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Università degli Studi di Pisa,
Largo Pontecorvo 5, 56127, Pisa, Italy.
e-mail: nisoli@mail.dm.unipi.it

Jasmin Raissy
Dipartimento di Matematica,
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Introduction

Roughly speaking, a (regular) holomorphic foliation of rank r on a complex mani-
fold M of dimension n is a partition of M in disjoint submanifolds of dimension r,
with the same local structure of parallel r-dimensional planes in Cn. A typical way
(but not the unique one) to get a holomorphic foliation is via an integrable distri-
bution of rank r, that is a complex subbundle F of rank r of the (holomorphic)
tangent bundle TM satisfying the Frobenius condition [F, F ] ⊆ F ; the foliation is
given by the integral manifolds of F . Given an integrable distribution F of rank r,
we can find an open cover {Uα} of M such that F is generated over each Uα by r
linearly independent holomorphic vector fields Xα

1 , . . . , X
α
r such that

Fp = Span{Xα
1 (p), . . . , Xα

r (p)}

for every p ∈ Uα, and satisfying

[Xα
h , X

α
k ] =

r∑
j=1

cjhk,αX
α
j (1)

for suitable local holomorphic functions cjhk,α ∈ O(Uα). Furthermore, on Uα ∩ Uβ
we can find an invertible matrix

(
(aαβ)hk

)
∈ GL

(
r,O(Uα ∩ Uβ)

)
of holomorphic

functions such that

Xβ
k =

∑
h=1r

(aαβ)hkX
α
h (2)

for all k = 1, . . . , r. If we drop the condition that Xα
1 , . . . , X

α
r are everywhere

linearly independent, we get a possible definition of singular holomorphic foliation
of rank r: it is given by an open covering {Uα} of M and, for each α, a family
{Xα

1 , . . . , X
r
α} of holomorphic vector fields on Uα, satisfying (1) and (2) and linearly

independent off a singular set Σ of codimension at least 2. For instance, a rank 1
singular holomorphic foliation is given by a family {(Uα, Xα)}, where {Uα} is an
open cover of M , each Xα is a not identically zero vector field on Uα, and Xβ =
aαβXα on Uα ∩ Uβ for a suitable never vanishing holomorphic function aαβ ∈
O∗(Uα∩Uβ). The singular set is then the set of zeroes of the local vector fields Xα.
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6 Introduction

The local structure of a regular holomorphic foliation is quite easy to study:
as mentioned above, a regular foliation locally is like parallel r-dimensional planes
in Cn. For this reason, when studying a regular holomorphic foliation one is mostly
interested in global phenomena. On the other hand, even the local structure of a
singular holomorphic foliation around the singular set Σ can be quite interesting.
Off the singular set we have a regular holomorphic foliation, and thus a partition
of M \ Σ in r-dimensional complex submanifolds; but the way these submanifolds
fit together nearby the singular set can be quite complicated (and intriguing). The
study of the (local or global) structure of (singular or regular) holomorphic folia-
tions is the aim of the subject known as (local or global) continuous holomorphic
dynamics, which has been a very active field of research in the last forty years,
particularly thanks to the Latino American and French schools. However, while it
is relatively easy to find books on the theory of real foliations (see, e.g., [CC00],
[CC03], [CLN85], [Ton88]), the results on holomorphic foliations are still mostly
scattered in the research literature.

In the year 2007-08, I organized a reading course on Local continuous holo-
morphic dynamics, attended by Ph.D. students and post-docs of the Universities
of Pisa and Firenze and of the Scuola Normale Superiore, where (relying on some
notes written by Frank Leray a few years ago and on the original literature) they
presented the basis of the local theory of singular holomorphic foliations, at least in
dimension 2, starting from scratch and arriving up to Yoccoz-Perez-Marco’s con-
struction of foliations with prescribed holonomy. This booklet is the result of that
course; we hope it will be useful as a starting reference for whoever would like to
begin studying this beautiful subject.

As mentioned above, the content of this booklet is mostly limited to the case
of rank 1 singular holomorphic foliations in 2-dimensional manifolds, for a couple
of reasons: definitions and proofs are clearer in this setting than in the general
case, and yet the main features of the subject are already evident here; and some
important results are not known (or simply false) in higher rank or dimension.
There is no claim of completeness here; but possibly after reading this booklet
tackling important papers like [MR82], [MR83], [Str02] or [SŻa02] would be easier.
Chapter 1 contains several equivalent definitions of regular and singular holomor-
phic foliations, and presents several basic concepts needed later. In particular,
the fundamental notion of holonomy of a foliation is introduced here. Chapter 2
contains a proof of the Reduction of singularities Theorem, showing that (for rank
1 foliations in a complex surface) after a finite number of blow-ups one can reduce
the local study of a singular holomorphic foliation to the study of elementary sin-
gularities, where an elementary singularity is the zero of a vector field with a not
nilpotent linear part. Chapter 3 introduces the Poincaré-Dulac (formal and, when
it exists, holomorphic) normal form of a singular vector field with an elementary
singularity. Furthermore, it contains the holomorphic classification of foliations
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with an elementary singularity in the Poincaré domain (if α denotes the ratio of
the two eigenvalues of the linear part of the vector field X with an elementary
singularity at the origin, to be in the Poincaré domain is equivalent to having
α ∈ C∗ \R−), and the description of the topology of the leaves in this case. Finally,
Chapter 4 studies the elementary singularities in the Siegel domain (that is, with
α < 0), describing the formal classification and the topology of the leaves in this
case, and proving Mattei-Moussu Theorem giving their holomorphic classification
in terms of the holonomy, and Yoccoz-Perez-Marco Theorem constructing singular
foliations with prescribed holonomy.

Each chapter is attributed to whoever originally presented the material in the
reading course; but the actual writing of this booklet has been a collective affair,
and the final version is both merit and responsability of all four of them. Matteo
Ruggiero coordinated the merging of four separate drafts in an unitary ensem-
ble, and I just did what you are going to do now: I read it all, and enjoyed the
mathematics.

Pisa, February 17, 2009 Marco Abate

The authors would like to thank Marco Abate for his confidence and support, King-
shook Biswas for many suggestions and useful discussions, David Sauzin for many
useful remarks and references, and Fabrizio Broglia for giving us the possibility to
publish this booklet.

Tiziano Casavecchia, Isaia Nisoli, Jasmin Raissy, Matteo Ruggiero





Chapter 1

Holomorphic foliations and
holonomy

Isaia Nisoli1

1.1 Regular foliations

Definition 1.1.1. Let M be a complex manifold of dimension m. A (regular)
holomorphic foliation F of M of complex codimension k, or complex dimension
m− k, is a maximal holomorphic atlas

{(Uj, φj) | φj : Uj → φj(Uj) ⊂ Cm−k × Ck},

such that the transition maps

φj ◦ φ−1
i : φi(Uj ∩ Ui)→ φj(Uj ∩ Ui)

are of the form

(x, y) 7→
(
gij(x, y), hij(y)

)
, x ∈ U ⊆ Cm−k, y ∈ V ⊆ Ck, (1.1)

with gij, hij holomorphic maps.
We shall call (Uj, φj) a chart of the foliation F . We shall often denote a

chart of a foliation simply by Uj if we are interested only on the open set Uj and
not on the map φj.

1Dipartimento di Matematica, Università degli Studi di Pisa, Largo Pontecorvo 5, 56127, Pisa,
Italy. e-mail: nisoli@mail.dm.unipi.it
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10 1 Holomorphic foliations and holonomy

Definition 1.1.2. Let F be a codimension k holomorphic foliation of the m-
dimensional complex manifold M . Let (U, φ) be a chart of the foliation. A plaque
of the foliation is a set of the form φ−1(V ×{c}) where V is an open set in Cm−k
and c is in Ck.

Let F be a foliation on a complex manifold M , let U and Ũ be two charts of
F , such that U ∩ Ũ is not empty, and let P be a plaque in U and P̃ a plaque in
Ũ . Either these two plaques coincide on the intersection of U and Ũ or they have
empty intersection. We define an equivalence relation saying that two points are
equivalent under F if there exists a finite sequence P0, . . . , Pn of plaques of F such
that p ∈ P0, q ∈ Pn and Pi ∩ Pi+1 6= ∅ for i = 0, . . . , n− 1.

Definition 1.1.3. Let F be a codimension k holomorphic foliation of the m-
dimensional complex manifold M . The leaves of F are the equivalence classes of
the points of M with respect to the equivalence relation above.

In this section we restrict ourselves to the case of complex dimension 2, so when
we write foliation we mean a holomorphic foliation of complex dimension 1 of M .

Intuitively, a foliation is a partition of a manifold into submanifolds of con-
stant dimension. This is a known phenomenon in geometry; let us introduce some
standard results and definitions, and describe several examples.

Suppose that on an open set U we have a holomorphic submersion f : U → C.
Then we have the following result, whose proof can be found in [FG02, Chapter
IV, Section 1, Theorem 1.16].

Theorem 1.1.4 (Holomorphic submersion theorem). Let M be a complex
manifold of complex dimension 2, U ⊂M a domain in M , and f : U → C a holo-
morphic submersion. Then for every point p ∈ U there exist an open neighborhood
Up of p, an open neighborhood W of f(p), an open domain V ⊂ C and a holomor-
phic map g : Up → V such that q 7→ (g(q), f(q)) defines a biholomorphism from Up
to an open subset of V ×W .

Example 1.1.5. Let U be an open set of a complex 2-manifold M , and f : U → C
a holomorphic submersion; then thanks to Theorem 1.1.4, for every point p ∈ U we
have a biholomorphism φ := (g, f), with inverse h, between a suitable neighborhood
Up of p and the product of two open subsets V ×W ⊂ C × C (up to shrinking
neighborhoods in Theorem 1.1.4, we can suppose that the image of (g, f) is a
product of two suitable open sets in C). We have then that if c is different from c′

the images of h(V × {c}) and h(V × {c′}) are disjoint. So, the level sets of f are
a partition of U into subsets of codimension 1.

We state now the theorem on the existence and uniqueness of the solution of
holomorphic differential equations (see [IY08, Theorem 1.1]).
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Theorem 1.1.6. Let U ⊆ C × Cn be an open domain, and F (t, x) : U → Cn a
holomorphic map. Let us consider the holomorphic differential equation

dx

dt
= F (t, x), (1.2)

and a given point (t0, x0) ∈ U . Then there exists a sufficiently small polydisk
Dnε = {|t− t0| < ε, |xj − x0,j| < ε, j = 1, . . . , n} ⊆ U , such that solution of (1.2),
with initial value x(t0) = x0, exists and is unique in this polydisk.

This solution depends holomorphically on the initial value x0 ∈ Cn and on any
additional parameters, provided that the vector function F depends holomorphically
on these parameters.

Example 1.1.7. Suppose we have a non-vanishing holomorphic 1-form ω defined
on an open subset U of a complex surface M . We say that a (complex) curve γ
defined from a subset V of C in U is tangent to ω if γ∗ω = 0. If ω is defined in
coordinates by ω = f(x, y)dx+ g(x, y)dy these curves can be found by solving the
differential equation

f
(
γ1(z), γ2(z)

)dγ1(z)

dz
+ g
(
γ1(z), γ2(z)

)dγ2(z)

dz
= 0.

Theorem 1.1.6 implies that, since ω is non-vanishing, the images of two tangent
curves either are disjoint or coincide. Thus ω defines a partition of U in subsets of
codimension 1.

Definition 1.1.8. Let M be a complex manifold, U ⊆ M an open domain of M ,
and X a holomorphic vector field on U . A complex integral curve for X is a
holomorphic curve θ : D → U , with 0 ∈ D ⊆ C an open domain, such that

θ′(t) = dθt

(
d

dz

)
= Xθ(t) (1.3)

for every t ∈ D.
A complex flow associated to X is a holomorphic map Θ: D → M , where

D ⊆ C× U is an open neighborhood of {0} × U and θp(t) := Θ(t, p) is a complex
integral curve for X, with θp(0) = p for every p ∈ U . We shall also denote by
θt(p) := Θ(t, p) the flow map at time t.

Remark 1.1.9. Complex flows exist, thanks to Theorem 1.1.6, and the “maxi-
mal” complex flow associated to a holomorphic vector field is essentially unique.
Moreover, directly from (1.3), it follows that θs(θt(p)) = θt+s(p) (whenever both
members are defined), and hence (θt)−1(p) = θ−t(p). In particular, up to shrink-
ing U , we can suppose that the complex flow associated to X is defined on a
neighborhood of Dε × U , with Dε ⊂ C the disk of radius ε > 0, and hence θt

are biholomorphisms from U to θt(U) for every t ∈ Dε. See [IY08, Section 1] for
further details.
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Example 1.1.10. Suppose we have a non-vanishing holomorphic vector field X
defined on an open subset U of a complex surface M . Let Θ be the complex flow
associated to X. Then we can consider the integral curves θp for every p ∈ U . Since
X is non-vanishing, the integral curves θp are embeddings; moreover if two integral
curves θp and θq have non-empty intersection for two points p, q ∈ U , then there
exist points s, t in C such that θt(p) = θs(q), or equivalently q = (θs)−1(θt(p)) =
θt−s(p). It follows that we have a partition of U into subsets of dimension 1.

In some way all these partitions seem related. Is there any connection with
foliations? Is there any connection between them? We shall now prove some
lemmas that show how they are related to each other. The first one connects
holomorphic submersions with foliations.

Lemma 1.1.11. Let F be a foliation of the complex surface M given by an atlas
{(Ui, φi)}, and let π2 : C2 → C be the projection on the second coordinate. Set fi =
π2◦φi; then the fi : Ui → C are holomorphic submersions, and for every non-empty
intersection Ui ∩ Uj there exists a biholomorphism hij : fi(Ui ∩ Uj) → fj(Ui ∩ Uj)
such that

fj(p) = hij
(
fi(p)

)
(1.4)

on Ui ∩ Uj.
Conversely, given an open covering {Ui} of M , a family of holomorphic sub-

mersions fi : Ui → C, and biholomorphisms hij : fi(Ui∩Uj)→ fj(Ui∩Uj) satisfying
(1.4) whenever Ui ∩ Uj 6= ∅, then up to refining the covering it exists a foliation F
with atlas {(Ui, φi)} such that fi = π2 ◦ φi.

Proof. Assume we have a foliation F given by an atlas {(Ui, φi)}. Since φi is a
chart, then obviously fi is a submersion. Moreover the holomorphic map hij of
equation (1.1) satisfies (1.4).

Conversely, we have by Theorem 1.1.4 that for each p ∈ Ui there exists a
neighborhood Ui,p ⊆ Ui such that φi,p := (gi,p, fi|Ui,p) is a biholomorphism between
Ui,p and an open subset V ×W of C2. Refining our cover {Ui} to the cover {Ui,p}
we have an atlas {(Ui,p, φi,p)} of M . We want to show that this atlas defines a
holomorphic foliation; we only have to show that (1.1) holds for every couple of
charts.

Let us consider two charts (Ui,p, φi,p) and (Uj,q, φj,q), with Ui,p ∩Uj,q 6= ∅; let us
take z ∈ Ui,p ∩ Uj,q, and (x, y) = φ−1

i,p (z), i.e., x = gj,q(z) and y = fi(z). Then

φj,q ◦ φ−1
i,p (x, y) = φj,q(z) =

(
gj,q(z), fj(z)

)
=
(
gj,q(z), hij

(
fi(z)

))
=
(
gj,q ◦ φi,p(x, y), hij(y)

)
,

and we are done.
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Now we shall prove a lemma that connects non-vanishing holomorphic 1-forms
and holomorphic submersions.

Lemma 1.1.12. Let M be a complex surface, {Ui} an open covering of M , fi : Ui →
C holomorphic submersions, and hij : fi(Ui ∩ Uj) → fj(Ui ∩ Uj) biholomorphisms
satisfying (1.4) whenever Ui ∩Uj 6= ∅. Then up to refining the covering there exist
a collection of non-vanishing holomorphic 1-forms ωi ∈ Ω1(Ui) such that the level
sets of fi are tangent curves to ωi, and for every non-empty intersection Ui ∩ Uj,
then ωi and ωj differ on Ui ∩Uj by multiplication by a non-vanishing holomorphic
function.

Proof. The necessity of a refinement comes, as in Lemma 1.1.11, from Theorem
1.1.4. As showed in Lemma 1.1.11, without loss of generality we can assume to have
an atlas {Ui} such that on each Ui Theorem 1.1.4 gives rise to a biholomorphism
(gi, fi) between Ui and Vi ×Wi in C2. If we call h the inverse of (gi, fi) we have
that the level sets of fi are given by maps hc(z) := h(z, c) from Vi to M . So
fi(hc(z))) = c. Differentiating both sides of this equation we get

(h∗cdfi)(z) = dfi

(
∂hc(z)

∂z

)
≡ 0.

Since fi is a submersion, the differential dfi is of maximal rank, and then it defines
a non-vanishing holomorphic 1-form. So, on each Ui there exists a non-vanishing
holomorphic 1-form ωi = dfi whose tangent curves are the level sets of fi. By
assumption, we have that fj = hij ◦ fi on Ui ∩ Uj. So

ωj = dfj =

(
∂hij
∂z
◦ fi
)
dfi =

(
∂hij
∂z
◦ fi
)
ωi,

and ωi and ωj differ by multiplication by the holomorphic function
∂hij
∂z
◦ fi on

Ui ∩ Uj, that is non-vanishing since hij is a biholomorphism.

Now we shall see the correspondence between non-vanishing holomorphic 1-
forms and non-vanishing holomorphic vector fields.

Lemma 1.1.13. Let M be a complex surface and {Ui} an atlas for M . Let us
consider collections {ωi} and {Xi}, with ωi a non-vanishing holomorphic 1-form,
and Xi a non-vanishing holomorphic vector field, both defined on Ui, and such that
if Ui ∩ Uj is not empty then ωi and ωj (Xi and Xj respectively) differ on Ui ∩ Uj
by multiplication by a non-vanishing holomorphic function.

Then, given such a collection of one of those two kinds, there exists a collection
of the other kind such that the tangent curves to ωi coincide with the integral curves
of Xi for every i.
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Proof. Let us fix the index i, and set U = Ui. Let ω and X be respectively a
non-vanishing holomorphic 1-form and a non-vanishing holomorphic vector field
on U ; we can write them in coordinates as

ω = f(x, y)dx+ g(x, y)dy, X = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
.

If γ = (γ1, γ2) is a tangent curve to ω, then

f
(
γ(z)

)dγ1(z)

dz
+ g
(
γ(z)

)dγ2(z)

dz
= 0.

This happens if and only if, up to a reparametrization of γ,

dγ(z)

dz
=

(
−g
(
γ(z)

)
f
(
γ(z)

) )
. (1.5)

On the other hand, γ is a integral curve of X if and only if

dγ(z)

dz
=

(
a
(
γ(z)

)
b
(
γ(z)

) ) . (1.6)

Equations (1.5) and (1.6) are holomorphic differential equations, as in (1.2),
with F (z, γ) = (−g(γ), f(γ)) and F (z, γ) = (a(γ), b(γ)) respectively: thanks to
Theorem 1.1.6 there exists local solutions, that coincide for uniqueness if (−g, f) =
(a, b).

This correspondence shows also that if we have two open sets of the covering
Ui and Uj with non-empty intersection, and two holomorphic 1-forms ωi and ωj
that differ by multiplication by a non-vanishing holomorphic function, then the
corresponding holomorphic vector fields Xi and Xi differ by multiplication by the
same non-vanishing holomorphic funtion, and viceversa.

Finally, let us see how holomophic vector fields give rise to foliations.

Lemma 1.1.14. Let M be a complex surface, {Ui} a covering of M and {Xi}
a collection of non-vanishing holomorphic vector fields defined on Ui, such that
if Ui ∩ Uj is not empty then Xi and Xj differ on Ui ∩ Uj by multiplication by a
non-vanishing holomorphic function. Then, up to refining the covering of M , there
exist holomorphic charts φi : Ui → C2 such that {(Ui, φi)} defines a foliation F on
M and the leaves of F restricted to every Ui are the integral curves for Xi.

Proof. Let {Ui} and {Xi} be as in the hypotheses (we can suppose that Ui are
charts for M , up to refining the covering). Then for every i, let us consider the
complex flow Θi associated to Xi; furthermore, for every p ∈ Ui, let us consider a
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holomorphic embedding τ : Dδ → Ui such that τ(0) = p and τ is transverse to Xi,
i.e., dτz

(
d
dz

)
and Xτ(z) are linearly independent (here Dδ denotes the open disk of

radius δ in C). Set

Θi,p,τ : Dε × Dδ → Ui,p,τ ⊂M

(t, z) 7→ Θi(t, τ(z)),

where Ui,p,τ simply denotes the image of Θi,p,τ . Up to choosing ε and δ small
enough, we can suppose that Ui,p,τ ⊆ Ui.

