from a trivial family

p̃ : (X̃ = X̃ ×B, D̃ = D̃T ×B)→ B

and a deformation of the action of Γ. Indeed, let γ denote the positive generator of the deck
group of X̃, and consider an action of Γ := 〈γ̃〉 on X̃ by

γ̃(z, u) = (γ(exp v.z), u), (z, u) ∈ X̃ × ker(A− id)
where exp : N ⊗C→ TN = N ⊗C∗ is induced by C 3 t 7→ e2πit ∈ C∗. Since γ commutes with
exp v for any v ∈ ker(A− id), X̃ ⊂ X(ΣA, N) is invariant under the action of exp(ker(A− id)),
so γ̃ is well-defined. Moreover, we take the ball B ⊂ ker(A − id) small enough so that
σ(expu.B) ⊂ B for each u ∈ B. It follows that for each u ∈ B,

γ̃|
X̃×{u} = γ(expu·) = expuγ ∈ Aut(X̃).

Therefore Γ acts freely and properly on (X̃ , D̃) and p : (X := X̃/Γ,D := D̃/Γ)→ B gives the
desired smooth versal family.

10. Hermitian geometry of Kato manifolds

Kato manifolds cannot admit Kähler metrics since their fundamental group is isomorphic
to Z. However, a large class of them carry locally conformally Kähler metrics (lcK), as shown
in [IOP20, Theorem 2.2]. In this section, we give a characterization for the existence of
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lcK metrics on Kato manifolds. Furthermore, we investigate the possibility of endowing a
Kato manifold with other special Hermitian metrics, such as balanced, pluriclosed, Hermitian
symplectic or strongly Gauduchon.

Recall the following definition:

Definition 10.1: A locally conformally Kähler metric (lcK) on a complex manifold X is a
Hermitian metric Ω satisfying dΩ = θ ∧ Ω for a closed non-exact one-form θ.

This definition is equivalent to any of the following formulations:
(1) There exists a covering with open sets (Ui)i of X and smooth non-constant functions

fi on every Ui such that e−fiΩ is Kähler.
(2) The universal cover X̃ admits a Kähler metric Ω̃ such that γ∗Ω̃ = cγΩ̃, for any

deck-transformation γ, where cγ > 0, not all equal to 1.
For our characterization purpose, we start by giving a general principle used to modify

Kähler metrics on modifications of balls, already used in [Bru11] and [IOP20], which will be
needed.

Lemma 10.2: Let π : Ĉn → Cn be a proper modification at 0, let ρ(z) = ρ(||z||) ∈ C∞(Cn,R)
be a strictly plurisubharmonic function depending only on ||z||, and let ω be a Kähler metric
on B̂ := π−1(B). Then for any 0 < s < 1, there exists λ > 0 and a Kähler metric ω̃ on Ĉn so
that

ω̃|B̂s = ω, ω̃|Ĉn\B̂ = λ · π∗ddcρ.

Proof. There exists a pluriharmonic function ψ on Cn, smooth and strictly plurisubharmonic
on Cn \ {0}, so that π∗ω = ddcψ. By the maximum principle, the functions

u, v : (0, 1]→ R, u(t) = max
∂Bt

ρ, v(t) = max
∂Bt

ψ

are strictly increasing. It follows that for any 0 < s < 1,
r := u(s) ≡ ρ|∂Bs < R := u(1) ≡ ρ|∂B, m := min

∂Bs
ψ ≤ v(s) < M := v(1).

Thus, for any α > 1, we can take

λ := α
M −m
R− r

> 0, c ∈ (M − λR,m− λr) 6= ∅.

so that λρ+ c > ψ on ∂B and λρ+ c < ψ on ∂Bs. Therefore, if ψ̃ is the function on Cn defined
as the regularized maximum between ψ and λρ+ c on B \ Bs, equal to ψ on Bs and equal to
λρ+ c on Cn \ B, then the metric π∗(ddcψ̃) on Ĉn \ π−1(0) glues to ω to define the desired
metric ω̃ on Ĉn.

Now we are ready to characterize the existence of lcK metrics. For this, let us note that
any proper modification π : B̂→ B induces naturally proper modifications π : Ĉn → Cn and
π : ĈPn → CPn, where ĈPn is the compactification of Ĉn with a hyperplane at infinity.

Theorem 10.3: Let (π : B̂ → B, σ : B → B̂) be a Kato data and let X = X(π, σ) be the
corresponding Kato manifold. The following are equivalent:

(1) X admits an lcK metric;
(2) X̃ admits a Kähler metric;



TORIC KATO MANIFOLDS 39

(3) ĈPn is a projective manifold;
(4) Ĉn admits a Kähler metric;

Proof. The implications (1)⇒ (2) and (3)⇒ (4) are clear, while the implication (4)⇒ (1) is
precisely Brunella’s theorem [Bru11] adapted to all complex dimensions in [IOP20, Theorem
2.2]. We are thus left with showing (2)⇒ (3).