First of all, let us see that Θi,p,τ is a biholomorphism. Since

(dΘi,p,τ )(t,z) = (dΘi)(t,τ(z)) ◦ (idt×dτz)

we get

(dΘi,p,τ )(t,z)

(
∂

∂t

)
= (dΘi)(t,τ(z))

(
∂

∂t

)
= XΘi(t,τ(z)), (1.7)

(dΘi,p,τ )(t,z)

(
∂

∂z

)
= (dΘi)(t,τ(z))

(
dτz

(
d

dz

))
=
(
dθti
)
τ(z)

(
dτz

(
d

dz

))
, (1.8)

where θti(q) := Θi(t, q). Then (1.7) and (1.8) are linearly independent because θti is
a biholomorphism (see Remark 1.1.9), and thanks to the transversality condition.

Then define φi,p,τ : Ui,p,τ → Dε × Dδ as the inverse of Θi,p,τ . Let us now show
that {(Ui,p,τ , φi,p,τ )} defines a foliation; then the leaves of this foliation would be
integral curves for Xi in every Ui for construction.

So let us consider a general transition map φj,q,σ ◦ φ−1
i,p,τ on the intersection of

the two domains Uj,q,σ ∩ Ui,p,τ =: U . Let us first suppose i = j. If x ∈ U then

u = Θi,p,τ (t, z) = Θi,q,σ(s, w).

If we set
(Tτσ(z),∆τσ(z)) = φi,q,σ ◦ φ−1

i,p,τ (0, z),

then we have

(s, w) = φi,q,σ ◦ φ−1
i,p,τ (t, z) =

(
t+ Tτσ(z),∆τσ(z)

)
,

that is of the form (1.1).
Let us now suppose that i 6= j, but p = q and τ = σ. Since Xi and Xj differ by

multiplication by a non-vanishing holomorphic function, the images of the integral
curves of Xi and Xj starting at the same point coincide; it follows that the second
coordinate of the transition map in this case is the identity (in the z coordinate),
and hence of the form (1.1).

The general case is obtained by composing the previous two cases, and we are
done.
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Summing up we have obtained the following

Theorem 1.1.15. A (regular) holomorphic foliation on a complex surface can be
equivalently be described by:

(a) a collection of pairs (Ui, ωi) where ωi is a non-vanishing holomorphic 1-form
on Ui, and such that if Ui ∩ Uj is not empty then ωi and ωj differ on Ui ∩ Uj
by multiplication by a non-vanishing holomorphic function;

(b) a collection of pairs (Ui, Xi) where Xi is a non-vanishing holomorphic vector
field on Ui, and such that if Ui ∩ Uj is not empty then Xi and Xj differ on
Ui ∩ Uj by multiplication by a non-vanishing holomorphic function;

(c) a collection of pairs (Ui, fi) where fi : Ui → C is a holomorphic submersion
and there exists a collection of biholomorphisms hij : fi(Ui ∩Uj)→ fj(Ui ∩Uj)
such that on Ui ∩ Uj we have fj = hij ◦ fi.

We conclude this section with a small digression on the tangent bundle of a
foliation, and the C̆ech cohomology.

Definition 1.1.16. Let M be a complex surface and F the regular holomorphic
foliation on M . Let {(Ui, ωi)} and {Ui, Xi} collections of holomorphic 1-forms and
holomorphic vector fields respectively, associated to F as in Theorem 1.1.15. Then
the tangent bundle of the foliation F is the sub-bundle of the tangent bundle
TM given by Kerωi (or equivalently by Span(Xi)).

Remark 1.1.17. Suppose we are in the same setting as in the latter definition,
and denote by gij : Ui∩Uj → C the non-vanishing holomorphic functions such that
ωj = gijωi.

Suppose now we have the intersection of three of such open sets Ui∩Uj∩Ul 6= ∅,
and we look at the function γijl := gijgjlgli defined on this intersection. It is
an easy computation to prove that γijk ≡ 1 on Ui ∩ Uj ∩ Ul. So the collection

{Uij, gij} is what is called a representative of a cocycle in C̆ech cohomology.

C̆ech cohomology is an important tool in geometry, for an exposition we refer to
[GH78, Chapter 0, Section 3]. In particular {Uij, gij} is an element of H1(M,O∗).
Each cocycle in this cohomology group is a complex line bundle on M . It is an
easy check that this cocycle is the tangent bundle of the foliation F we defined
above.

1.2 Singular foliations

Definition 1.2.1. Let M be a complex manifold of dimension m. A singular
holomorphic foliation of dimension k (codimension m−k) is a pair F = (F ′,Σ)
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where Σ is a proper analytic (non-empty) subset of M and F ′ is a regular holomor-
phic foliation on M \ Σ. The set Σ is called the singular set of F . The foliation
is called saturated if it cannot be extended to any point of the singular locus. A
leaf (resp., a plaque) for F is a leaf (resp., a plaque) of the regular foliation F ′.

The main question of this section is to understand whether there exist equiva-
lent definitions of singular foliations, like the ones we found for regular foliations.

From now on, in this section, we shall focus on complex dimension 2.

The natural way to extend Example 1.1.7 and Example 1.1.10 is to toss the
non-vanishing request for the holomorphic 1-form or for the holomorphic vector
field respectively.

Definition 1.2.2. Let U be an open domain in a complex surface M . A point
p ∈ U is a singular point of a holomorphic 1-form ω if ωp = 0. We shall call
singular set, or singular locus, of ω the set of all singular points of ω.

Analogously, p ∈ U is a singular point of a holomorphic vector field X if
Xp = 0. We shall call singular set, or singular locus, of X the set of all singular
points of X.

Let us show how a collection of holomorphic 1-forms (with singularities) gives
rise to a singular holomorphic foliation.

Lemma 1.2.3. Let M be a complex surface, and {Ui} an atlas for M . Let {ωi} be
a collection of not identically zero holomorphic 1-forms, with ωi defined on Ui, and
such that if Ui∩Uj is not empty then ωi and ωj differ on Ui∩Uj by multiplication by
a non-vanishing holomorphic function. Then there exists a (singular) holomorphic
foliation F such that the tangent curves to ωi outside the singular locus are (subsets
of) leaves for F .

Proof. Let Σ be the union of the singular sets of the ωi: since two such 1-forms ωi
and ωj differ by multiplication by a non-vanishing function on Ui∩Uj, their singular
sets coincide in this intersection. Outside Σ Theorem 1.1.15 holds, so we obtain a
holomorphic foliation outside Σ, and hence a singular holomorphic foliation.

Let us see now how the correspondence we saw in Lemma 1.1.13 can be extended
to the non-vanishing case.

Lemma 1.2.4. Let M be a complex surface and {Ui} an atlas for M . Let us
consider collections {ωi} and {Xi}, with ωi a not identically zero holomorphic 1-
form, and Xi a not identically zero holomorphic vector field, both defined on Ui,
and such that if Ui∩Uj is not empty then ωi and ωj (Xi and Xj respectively) differ
on Ui ∩ Uj by multiplication by a non-vanishing holomorphic function.
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Then, given such a collection of one of those two kinds, there exists a collection
of the other kind such that the tangent curves to ωi coincide with the integral curves
of Xi for every i.

Proof. The proof of this lemma is perfectly analogous to the proof of Lemma
1.1.13.

Thanks to the correspondence in Lemma 1.2.4, and to Lemma 1.2.3, we obtain
the next corollary (it can be also proved directly as in Lemma 1.2.3).

Corollary 1.2.5. Let M be a complex surface, and {Ui} an atlas for M . Let {Xi}
be a collection of not identically zero holomorphic vector fields, with Xi defined
on Ui, and such that if Ui ∩ Uj is not empty then Xi and Xj differ on Ui ∩ Uj
by multiplication by a non-vanishing holomorphic function. Then there exists a
(singular) holomorphic foliation F such that the integral curves for Xi outside the
singular locus are (subsets of) leaves for F .

Remark 1.2.6. The correspondence stated in Lemma 1.2.4 gives a correspondence
between singular sets of a collection of holomorphic 1-forms and a collection of
holomorphic vector fields.

In particular, pick a coordinate neighborhood U of M , a holomorphic 1-form ω
and the corrisponding holomorphic vector field X, locally defined as

ω = f(x, y)dx+ g(x, y)dy, X = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
,

with the correspondence (a, b) = (−g, f). Then the singular loci for X and for ω
coincide.

The main difference from the regular case is that not every singular foliation
is given by a collection of (singular) holomorphic vector fields (or holomorphic
1-forms), as the following example shows.

Example 1.2.7. Let us consider the holomorphic 1-form on M ′ = C2 \ {x = 0}
defined by

X =
∂

∂x
+ e

1
x
∂

∂y
.

Since X is a non-vanishing holomorphic vector field in M ′, it defines a regular holo-
morphic foliation F ′ in M ′ (see Theorem 1.1.15), and hence a singular holomorphic
foliation on C2, with singular set Σ = {x = 0}. Since x = 0 is a essencial singular-
ity for e1/x, for almost every c ∈ C the vector field X assumes the value ∂

∂x
+ c ∂

∂y

infinitely many times in every open neighborhood of a point (0, y). In particular
F ′ cannot be locally defined by a holomorphic vector field in a neighborhood of a
point (0, y).
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Remark 1.2.8. The foliation defined on Example 1.2.7 has another peculiarity:
it is saturated, and in particular it cannot be extended to another foliation with
singular set of codimension greater than or equal to 2 (i.e. in this case, made by
isolated points).

This is not a coincidence: we shall see that if a singular holomorphic foliation is
defined by a collection of singular holomorphic vector fields (as in Corollary 1.2.5),
then it can be extended to a saturated foliation with singular set of codimension
2 (Theorem 1.2.9), and conversely, if F is a singular holomorphic foliation with
singular set of codimension 2, then it arises from a collection of holomorphic vector
fields with (isolated) singularities (Theorem 1.2.12).

Theorem 1.2.9. Let M be a complex surface, U a coordinate neighborhood in M ,
and X a holomorphic vector field on U , with singular set Σ. Let F be the singular
holomorphic foliation that arises from X as in Corollary 1.2.5. Then we can find
a singular holomorphic foliation F ′, with singular set Σ′ ⊆ Σ of codimension at
least 2, whose leaves coincide with those of F outside Σ.

Proof. The thesis is trivial if Σ has already codimension greater than or equal to
2. Let us suppose then that Σ has codimension 1. Up to composing by charts, we
can suppose U to be an open domain in C2. Let us now consider a smooth point
p ∈ Σ (singular points in Σ are already an analitic subset of codimension greater
than or equal to 2). Then in a sufficiently small neighborhood Up of p, the singular
set Σ is given by the zero locus of a suitable holomorphic function h : Up → C,
i.e., Σ ∩ Up = {h = 0}. Since p is a smooth point for Σ, h is irreducible. In Up,
choosing local coordinates (x, y) in p, we can write the vector field as

X(x, y) = hmA(x, y)
∂

∂x
+ hnB(x, y)

∂

∂y
,

with h 6 |A,B. Set k := min{m,n}. Then X(x, y) = hkX ′(x, y), and X ′ is a
holomorphic vector field in U with only isolated zeros, such that the integral curves
for X ′ coincide with those of X in Up \ {h = 0} (since there X and X ′ differ by
multiplication by hk, a non-vanishing holomorphic function).

To prove Theorem 1.2.12 we need Hartogs’ Theorem and Cartan’s Theorem,
whose proofs can be found on [GH78, Chapter 0, Section 1, Hartog’s Theorem]
and [GR65, Theorem VIII.A.13] respectively.

Theorem 1.2.10 (Hartogs’ Theorem). Let U be a polydisk in C2 of radius r:
U = D2

r. Let V⊂⊂U be a polydisk of radius r′ < r. Then any holomorphic function
in a neighborhood of U \ V extends to a holomorphic function on U .

As a easy corollary we get that in C2 a holomorphic function defined on the
complement of a point in an open subset extends to a holomorphic function on all
the subset.
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Theorem 1.2.11 (Cartan’s Theorem). In a neighborhood of a ball in Cn with
n ≥ 2 any meromorphic function is the quotient of two holomorphic functions A
and B such that the intersection of their zero loci has no component of positive
dimension.

Theorem 1.2.12. Let U be an open neighborhood of 0 in C2. Let F be a satu-
rated singular holomorphic foliation on U with singular set Σ = {0}. Then, up to
shrinking U , there exists a holomorphic vector field X in U , singular at 0, such
that the integral curves of X outside {0} coincide with the leaves of F .

Proof. Let f : U \ {0} → CP1 be the function that to each point p in U \ {0} asso-
ciates the tangent line to the leaf of the foliation passing through p. This function is
holomorphic, due to the holomorphicity of the foliation outside the singular point.
This function cannot be constant, since being it constant the foliation would be
trivially extended to 0. Using the representation of CP1 as C ∪ {∞} we can think
of f as a meromorphic function on U \ {0}. By Theorem 1.2.11, restricting the
neighborhood, we can represent f(x, y) as the ratio of two holomorphic functions
p(x, y) and q(x, y), relatively prime. By Theorem 1.2.10 we can extend p and q to
the whole of U . The holomorphic vector field

X(x, y) = q(x, y)
∂

∂x
+ p(x, y)

∂

∂y

is such that its integral curves are leaves of the given foliation. If it was non-
vanishing in 0 then we could extend the foliation in 0 by Theorem 1.1.15, contra-
dicting the hypothesis.

Then, for singular holomorphic foliations with singular set of codimension 2,
we obtain this result, an analogue of Theorem 1.1.15.

Theorem 1.2.13. A singular holomorphic foliation on a complex surface, with
singular set of codimension 2 (i.e., made by isolated points) can be equivalently be
described by:

(a) a collection of pairs (Ui, ωi) where ωi is a holomorphic 1-form on Ui with sin-
gular locus made by isolated points, so that there exists a collection of non-
vanishing functions gij such that we have ωj = gijωi on Ui ∩ Uj;

(b) a collection of pairs (Ui, Xi) where Xi is a holomorphic vector field on Ui with
singular locus made by isolated points, so that there exists a collection of non-
vanishing functions gij such that we have Xj = gijXi on Ui ∩ Uj.

In the following chapters, by a (singular) holomorphic foliation we shall
mean a singular holomorphic foliation on a complex surface, of complex dimension
(and codimension) 1, and with isolated singular points.
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1.3 Holonomy of a foliation

Let M be a complex manifold of complex dimension m and let F be a codimension
k holomorphic foliation (possibly with singularities). If F is a leaf of F , and γ ⊂ F
a path in this leaf, we shall introduce in this section the holonomy of F along the
path γ. When the foliation is given by a holomorphic vector field X, we shall see
that the holonomy will be striclty correlated to the flow of X; as a matter of fact
the holonomy is a sort of replacement for the flow of a vector field, when considered
as the foliation it defines, that is when the parametrization is ignored.

Definition 1.3.1. Let M be a complex manifold of complex dimension m, F a
regular holomorphic foliation of codimension k on an open set U ⊂ M , F a leaf
of F and p ∈ F a point. A (parametrized) transverse section of the leaf
F at p is a holomorphic map τ : (Ck, 0) → (U, p) transverse to F , i.e., such that
TpU = dτ0(T0Ck)⊕ TpF . We shall call the image of τ a transverse section of F
at p.

With an abuse of notation, we shall often denote by τ , or by (τ, p), the trans-
verse section associated to a parametrized transverse section τ at p.

Remark 1.3.2. Let us consider a chart (U, φ) of the foliation F . Then in these
local coordinates, the plaques are of the form Fc = φ−1(V ×{c}), with V a suitable
open set in Cm−k. Let τp be a transverse section at a point p = φ−1(x0, c). Then
we have that

φ ◦ τp(w) =
(
gp(w), hp(w)

)
,

with det d(hp)0 6= 0 (and (gp(0), hp(0)) = (x0, c)); in particular hp is invertible near
hp(0) = c.

Suppose now we have two points p = φ−1(x0, c), q = φ−1(y0, c) on the same
plaque Fc, and two transverse sections τp = φ−1 ◦ (gp, hp) and τq = φ−1 ◦ (gq, hq) at
p and q respectively.

Since hp and hq are invertible at hp(0) = hq(0) = c, the map ∆τp,τq : (τp, p) →
(τq, q) given by

∆τp,τq(w) = τq ◦ h−1
q ◦ hp ◦ τ−1

p (w) (1.9)

is a well-defined biholomorphism (near p).
This germ does not depend on the parametrizations chosen. Suppose we have

another transverse section τ̃p such that τp = τ̃p ◦ ψp, with ψp a biholomorphism of
(Ck, 0). Then, if we set

φ ◦ τ̃p = (g̃p, h̃p),

we have φ ◦ τp = φ ◦ τ̃p ◦ ψp, and hence hp = h̃p ◦ ψp, and hp ◦ τ−1
p = h̃p ◦ τ̃−1

p .
Moreover ∆τp,τq does not depend on the chart of the foliation chosen. Indeed,

let (U1, φ1) and (U2, φ2) be two charts of F , and p, q two points in the same leaf of
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F , and in the same connected component of the intersection of domains U1 ∩ Uj.
If we write the transverse sections using (Uj, φj) as local coordinates, we have

φj ◦ τp(w) =
(
gp,j(w), hp,j(w)

)
, φj ◦ τq(w) =

(
gq,j(w), hq,j(w)

)
.

Denote by π2 the canonical projection Cm−k × Ck → Ck; then thanks to (1.1), we
have that there exists a biholomorphism h such that

π2 ◦ φ2 ◦ φ−1
1 = h ◦ π2.

Then

hp,2 = π2 ◦ φ2 ◦ τp = π2 ◦ φ2 ◦ φ−1
1 ◦ φ1 ◦ τp = h ◦ π2 ◦ φ1 ◦ τp = h ◦ hp,1,

and the same for the point q. It follows that

∆2
τp,τq = τq ◦ h−1

q,2 ◦ hp,2 ◦ τ−1
p = τq ◦ h−1

q,1 ◦ h−1 ◦ h ◦ hp,1 ◦ τ−1
p = ∆1

τp,τq .

If we have another point r ∈ Fc, and a transverse section τr at r, then we have

∆τp,τq = ∆τr,τq ◦∆τp,τr . (1.10)

Indeed, write τr in local coordinates: φ ◦ τr = (gr, hr). Then we have

∆τr,τq ◦∆τp,τr = τq ◦ h−1
q ◦ hr ◦ τ−1

r ◦ τr ◦ h−1
r ◦ hp ◦ τ−1

p = τq ◦ h−1
q ◦ hp ◦ τ−1

p = ∆τp,τq .

Definition 1.3.3. Let M be a complex manifold of complex dimension m, F a
regular holomorphic foliation of codimension k on M , (U, φ) a chart of the foliation
F , and F a plaque. Given two points p and q in F , and two transverse sections τp,
τq in p and q respectively, the map ∆τp,τq : (τp, p) → (τq, q) defined as in Remark
1.3.2 by (1.9) is called the correspondence map between τp and τq.

Remark 1.3.4. We have already seen transverse sections and correspondence
maps on the proof of Lemma 1.1.14 (the notations in that proof are coherent with
the one we are using here): you can see there the connection between correspon-
dence maps of a foliation given by a holomorphic vector field and its holomorphic
flow.

Let us consider now a fixed leaf F of our foliation F , two points p, q ∈ F , and
choose a path γ : [0, 1] → F with γ(0) = p and γ(1) = q. Since the image of γ
in F is compact we can find a finite cover {Uk}k=1,...,n of γ([0, 1]) by charts of F .
Choose 0 = t0 < t1 < · · · < tl−1 < tl = 1 such that γ([tj, tj+1]) ⊂ Uk for some k,
for every j = 0, . . . , l − 1, and set pj = γ(tj).

Let τj be a transverse section at pj for every j = 0, . . . , l. Since pj and pj+1

belongs to some chart Uk of the foliation, and the correspondence map does not
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depend on the chart chosen (see Remark 1.3.2), the correspondence maps ∆τj ,τj+1

are well-defined for each j = 0, . . . , l − 1. Their composition

∆γ :=
l

©
j=1

∆τl−j ,τl−j+1
:= ∆τl−1,τl ◦ · · · ◦∆τ0,τ1 (1.11)

is a biholomorphism between (τ0, p) and (τl, q).

Remark 1.3.5. The map ∆γ defined as in (1.11) does not depend either on the
covering {Uj}, or on the intermediate points pj and transverse sections τj (with
j = 1, · · · , l − 1).

It does not depend on the covering since we have already seen that correspon-
dence maps do not. Suppose then that we have another partition 0 = s0 < s1 <
· · · < sm = 1 such that γ([sj, sj+1]) ⊂ Uk for some k, for every j = 0, . . .m − 1,
set qj = γ(sj), and let σ0, . . . , σm be transverse sections at q0, . . . , qm respectively
(with σ0 = τ0 = τp and σm = τl = τq).

Up to refining these partitions (taking all tj and sj for both of them), we can
suppose that m = l and sj = tj for all j = 0, . . . , l; the composition ∆γ does not
change up to refining, thanks to (1.10).

Moreover, thanks to (1.10) again, if we set ∆τj ,σj = θj (and hence ∆σj ,τj = θ−1
j ),

we have that
∆τj ,τj+1

= θ−1
j+1 ◦∆σj ,σj+1

◦ θj.

It follows that

l

©
j=1

∆τl−j ,τ l−j+1 =
l

©
j=1

θ−1
l−j+1 ◦∆σl−j ,σl−j+1

◦ θl−j

= θ−1
l ◦

l−1

©
j=1

(
∆σl−j ,σl−j+1

◦ θl−j ◦ θ−1
l−j
)
◦∆σ0,σ1 ◦ θ0

= θ−1
l ◦

l

©
j=1

(
∆σl−j ,σl−j+1

)
◦ θ0. (1.12)

Since τ0 = σ0 and τl = σl, then θ0 = id and θl = id, and ∆γ does not depend
on the choices we made.

Definition 1.3.6. Let M be a complex manifold of complex dimension m, F a
holomorphic foliation of codimension k, F a leaf of F , and γ : [0, 1] → F a path.
Consider two transverse sections τp and τq at p = γ(0) and q = γ(1) respectively.
The map ∆γ defined by (1.11), computed with respect to τp and τp is called the
holonomy map associated to γ (with respect to τp and τq).

Remark 1.3.7. If we allow the transverse sections at the endpoints p and q to
change, say from τp, τq to σp, σq, then, denoting by ∆τ

γ the holonomy of γ computed
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with respect to τp and τq and by ∆σ
γ the one computed with respect to σp and σq,

with computations as in (1.12), we get

∆τ
γ = θ−1

q ◦∆σ
γ ◦ θp,

with θp = ∆τp,σp and θq = ∆τq ,σq .

When γ is a loop, i.e., p = q, it is natural to choose the same transverse section
at γ0 and γ1; in this case θp = θq and the two holonomies are conjugated.

Theorem 1.3.8. Let M be a complex manifold of complex dimension m, F a
holomorphic foliation of codimension k and F a leaf of F . Let us consider two
points p, q ∈ F and two transverse sections τp and τq at p and q respectively. If
γ0 and γ1 are two homotopic paths from p to q in F , then ∆γ0 = ∆γ1, where the
holonomies are computed with respect to τp and τq.

Proof. Set I = [0, 1], and let Γ: I × I → F be an homotopy from γ0 to γ1, i.e.,
Γ(s, ·) = γs for s = 0, 1, and, if we denote γs(t) = Γ(s, t), then γs(0) = p and
γs(1) = q for every s ∈ I. Let {Uk} with k = 1, . . . , l be a finite cover of Γ(I × I),
made by charts of the foliation. Pick 0 = s0 ≤ s1 < · · · < su−1 ≤ su = 1 and 0 =
t0 ≤ t1 < · · · < tv−1 ≤ tv = 1 partitions of I such that Γ([si, si+1]× [tj, tj+1]) ⊂ Uk
for some k, for every i = 0, . . . , u− 1 and j = 0, . . . , v − 1.

For every i = 0, . . . , u and j = 0, . . . , v, fix transverse sections τi,j at pi,j :=
Γ(si, tj), such that τi,0 = τp and τi,v = τq for every i. Then we can compute the
holonomy along γsi with respect to the transverse sections τi,j with j = 0, . . . , v,
i.e.,

∆γsi
=

v

©
j=1

δi,v−j,

where δi,j = ∆τi,j ,τi,j+1
.

For our choices of si and tj, we also have that the correspondence map θi,j :=
∆τi,j ,τi+1,j

is well-defined for every i = 0, . . . u − 1 and for every j = 0, . . . , v, with
θi,0 = ∆τp,τp = id and θi,v = ∆τq ,τq = id for every i = 0, . . . , u− 1, and

δi+1,j = θi,j+1 ◦ δi,j ◦ θ−1
i,j
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for every i = 0, . . . , u− 1 and j = 0, . . . , v − 1. Then

∆γsi+1
=

v

©
j=1

δi+1,v−j

=
v

©
j=1

θi,v−j+1 ◦ δi,v−j ◦ θ−1
i,v−j

= θi,v ◦
v−1

©
j=1

(
δi,v−j ◦ θ−1

i,v−j ◦ θi,v−j
)
◦ δi,0 ◦ θ−1

i,0

= θi,v ◦
v

©
j=1

(δi,v−j) ◦ θ−1
i,0

= ∆γsi
,

for i = 0, . . . , u− 1, and we are done.

Thanks to Theorem 1.3.8, we can give the next definitions.

Definition 1.3.9. Let M be a complex manifold of complex dimension m, F
a holomorphic foliation of codimension k, F a leaf of F , p a point in F and
γ : [0, 1] → F a loop. Then the conjugacy class of the holonomy ∆γ is called the
holonomy of the class [γ] ∈ π1(F, p), and denoted by ∆[γ]. The set

Hol(F, p) = {∆[γ] | [γ] ∈ π1(F, p)}

is called the holonomy group of F based at p.
If τ is a transverse section at p, then the set Hol(F, p, τ) of the holonomy maps

associated with the loops in F based at p, computed with respect to τ , is called
the holonomy group of F based at p with respect to τ .

Corollary 1.3.10. Let F be a holomorphic foliation on a complex manifold M , F
a leaf of F , and p a point in F . Let π1(F, p) be the fundamental group of F with
base point p. The map which associates to [γ] ∈ π1(F, p) the conjugacy class of its
holonomy map ∆γ is an antihomomorphism of groups (i.e., is an homomorphism,
but with the multiplication reversed).

Proof. Suppose we have γ, β ∈ π1(F, p). By Theorem 1.3.8, the holonomy map
depends only on the homotopy class of the curve, and by definition ∆γ·β = ∆β ◦∆γ,
where with · we denoted the operation in the homotopy group π1(F, p).

Remark 1.3.11. In the same setting as Corollary 1.3.10, given a transverse section
τ at p, then the map which associates to [γ] ∈ π1(F, p) the holonomy map ∆γ ∈
Hol(F, p, τ), computed with respect to a transverse section τ in p, is well-defined,
thanks to Theorem 1.3.8 and Remark 1.3.5, and an antihomomorphism (it can be
proved exactly as Corollary 1.3.10).
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Corollary 1.3.12. Let F be a holomorphic foliation on a complex manifold M
and F a leaf of F . Then for any p0, p1 ∈ F the holonomy groups Hol(F, p0) and
Hol(F, p1) are conjugated.

Proof. Let γ be a path connecting p0 and p1 in F (leaves of a foliation are pathwise-
connected), and let ∆γ be the corresponding holonomy map. Consider the isomor-
phism γ∗ : π1(F, p1) → π1(F, p0) induced by γ on the fundamental groups, i.e.,
given by γ∗[σ] = [γ · σ · γ−1]. Thanks to Corollary 1.3.10, we have

∆γ∗[σ] = ∆[γ·σ·γ−1] = ∆−1
[γ] ◦∆[σ] ◦∆[γ].

Hence ∆[γ] defines the conjugation between Hol(F, p0) and Hol(F, p1).

Since the holonomy group of a leaf F based at a point p is a set of conjugacy
classes, thanks to Corollary 1.3.12 Hol(F, p) does not depend on the base point p.
Thus we can give the next definition.

Definition 1.3.13. Let F be a holomorphic foliation on a complex manifold M ,
and F a leaf of F . Then we call holonomy group of F the group HolF =
Hol(F, p), where p is an arbitrary point in F .

Remark 1.3.14. Let F be a foliation of a manifold M , F a leaf of F and p a
point of F . The holonomy group Hol(F, p) defines a local action of π1(F, p) on τ0,
a transverse section in p, by setting

[γ] · w 7→ ∆[γ](w).

1.4 Conjugated holonomies and consequences

In the previous sections we have studied foliations in complex manifolds, but foli-
ations can be studied even in a less regular contest. In particular we can give an
analogous definition for a (regular) Cr foliation F on a smooth (real) manifold
M as in Definition 1.1.1, just replacing “complex manifold” with “smooth mani-
fold”, “holomorhic” with “Cr”, “biholomorphism” with “Cr diffeomorphism” and
C with R when you deal with local coordinates and transition maps. All we have
seen in the last section for regular holomorphic foliations can be generalized to
Cr foliations: we shall not give explicit definitions since they are analogous to the
holomorphic case.

Definition 1.4.1. Let (M,F),(M ′,F ′) be two codimension k Cr foliations (resp.,
holomorphic foliations) of two smooth manifolds (resp., complex manifolds) M
and M ′ respectively. Let F and F ′ be leaves of F and F ′ respectively, p ∈ F and
p′ ∈ F ′ two points. We say that the holonomy groups Hol(F ) and Hol(F ′) of F
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and F ′ are Cr conjugated (resp., holomorphically conjugated) if there exist
transverse sections τ at p and τ ′ at p′ and a homeomorphism φ : F ∪ τ → F ′ ∪ τ ′
such that φ(p) = p′, φ|F and φτ are Cr diffeomorphisms (resp., biholomorphisms)
and for each [γ] ∈ π1(F, p0) one has

φ ◦∆γ ◦ φ−1(s′) = ∆φ◦γ(s
′),

for every s′ ∈ τ ′ sufficiently near p′.

Remark 1.4.2. In the setting of the latter definition, if there exists τ , τ ′ and φ
that defines a conjugacy, then for every transverse sections σ at p and σ′ at p′ there
exists a homeomorphism ψ : F ∪σ → F ′∪σ′ that also defines a conjugacy between
holonomy groups (with respect to σ and σ′).

Indeed, if we denote by ∆ correspondence maps and holonomies with respect
to F and by ∆′ correspondence maps and holonomies with respect to F ′, setting

ψ = ∆′τ ′σ′ ◦ φ ◦∆στ

on σ, and ψ|F = φ|F , we have

ψ ◦∆σ
γ ◦ ψ−1 = ∆′τ ′σ′ ◦ φ ◦∆στ ◦∆τσ ◦∆τ

γ ◦∆στ ◦∆τσ ◦ φ ◦∆′σ′τ ′

= ∆′τ ′σ′ ◦∆τ ′

φ◦γ ◦∆′σ′τ ′ = ∆σ′

ψ◦γ,

where we used the notation ∆τ
γ for the holonomy associated to γ, computed using

τ as the transverse section at the base point.

Whilst in the Cr case, conjugated holonomies imply conjugated foliations, this
is not true in the holomorphic case. For the sake of completeness we prove this
result in the Cr case here; in the following chapters we shall see what can be said
in the holomorphic case (see Theorem 4.4.4, Remark 4.4.5 and Counterexample
4.4.6).

As a matter of fact the construction fails due to the fact that in the holomor-
phic case we lack the following lemma, which relies on the existence of tubular
neighborhoods, whereas in general holomorphic tubular neighborhoods of complex
submanifolds do not exist.

Lemma 1.4.3. Let M be a Cr-manifold of dimension m let F be a codimension
k foliation of M and let F be a leaf of F and K a compact set in F . Then there
exist an open neighborhood U of K in M , an open neighborhood W of K in F , and
a Cr retraction π : U → W such that π−1(x) is transverse to F|U for any x ∈ W .

Proof. Since K is compact in F we can cover it by a finite number of plaques Wi

of F , whose union we shall call W . Since W is a Cr submanifold of M there exists
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a Cr tubular neighborhood π : W̃ → W of W . Since each fiber π−1(y) meets W
transversally and at y only, and since transversality is an open condition, if we
take x ∈ π−1(y) sufficiently near y then π−1(y) meets the leaf of F through x
transversally at x. We can then obtain a neighborhood U ⊂ W̃ of W such that
π−1(y) meets F|U trasversally for all y ∈ U ∩ F .

Lemma 1.4.4. Let M and M ′ be complex manifolds (resp., smooth manifolds)
of dimension m, and F and F ′ codimension k holomorphic foliations (resp., Cr

foliations) of M and M ′ respectively. Let F be a leaf of F and let F ′ be a leaf
of F ′. If there exist V neighborhood of F , V ′ neighborhood of F ′ and a biholo-
morphism (resp., Cr diffeomorphism) Φ: V → V ′ such that Φ(F ) = F ′ and leaves
of F are mapped by Φ to leaves of F ′ then the holonomy groups of F and F ′ are
holomorphically (resp., Cr) conjugated.

Proof. The proof is formally the same in the Cr and in the holomorphic case. Let
p be a point in F , and set p′ = Φ(p). Let γ be a loop in F with base point p,
and τ a transverse section in p contained in V . Then Φ(γ) is a curve in F ′ and
Φ ◦ τ is a transverse section in p′ to the leaves of F ′, since Φ maps leaves in leaves.
Choose intermediate points p0, . . . , pn in γ and transverse sections τ0, . . . , τn (with
p0 = pn = p and τ0 = τn = τ). Let now ∆τi,τi+1

be the correspondence map
between τi and τi+1: since Φ maps leaves into leaves and since ∆τi,τi+1

(q), for q in
τi is the point of intersection of the only leaf passing through q with τi+1 and since
Φ ◦ τi and Φ ◦ τi+1 are transverse sections to F we have that ∆Φ(τi),Φ(τi+1)(Φ(q)) =
Φ(∆τi,τi+1

(q)). From the construction of the holonomy map for Φ(γ) we get that

Φ−1 ◦∆γ′ ◦ Φ = ∆γ.

Thanks to the arbitrariness of γ we obtain the assertion.

Theorem 1.4.5. Let F and F ′ be two foliations of codimension k in Cr manifolds
M and M ′ of dimension m, and let F and F ′ be compact leaves of F , F ′ respec-
tively. The holonomy groups of F and F ′ are Cr conjugated if and only if there
exist neighborhoods V of F , V ′ of F ′ and a Cr diffeomorphism Φ: V → V ′, with
Φ(F ) = F ′ and sending leaves of F|V into leaves of F ′|V ′

Proof. One direction follows directly from Lemma 1.4.4. Conversely, assume that
the holonomy groups of F and F ′ are conjugated, i.e., there exists a Cr diffeo-
morphism ψ : F → F ′, a point p0 ∈ F , two transverse sections τ0 at p0 and τ ′0 at
p′0 = ψ(p0), and a Cr diffeomorphism φ : (τ0, p0)→ (τ ′0, p

′
0) such that

φ ◦∆γ ◦ φ−1 = ∆′ψ◦γ (1.13)

for every loop γ in F with base point p0; we denoted the holonomy with respect
to F by ∆ and the holonomy with respect to F ′ by ∆′.



1.4 Conjugated holonomies and consequences 29

Since F and F ′ are compact there exist, using Lemma 1.4.3, neighborhoods
V of F and V ′ of F ′ and retractions π : V → F with fibers transverse to F and
π′ : V ′ → F ′ with fibers transverse to F ′. Pick two transverse sections τ0 and τ ′0
Thanks to Remark 1.4.2, we can suppose τ0 = π−1(p0) and τ ′0 = (π′)−1(p′0). Let
p ∈ F , p 6= p0; choose a path γ joining p0 to p in F , and let ∆γ and ∆′ψ◦γ be the
holonomy maps associated to γ and ψ◦γ. Let us denote by τp the transverse section
in p defined by π−1(p); if x ∈ τp, then ∆γ−1(x) is well-defined for x sufficiently close
to p. Thus we define

Φ(x) = ∆′ψ◦γ ◦ φ ◦∆γ−1(x).

Suppose now we have another path µ connecting p0 and p and note that [µ · γ−1]
is in π1(F, p0). Thanks to (1.13), we have

φ ◦∆µ·γ−1 = ∆′ψ◦(µ·γ−1) ◦ φ.

Now, the map that associates to a path its holonomy map is an antihomomorphism
of groups (see Corollary 1.3.10), so we have

φ ◦∆−1
γ ◦∆µ =

(
∆′ψ◦γ

)−1 ◦∆′ψ◦µ ◦ φ,

and hence
∆′ψ◦γ ◦ φ ◦∆γ−1(x) = ∆′ψ◦µ ◦ φ ◦∆µ−1(x) = Φ(x);

thus our definition of Φ does not depend on the path γ we choose.
We only have to show that Φ is a Cr diffeomorphism.
It is invertible (up to shrinking the tubular neighborhoods V and V ′), since ψ

is a homeomorphism itself; let us show that Φ is a Cr map. Let p be a point in
F , and γ a path in F that connects p0 to p. Choose a coordinate neighborhood
U ⊂ V for the foliation F , and a coordinate neighborhood U ′ ⊂ V ′ for the foliation
F ′, with p ∈ U and p′ ∈ U ′.

Since Φ does not depend on the path chosen, and the holonomy along a path
in a plaque is simply the correspondence map between the transverse sections, we
have

Φ(y) = ∆′τψ(p),τψ(q)
◦∆′ψ◦γ ◦ φ ◦∆γ−1 ◦∆τq ,τp(y),

where q = π(y), for every y ∈ U ∩ Φ−1(U ′). Thus Φ is a composition of Cr maps,
(that correspondence maps have the same regularity as the foliation follows directly
from the definition (1.9)) and hence it is a Cr map (near p). For arbitrariness of
p, we obtain the assertion. Since Φ−1 has the same form of φ, it is a Cr map too,
and we are done.





Chapter 2

Reduction of singularities of
foliations

Tiziano Casavecchia1

In this chapter we are going to present some classical results about desingularization
of the germ of a given holomorphic foliation around a singular point. We shall start
by giving some basic definitions of blow-up in the first section, inspired by algebraic
geometry. Then we shall define the multiplicity of a foliation and its properties in
the second section. Finally we shall prove the reduction of singularities Theorem
2.3.3 in the last section. We shall confine ourselves to the two dimensional case.
We follow the presentation given in [IY08], [Żo l06] and [MM80].

2.1 Desingularization of analytic subsets and of

foliations

Our idea is to proceed as follows: we shall first introduce the blow-up of C2 at
the origin, then the blow-up of a complex surface around a point and then for a
foliation around a singularity. We refer to the books [IY08], [Żo l06] for a quick and
straightforward exposition, particularly useful for our purpose; in [GLS07] there is
a deeper study of blow-ups.

Let 0 be the origin of C2, and CP1 the projective space. Let C̃2 be the following
subset of C2 × CP1:

C̃2 :=
{

(z, w, [u : t]) ∈ C2 × CP1 | zt = uw
}
. (2.1)

1Dipartimento di Matematica, Università degli Studi di Pisa, Largo Pontecorvo 5, 56127, Pisa,
Italy. e-mail: casavecc@mail.dm.unipi.it
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32 2 Reduction of singularities of foliations

For every point [u : t] ∈ CP1, this set contains all the points (z, w, [u : t]) ∈
C2 × {[u : t]} such that (z,w) lies inside the line determined by [u : t] in C2. We

note that C̃2 is a complex surface; indeed consider the set

V =
{

(z, w, [u : t]) ∈ C̃2 | u 6= 0
}

(2.2)

and
W =

{
(z, w, [u : t]) ∈ C̃2 | t 6= 0

}
; (2.3)

they are open in C̃2 because intersections of it with open sets. Furthermore set

ϕ : C2 3 (z, t) 7→ (z, zt, [1 : t]) ∈ V (2.4)

and
ψ : C2 3 (w, u) 7→ (uw,w, [u : 1]) ∈ W. (2.5)

The maps ϕ and ψ are holomorphic, invertible, with continuous inverse as can be
easily checked; furthermore the composition ϕ ◦ ψ−1 is a biholomorphism; so they
give C̃2 a structure of complex 2-manifold.

We remark that ϕ sends the set {(z, w) ∈ C2 | z = 0} one-to-one onto the set

{(z, w, [u : t] ∈ C̃2 | z = 0, w = 0, u 6= 0}, that is one of the standard coordinate
chart of the projective space CP1. Analogously ψ sends {(z, w) ∈ C2 | w = 0}
one-to-one onto the set {(z, w, [u : t] ∈ C̃2 | z = 0, w = 0, t 6= 0}.