If X̃ is Kähler, then Proposition 2.4 implies that B̂ \ {σ(0)} is also Kähler, so by Miyaoka’s
extension theorem [Miy74, Proposition A] B̂ admits a Kähler metric ω. Now putting ρ :=
log(1 + ||z||2) in Lemma 10.2, we find that Ĉn admits a Kähler metric ω̃ which glues to
λ · π∗ωFS on ˆCPn \ B̂ for some λ > 0, where ωFS is the standard Fubini-Study metric on CPn.
Thus we have shown that ˆCPn is Kähler. Since on the other hand ˆCPn is a modification of
CPn, it is Moishezon, and therefore ˆCPn is projective by Moishezon’s theorem [Moi67]. This
concludes the proof.

Remark 10.4: We note here that a non-Hopf toric Kato manifold X admitting an lcK metric
can in no way be a toric lcK manifold, because in this case it would admit a Vaisman metric
by [Ist19], which is impossible by [IOP20, Propoposition 2.6]. At the same time, the compact
torus T acts effectively and holomorphically on the universal cover X̃, and any lcK metric
on X gives rise to a Kähler metric ω on X̃, which can be made T-invariant after eventual
averaging. Since X̃ is moreover simply connected, it follows that (X̃, ω,T) is a toric Kähler
manifold in the classical sense. In this manner, lcK toric Kato manifolds give interesting
generalizations of the class of toric lcK manifolds.

Next, we recall the definitions of the other classes of Hermitian metrics whose existence on
Kato manifolds we discuss.

Definition 10.5: Let Ω be a Hermitian metric on a complex manifold X. Ω is called:
• balanced if dΩn−1 = 0, or equivalently, if Ω is co-closed [Mic82].
• pluriclosed, or strongly Kähler with torsion, if ∂∂Ω = 0 [Bis89].
• Hermitian symplectic if Ω is the (1, 1)-component of a real d-closed two-form [ST10].
• strongly Gauduchon if ∂Ωn−1 is ∂-exact [Pop13].

There are certain inclusion relations between the classes of manifolds which admit one of the
above metrics. For instance, it is easy to see that any balanced metric is strongly Gauduchon.
Similarly, it is easy to see that any Hermitian symplectic metric is pluriclosed. Finally, [YZZ19,
Lemma 1] shows that any manifold admitting a Hermitian symplectic metric also admits a
strongly Gauduchon one.

We have the following non-existence results:

Theorem 10.6: A Kato manifold X admits no strongly Gauduchon metric, and in particular
no balanced or Hermitian symplectic metric.

Proof. Let X π−→ D be the complex analytic deformation of X given by [Kat77, Theorem 1],
so that π−1(0) = X and Xt := π−1(t) is a proper modification at a finite number of points
of a Hopf manifold for t 6= 0. Assume that X admits a strongly Gauduchon metric. Then
by [Pop14, Theorem 3.1], stating that the strongly Gauduchon property is open with respect
to holomorphic deformations, Xt also admits a strongly Gauduchon metric if t is close to
0. However, according to [Pop10, Theorem 2.2], if µ : Ŷ → Y is a proper modification of
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complex manifolds and Ŷ carries a strongly Gauduchon metric, then so does Y . Consequently,
this would imply that Hopf manifolds admit strongly Gauduchon metrics, which is false by
[Pop14, Section 2]. Therefore, X cannot be endowed with strongly Gauduchon metrics, nor
with balanced or Hermitian symplectic metrics [YZZ19, Lemma 1].

Remark 10.7: The above result is related to the open question [ST10, Question 1.7], asking
whether there exist any non-Kähler Hermitian symplectic manifolds in dimension ≥ 3. We
answer it negatively for the class of Kato manifolds.

Theorem 10.8: If X is a Kato manifold of dimension n ≥ 3 satisfying H1,2
∂

(X) = 0, then it
cannot be endowed with a pluriclosed metric. In particular, if X is a toric Kato manifold of
hyperbolic type, then it does not admit a pluriclosed metric unless it is a surface.

Proof. Suppose that X carries a pluriclosed metric. Let X π−→ D ⊂ C be the same deformation
as above. Then by [Cav12, Theorem 8.5], for any t ∈ D close to 0, π−1(t) also admits a
pluriclosed metric. We recall that for each t 6= 0, π−1(t) is a modification at a finite number of
points of a Hopf manifold Mt. According to the analogue of Miyaoka’s theorem for pluriclosed
metrics [FT09, Theorem 4.3], a complex manifold M without a point admits a pluriclosed
metric if and only if M admits a pluriclosed metric. Therefore, the Hopf manifolds Mt also
admit pluriclosed metrics. However, by [Cav12, Example 5.17, Theorem 5.16], this can only
happen if n = 2. Finally, in the toric case the conclusion follows by Theorem 8.8.

Examples of non-lcK toric Kato manifolds. We have shown in [IOP20] that a toric Kato
manifold of dimension n ≥ 4 does not need to be lcK, however the examples we constructed
there are not toric. We end this section by constructing examples of toric Kato manifolds in
any dimension n ≥ 4 which admit no lcK metric.