Set
σ : C̃2 3 (z, w, [u : t]) 7→ (z, w) ∈ C2; (2.6)

then σ is a biholomorphism between C̃2 \ σ−1(0) and C2 \ {0} and

S := σ−1(0) ∼= CP1. (2.7)

In particular, S is a compact complex submanifold of C̃2.
In the coordinate chart ϕ the map σ has the form

σ ◦ ϕ : C2 3 (z, w) 7→ (z, zw) ∈ C2, (2.8)

while in the coordinate chart ψ it has the form

σ ◦ ψ : C2 3 (z, w) 7→ (zw,w) ∈ C2. (2.9)

Definition 2.1.1. Let C̃2 given by (2.1). We call the map σ : C̃2 → C2 defined by
(2.6) the (elementary) blow-down; the set S in (2.7) is called the exceptional

divisor of C̃2, and σ−1 : C2\{0} → C̃2\S is the (elementary) blow-up. We shall

refer to (C̃2, S, σ), or simply to C̃2, as the blow-up of C2 at the origin. We shall
refer to the open subset V and W of (2.2), (2.3) as the standard coordinate

domains of C̃2, and to ϕ and ψ in (2.4) and (2.5) as standard coordinate
charts.
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The exceptional divisor is really “exceptional”. First it cannot be defined by a
single holomorphic function near S; indeed if S were the zero locus of a holomorphic
function f , defined in a open set around S, the function g = f ◦ σ−1 would be
holomorphic and non vanishing in a open subset of C2 \{0}; by Riemann extension
theorem, since {0} has codimension 2, we could extend g in 0 but then its zero

locus should be of codimension 1. Second, C̃2 does not contain any other positive-
dimensional compact complex submanifold. Indeed if S

′
were such a manifold,

σ(S
′
) should be a compact, connected analytic subset of C2 and hence a single

point; but σ is one-to-one outside S.
As an example, let γ = {(z, w) ∈ C2 | az + bw = 0} be the equation of a

straight line through the origin. We want to find the representation of σ−1(γ) in
coordinate charts. Performing the substitution given by (2.8) we get

ϕ−1
(
σ−1(γ)

)
= (σ ◦ ϕ)−1(γ) =

{
(z, w) ∈ C2 | z(a+ bw) = 0

}
.

It is the union of S and of the image of the complex line {(z, w) ∈ C2 | a+bw = 0}.
If we apply (2.9) we obtain the same result when b 6= 0. We are substantially finding
homogeneous coordinate to reppresent a complex line.

Remark 2.1.2. It can be shown (see [Sha94, Chapter II, Section 4.2]) that if
X is a complex surface such that there exists a map ρ : X → C2, which sends
biholomorphically X \ T onto C2 \ {0}, where T = ρ−1{0} ∼= CP1, then X is

biholomorphic to C̃2 via a biholomorphism G such that σ ◦G = ρ.

Since the automorphism group of C2 is transitive, we can use a similar procedure
to blow-up C2 at any point, or any open subset U ⊆ C2 at any point p ∈ U .

Consider now a complex surface M and a finite set Σ of points of M . Let⋃
i∈IWi be an open covering of M by domains of coordinate charts such that no Wi

contains more than one point of Σ. Then M is biholomorphic to
⊔
i∈IWi�∼, where

∼ is the relation that identifies identical points of M in different Wi. Performing
the blow-up construction only on the Wi containing points of Σ we prove the
following:

Theorem 2.1.3. Let M be a complex surface and Σ ⊂ M a finite set of points.
Then there exist a complex surface M̃ and a holomorphic map π : M̃ → M such
that

(i) for each p ∈ Σ, we have Sp := π−1(p) ∼= CP1;

(ii) π : M̃ \
⋃
p∈Σ Sp →M \ Σ is a biholomorphism;

(iii) around each Sp there is an open neighborhood such that π, restricted to it, in
local coordinates is the elementary blow down defined above.
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Definition 2.1.4. Given a complex surface M and a finite set of its points Σ, we
call M̃ the blow-up of M at points of Σ and π the projection; if Σ = {a}, we

shall refer to M̃ like the blow-up of M at a.

Remark 2.1.5. Since a connected open subset of a complex surface is trivially a
complex surface, we can perform the blow-up construction around any point in a
complex surface and reiterate it since at every step we get a complex surface.

Example 2.1.6. Consider the complex curve in C2 defined by γ = {(z, w) ∈ C2 |
z2 −w = 0}. After a first blow-up (in 0), using (2.8), we get for the inverse image
of γ the equation z(z−w) = 0; after a second one (in [1 : 0] ∈ S, where S denotes
the exceptional divisor of the first blow-up), we get z2(1− w) = 0.

After having defined the blow-up of a complex surface at a given point we are
now going to define the blow-up of a complex analytic subset of dimension one and
then of a foliation at a given point. We will start with analytic subsets. Note that
dimension one analytic subsets of a complex surfaces is the only interesting case
because the blow-ups of dimension zero and two subsets are trivial.

Definition 2.1.7. Let γ be an analytic subset of dimension one of C2 containing 0.
We define the blow-up or strict transform of γ to be the subset γ̃ = σ−1(γ \ {0})
of C̃2. Using the projection π given in Theorem 2.1.3 instead of the elementary
blow-up we get the analogous definition in a complex surface.

Example 2.1.8. The intersection of the strict transform of a line l through 0 with
the exceptional divisor is the point of CP1 corresponding to the line l.

We have to observe that for any analytic subset of dimension one γ containing
0, the set σ−1(γ) always contains the exceptional divisor, so the previous definition
aims to cut off this set from blow-up. As the following theorem is going to show,
what really happens is that we are dividing by the largest power of z, the equation
that locally defines the blow-up of a given curve.

Theorem 2.1.9. Let M be a complex surface, γ an analytic subset of dimension
one, containing the point a ∈M , and defined near a by a holomorphic function f ;
let (M̃, Sa, π), and γ̃ be, respectively, their blow-up at the point a. Then γ̃ is an

analytic subset of dimension one of M̃ .

Proof. Clearly, since π is a biholomorphism outside Sa, there the statement is
obvious. So let p be any fixed point in Sa, and Up an open subset of M̃ , where Sa
is defined as zero locus of a holomorphic function gp, whose germ at p is irreducible.

Let f̃ be the result of the division of f ◦ π by the maximal power of gp dividing

it (both f ◦ π and f̃ are defined in Up), and finally let γf̃ be the zero locus of f̃ .
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Outside Sa, γ̃ and γf̃ coincide. Furthermore f̃|Sa 6≡ 0 and hence (Sa ∩ Up) * γf̃ .

Now if f̃(p) 6= 0, then p lies neither in γ̃ nor in γf̃ . Otherwise if f̃(p) = 0 then
p ∈ γf̃ ∩ γ̃. Hence γf̃ = γ̃ ∩ Up.

Remark 2.1.10. If γ is an irreducible analytic subset of dimension 1, then γ̃ in-
tersects the exceptional divisor only at one point. The proof, not difficult, depends
upon Weierstraß Preparation Theorem and Hansel Lemma (see [GLS07, Lemma
3.19]). A straightforward argument using power expansion at (0, 0) in coordinate
charts shows that, if γ is a smooth complex curve, then also γ̃ is smooth. More
precisely, γ̃ is biholomorphic to γ and intersects the exceptional divisor in the point
corresponding to the tangent line of γ at the origin.

Example 2.1.11. Let γ be the zero locus of a homogeneous polynomial Pn(z, w)
of degree n. Since Pn(z, w) is reducible, γ is a star of complex lines. Then, counted
with their multiplicity, the blow-up γ̃ of γ is a finite set of n lines; furthermore
they intersect the exceptional divisor in points all contained in the set V defined
by (2.2) if and only if z does not divide Pn(z, w), that is if and only if it contains
the term in wn. A similar assertion holds for the domain W .

The following example will clarify Remark 2.1.10.

Example 2.1.12. Let γ = {(z, w) ∈ C2 | f(z, w) = 0}, with f(z, w) = zp −
wq, p, q ∈ N∗ coprime (we already seen the case p = q = 1 in Example 2.1.11,
suppose we are not in this case). In particular γ is an irreducible analytic subset
of dimension 1. Let us suppose, up to switch z and w, that p > q, and set
r = p− q ≥ 1. Then, using (2.8) and (2.9) we get respectively

(f ◦ σ ◦ ϕ)(z, w) = zq(zr − wq),
(f ◦ σ ◦ ψ)(z, w) = wq(zpwr − 1),

where ϕ and ψ are the standard coordinate charts.
After dividing by zq and wq respectively we have in the first case that the zero

locus of f̃ ◦ ϕ in S ∩ V = {z = 0} is made by a unique point (w = 0), while the

zero locus of f̃ ◦ψ does not intersect S ∩W = {w = 0}. In particular, the blow-up
of γ is contained in V , where it has equation zr − wq = 0.

Remark 2.1.13. Example 2.1.12 shows that generally the blow-up of an irre-
ducible curve is not a smooth curve. You can however obtain a smooth curve by
performing a finite sequence of blow-ups: this result is known as the resolution of
singularities theorem (for curves), see [Sha94, Chapter IV, Section 4.1, Theorem
1].

Let us recall a definition.
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Definition 2.1.14. Let f be a holomorphic function defined on an open subset U
of a complex surface M , and a a point in U . Let (z, w) be local coordinates at a,
and write

f(z, w) =
∞∑

i,j=0

fi,jz
iwj,

the Taylor series of f at a. Then the order of f at a is

νa(f) := min{i+ j : fi,j 6= 0}.

Remark 2.1.15. Clearly the definition of order of a holomorphic function f at
a point a does not depend on the local coordinates (z, w) at a chosen (it is a
straightforward computation).

From the proof of Theorem 2.1.9, recalling that ϕ−1(S) and ψ−1(S) are defined,
in C2, respectively by the equation {z = 0} and {w = 0}, we can extract a proof
of the following corollary, that summarizes the situation.

Corollary 2.1.16. Let γ be an analytic subset of dimension one of C2 containing
0, defined near 0 by the equation f(z, w) = 0, where f is a holomorphic function,
and set n = ν0(f), the order of f at 0; furthermore let fn(z, w) be the homogeneous
polynomial of degree n of the terms of order n in the Taylor expansion of f . Let γ̃
be the blow-up of γ at 0 and ϕ, ψ like in (2.4), (2.5) respectively. Then ϕ−1(γ̃) is
given by the zero locus of the holomorphic function

f̃z(z, w) :=
f(z, zw)

zn
; (2.10)

while ψ−1(γ̃) is given by the zero locus of

f̃w(z, w) :=
f(zw,w)

wn
. (2.11)

The intersections of γ̃ with S are the (finitely many) solutions in CP1 of the equa-
tion

fn(z, w) = 0,

and are given in local coordinates by

ϕ−1(γ̃ ∩ S) = {(z, w) ∈ C2 | z = 0, fn(1, w) = 0}

and

ψ−1(γ̃ ∩ S) = {(z, w) ∈ C2 | w = 0, fn(z, 1) = 0}.
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Definition 2.1.17. Given a holomorphic function defined in a neighborhood of 0
in C2, we shall call the holomorphic function f̃ defined in (2.10) the blow-up of f

in the z-direction, while f̃ in (2.11) is the blow-up of f in the w-direction.

The proof of Theorem 2.1.9 is substantially a theorem about the extendibility
of a holomorphic function around any given point of the exceptional divisor. Using
that proof we can easily prove the following corollary.

Corollary 2.1.18. Let M be a complex surface, (M̃, Sa, π) its blow-up at a; let f
be a holomorphic function defined near a and of order νa(f). Then for any given
point c in Sa, if g is an irreducible holomorphic function that defines Sa as its zero
locus near c, there exists a holomorphic function f̃c such that

(i) f̃c 6≡ 0 in Sa;

(ii) gνa(f)f̃c ≡ f ◦ π.

Furthermore two such f̃c differs by multiplication by a unit in the ring of germs at
c of holomorphic functions.

In virtue of this corollary we can give the following definition.

Definition 2.1.19. Let M be a complex surface, f a holomorphic function defined
in M near a and let c be any given point in Sa; we call any of the holomorphic
function f̃c in M̃ whose existence is stated in Corollary 2.1.18 a blow-up at a of
the function f near c.

Remark 2.1.20. The link between Definition 2.1.19 and Definition 2.1.17 is clear.
Indeed let M be a complex surface, f a holomorphic function defined near the
point a in M and θ a local chart around a such that θ(0) = a; consider the blow-up

(M̃, Sa, π) of M at a. Then around any given point c of Sa, there are a local chart

θ̃ with π ◦ θ̃ = θ ◦ σ, and a blow-up fc of f near c such that

(̃f ◦ θ)z = fc ◦ θ̃

or

(̃f ◦ θ)w = fc ◦ θ̃

depending in which standard coordinate domain θ̃−1(c) lies.

After having defined blow-up of analytic subsets, we are going to extend this
definition to holomorphic foliations around a singular point.
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Remark 2.1.21. Recall (see Theorem 1.2.9 and the equivalence between foliations
and vector fields as stated in Theorem 1.2.13) that each foliation can be extended
to a saturated foliation whose singular set is an analytic subset of codimension two,
that is, in dimension two, a discrete set. So we can state the following definition.

Definition 2.1.22. Let M be a complex surface, with a saturated foliation F
which has a finite set of singular points Σ. Then the blow-up of the foliation
is the foliation F̃ obtained by extending, as stated in Remark 2.1.21, the foliation
σ−1(F) defined in M̃ \

⋃
p∈Σ Sp.

Remark 2.1.23. In particular the blow-up of a saturated holomorphic foliation F
defined by a holomorphic form ω around a singular point works like this: first we
calculate σ−1(F) computing the pull-back σ∗(ω); then we divide the coefficient of
σ∗(ω) by their maximum common divisor in order to get the form ω̃, that locally

defines the saturation F̃ (see Theorem 1.2.9).

Example 2.1.24. Let F be defined by the form ω = −wdz+ zdw; applying (2.8),
we get σ∗(ω) = −zwdz + z(wdz + zdw) = z2dw; then we divide by z2 and we get
ω̃ = dw. If we instead apply (2.9), we get ω̃ = −dz.

Before going further we recall the following definition.

Definition 2.1.25. Let ω be a holomorphic 1-form defined in an open subset of a
complex surface M , given in local coordinates by ω = f(z, w)dz + g(z, w)dw. The
order νa(ω) of ω in a is min{νa(f), νa(g)}, where νa(f), νa(g) are the orders of
zero in a of the holomorphic functions f and g respectively.

Remark 2.1.26. Let us consider F a holomorphic foliation in an open subset U of
a complex surface M , and a point a ∈ U . Up to shrinking U , we can suppose that
the foliation there is given by a holomorphic 1-form ω, and hence we can associate
the order of a foliation at a point. This order does not depend on the holomorphic
1-form or on the local coordinates chosen; indeed if we change coordinates, the
holomorphic 1-form that defines the foliations change by multiplication by a non-
vanishing function (see Theorem 1.2.13), that does not change the order or the
1-form. So we can give the next definition.

Definition 2.1.27. Let F be a holomorphic foliation in an open subset U of a
complex surface M . We define the order of F in a as νa(F) = νa(ω), where ω, is
a holomorphic 1-form that defines F locally near a.

The following proposition summarizes the situation. If f is a holomorphic
function, we shall denote by fn the homogeneous component of order n in the
Taylor expansion of f .
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Proposition 2.1.28. Let F be a saturated holomorphic foliation in a open subset
U of C2, singular at 0; let ω = f(z, w)dz+g(z, w)dw be a form that defines F near

0, and let F̃ be the blow-up foliation at 0. We set h(z, w) = zf(z, w) + wg(z, w)
and let n = ν0(ω), n+ 1 +m = ν0(h), n+ r = ν0(f) and n+ s = ν0(g), with r = 0

or s = 0. Finally let f̃z, f̃w , g̃z, g̃w, h̃z and h̃w be defined as in Definition 2.1.17.
Then

(i) if hn+1 6≡ 0, then F̃ is defined around any point of S \ {[0 : 1]} by

ω̃ = h̃z(z, w)dz + zs+1g̃z(z, w)dw;

its singular locus in S \ {[0 : 1]} = {z = 0} is given by the equation
hn+1(1, w) = 0;

(ii) if hn+1 6≡ 0, then F̃ is defined around any point of S \ {[1 : 0]} by

ω̃ = wr+1f̃w(z, w)dz + h̃w(z, w)dw;

its singular locus in S \ {[1 : 0]} = {w = 0} is given by the equation
hn+1(z, 1) = 0;

(iii) if hn+1 ≡ 0, then F̃ is defined around any point of S \ {[0 : 1]} by

ω̃ = zm−1h̃z(z, w)dz + g̃z(z, w)dw;

its singular locus in S\{[0 : 1]} = {z = 0} is given by the equations gn(1, w) =
0 and zm−1hn+1+m(1, w) = 0 (the latter equation gives no restrictions if m ≥
2);

(iv) if hn+1 ≡ 0, then F̃ is defined around any point of S \ {[1 : 0]} by

ω̃ = f̃w(z, w)dz + wm−1h̃w(z, w)dw;

its singular locus in S\{[1 : 0]} = {w = 0} is given by the equations fn(z, 1) =
0 and wm−1hn+1+m(z, 1) = 0 (the latter equation gives no restrictions if m ≥
2).

Proof. We shall work the details only performing a blow-up in the z-direction (cases
(i) and (iii) of the proposition); the computation in the other chart is perfectly
analogous. So let us start by applying (2.8) and get, in these local coordinates,

σ∗(ω) = [f(z, zw) + wg(z, zw)]dz + zg(z, zw)dw = z−1h(z, zw)dz + zg(z, zw)dw.

Thanks to (2.10) then we have

σ∗(ω) = zn+mh̃z(z, w)dz + zn+s+1g̃z(z, w)dw.
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By Remark 2.1.23, to obtain ω̃, we only have to divide σ∗(ω) by the greatest
common factor of the form zk (for a suitable k). If hn+1 6≡ 0, then m = 0 and
k = n, and we have (i). If hn+1 ≡ 0, then m > 0, that implies r = s = 0; then
k = n+ 1 and we have (iii).

For the description of the singular set, let us split the proof in cases (i) and

(iii). In the first case, in {z = 0} a singular point (0, w) has to satisfy h̃z(0, w) = 0.

Being h̃z(z, w) = z−n−1h(z, zw), we have that h̃z(0, w) = hn+1(1, w). In the second

case, in {z = 0} a singular point (0, w) has to satisfy g̃z(0, w) = 0, and h̃z(0, w) = 0

if m = 1. As before, we have that h̃z(0, w) = hn+m+1(1, w) and g̃z(0, w) = gn(1, w)
(since s = 0).

Proposition 2.1.28 can obviously be reformulated in a complex surface (M,a)
instead of in (C2, 0). It proves the usefulness of the following definition.

Definition 2.1.29. Let F be a holomorphic foliation in a complex surface M ,
singular at a, defined near a, in a local chart, by the form ω = f(z, w)dz+g(z, w)dw.
We set h(z, w) = zf(z, w) + wg(z, w) and let n = ν0(ω); let fn(z, w), gn(z, w) be
the terms of degree n in the Taylor expansion of f , g, respectively, at a. Then the
form

hn+1(z, w) = zfn(z, w) + wgn(z, w)

is called the tangent form of ω at its singularity a.

Before going further we need a couple of definitions.

Definition 2.1.30. A (complex) separatrix of a saturated foliation F singular
at a is a leaf whose closure in a neighborhood of a is an analytic subset of dimension
one containing a.

Definition 2.1.31. A singularity a of a saturated holomorphic foliation F of M
is called non-dicritical if the exceptional divisor Sa at a is a separatrix of the
blow-up of the foliation F̃ . It is called dicritical otherwise.

Next proposition will give us a necessary and sufficient condition under which
a singularity in a foliation is non-dicritical or dicritical; it is a trivial consequence
of Proposition 2.1.28.

Proposition 2.1.32. Let a be a singularity of a saturated holomorphic foliation
F in a complex surface M ; let ω = f(z, w)dz + g(z, w)dw be a 1-form that defines
F near a, in a local chart. Then a is a non-dicritical singularity if and only
if hνa(ω)+1 6≡ 0, if and only if

νa
(
zf(z, w) + wg(z, w)

)
= 1 + νa(ω) = 1 + min

{
νa(f), νa(g)

}
; (2.12)

while a is a dicritical singularity if and only if hνa(ω)+1 ≡ 0, if and only if

νa
(
zf(z, w) + wg(z, w)

)
> 1 + νa(ω).
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Proof. By Theorem 2.1.3 we can work in (C̃2, σ) instead of (M̃, π), with a = (0, 0).
By Proposition 2.1.28, recalling that the equation of the exceptional divisor is z = 0
or w = 0, we see that a is non-dicritical if and only if hn+1 6≡ 0 and hence if and
only if (2.12) holds.

Remark 2.1.33. It follows by Proposition 2.1.28 (and by Proposition 2.1.32) that
if 0 is a non-dicritical singularity of a foliation given by a holomorphic 1-form ω,
and if we set n = ν0(ω), then the singularities of the blow-up foliation in the
exceptional divisor S ∼= CP1 are the zeros of the tangent form hn+1.

Before stating the next proposition, we give the definition of elementary singu-
larity. We first deal with holomorphic vector fields.

Definition 2.1.34. Let X(z, w) = f(z, w) ∂
∂z

+ g(z, w) ∂
∂w

be a holomorphic vector
field, defined in an open subset of a complex surface M and singular at a point
a. The elementary matrix of X at a is the Jacobian matrix of F (z, w) =
(f(z, w), g(z, w)) at a.

We say that a is an elementary singularity for X if the elementary matrix
of X at a has at least one eigenvalue different from 0; we say that a is a nilpotent
singularity for X if the elementary matrix of X at a is nilpotent but not zero.

We give now equivalent definitions when the foliation is given by a holomorphic
1-form (see Lemma 1.1.13 and Lemma 1.2.4 for the connection between holomor-
phic 1-forms and holomorphic vector fields).

Definition 2.1.35. Let ω(z, w) = f(z, w)dz+g(z, w)dw be a holomorphic 1-form,
defined in an open subset of a complex surface M and singular at a point a. The el-
ementary matrix of ω at a is the Jacobian matrix of F (z, w) = (−g(z, w), f(z, w))
at a.

We say that a is an elementary singularity for ω if the elementary matrix of
X at a has at least one eigenvalue different from 0; we say that a is a nilpotent
singularity for ω if the elementary matrix of X at a is nilpotent but not zero.

These definitions can be extended from holomorphic vector fields (or from holo-
morphic 1-forms) to foliations, thanks to Theorem 1.2.13. Indeed, changing the
holomorphic vector field (or the holomorphic 1-form respectively) by multiplication
by a non-vanishing holomorphic function, the elementary matrix changes by multi-
plication by a non-zero constant, and hence the number of its non-zero eigenvalues
does not change.

Definition 2.1.36. Let F be a holomorphic foliation in an complex surface M
and singular at a, given by a holomorphic vector field X (resp., a holomorphic
1-form ω) near a. The elementary matrix of F at a is [L] ∈ P(Mat(2 × 2,C)),



42 2 Reduction of singularities of foliations

where L is the elementary matrix of X (resp., of ω) at a. Moreover a is called
an elementary singularity (resp., a nilpotent singularity) for F if it is an
elementary singularity (resp., a nilpotent singularity) for X (resp., for ω).

The following result states a sufficient condition for a singularity in the blow-up
foliation to be elementary.

Proposition 2.1.37. Let F be a saturated holomorphic foliation in U singular
at 0, where U is an open subset of C2; let ω = f(z, w)dz + g(z, w)dw be a form

that defines F in U , and hn+1 = zfn + wgn its tangent form; finally let F̃ be the
blow-up of F at 0. Then each simple linear factor az + bw of hn+1 corresponds to
an elementary singularity (0, 0, [a : b]) of F̃ .

Proof. Let us suppose that the tangent form hn+1 has a single linear factor: up
to a linear change of coordinates, we can suppose that this factor is w. Then for
the tangent form we have hn+1(1, w) = wk(w), with aw := k(0) 6= 0. Thanks to
Proposition 2.1.28.(i), the blow-up foliation has a singularity at [0 : 1], and it is
given by

ω̃ = (azz + zww + h.o.t.)dz + (bzz + h.o.t.)dw,

with suitable az, bz ∈ C. Then the elementary matrix at [0 : 1] is(
−bz az

0 aw

)
,

that has −bz and aw 6= 0 as eigevalues, and we are done.

2.2 Intersection multiplicity

The main tool needed in the proof of the reduction of singularities theorem is the
intersection multiplicity of two analytic subset of dimension one. This notion will
be used to define the multiplicity of a foliation.

Definition 2.2.1. Let M be a complex surface, γ an analytic subset of dimension
one ofM and a one of its point; furthermore let f be a holomorphic map that locally
defines γ near a as its zero locus. Then a holomorphic injective map τ : (U, 0) →
(M,a) such that f ◦ τ ≡ 0 is called a parametrization of γ at a.

The existence of parametrizations at a given point is not trivial. In the case of
complex surface, a theorem of Puiseaux, whose first ideas come from Newton, gives
us an algorithm to find a special kind of parametrization. We do not present its
proof here, but we refer to [GLS07], [Fis01], [dJP00] and [Chi89]; for a presentation
more oriented to a historical perspective see [BK86]. We want only to recall the
following theorem, that is a version of Puiseaux, more suited to our purposes (for
a proof see [GLS07, Theorem 3.3]).
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Theorem 2.2.2. Let γ be an irreducible analytic subset of dimension one of C2

containing 0, f an irreducible holomorphic function that defines γ near 0 as its
zero locus, and let n = ν0(f) be its order at 0. Then, up to a linear change of
coordinates, there exists one and only one injective holomorphic map (τ1, τ2) :=
τ : (U, 0)→ (C2, 0), from a domain U of C, such that

(i) f ◦ τ ≡ 0 in U ;

(ii) τ1(t) = tn and ν0(τ2) > n.

Example 2.2.3. Let γ = {(z, w) ∈ C2 | z2 + w2 − 2z − 2w = 0}. Then γ is
irreducible in 0 (γ ∩R2 is the circumference with center (1, 1) passing through 0).
After the linear change of coordinates(

x
y

)
=

1√
2

(
1 −1
1 1

)(
z
w

)
we have γ = {x2 + y2 − 2y = 0}. Here the parametrization of γ will be given by
τ(t) = (t, 1−

√
1− t2) (note that ν0(τ2) = 2 > 1).

Another classical example is γ = {(z, w) ∈ C2 | z2 − w3 = 0}; the natural
parametrization then would be τ(t) = (t3, t2), but here ν0(τ2) = 2 < 3: we have to
switch z and w.

Remark 2.2.4. Given an irreducible analytic curve γ, there is an easy (and ge-
ometric) way to find out the right change of coordinates that makes Theorem
2.2.2 work. As a matter of fact, if γ is irreducible, then by Remark 2.1.10 there
exists a unique point c in the exceptional divisor that belongs to the blow-up γ̃
of γ. Then the linear change of coordinate is such that, in the new coordinates,
c = [1 : 0] ∈ CP1.

Definition 2.2.5. Let γ be an analytic subset of dimension one of C2 containing
0, and f an irreducible holomorphic function that defines γ near 0 as its zero locus.
Then we call the map τ whose existence is stated in Theorem 2.2.2 a primitive
parametrization of f (or of γ) at 0.

The existence of primitive parametrizations and algebraic proprieties of the ring
of germs of holomorphic functions in a point allows us to define the intersection
multiplicity of two holomorphic functions. This notion was first introduced in the
algebraic setting leading to intersection theory, and then revealed its usefulness
also to study singularities of holomorphic functions. The reader can consult the
books [AGZV85], [AGZV88] and especially [GLS07]. In [Żo l06, Chapter 2] and
[IY08, Section 8] the reader can find a summary of the main statements and some
proofs. The proper setting to define the intersection multiplicity is analytic subsets
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of dimension one, or the ring of germs of holomorphic maps at given point after
having identified germs that are obtained from each other by multiplication by
unit. In order to avoid introducing divisors, or a heavier algebraic notation, we
decided to follow this second less elegant approach.

Definition 2.2.6. Let U be a domain in a complex surface M , a a point of U
and f , g germs in a of holomorphic functions. Then we define the intersection
multiplicity between f and g at a by:

• µa(f, g) := +∞ if f and g have a common factor;

• µa(hf, kg) := µa(f, g) if h and k are units in the ring of germs at a;

• µa(f, g) := ν0(f ◦ τ) if g is irreducible and τ is a parametrization of g;

• µa(f, g) :=
∑n

i=1miµa(f, gi) if g =
∏n

i=1 g
mi
i is the representation of g in

irreducible factors.

We state, without proof, some proprieties of intersection multiplicity that will
be used later. For proofs we refer to the books cited above.

Proposition 2.2.7. Let U be a domain in a complex surface M , a ∈ U a point
and f , g and h germs in a of holomorphic functions. Then:

(i) µa(f, g) = 0 if and only if the zero loci of f and g do not intersect in a;

(ii) µa(f, g) = 1 if and only if their zero loci meet transversally at a;

(iii) µa(f, g) = µa(g, f);

(iv) µa(f + hg, g) = µa(f, g).

The most important property for us will be the following Proposition 2.2.8
relating intersection multiplicity of functions and of their blow-ups, as defined in
Definition 2.1.19.

Proposition 2.2.8. Let M be a complex surface, f , g two holomorphic functions
defined near a point a in M , and for any c in Sa, let f̃c, g̃c be their blow-ups near
c; let νa(f) and νa(g) be the order of zero of f and g respectively at a. Then we
have

µa(f, g) = νa(f)νa(g) +
∑
c∈Sa

µc(f̃c, g̃c).
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Proof. First observe that by Theorem 2.1.3 we can work in (C̃2, S, σ) and in the
local coordinates there. Note that, by Definition 2.1.19 and Corollary 2.1.18, the
choice of f̃c, g̃c, that is not unique, does not change the intersection multiplicities.
Furthermore by Corollary 2.1.16 the summatory in the second member contains
only a finite number of terms since only for finitely many c ∈ S the intersection
of the zero loci of f̃c and g̃c is not empty. So let us begin by assuming g to be a
irreducible germ at 0, and set n = ν0(f), m = ν0(g). Up to composing by a biholo-
morphism, that again does not affect intersection multiplicities, we can suppose
that z does not divide fn(z, w), nor gm(z, w) (which denote the homogeneous parts
of degree n and m of f and g respectively); hence all the points c in S that have
non-zero multiplicity, lie inside S \ {[0 : 1]} and it suffices to work only applying
(2.8). By Remark 2.1.20 and Corollary 2.1.16 we have

znf̃(z, w) = f(z, zw) and zmg̃(z, w) = g(z, zw) (2.13)

in local coordinates; by Remark 2.1.10 there is only one c in S such that g̃(c) = 0.
Let τ(t) = (tm, θ(t)) be a primitive parametrization of g at 0 defined in (U, 0) (we
know it exists from Theorem 2.2.2). Then the map τ̃ = σ−1 ◦ τ is holomorphic and
injective in U \ {0}; setting τ̃(0) = c it can be extended continuously and hence
holomorphically in U , preserving injectivity. Furthermore, by (2.8), we have

τ̃(t) =

(
tm,

θ(t)

tm

)
.

Since again by (2.8) in local coordinates (f ◦ σ)(z, w) = f(z, zw) we have

µ0(f, g) = ν0(f ◦ τ) = ν0(f ◦ σ ◦ τ̃).

But by equation (2.13)

(f ◦ σ ◦ τ̃)(t) = tmn(f̃ ◦ τ̃)(t)

and thus

µ0(f, g) = ν0(tnm) + ν0((f̃ ◦ τ̃)(t)) = ν0(f)ν0(g) + µc(f̃ , g̃).

To remove the assumption on g to be irreducible and get the general case, we have
to apply Proposition 2.2.7.(iii) and sum up every irreducible factor of g.

2.3 Reduction of singularities theorem

The main goal of this section is to prove the reduction of singularities theorem for
holomorphic foliations. We follow the exposition in [Żo l06, Section 2 of Chapter
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9], [MM80] and [IY08, Section 8 of Chapter 1]. The first modern proof was given
by Seidenberg in [Sei68], in the formal category. The proof we present here uses
intersection multiplicity and was given by van den Essen in [vdE79]. The link
between foliations and intersection multiplicity is given by the following definition.

Definition 2.3.1. Let F be a saturated holomorphic foliation in a complex surface
M , singular at a, and let ω = f(z, w)dz+ g(z, w)dw be a holomorphic 1-form that
defines F near a. Then the multiplicity of F at a is

µa(F) := µa(f, g).

So computing multiplicity of a foliation at a given singular point, is a matter of
computing intersection multiplicity of two holomorphic functions. Since the inter-
section multiplicity of two holomorphic functions is invariant under multiplication
by units, the multiplicity of a foliation does not depend on the 1 form we choose.
Even more, we can replace f and g by any couple of holomorphic functions having
the same intersection multiplicity at a.

Before stating the main theorem we shall prove a proposition, interesting on
its own. For a given holomorphic function f , we use the notation fn to denote the
homogeneous polynomial of terms of degree n in the Taylor series of f at any given
point (when otherwise not stated, at 0).

Proposition 2.3.2. Let F be a saturated holomorphic foliation in a complex sur-
face M , singular at a, and of order n = νa(F). Furthermore let F̃ be the blow-up
of F at a. Then the following relations hold:

(i) if a is a non-dicritical singularity of F , then

µa(F) = n2 − n− 1 +
∑
c∈Sa

µc(F̃); (2.14)

(ii) if a is a dicritical singularity of F , then

µa(F) = n2 + n− 1 +
∑
c∈Sa

µc(F̃). (2.15)

Proof. By Theorem 2.1.3 we can work in a domain around 0. So let F be a
holomorphic foliation singular in 0, of a domain U , there defined by a form ω =
f(z, w)dz+g(z, w)dw of order n = ν0(ω); we put h(z, w) = zf(z, w)+wg(z, w). We
know by Proposition 2.1.32 that 0 is a non-dicritical (resp., dicritical) singularity
if hn+1 6≡ 0 (resp., hn+1 ≡ 0).

Suppose first that 0 is a non-dicritical singularity; then we can perform a linear
change of coordinate in such a way that ν0(f) = ν0(g) = n, and z does not divide
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gn: this by Proposition 2.1.28 implies that all the singularities of F̃ lie inside
S \ {[0 : 1]}, and thus it is sufficient to perform a blow-up in the z-direction. So

let f̃ = f̃z and g̃ = g̃z be respectively the blow-ups of f and g in the z-direction;
we shall also consider them as germs f̃c, g̃c in c ∈ S \ {[0 : 1]}, using a suitable
translation of the standard projection given by (2.4) as a chart centered in c for
Definition 2.1.19. Recall that, again by Proposition 2.1.28 and Remark 2.1.20, and
arguing similarly, F̃ can be defined near any given c in S \ {[0 : 1]} by the 1-form

ω̃c =
(
f̃(z, w) + wg̃(z, w)

)
dz + zg̃(z, w)dw.

We have by Proposition 2.2.8

µ0(F) = µ0(f, g) = ν0(f)ν0(g) +
∑
c∈S

µc(f̃c, g̃c) = n2 +
∑
c∈S

µc(f̃ , g̃).

Next

µc(F̃) = µc(f̃ + wg̃, zg̃) = µc(f̃ + wg̃, z) + µc(f̃ , g̃).

But µc(f̃ +wg̃, z) is the order of zero of f̃ +wg̃ at c; so summing up over S we get∑
c∈S

µc(f̃ , g̃) =
∑
c∈S

(
µc(g̃)− µc(f̃ + wg̃, z)

)
=
∑
c∈S

µc(ω̃)− n− 1.

Hence

µ0(F) = µ0(ω) = n2 − n− 1 +
∑
c∈S

µc(F̃),

and (2.14) is proved.
Let us now suppose 0 is a dicritical singularity; then hn+1 ≡ 0 by Proposition

2.1.32. Since hn+1 ≡ 0, necessarily fn, gn 6≡ 0. By Proposition 2.2.8

µ0(F) = µ0(f, g) = n2 +
∑
c∈S

µc(f̃c, g̃c). (2.16)

We shall first analyze the contributions to the multiplicity given by singularities in
S \ {[0 : 1]} in equation (2.16) and then the contribution of the point [0 : 1] to the
total multiplicity. Set p := [0 : 1] and ν0(h) := n+ 1 +m. Computing the blow-up
in the z-direction (dropping the index z in computations) we have

znf̃(z, w) = f(z, zw), zng̃(z, w) = g(z, zw) (2.17)

and

zn+1+mh̃(z, w) = h(z, zw). (2.18)
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Again by Proposition 2.1.28 F is defined in S \ {[0 : 1]} by the form

ω̃ = zm−1h̃(z, w)dz + g̃(z, w)dw. (2.19)

Note that by equation (2.17) and (2.18), we have

zmh̃(z, w) = f̃(z, w) + wg̃(z, w), (2.20)

and by (2.19) and Theorem 2.2.7∑
c∈S\{p}

µc(F̃) =
∑

c∈S\{p}

(
µc(z

m−1, g̃) + µc(h̃, g̃)
)

=
∑

c∈S\{p}

(m− 1)νc
(
g̃(0, w)

)
+

∑
c∈S\{p}

µc(h̃, g̃)

=
∑

c∈S\{p}

(m− 1)νc
(
gn(1, w)

)
+

∑
c∈S\{p}

µc(h̃, g̃)

= (m− 1) degw
(
gn(1, w)

)
+

∑
c∈S\{p}

µc(h̃, g̃)

= (m− 1)k +
∑

c∈S\{p}

µc(h̃, g̃),

where k := degw(gn(1, w)). Computing the intersection multiplicity with g̃ of both
sides of equation (2.20) and summing over S \ {p} we get∑

c∈S\{p}

µc(f̃ , g̃) =
∑

c∈S\{p}

µc(z
mh̃, g̃)

=
∑

c∈S\{p}

(
mνc

(
g̃(0, w)

)
+ µc(h̃, g̃)

)
= m degw

(
gn(1, w)

)
+

∑
c∈S\{p}

µc(h̃, g̃)

= mk +
∑

c∈S\{p}

µc(h̃, g̃).

Confronting the two previous equations leads to∑
c∈S\{p}

µc(f̃ , g̃) =
∑

c∈S\{p}

µc(F̃) + k. (2.21)

Now we are going to compute µp(f̃p, g̃p). Blowing-up in w-direction we get

wnf̃(z, w) = f(zw,w), wng̃(z, w) = g(zw,w), (2.22)
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and
wn+1+mh̃(z, w) = h(zw,w). (2.23)

Again by Proposition 2.1.28 F is defined in S \ {[1 : 0]} by the 1-form

ω̃p = f̃(z, w)dz + wm−1h̃(z, w)dw.

Note that by (2.22) and (2.23), we have

wmh̃(z, w) = zf̃(z, w) + g̃(z, w). (2.24)

Now we have, putting r := ν0(fn(z, 1))

µp(F̃) = µp(f̃ , w
m−1h̃) = (m− 1)µp(f̃ , w) + µp(f̃ , h̃) = (m− 1)r + µp(f̃ , h̃).

Then computing the intersection multiplicity with f̃ of both sides of equation
(2.24), we have

µp(g̃, f̃) = mµp(w, f̃) + µp(h̃, f̃) = mr + µp(h̃, f̃).

Confronting the last two equations gives

µp(g̃, f̃) = r + µp(F̃).

This last equation with (2.21) gives

µ0(F) = µ0(f, g) = n2 +
∑
c∈S

µc(f̃ , g̃) = n2 + k + r +
∑
c∈S

µc(F̃).

We are left to prove k + r = n− 1 to get (2.15). By zfn ≡ −wgn it follows

fn(z, w) = a0z
n−1w + a1z

n−2w2 + · · ·+ an−1w
n

and
gn(z, w) = −a0z

n − a1z
n−1w + · · · − an−1zw

n−1;

thus

fn(z, 1) = a0z
n−1 + a1z

n−2 + · · ·+ an−1

and
gn(1, w) = −a0 − a1w + · · · − an−1w

n−1.

Hence ν0(fn(z, 1)) = r, then degw(gn(1, w)) = n− 1− r, and we are done.

So we can state and prove the following:
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Theorem 2.3.3. Let F be a saturated holomorphic foliation with finite many sin-
gular points in a complex surface M and let Σ be the finite set of its singularities.
Then there exists a complex surface M , a map ρ : M → M , and a foliations F
such that:

(i) F has only a finite number of elementary singularity;

(ii) ρ is the composition of finitely many elementary blow-ups.

Proof. It is clear that since F has only finite singular points it is sufficient to prove
the theorem only for one of them, that we can assume to be 0 ∈ C2. We argue
by induction on the multiplicity µ0(F). If µ0(F) = 1 then, by Proposition 2.2.8,
0 is an elementary singularity, and we are done. Assume the assertion is true for
singularities of multiplicity at most µ−1, and take a foliation F singular in 0 with
multiplicity µ and order n ≥ 1. If 0 is dicritical, or 0 is non-dicritical and n > 1,
then by Proposition 2.3.2, the multiplicity of the blow-up foliation at each singular
point is strictly less than µ and the assertion follows by induction. If instead 0
is a non elementary singularity of order 1 (i.e., a nilpotent singularity), then F is
defined by a form ω = A(z, w)dz + (w + B(z, w))dw, with A and B holomorphic
functions such that ν0(A), ν0(B) ≥ 2. We shall write A =

∑
i,j ai,jz

iwj and

B =
∑

i,j bi,jz
iwj the Taylor series of A and B respectively. The tangent form is

w2, hence 0 is a non-dicritical singularity, and the only singularity of the blow-
up foliation in the exceptional divisor is [1 : 0] (see Remark 2.1.33). Applying a
blow-up in the z-direction (2.8), {

z = z1,

w = z1w1,

we see that the form ω1 := ω̃ that defines the blow-up foliation (see Proposition
2.1.28) is

ω1 =
(
z1A1(z1, w1) + w2

1

)
dz1 + z1

(
w1 + z1B1(z1, w1)

)
dw1, (2.25)

where

A1(z1, w1) = z−2
1

(
A(z1, z1w1) + w1B(z1, z1w1)

)
,

B1(z1, w1) = z−2
1 B(z1, z1w1),

are such that ν0(A1), ν0(B1) ≥ 0. Clearly ω1 has only one singular point 0 since
the tangent form of ω is w2; moreover µ0(ω1) = µ+ 1, thanks to (2.14).

There are two possible cases:

• A1(0, 0) 6= 0;
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• A1(0, 0) = 0.