In order to do so, we will start from the simplest example of a complete smooth toric
algebraic variety which admits no Kähler metric, cf. [Oda88]

Consider the toric manifold CP3 with the standard action of TN = (C∗)3, N = Z3. Let
e1, e2, e3 denote the standard basis of N and let e0 = −e1 − e2 − e3. Then the fan of CP3 is
generated by the 3-dimensional cones

σ0 = 〈e1, e2, e3〉, σ1 = 〈e0, e2, e3〉, σ2 = 〈e0, e1, e3〉, σ3 = 〈e0, e1, e2〉.

Consider the TN -fixed points Pj = orbσj , j = 1, 2, 3, and the one-dimensional orbits d0j =
orb〈e0, ej〉, j = 1, 2, 3, so that we have d01 ∩ d02 = P3 and so on.

Let µ : ĈP3 → CP3 be the toric modification of CP3 constructed as follows. Around the
point P1, blow-up d02 and then the strict transform of d03, around P2 blow-up d03 and then
the strict transform of d01, and around the point P3 blow up d01 and then the strict transform
of d02. It is easy to check that this is a well defined operation globally, resulting in a new
smooth toric variety ĈP3. The corresponding fan Σ3 has 3 new rays generated by vj = e0 + ej ,
j = 1, 2, 3, and the following 3-dimensional cones:

〈e1, v1, e2〉, 〈v1, e2, v2〉, 〈v1, v2, e0〉
〈e2, e3, v2〉, 〈v2, e3, v3〉, 〈v2, v3, e0〉
〈e1, e3, v3〉, 〈e1, v3, v1〉, 〈v1, v3, e0〉

〈e1, e2, e3〉.
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Proposition 10.9: ([Oda78, Proposition 9.4], [Oda88, Example on page 84]) The toric variety
ĈP3 is not projective and so admits no Kähler metric.

We now show:

Proposition 10.10: In any complex dimension n ≥ 4, there exist toric Kato manifolds X
with holomorphic immersions ĈP3 → X. In particular, X admits no lcK metric.

Proof. We wish first to construct a toric modification π : Ĉn → Cn over 0 which contains ĈP3

as a submanifold. Let π′′ : C̃n → Cn be the blow-up at 0 of Cn, let N = Zn of standard basis
f1, . . . , fn, let f0 =

∑n
j=1 fj and denote by Σ̃ the fan of C̃n with the standard TN -action. Its

n-dimensional cones are:

τj := 〈f0, . . . , f̂j , . . . , fn〉, j = 0, 1 . . . n.

Let E = orb〈f0〉 ∼= CPn−1 be the exceptional divisor of C̃n and identify

CP3 = orb〈f0, f5 . . . , fn〉.

For j = 1, 2, 3 denote by Lj = orb〈f0, fj , f4, f5 . . . , fn〉 the TN -invariant one-dimensional
submanifolds. Again, put Pj = orb τj , j = 1, 2, 3. Define the toric modification π′ : Ĉn → C̃n
similarly as before. Namely, around P1, blow up L2 and then the strict transform of L3,
around P2 blow-up L3 and then the strict transform of L1 and around the point P3 blow up
L1 and then the strict transform of L2. Equivalently, define Ĉn = X(Σ̂, N), where the fan Σ̂
has the rays of Σ̃ to which we add νj = f0 + fj +

∑n
k=4 fk, j = 1, 2, 3, and is generated by the

n-dimensional cones:

τ0, τj , 4 ≤ j ≤ n
τ1k = 〈ν2, fs | s ∈ {0, . . . , n} \ {1, k}〉, k ∈ {0, 4, . . . , n}

τ12l = 〈ν2, ν3, fs | s ∈ {0, . . . , n} \ {1, 2, l}〉, l ∈ {0, 3, 4, . . . , n}
τ2k = 〈ν3, fs | s ∈ {0, . . . , n} \ {2, k}〉, k ∈ {0, 4, . . . , n}

τ23l = 〈ν3, ν1, fs | s ∈ {0, . . . , n} \ {2, 3, l}〉, l ∈ {0, 1, 4, . . . , n}
τ3k = 〈ν1, fs | s ∈ {0, . . . , n} \ {3, k}〉, k ∈ {0, 4, . . . , n}

τ31l = 〈ν1, ν2, fs | s ∈ {0, . . . , n} \ {1, 3, l}〉, l ∈ {0, 2, 4, . . . , n}.

It is clear that the strict transform of CP3 under π′ is isomorphic to ĈP3, so π = π′′ ◦ π′ :
Ĉn → Cn has the desired properties. Now it suffices to take any toric chart σ with σ(B) ⊂ (B̂)
and σ(0) /∈ ĈP3, for instance one corresponding to the cone τ10, in order to obtain a toric
Kato manifold X = X(π, σ). Clearly ĈP3 ⊂ X̃, therefore X̃ is not Kähler and so X admits
no lcK metric.
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