Let us first consider the situation A1(0, 0) = a2,0 6= 0. In this case, ν0(ω1) = 1,
and we have already seen that µ0(ω1) = µ+1. The tangent form of ω1 is z2

1A1(0, 0)
and so 0 is again a non-dicritical singularity (but still nilpotent). Moreover, thanks
to Remark 2.1.33, the unique singularity of the blow-up foliation on the exceptional
divisor is [0 : 1]; so we apply a second blow-up in the w1-direction,{

z1 = z2w2,

w1 = w2,

and we obtain ω2 := ω̃1 in these coordinates as

ω2 = [z2w2A2(z2, w2) + w2
2]dz2 + [z2

2B2(z2, w2) + 2z2w2]dw2,

where A2(z2, w2) = A1(z2w2, w2) and B2(z2, w2) = A1(z2w2, w2) + w2B1(z2w2, w2).
In particular,

A2(0, 0) = B2(0, 0) = A1(0, 0) 6= 0.

We have µ0(ω2) = µ0(ω1) + 1 = µ+ 2 by (2.14), ν0(ω2) = 2, while the tangent
form of ω2 is

z2w2(2a2,0z2 + 3w2),

which has three different roots, and hence its blow-up foliation in [0 : 1] has three
singular points (let us say p1, p2, p3) on the exceptional divisor (by Remark 2.1.33).
Applying (2.14) at the blow-up of ω2 in [0 : 1], we have

µ+ 2 = 1 +
3∑
j=1

µpj(ω̃2),

with µpj(ω̃2) ≥ 1 for j = 1, 2, 3; therefore µpj(ω̃2) ≤ µ − 1 for j = 1, 2, 3, and we
are done by induction.

We are left with the last possibility, A1(0, 0) = a2,0 = 0. Observing the equation
(2.25) we see that ν0(ω1) = 2, while we have already seen that µ0(ω1) = µ + 1;
moreover, the tangent form of ω1 is

z1

(
a3,0z

2
1 + (a1,1 + 2b2,0)z1w1 + 2w2

1

)
.

It has at least two distint roots, and hence its blow-up foliation in [1 : 0] has at
least two singular points on the exceptional divisor (by Remark 2.1.33). Let us call
these singular points pj (j = 1, . . . , k, with k = 2 or k = 3). As before, applying
(2.14) at the blow-up of ω1 in [1 : 0], we have

µ+ 1 = 1 +
k∑
j=1

µpj(ω̃1),
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with µpj(ω̃2) ≥ 1 for every j. Then we have again that µpj(ω̃1) ≤ µ − 1, and we
are done.

The blow-up process can be used to simplify some elementary singularities: we
shall obtain the so called final forms.

Proposition 2.3.4. Let F be a saturated holomorphic foliation in a complex sur-
face M , with an elementary singularity at a. Then, up to perform a blow-up at a,
we can suppose that the elementary matrix of F at a is diagonalizable.

Proof. The assertion is not trivial only if the Jordan form of the elementary matrix
L is (

1 1
0 1

)
;

up to a linear change of coordinates, we can suppose that L coincide with its Jordan
form.

Without loss of generality, we can suppose that F is given by the holomorphic
1-form

ω = (z + w + h.o.t.)dz + (−z + h.o.t.)dw.

The tangent form of ω is h2 = z2, so, thanks to Proposition 2.1.28, the blow-up
foliation F̃ has only one singularity c = [0 : 1] on the exceptional divisor; moreover,

near c, F̃ is given by

ω̃ = w
(
1 + f(z, w)

)
dz +

(
z2 + wg(z, w)

)
dw,

for suitable holomorphic functions f and g, such that f(0, 0) = 0 and g(0, 0) ∈ C.
Then the elementary matrix Lc of ω̃ at c is

Lc =

(
0 0

g(0, 0) 1

)
,

that has 0 and 1 as eigenvalues, and hence it is diagonalizable.

Remark 2.3.5. Thanks to Theorem 2.3.3 and Proposition 2.3.4, if we have a holo-
morphic foliation in a complex surface, with finitely many singular points, we can
suppose, up to performing first a finite number of blow-ups and then linear changes
of coordinates near the singularities, that all this singular points are elementary
singularities with diagonal elementary matrix. In particular we can suppose that
the blow-up foliation is given by

ω = zdw − αwdz + h.o.t.

at every singular point a, where α = λ2
λ1
∈ C, and λ1 and λ2 are the eigenvalues of

the elementary matrix at a. Moreover, the parameter α is almost uniquely defined:
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if α 6= 0, then it can be replaced by α−1 performing the linear change of coordinates
(z, w) 7→ (w, z).

So, for having a complete description of the behavior of a holomorphic foliation,
up to considering local coordinates, we have to study the local behavior of foliations
in open neighborhoods of 0 ∈ C2, with an elementary singularity at 0, and with
diagonal elementary matrix at 0.

Definition 2.3.6. Let F be a holomorphic foliation in a open subset U of C2, such
that 0 is an elementary singularity. Thanks to Remark 2.3.5, we can suppose that
F is given by the holomorphic 1-form

ω = zdw − αwdz + h.o.t.,

where α := λ2/λ1 is the ratios of the eigenvalues of the elementary matrix of F at
0. We shall call α the index of F at 0 (up to the identification α ∼ α−1). Then
we call the point 0

• a focus if α is in C \ R;

• a saddle if α < 0;

• a node if α > 0;

• a saddle-node if α = 0.

In each of the previous cases we call 0 resonant if α is in Q.
An elementary singularity whose elementary matrix is non-diagonalizable is

called a Jordan node: in this case we shall say that the elementary singularity
has index 1 (since it is the ratio of the eigenvalues of its elementary matrix).

Proposition 2.3.7. Let F be a holomorphic foliation in a open subset U of C2,
such that 0 is an elementary singularity, given by the holomorphic 1-form

ω = zdw − αwdz + h.o.t.,

with α ∈ C. Let F̃ the blow-up foliation of F at 0. If α 6= 1 then F̃ has two
singular points in the exceptional divisor, whose indexes are α − 1 and α

1−α . If

α = 1 then F̃ has no singular points in the exceptional divisor.

Proof. The tangent form for ω is h2 = (1 − α)zw. If α 6= 1, then h2 6= 0 and 0

is a non-dicritical singularity. Thanks to Proposition 2.1.28, F̃ has two singular
points, p := [1 : 0] and q := [0 : 1]. In the first case, the blow-up foliation is given
by

ω̃p =
(
(1− α)w + bzz

)
dz + zdw + h.o.t.,
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for a suitable bz ∈ C. Hence the elementary matrix at p is of the form(
−1 bz
0 1− α

)
and the index is α− 1.

In the second case, the blow-up foliation is given by

ω̃q = −αwdz +
(
(1− α)z + aww

)
dw + h.o.t.,

for a suitable aw ∈ C. Hence the elementary matrix at q is of the form(
α− 1 0
−aw −α

)
and the index is α

1−α .
If α = 1, then h2 ≡ 0, thus 0 is a dicritical singularity. We have

ω = f(z, w)dz + g(z, w)dw, with f(z, w) = −w + h.o.t., g(z, w) = z + h.o.t.

Thanks to Proposition 2.1.28, and since g̃z(z, w) = 1 + h.o.t. and f̃w(z, w) =
−1 + h.o.t. (we are using notations of Proposition 2.1.28), there are no singular
points in the exceptional divisor, and we are done.

Proposition 2.3.8. Let F be a holomorphic foliation in a open subset U of C2,
such that 0 is an elementary singularity. Then, up to performing finitely many
blow-ups, we can suppose that the index α of the blow-up foliation at every singu-
larity (and its inverse α−1) does not belong to N \ {0}.

Proof. We shall use an induction argument. If α = 1, then if the elementary
matrix is non-diagonalizable, thanks to Proposition 2.3.4 there is only one singular
point for the blow-up foliation in the exceptional divisor, whose index is 0, while
if the elementary matrix is diagonalizable, then there are no singularities in the
exceptional divisor, thanks to Proposition 2.3.7.

So suppose that the assertion is proved for any singularity with index less
than or equal to n− 1, and consider an elementary singularity whit index α = n.
Thanks to Proposition 2.3.7, after a blow-up we have two elementary singularities,
with indexes n − 1 and n

1−n . For the first singularity, we can apply the induction
hypothesis, while the second index does not belong to N.

Definition 2.3.9. Let F be a holomorphic foliation in a open subset U of C2,
such that 0 is an elementary singularity with index α. Then 0 is in final form if
α, α−1 6∈ N \ {0}.
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In this chapter we have proved that a holomorphic foliation with a finite number
of singularities in a complex surface, up to blow-ups, can be reduced to a foliation
with only elementary singularities (in final form).

The next chapter is devoted to the study of focus and node singularities (the so
called Poincaré domain), while the last chapter is devoted to saddle singularities
(the strict Siegel domain).

We shall not deal with the saddle-node case: we refer to [Dul04] for the formal
classification, to [MR82] and [Mou93] for the analytic classification, and to [Sau06]
and [Sau09] for an interesting approach to the saddle-node case using Écalle’s
mould calculus and resurgent functions.





Chapter 3

Dynamics of foliations in the
Poincaré domain

Jasmin Raissy1

3.1 Basic definitions

In this chapter and in the next one we shall deal with the local behavior of foli-
ations with an elementary singularity. We start introducing some notations and
definitions.

Let On be the ring of the germs at the origin 0 ∈ Cn of holomorphic functions
in n complex variables, and let mn be the unique maximal ideal of On, i.e., the set
of germs of On vanishing at the origin; if we fix z = (z1, . . . , zn) local coordinates in
0 ∈ Cn, then mn = 〈z1, . . . , zn〉 is the ideal generated by z1, . . . , zn. We shall denote
by C[[z1, . . . , zn]] = C[[z]] the ring of formal power series in n complex variables, and
we set m̂n = 〈z1, . . . , zn〉 the maximal ideal of C[[z1, . . . , zn]].

We shall also denote by Xn the module of germs of holomorphic vector fields
at (Cn, 0) with a singularity at the origin.

Since we can identify with Cn the tangent space of Cn in each of its points
using the canonical basis ∂1, . . . , ∂n, where ∂j = ∂

∂zj
, we can always locally write a

holomorphic vector field X ∈ Xn in the form

X =
n∑
j=1

Xj∂j

1Dipartimento di Matematica, Università degli Studi di Pisa, Largo Pontecorvo 5, 56127, Pisa,
Italy. e-mail: raissy@mail.dm.unipi.it
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where Xj ∈ mn for every j = 1, . . . , n.

An expression of the form

X̂ =
n∑
j=1

Xj∂j, (3.1)

where Xj ∈ m̂n for j = 1, . . . , n, shall be called a formal vector field singular

at the origin of Cn, and we shall denote by X̂n the module of germs of formal
vector fields at (Cn, 0) with a singularity at the origin.

We can always locally write X ∈ X̂n as

X = X(1) +X(2) + · · ·

where X(m) is a homogeneous vector field of degree m (i.e., all its monomials are
homogeneous of degree m).

Definition 3.1.1. Let Q = (q1, . . . , qn) ∈ Nn be a multi-index, λ = (λ1, . . . , λn) ∈
Cn, and z = (z1, . . . , zn) be local coordinates in 0 ∈ Cn; then we shall define

|Q| =
n∑
j=1

qj, 〈Q, λ〉 =
n∑
j=1

qjλj, and zQ =
n∏
j=1

z
qj
j .

Definition 3.1.2. The space Xm
n of the polynomial vector fields of Xn of degree

less than or equal to m is called the space of m-jets of vector fields. We shall
denote by πm : X̂n → Xm

n the obvious truncation map.

Then if X ∈ Xm
n , locally we have

X =
n∑
j=1

Xj∂j,

where Xj ∈ C[z1, . . . , zn], Xj(0) = 0 and deg(Xj) ≤ m for every j = 1, . . . , n.

It is obvious that Xm
n is a finite dimensional complex vector space, and a basis

of Xm
n is

Bmn =
{
zQ∂k | Q ∈ Nn, 1 ≤ |Q| ≤ m, k ∈ {1, . . . , n}

}
. (3.2)

It is also easy to verify that
X̂n = lim←−Xm

n ,

where lim←− is the inverse limit (see [Bou68, p. 191]).

Definition 3.1.3. A formal vector field X̂ ∈ X̂n is called k-flat if it does not
contain terms of order less than or equal to k, or equivalently, if X̂ ∈ m̂k

nX̂n, i.e.,

writing X̂ as in (3.1), if Xj ∈ (m̂n)k+1 for every j = 1, . . . , n.
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Definition 3.1.4. Two holomorphic vector fieldsX, Y ∈ Xn are holomorphically
conjugated (resp., formally conjugated) if there exists a holomorphic (resp.,
formal) change of variables Φ of (Cn, 0) such that

Φ∗X = dΦ ◦X ◦ Φ−1 = Y . (3.3)

They are holomorphically equivalent (resp., formally equivalent) if there ex-
ist a holomorphic (resp., formal) change of variables Φ of (Cn, 0) and a holomorphic
non-vanishing function (resp., formal non-vanishing power series) Ψ such that

Φ∗X = dΦ ◦X ◦ Φ−1 = ΨY. (3.4)

3.2 Formal normalization

Definition 3.2.1. A n-tuple λ = (λ1, . . . , λn) ∈ Cn is said to be resonant if
there exists a multi-index Q = (q1, . . . , qn) ∈ Nn such that |Q| ≥ 2 and there
exists j ∈ {1, . . . , n} such that

λj = 〈Q, λ〉 =
n∑
k=1

qkλk. (3.5)

Equation (3.5) is said a resonance relation for λ and the number |Q| is the order
of the resonance.

LetX be a holomorphic vector field, singular at 0 ∈ C2, and let λ1, . . . , λn be the
eigenvalues of its linear part X(1). Then X is called resonant if λ = (λ1, . . . , λn)
is a resonant n-tuple. Then the monomial vector field zQ∂j is called a resonant
term for λ (or for X) if λj = 〈Q, λ〉 is a resonance relation for λ.

Remark 3.2.2. Given X ∈ Xn, up to a linear change of coordinates we can assume
that its linear term X(1) is in Jordan normal form, that is

X(1) =
n∑
j=1

(λjzj + εjzj−1)∂j = S +N

where

S =
n∑
j=1

λjzj∂j, N =
n∑
j=1

εjzj−1∂j

and εj ∈ {0, 1} can be non-zero only if λj = λj−1 and j > 1. Note that the Lie
bracket [S,N ] vanishes.
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Lemma 3.2.3. Let S =
∑n

j=1 λjzj∂j ∈ Xn. Then for every multi-index Q ∈ Nn
and for every k ∈ {1, . . . , n}, we have

[S, zQ∂k] =
(
〈Q, λ〉 − λk

)
zQ∂k.

Proof. We have

[S, zQ∂k] =

[
n∑
j=1

λjzj∂j, z
Q∂k

]

=
n∑
j=1

[λjzj∂j, z
Q∂k]

=

(
n∑
j=1

λjqj − λk

)
zQ∂k,

that is the thesis.

Remark 3.2.4. It follows from Lemma 3.2.3 that each monomial vector field zQ∂k
with Q ∈ Nn, |Q| ≥ 1 and k ∈ {1, . . . , n}, is an eigenvector with eigenvalue αQ,k =

〈Q, λ〉 − λk of the Lie operator LS = adS : X̂n → X̂n (recall that adS = [S, ·]). In
particular a monomial vector field zQ∂k with Q ∈ Nn, |Q| ≥ 2 and k ∈ {1, . . . , n}
belongs to ker(LS) if and only if 〈Q, λ〉 − λk = 0, and hence if and only if it is
a resonant term for λ, while zh∂k belongs to ker(LS) if and only if λh = λk. It
follows that LS has non-trivial kernel (i.e., a kernel with not only linear terms) if
and only if λ is resonant.

The space of m-jets Xm
n is a finite dimensional complex vector space, with

canonical basis Bmn defined by (3.2); furthermore for every linear vector field A ∈ X1
n

it is easy to verify that LA is a linear operator on Xm
n and LA(Xm

n ) ⊆ Xm
n for

every m ≥ 1. Therefore, if we consider LS : Xm
n → Xm

n where S =
∑n

j=1 λjzj∂j, by
Lemma 3.2.3, for every m ≥ 1 we have

Xm
n =

⊕
αQ,k∈Nm

Em
αQ,k

where

Nm =
{
αQ,k ∈ C : αQ,k = 〈Q, λ〉 − λk, Q ∈ Nn, 1 ≤ |Q| ≤ m, k ∈ {1, . . . , n}

}
(3.6)

and Em
αQ,k

is the eigenspace corresponding to the eigenvalue αQ,k.
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Lemma 3.2.5. Let S =
∑n

j=1 λjzj∂j ∈ Xn. Then

X̂n = lim←−
⊕

αQ,k∈Nm
Em
αQ,k

where Nm is defined by 3.6 and Em
αQ,k
∈ Xm

n is the eigenspace corresponding to the
eigenvalue αQ,k.

Proof. It is obvious since, for each m ≥ 1, we have Xm
n =

⊕
αQ,k∈Nm E

m
αQ,k

, and

X̂n = lim←−Xm
n .

Corollary 3.2.6. Let S =
∑n

j=1 λjzj∂j ∈ Xn. Then the point spectrum of the Lie

operator LS : X̂n → X̂n is

S =
{
αQ,k ∈ C : αQ,k = 〈Q, λ〉 − λk, Q ∈ Nn, |Q| ≥ 1, k ∈ {1, . . . , n}

}
.

Proof. Thanks to Lemma 3.2.3 and to Lemma 3.2.5, each element of the eigenspace
Eα ⊆ X̂n corresponding to the eigenvalue α is the projective limit of finite linear
combinations of monomial vector fields zQ∂k with α = 〈Q, λ〉 − λk.

Remark 3.2.7. In particular, every Y ∈→ X̂n can be uniquely written in the form

Y = Y0 +W

with Y0 ∈ E0 and W ∈ ⊕α∈S\{0}Eα.

Definition 3.2.8. We shall say that a vector field N ∈ X̂n is nilpotent, if for
every k ≥ 1 there is m = m(k) ≥ 0 so that πk ◦ LmN |Xkn ≡ 0.

Remark 3.2.9. Every 1-flat vector field is nilpotent, because if N is h-flat and X
is k-flat then LN(X) is (h+k)-flat. More generally, if N0 ∈ X1

n is nilpotent and N1

is 1-flat, then N0 +N1 is nilpotent even when [N0, N1] 6= 0.

Proposition 3.2.10. Let X = S + N ∈ X̂n, where S =
∑n

j=1 λjzj∂j and N is a
nilpotent vector field such that [S,N ] = 0. For every α in the point spectrum of LS
let Eα ⊂ X̂n be the corresponding eigenspace. Then the Lie operator LX : X̂n → X̂n

restricted to
⊕

α 6=0 Eα is invertible with inverse

L−1
X =

∞∑
l=0

(−1)l(L−1
S )(l+1) ◦ (LN)l.

In particular, if W ∈ X̂n is k-flat, then L−1
X (W ) is also k-flat. Moreover, if we

restrict ourselves to the space Xk
n of k-jets, it suffices to take the sum up to m

where m = m(k) is such that πk ◦ LmN restricted to Xk
n is zero.
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Proof. Thanks to Lemma 3.2.3, if 〈Q, λ〉 − λk 6= 0, i.e., if zQ∂k 6∈ E0, we have

L−1
S (zQ∂k) =

1

〈Q, λ〉 − λk
zQ∂k.

Moreover, note that LX = LS +LN and LS commute with LN ; hence LS,L−1
S ,LN

pairwise commute.
Let us consider

L =
∞∑
l=0

(−1)l(L−1
S )(l+1) ◦ (LN)l.

Notice that L is well defined because N is nilpotent. We have

LLX =
∞∑
l=0

(−1)lL−(l+1)
S LlN(LS + LN)

=
∞∑
l=0

(−1)lL−lS L
l
N +

∞∑
l=0

(−1)lL−(l+1)
S L(l+1)

N

=
∞∑
l=0

(−1)lL−lS L
l
N +

∞∑
l=1

(−1)l+1L−lS L
l
N

= (−1)0L0
SL0

N

= Id;

and analogously we verify that LXL = Id. It follows that L is the inverse opera-
tor L−1

X of LX .
Note that, if we project to the space Xk

n of k-jets and we consider

L(m) =
m∑
l=0

(−1)l(L−1
S )(l+1) ◦ (LN)l,

where m = m(k) is such that LmN restricted to Xk
n is zero, we have

πk
(
L(m)LX

)
= πk

(
m∑
l=0

(−1)lL−(l+1)
S LlNLX

)

= πk

(
m∑
l=0

(−1)lL−lS L
l
N +

m∑
l=1

(−1)l+1L−lS L
l
N

)
= πk

(
Id +(−1)m+1L−mS L

m
N

)
= πk + (−1)m+1L−mS ◦ πk ◦ LmN
= πk,

and we are done.
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Proposition 3.2.11. Let X = S + N ∈ X̂n, where S =
∑n

j=1 λjzj∂j and N is a
nilpotent vector field sucht that [S,N ] = 0. Let S be the point spectrum of LS and,

for every α ∈ S, let Eα ⊂ X̂n be the corresponding eigenspace. Then for every
given Y ∈ X̂n there exist a unique Y0 ∈ E0 and a unique Z ∈

⊕
α 6=0 Eα such that

Y = Y0 + [X,Z].

Moreover, if Y is k-flat then Y0 and Z are k-flat.

Proof. Let Y0 be the projection of Y on E0; thus we have Y = Y0 +W , where W ∈⊕
α 6=0 Eα. Then it is sufficient to take Z = L−1

X (W ), and the last assertion follows
from the proof of Proposition 3.2.10.

Theorem 3.2.12 (Poincaré-Dulac, 1904). Let X ∈ X̂n and let {λ1, . . . λn} be
the spectrum of its linear term. The X is formally conjugated to

XPD = S +Xres ∈ X̂n

where S =
∑n

j=1 λjzj∂j, X
res ∈ X̂n and [S,Xres] = 0. In particular, if λ =

(λ1, . . . λn) is non-resonant, then X is formally linearizable.

Proof. Up to a linear change of coordinates, we can assume that the linear termX(1)

of X is in Jordan normal form, i.e., X(1) = S+N , where S =
∑n

j=1 λjzj∂j, N ∈ X1
n

and [S,N ] = 0 (see Remark 3.2.2). Notice that N is nilpotent.
Assume that, for k ≥ 1, we can write

X = S +Xres
k +R(k+1),

where Xres
k ∈ Xk

n is nilpotent, [S,Xres
k ] = 0, and R(k+1) ∈ X̂n is k-flat. Then, by

Proposition 3.2.11, there exist a unique Xr
k+1 ∈ E0 and a unique Uk+1 ∈

⊕
α 6=0Eα

(where Eα ⊂ X̂n is the eigenspace corresponding to the eigenvalue α of LS), such
that Xr

k and Uk+1 are k-flat and

R(k+1) = Xr
k+1 + [S +Xres

k , Uk+1]. (3.7)

Let ϕ(k+1) = exp(Uk+1) be the time-1 flow of Uk+1. Then

ϕ(k+1)
∗ X = S +Xres

k +Xr
k+1 + R̃(2k+1),

where R̃(2k+1) is 2k-flat. Indeed

(exp tUk+1)∗X =
∞∑
n=0

tn

n!
LnUk+1

(X) = X + t[Uk+1, X] +
1

2
t2
[
Uk+1, [Uk+1, X]

]
+ · · · ;
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hence the coefficient of t is k-flat, the coefficient of t2 is 2k-flat, . . . , the coefficient
of tp is pk-flat, and so on. It follows that ϕ

(k+1)
∗ X ≡ X + [Uk+1, X] modulo 2k-flat

vector fields. Using then equation (3.7), we have

ϕ(k+1)
∗ X ≡ S +Xres

k +R(k+1) + [Uk+1, S +Xres
k +R(k+1)]

≡ S +Xres
k +R(k+1) − [S +Xres

k , Uk+1]

≡ S +Xres
k +Xr

k+1

modulo 2k-flat vector fields. Notice that we obtain the same result if we use
the (2k)-jet of ϕ(k+1); therefore X is holomorphically conjugated to S+Xres

k +Xr
k+1

up to (2k)-flat vector fields. Iterating this process, we get the assertion.
Notice that if λ is non-resonant, then Xres does not have non-linear terms (see

Remark 3.2.4, so X is formally conjugated to X(1) = S +N .

Definition 3.2.13. Let X ∈ X̂n, let {λ1, . . . λn} be the spectrum of its linear term,
and let S =

∑n
j=1 λjzj∂j. We say that

• X is in Poincaré-Dulac normal form up to order k, with k ≥ 1, if it is
of the form

X = S +Xres
k +W

where Xres
k ∈ Xk

n is nilpotent, [S,Xres
k ] = 0, and W ∈ X̂n is k-flat;

• X is in Poincaré-Dulac formal normal form if it is of the form

X = S +Xres

where Xres ∈ X̂n and [S,Xres] = 0;

• X is in Poincaré-Dulac normal form if it can be written as

X = S +Xres

where Xres ∈ Xn and [S,Xres] = 0.

Remark 3.2.14. Given X ∈ X̂n, its Poincaré-Dulac normal forms are not unique.
Moreover the proof Theorem 3.2.12 implies that, for any fixed k ≥ 1, we can
always conjugate X ∈ Xn to a holomorphic vector field in Poincaré-Dulac normal
form up to order k, but in general X is only formally conjugated to one of its
Poincaré-Dulac formal normal forms.

In the next section we shall see that under certain hypotheses on the eigen-
values of the linear term of X ∈ Xn, the vector field X is indeed holomorphically
equivalent to a holomorphic vector field in Poincaré-Dulac normal form.
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3.3 Holomorphic normalization in Poincaré do-

main

We saw in the previous section that to linearize a given non-resonant vector field
singular at the origin X ∈ Xn, at each step of the Poincaré-Dulac process we
had to compute the inverse of LS = adS on the space of homogeneous vector
fields. To do that, we had to divide the Taylor coefficients by expression of the
form λj − 〈Q, λ〉 ∈ C where Q ∈ Nn, |Q| ≥ 2 and 1 ≤ j ≤ n; these denominators
may be small even when LS is invertible. There are two different cases.

Definition 3.3.1. A n-tuple λ = (λ1, . . . , λn) ∈ Cn belongs to the Poincaré
domain, and we write λ ∈ P, if the convex hull of the set of points {λ1, . . . , λn} ⊂
C does not contain the origin inside or on its boundary. The large Siegel domain
S is the complement of P in Cn; we say that λ belongs to the strict Siegel
domain if the convex hull of {λ1, . . . , λn} ⊂ C contains the origin strictly inside.

Let X ∈ Xn be a holomorphic vector field germ, X(1) its linear part, and
λ = (λ1, . . . , λn) ∈ Cn the n-tuple of its eigenvalues. Then X belongs to the
Poincaré domain (resp., to the large or strict Siegel domain) if λ does.

Proposition 3.3.2. If a n-tuple λ ∈ Cn belongs to the Poincaré domain, then λj−
〈Q, λ〉 = 0 only for a finite number of multi-indices Q ∈ Nn with |Q| ≥ 2 and 1 ≤
j ≤ n. Moreover, every non-zero denominator λj − 〈Q, λ〉, where Q ∈ Nn, |Q| ≥ 2
and 1 ≤ j ≤ n, is bounded away from the origin, that is the origin is an isolated
point of the set N = {λj − 〈Q, λ〉 | Q ∈ Nn, |Q| ≥ 2, 1 ≤ j ≤ n}.

On the contrary, if λ belongs to the large Siegel domain, then either there are
infinitely many vanishing denominators λj − 〈Q, λ〉, or the origin of C is an accu-
mulation point of the set N .

Proof. If the convex hull of {λ1, . . . , λn} in C does not contain the origin, by the
convex separability theorem there exists a real linear functional l : C → R such
that l(λj) ≤ −r < 0 for all j = 1, . . . , n, and hence l(〈Q, λ〉) ≤ −r|Q| for every
multi-index Q with |Q| ≥ 2. Then we have

l(λj − 〈Q, λ〉) ≥ l(λj) + r|Q| → +∞ for |Q| → +∞.

Since l is bounded on any small neighbourhood of the origin of C, the first two
assertions are proved.

To prove the last assertion, notice that in the large Siegel domain, 0 lies on the
relative interior of the convex hull of one, two or three eigenvalues.

The first case is the simpler one: if one of the eigenvalues is zero, say λ1 = 0,
then qλ1 = 0 for every q ∈ N, and hence we have infinitely many resonance relations
λ1 = qλ1 for every q ≥ 2.
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If the origin lies on the line segment between two non-zero eigenvalues λ1, λ2,
then there exists m ∈ (0, 1) such that

mλ1 + (1−m)λ2 = 0,

that is
λ2

λ1

= − m

1−m
.

Now, if λ2
λ1
∈ Q−, then there are infinitely many vanishing denominators; if λ2

λ1
∈

R− \ Q−, then if we consider its continued fraction expansion (see [Mar03, p. 22
and p. 75]), then, for every n ≥ 1, its n-th convergent pn/qn satisfies∣∣∣∣λ2

λ1

− pn
qn

∣∣∣∣ ≤ 1

2q2
n

,

and hence, the origin is an accumulation point of the set N .
If the origin is inside a triangle formed by three eigenvalues, then up to rename

them and up to (non-conformal) affine transformation of the complex plane R2 '
C, we may assume without loss of generality that λ1 = 1, λ2 = i and −λ3 ∈
R2

+ = R+ + iR+. In this case, all “fractional parts” −Nλ3(mod Z+ iZ) of natural
multiples of −λ3 either form a finite subset of the 2-torus R2/Z2 (in which case
all points of this set correspond to infinitely many vanishing denominators), or
are uniformly distributed along some 1-torus, or dense. In both latter cases the
point (0, 0) ∈ R2/Z2 is the accumulation point of the “fractional parts” which are
affine images of the denominators.

Corollary 3.3.3. Let X ∈ Xn be in the Poincaré domain. Then any formal
Poincaré-Dulac normal form of X is polynomial.

Remark 3.3.4. Resonant n-tuples λ ∈ Cn are dense in the large Siegel domain
and not dense in the Poincaré domain. For a proof of this see [Arn88, p. 188].

Now we shall prove that if the vector field X ∈ Xn belongs to the Poincaré
domain, then X always admits a holomorphic normalization.

Theorem 3.3.5. (Poincaré normalization theorem) Let X ∈ Xn be in the Poincaré
domain. Then X is holomorphically conjugated to a polynomial Poincaré-Dulac
normal form.

In particular, if X is non-resonant, then it is holomorphically conjugated to its
linear part.

We shall first prove this result for holomorphic vector fields with a diagonal
non-resonant linear part S =

∑n
j=1 λjzj∂j. The classical proof of Poincaré was
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achieved by the so-called majorant method. In the modern language, it takes the
more convenient form of the contracting map principle in an appropriate functional
space, the majorant space.

Definition 3.3.6. The majorant operator is the non-linear operator acting on
formal power series M : C[[z1, . . . , zn]] → R[[z1, . . . , zn]], obtained by replacing all
Taylor coefficients by their absolute values

M

(∑
Q∈Nn

cQz
Q

)
=
∑
Q∈Nn

|cQ|zQ.

If f ∈ C[[z1, . . . , zn]] is a formal series, then we shall call M(f) the majorant series
for f .

The action of the majorant operator naturally extends to all formal objects
(formal vector fields, formal transformations, etc.)

Definition 3.3.7. The majorant ρ-norm is the functional acting on the space
of formal power series C[[z1, . . . , zn]] by

[]f []ρ = sup
|z|<ρ
|Mf(z)| = Mf(ρ, . . . , ρ) ≤ +∞. (3.8)

For a formal map F = (F1, . . . , Fn) the majorant ρ-norm is

[]F []ρ = []F1[]ρ + · · ·+ []Fn[]ρ. (3.9)

The majorant space is the subspace of formal power series (resp., maps) having
finite majorant ρ-norm

Bρ = {f ∈ C[[z1, . . . , zn]] | []f []ρ < +∞}.

Proposition 3.3.8. The space Bρ with the majorant ρ-norm [] · []ρ is complete.

Proof. If ρ = 1 this is obvious since B1 is the space of infinite absolutely converg-
ing sequences {cQ}, that is isomorphic to the standard Lebesgue space l1 which
is complete. The general case of an arbitrary ρ follows from the fact that the
correspondence f(ρz) 7→ f(z) is an isomorphism between Bρ and B1.

Remark 3.3.9. The space Bρ is closely related but not coinciding with the spaceAρ
of functions that are holomorphic in the polydisk {|z| < ρ} and continuous on its
closure, equipped with the usual sup-norm ‖f‖ρ = max|z|<ρ |f(z)|.

It is obvious that Bρ ⊂ Aρ, since a series belonging to Bρ is absolutely con-
vergent on the closed polydisk {|z| ≤ ρ} . On the contrary, if f is holomorphic
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in {|z| < ρ} and continuous on its boundary, then by the Cauchy estimates, the
Taylor coefficients cQ of f satisfy

|cQ| ≤ ‖f‖ρ · ρ|Q|, Q ∈ Nn.

The series []f []ρ =
∑
|cQ|ρ|Q| may still diverge, but any other norm []f []ρ′ with ρ′ < ρ

shall be finite:

[]f []ρ′ ≤ []f []ρ ·
∑
Q∈Nn

δ|Q| < C[]f []ρ, C = C(δ, n), δ =
ρ′

ρ
< 1.

To construct a counterexample showing that indeed Bρ ⊂ Aρ, but Bρ 6= Aρ,
consider a convergent but not absolutely convergent Fourier series

∑
k∈Z cke

ikt in
one real variable t and let f(z) =

∑
ckz

k. Then f converges at all points of the
boundary |z| = 1 and represents an element of A1, but by construction its 1-norm
is infinite. For other details see [IY08, p. 63] and references therein.

The important properties of the majorant spaces and norms concern operations
on functions.

Lemma 3.3.10. Let ρ > 0. Then:

(i) for any two series f, g ∈ C[[z1, . . . , zn]] we have

[]fg[]ρ ≤ []f []ρ · []g[]ρ, (3.10)

provided that all norms are finite;

(ii) for any F,G ∈ (C[[z1, . . . , zn]])n with F (0) = G(0) = 0, we have

[]F ◦G[]ρ ≤ []F []σ, σ = []G[]ρ. (3.11)

Proof.

(i) All Taylor coefficients of the product are obtained from the coefficients of the
factors by addition and multiplication only, so the assertion is obvious.

(ii) Since all binomial coefficients are non-negative, each component ofM(F◦G) has
coefficients less than or equal to the corresponding coefficient of the corresponding
component of M(F ) ◦M(G). Evaluating at ρ = (ρ, . . . , ρ) yields M(G)(ρ) = y ≤
σ = (σ, . . . , σ) where σ = []G[]ρ (and y ≤ σ means that each component of y is less
than or equal to σ). By monotonicity,

[]F ◦G[]ρ ≤ (M(F ) ◦M(G))(ρ) ≤M(F )(y) ≤M(F )(σ) = []F []σ,

and we are done.
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Lemma 3.3.11. Let S =
∑n

j=1 λjzj∂j ∈ X1
n, with λ = (λ1, . . . , λn) a n-tuple

of non-resonant complex numbers belonging to the Poincaré domain. Then the
adjoint operator LS = adS has a bounded inverse in the space of formal vector
fields equipped with the majorant norm.

Proof. The formal inverse of LS is

L−1
S :

n∑
k=1

∑
|Q|≥2

cQ,kz
Q∂k 7→

n∑
k=1

∑
|Q|≥2

cQ,k
λk − 〈Q, λ〉

zQ∂k.

In the Poincaré domain the absolute values of all denominators are bounded from
below by a positive constant ε > 0. Therefore any majorant ρ-norm is increased
by no more than ε−1:

[]L−1
S []ρ ≤

(
inf
Q,k
|λk − 〈Q, λ〉|

)−1

≤ ε−1 < +∞,

and this proves that L−1
S is bounded.

Definition 3.3.12. Let X be a germ of holomorphic self-map of (Cn, 0) fixing the
origin. The operator of argument shift is the operator SX : Onn → Onn defined
by

SX : h(z) 7→ X(z + h(z)),

Consider the one-parameter family of majorant Banach spaces Bρ as in Defini-
tion 3.3.7, indexed by the real parameter ρ ∈ R+. We consider Bρ as a subspace
in Bρ′ for all 0 < ρ < ρ′ (the natural embedding Idρ,ρ′ : Bρ → Bρ′ is continuous).

Let S be an operator defined on all of these spaces for all sufficiently small
values of ρ, considered as a family of operators Sρ : Bρ → Bρ which commutes with
the restriction operators Idρ,ρ′ for any ρ < ρ′ (but we shall always omit the index ρ
in the notation).

Definition 3.3.13. The operator S = {Sρ} is strongly contracting if

(i) []S(0)[]ρ = O(ρ2) and

(ii) S is Lipschitz on the ball Bρ = {[]h[]ρ ≤ ρ} ⊂ Bρ of the majorant ρ-norm
(with the same ρ), with Lipschitz constant O(ρ) as ρ→ 0.

Note that any strongly contracting operator takes, for ρ small enough, the
balls Bρ strictly into themselves, since the center is shifted by O(ρ2) and the
diameter of the image S(Bρ) does not exceed 2ρO(ρ) = O(ρ2).
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Lemma 3.3.14. Let X be a germ of holomorphic self-map of (Cn, 0) fixing the
origin and with no linear part. Then the operator of argument shift SX is strongly
contracting.

Proof. First note that SX(0) = X, which has ρ-norm O(ρ2) for all sufficiently
small ρ, since X has no linear part.

Let us now compute the Lipschitz constant for S = SX restricted to the
ball Bρ ⊂ Bρ. If h1, h2 ∈ (C[[z1, . . . , zn]])n, then the difference

g = S(h1)− S(h2) = X(Id +h1)−X(Id +h2)

can be represented as the integral

g(z) =

∫ 1

0

(
∂X

∂z

)(
z + τh1(z) + (1− τ)h2(z)

)
·
(
h1(z)− h2(z)

)
dτ.

By Lemma 3.3.10, since τ ∈ [0, 1], we have

[]g[]ρ ≤

[]
∂X

∂z

[]
σ(τ)

· []h1 − h2[]ρ, σ(τ) =
[]
z + τh1(z) + (1− τ)h2(z)

[]
ρ
.

If h1, h2 ∈ Bρ, we have

σ(τ) ≤ []z[]ρ + max
{

[]h1[]ρ, []h2[]ρ
}

= (n+ 1)ρ.

On the other hand since X is without constant and linear terms, its Jacobian
matrix is holomorphic and has no constant term, and hence its σ(τ)-norm is no
greater than Cσ(τ) for all sufficiently small positive σ(τ). Therefore SX is Lipschitz
on the ρ-ball Bρ, with Lipschitz constant not exceeding (n + 1)Cρ, and hence SX
is strongly contracting.

Proof (of Theorem 3.3.5 in the non-resonant case). Now we can prove that a holo-
morphic vector field X with diagonal non-resonant linear part S with spectrum in
the Poincaré domain is holomorphically linearizable in a sufficiently small neigh-
bourhood of the origin.

The map H = Id +h is a holomorphic change of coordinates in a neighbourhood
of the origin linearizing X = S + X̃, i.e.,

dH ◦ S = X ◦H,

where S =
∑n

j=1 λjzj∂j, if and only if(
∂h

∂z

)
S − S(h) = X̃(Id +h),
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that is,

LS(h) = SX̃(h) (3.12)

where LS = adS and SX̃(h) = X̃(Id +h), up to considering h = h1∂1 + · · · + hn∂n
as a vector field instead of the map h = (h1, . . . , hn). We shall show that L−1

S ◦SX̃
restricted to Bρ has a fixed point h for ρ > 0 sufficiently small, implying the thesis.

Consider this operator L−1
S ◦ SX̃ in the space Bρ with sufficiently small ρ > 0.

The operator L−1
S is bounded by Lemma 3.3.11, and its norm is the reciprocal of

the minimum of the small divisors and is independent of ρ. On the other hand,
the argument shift operator SX̃ is strongly contracting by Lemma 3.3.14 with
contraction rate going to zero with ρ as O(ρ). Thus the composition shall be
contracting on the ρ-ball Bρ in the ρ-majorant norm with contraction rate going
to zero with ρ as O(1) · O(ρ) = O(ρ). By the contracting map principle, there
exists a unique fixed point of the operator equation (3.12) in the space Bρ, for ρ
small enough, as desired.

Now we deal with the resonant case.

Theorem 3.3.15 (Lyapunov-Dulac). Let X ∈ Xn be in the Poincaré domain.
Then X is locally holomorphically conjugated to any holomorphic vector field with
the same (r − 1)-jet.

Proof. Since the spectrum λ1, . . . , λn of the linear part of X belongs to the Poincaré
domain, there exist θ ∈ R and 0 < a < A such that

0 < a < Re(eiθλj) < A ∀j = 1, . . . , n. (3.13)

We take

r =

⌊
A

a

⌋
+ 1

where bxc denotes the integer part of x.
A holomorphic conjugacy H = Id +h between the vector fields X = X(1) + X̃

and X+Z, where the holomorphic vector field Z ∈ Xn is (r−1)-flat, has to satisfy
the functional equation dH ◦X = (X + Z) ◦H, which can be expanded as(

∂h

∂z

)
X(1) −X(1)h =

(
X̃ ◦ (Id +h)− X̃

)
+ Z ◦ (Id +h)−

(
∂h

∂z

)
X̃. (3.14)

Using the three operators

TX̃ : h 7→ X̃ ◦ (Id +h)− X̃, SZ : h 7→ Z ◦ (Id +h), Ψ: h 7→
(
∂h

∂z

)
X̃,
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we can write equation (3.14) in the form

LX(1)(h) = TX̃(h) + SZ(h)−Ψ(h), (3.15)

where, as before, LX(1) = adX(1) . The key differences with the non-resonant case
are: first, due to the presence of resonances, the operator LX(1) is not invertible
anymore, and second, since the field X̃ is non-linear, we have the additional oper-
ator Ψ in the right hand side. Note that this operator is a derivation of h, thus is
unbounded in any majorant norm [] · []ρ.

Let, for any m ∈ N and ρ > 0,

Bm,ρ = {f ∈ (C[[z1, . . . , zn]])n | f has no terms of order ≤ m− 1} ∩ Bρ

equipped with the same majorant norm [] · []ρ. Since X̃ has no linear term, all the
operators TX̃ , SZ ,Ψ map the subspace Bm,ρ into itself for any m ∈ N. Moreover,
by Lemma 3.3.14, the argument shift operator SZ is strongly contracting, regard-
less of the choice of m. Since TX̃(h) = SX̃(h) − SX̃(0), the operator TX̃ differs
from the argument shift SX̃ by the constant operator X̃ = SX̃(0), which does not
affect the Lipschitz constant; since []X̃[]ρ = O(ρ2), the operator TX̃ is also strongly
contracting.

The operator LX(1) preserves the order of all monomial terms, hence it also
maps Bm,ρ into itself for all m and all ρ, and it is invertible on these spaces if m ≥ r.
Indeed, if |Q| ≥ r, then by (3.13), we have∣∣λk − 〈Q, λ〉∣∣ =

∣∣eiθλk − 〈Q, eiθλ〉∣∣
≥

n∑
j=1

QjRe(eiθλj)− Re(eiθλk)

≥ a|Q| − A

≥ a

(
1− A

a+ A

)
|Q|.

So, since

L−1
X(1)

∣∣
Bm,ρ

:
n∑
k=1

∑
|Q|≥m

cQ,kz
Q∂k 7→

n∑
k=1

∑
|Q|≥m

cQ,k
λk − 〈Q, λ〉

zQ∂k,

the restriction of L−1
X(1) on Bm,ρ is bounded and

[]L−1
X(1)(h)[]ρ ≤ O

(
1

m

)
[]h[]ρ, (3.16)

uniformly over all h ∈ Bm,ρ of order m ≥ r.



3.3 Holomorphic normalization in Poincaré domain 73

Thus the two compositions, L−1
X(1) ◦SZ and L−1

X(1) ◦ TX̃ are strongly contracting.

To prove the theorem, it remains to show that the linear operator L−1
X(1)◦Ψ: Bm,ρ →

Bm,ρ is strongly contracting for m ≥ r. Let us consider the [] · []ρ-normalized
monomial vector fields

hP,k = ρ−|P |zP∂k

for all k = 1, . . . , n and |P | ≥ m, spanning the entire space Bm,ρ. We prove that

[]L−1
X(1) ◦Ψ(hP,k)[]ρ = O(ρ) as ρ→ 0 (3.17)

uniformly over |P | ≥ m and all k. Since L−1
X(1) ◦ Ψ is linear, this would imply

that L−1
X(1) ◦Ψ is strongly contracting. The direct computation yields

Ψ(hP,k) =
n∑
j=1

ρ−|P |
pj
zj
zP X̃j∂k.

Since X̃ is non-linear, []X̃j[]ρ = O(ρ2); substituting this into the definition of the
majorant norm, we obtain

[]Ψ(hP,k)[]ρ ≤
n∑
j=1

pjρ
−1O(ρ2) = |P |O(ρ),

where O(ρ) is uniform over P and k. Since the order of the products zP

zj
X̃j is at

least |P |+ 1, by (3.16) we have

[]L−1
X(1) ◦Ψ(hP,k)[]ρ ≤

|P |
|P |

O(ρ) = O(ρ)

uniformly over k and P with |P | ≥ m ≥ r. Thus the last remaining composi-
tion L−1

X(1) ◦Ψ is also strongly contracting, which implies the existence of a solution
for the fixed point equation

h = L−1
X(1) ◦ (TX̃ + SZ −Ψ)(h)

equivalent to (3.15), in a sufficiently small polydisk {|z| < ρ}.

Now we can easily complete the proof of the holomorphic normalization theorem
in the Poincaré domain in the resonant case.

Proof (of Theorem 3.3.5 in the resonant case). By the proof of Poincaré-Dulac for-
mal normalization Theorem 3.2.12 (see Remark 3.2.14), we can eliminate all non-
resonant terms up to any finite order m by a polynomial transformation. Therefore,
if m ≥ r + 1, by Theorem 3.3.15, we can eliminate all the terms of order greater
than m with a holomorphic transformation, and we are done.
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If n = 2 the Poincaré domain P coincides with

{(λ1, λ2) ∈ C2 | λ1λ2 6= 0 and α = λ2/λ1 ∈ C∗ \ R−},

and (λ1, λ2) ∈ P is resonant if and only if there exists n ∈ N\{0} such that λ2 = nλ1

or λ2 = 1
n
λ1. Theorem 3.3.5 gives then the following classification.

Corollary 3.3.16. Let X ∈ X2 be in the Poincaré domain, and let λ1, λ2 ∈ C∗ be
the eigenvalues of the linear part of X. Let α = λ2/λ1 ∈ C∗ \ R− be the index of
X at 0. Then

(i) if α, 1/α 6∈ N then X is holomorphically conjugated to

λ1z1∂1 + λ2z2∂2, (3.18)

i.e., it is holomorphically equivalent to

z1∂1 + αz2∂2;

(ii) if α = n for some integer n ≥ 2 then X is holomorphically conjugated to

λ1z1∂1 + (λ2z2 + azn1 )∂2,

i.e., it is holomorphically equivalent to

z1∂1 + (nz2 + azn1 )∂2,

where a ∈ C is a holomorphic invariant; analogously, if α = 1
n

for some
integer n ≥ 2 then X is holomorphically conjugated to

(λ1z1 + azn2 )∂1 + λ2z2∂2,

i.e., it is holomorphically equivalent to

(nz1 + azn2 )∂1 + z2∂2; (3.19)

(iii) if α = 1 then, if the linear part of X is diagonalizable then X is holomorphi-
cally conjugated to (3.18), otherwise, it is holomorphically conjugated to

λ(z1 + z2)∂1 + λz2∂2,

i.e., it is holomorphically equivalent to

(z1 + z2)∂1 + z2∂2.
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Proof. Cases (i) and (iii) follow directly from the proof of Theorem 3.3.5 in the
non-resonant case. Case (ii) follows from Theorem 3.3.5 in the resonant case as
soon as we prove that the complex number a is a holomorphic invariant. It suffices
to prove that if X = (λ1u+ avn)∂1 + λ2v∂2 is holomorphically conjugated to Y =
(λ1x + byn)∂1 + λ2y∂2, then a = b (we make computations for α = 1/n, the case
α = n is perrfectly analogous). In fact, let (u, v) = (x, y)+ξ(x, y) be a holomorphic
change of coordinates of (C2, 0) tangent to the identity conjugating X to Y , i.e.,
such that

X ◦ (I + ξ) = d(I + ξ) ◦ Y. (3.20)

Then the first coordinate of (3.20) is

λ1

(
x+ ξ1(x, y)

)
+ a
(
y + ξ2(x, y)

)n
= (λ1x+ byn)

(
1 +

∂ξ1

∂x

)
+ λ2y

∂ξ1

∂y
,

that is, writing ξ1(x, y) =
∑

h+k≥2 ξ
(1)
hk x

hyk, we have

λ1x+ λ1

∑
h+k≥2

ξ
(1)
hk x

hyk + a
(
y + ξ2(x, y)

)n
= λ1x+ byn + λ1

∑
h+k≥2

ξ
(1)
hk hx

hyk + b
∑
h+k≥2

ξ
(1)
hk hx

h−1yn+k + λ2

∑
h+k≥2

ξ
(1)
hk kx

hyk.

The coefficient of yn in the left hand side is λ1ξ
(1)
0n + a while the coefficient of yn

in the right hand side is b + λ2nξ
(1)
0n . Since λ1 = nλ2, then a = b, that is a is a

holomorphic invariant.

3.4 Topology of the leaves in the 2-dimensional

Poincaré case

In this section we shall describe the topology of the leaves for vector fields in the
Poincaré domain. It shall be sufficient to study the normal forms given by Corollary
3.3.16.

Foliation induced by X = λ1z1∂1 + λ2z2∂2 ∈ X2 with (λ1, λ2) ∈ P.

Proposition 3.4.1. Let X = λ1z1∂1 +λ2z2∂2 ∈ X2 with (λ1, λ2) ∈ P and let F be
the induced foliation in a neighbourhood of the origin. Then

(i) the leaves of F are locally transverse to the spheres SR = {|z1|2 + |z2|2 = R2}
for R > 0;
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(ii) there exists a real linear flow having leaves included in the leaves of F and
for which the origin is an attractor.

Proof. Let α = λ2
λ1

be the index of F at 0. We can parametrize a leaf of F passing

through (x0, y0) ∈ C2 by

ϕ
(
T, (x0, y0)

)
=
(
x0e

λ1T , y0e
λ2T
)

with T ∈ C. Since α ∈ C∗ \ R−, there exists β0 ∈ C∗ such that{
Re(β0λ1) < −c < 0

Re(β0λ2) < −c < 0

for some c ∈ R+. Let us consider the real flow

ϕβ0
(
t, (x0, y0)

)
=
(
x0e

β0λ1t, y0e
β0λ2t

)
for t ∈ R. Then we have∣∣ϕβ0(t, (x0, y0))

∣∣2 = |x0|2e2Re(β0λ1)t + |y0|2e2Re(β0λ2)t ≤
(
|x0|2 + |y0|2

)
e−2ct,

and hence the assertion follows.

Then in this case every leaf of F is topologically a cone over its intersection
with S1 and vertex the origin. To describe the base of this cone let us first note
that the flow ϕβ0 allows us to define a diffeomorphism between the solid torus T1 =
{|z1| = 1} and S1 \ (S1 ∩ {z1 = 0}) mapping every point (x0, y0) having |x0| = 1 to
the unique point in which ϕβ0(t, (x0, y0)) intersects the sphere S1.

We shall now describe the intersections of F with T1. Let us choose β1 = i
λ1

and consider the real flow

ϕβ1
(
t, (x0, y0)

)
=
(
x0e

it, y0e
αit
)
, t ∈ R

for which T1 is invariant. The axis of T1, i.e., {|z1| = 1, z2 = 0}, is a leaf.

Theorem 3.4.2. Let X = λ1z1∂1 + λ2z2∂2 ∈ X2 with (λ1, λ2) ∈ P and let F be
the induced foliation in a neighbourhood of the origin. Denote by α = λ2

λ1
∈ C∗ \R−

the index of F at 0. Then

(i) if α ∈ C\R then the induced foliation on S1 has only two closed leaves, {|z1| =
1, z2 = 0} and {z1 = 0, |z2| = 1}, and the other leaves accumulate spiralizing
on the closed ones;

(ii) if α = 1 then the leaves of F are of the form {x0z2 = y0z1} \ {0}, with
(x0, y0) ∈ C2 \ {0}, and they intersect circles on S1;
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(iii) if α ∈ Q+ then all the leaves of the foliation induced by F on S1 are closed;

(iv) if α ∈ R+ \Q+ then S1 is decomposed into invariant tori on which the leaves
of the foliation induced by F on S1 are dense, and the unique closed leaves of
such foliation on S1 are {|z1| = 1, z2 = 0} and {z1 = 0, |z2| = 1}.

Proof. Recall that

ϕβ1
(
t, (x0, y0)

)
= (x0e

it, y0e
αit), t ∈ R,

where β1 = i
λ1

.

(i) We have

lim
t→+∞

∣∣eαit∣∣ = 0 and lim
t→−∞

∣∣eαit∣∣ = +∞ if Im (α) > 0

lim
t→+∞

∣∣eαit∣∣ = +∞ and lim
t→−∞

∣∣eαit∣∣ = 0 if Im (α) < 0.

Then we have leaves spiralizing around the axis of T1 in one direction and going
away indefinitely in the other direction.

(ii) It is obvious, since in this case the real flow is

ϕβ1
(
t, (x0, y0)

)
= (x0e

it, y0e
it), t ∈ R.

(iii) It is obvious, since in this case we have

α =
m

n

with m,n ∈ N \ {0, 1} and (m,n) = 1, and hence

ϕβ1
(
t, (x0, y0)

)
=
(
x0e

it, y0e
m
n
it
)
, t ∈ R.

(iv) In this case, we have

|ϕβ1(t, (x0, y0)| = |x0|2 + |y0|2

for every t ∈ R, and hence ϕβ1(t, (x0, y0) ∈ S1 if and only if |x0|2 + |y0|2 = 1.
If x0 = 0 (resp., y0 = 0), then the corresponding leaf is the vertical (resp.,

horizontal) complex separatrix, that intersect S1 on the circle {z1 = 0, |z2| = 1}
(resp., {|z1| = 1, z2 = 0}).

Now pick a point (x0, y0) ∈ S1 such that x0y0 6= 0, and take the sequence
{ϕβ1(2πk, (x0, y0))}k∈Z: it is dense in {z1 = x0, |z2| = |y0|}; it follows that the
intersection of the leaf of F passing through (x0, y0) and S1 is dense in the (real)
invariant tori {|z1| = |x0| , |z2| = |y0|}.
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Remark 3.4.3. In the linear case, there is a simpler way to study the leaves, simply
solving the differential equation given by the associated holomorphic 1-form

ω = z1dz2 − αz2dz1,

where as always α denotes the index of ω at 0. Here the solution of ω = 0 is
z2 = kzα1 , where k ∈ C is a constant value, or z1 = 0 the vertical complex separatrix.
In particular, if α = p

q
∈ Q+, then the leaves are of the form {zq2 − kqz

p
1 = 0}, and

hence they are all complex separatrices.

Foliation induced by X = (nz1+azn2 )∂1+z2∂2 ∈ X2 with n ∈ N\{0} and a 6= 0.

Theorem 3.4.4. Let X = (nz1 + azn2 )∂1 + z2∂2 ∈ X2 with n ∈ N \ {0} and a 6= 0
and let F be the induced foliation in a neighbourhood of the origin. Then

(i) the leaves of F are locally transverse to the spheres SR = {|z1|2 + |z2|2 = R2}
for R > 0 small enough;

(ii) the foliation induced by F on SR has only one closed leaf, corresponding
to z2 = 0, while the other leaves accumulate on the closed one spiralizing in
both directions.

Proof.

(i) If (x0, y0) ∈ SR, the tangent space T(x0,y0)SR to SR in (x0, y0) is given by

η(x0,y0) = 2Re(x0dz1 + y0dz2) = 0.

If |(x0, y0)| > 0 is small enough, then (recall that for n = 1 we have a = 1)

η(x0,y0)(nx0 + ayn0 , y0) = 2Re(n|x0|2 + ax0y
n
0 + |y0|2)

≥ 2
(
n|x0|2 + |y0|2 − |a||x0||y0|n

)
> 0

and we are done.

(ii) We can parametrize the leaves of X by{
z1(T ) = (azn2T + z1)enT

z2(T ) = z2e
T

with T ∈ C. If z2 6= 0, we have

|z1(T )|
|z2(T )n|

=
|azn2T + z1|
|z2|n

.
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Now let {Tm} be a sequence with |Tm| → +∞ as m → +∞ and such that
(z1(Tm), z2(Tm)) ∈ S1 for all m. Then

lim
|Tm|→+∞

|z1(Tm)|
|z2(Tm)n|

= lim
|Tm|→+∞

|azn2Tm + z1|
|z2|

= +∞

implies, since |z2(Tm)| =
√

1− |z1(Tm)|2,

lim
|Tm|→+∞

|z1(Tm)| = 1 and lim
|Tm|→+∞

|z2(Tm)| = 0,

and we are done.

Holonomy

We end this chapter by computing the holonomy of some complex separatrices of
foliations in the Poincaré domain. We first need a remark and a definition.

Remark 3.4.5. Let us consider a holomorphic foliation F in a neighborhood U
of the unique singular point 0 ∈ C2. A complex separatrix L is biholomorphic to a
punctured disk D∗, so π1(L) ∼= Z. Moreover there is an induced orientation in L,
that gives us the notion of “sign” of a loop.

Definition 3.4.6. Let L be a complex separatrix of a singular foliation F . Then
the holonomy of L is (the conjugacy class of) the holonomy along a loop γ ⊂ L
such that [γ] = 1 ∈ π1(L).

If X = λ1z1∂1 + λ2z2∂2 ∈ X2 with (λ1, λ2) ∈ P, we know that the induced
foliation F has a singularity at the origin and the coordinate axes are complex
separatrices. We would like to compute the holonomy of the horizontal separa-
trix L = {z2 = 0}. Fix a point p0 = (z0

1 , 0) ∈ L; the generator of π1(L) is repre-
sented by the loop γ(t) = (z0

1e
it, 0). A transverse section over γ(t) is parametrized

by τt(ζ) = (z0
1e
it, ζ), and the leaf passing through τ0(ζ) is parametrized by ϕζ(T ) =

(z0
1e
λ1T , ζeλ2T ). So the leaf through τ0(ζ) intersects the transverse section over γ(t)

at the point

ϕζ

(
it

λ1

)
= (z0

1e
it, ζeiαt).

The holonomy is then given by the second coordinate of ϕζ(2πi/λ1), that is

h(ζ) = e2πiαζ.

Analogously, the holonomy of the vertical separatrix is

h(ζ) = e2πi/αζ.

In particular, if α ∈ Q+, the holonomy maps corresponding to {z1 = 0}
and {z2 = 0} are periodic.
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Theorem 3.4.7. Let X = (nz1 + azn2 )∂1 + z2∂2 ∈ X2 with n ∈ N \ {0} and a 6= 0
and let F be the induced foliation in a neighbourhood of the origin. Then the
holonomy h of the unique separatrix L = {z2 = 0}, computed with respect to
the standard transverse section τ = {z1 = 1}, is tangent to a rotation by the
rational angle 2π

n
and its n-th iterate has an isolated fixed point at the origin of

multiplicity n+ 1.

Proof. The generator of π1(L) is represented by the loop γ(t) = (eit, 0). As trans-
verse section over γ(t) we take τt(ζ) = (eit, ζ); so the leaf passing through τ0(ζ) is
parametrized by

ϕζ(T ) =
(
(1 + aζn)enT , ζeT

)
,

with T ∈ C. The leaf through τ0(ζ) intersects the transverse section over γ(t) at
the point

ϕζ (Tζ(t)) =
(
eit, ζeTζ(t)

)
,

where Tζ(t) is a solution of the equation

(1 + aζnT )enT = eit.

In particular, since ϕ0(T0(t)) must be γ(t), we get T0(t) = it/n. The holonomy
map is then given by

h(ζ) = eTζ(2π)ζ,

where Tζ(2π) solves the equation

1 + aζnT = e−nt,

with T0(2π) = 2πi/n. Write Tζ(2π) = 2πi
n

+ δ(ζ); then δ(ζ) solves the equation

1 + aζn
(

2πi

n
+ δ(ζ)

)
= e−nδ(ζ). (3.21)

By the implicit function theorem, this equation for ζ small has a unique holo-
morphic solution with δ(0) = 0. Expanding δ in Taylor series and comparing
coefficients in both sides of (3.21) we get

δ(ζ) = −2πia

n2
ζn + o(ζn);

hence

h(ζ) = ζ exp

(
2πi

n
− 2πia

n2
ζn + o(ζn)

)
= e2πi/nζ exp

(
−2πia

n2
ζn + o(ζn)

)
= e2πi/nζ

(
1− 2πia

n2
ζn + o(ζn)

)
.



3.4 Topology of the leaves in the 2-dimensional Poincaré case 81

In particular,

hn(ζ) = ζ

(
1− 2πia

n
ζn + o(ζn)

)
,

and we are done.





Chapter 4

Dynamics of foliations in the
Siegel domain

Matteo Ruggiero1

4.1 Basic definitions

In the previous chapter we have studied singular foliations with a (elementary)
singularity in 0 ∈ Cn, through their equivalent description as integral flow of a
holomorphic vector field.

Here we shall focus on dimension n = 2, and on holomorphic vector fields X in
the strict Siegel domain (see Definition 3.3.1). We shall present some results that
can be found on [MM80] and [PMY94], while we refer to [MR83] for further details
on the resonant case (i.e., a negative rational index).

Remark 4.1.1. For our purposes it shall be more convenient to work with holo-
morphic 1-forms instead of holomorphic vector fields, so we recall here the connec-
tion already seen in the first chapter (Theorem 1.2.13) between them, and give the
equivalent concepts of the ones we gave in Definition 3.1.4 (of holomorphic and
formal conjugation and equivalence).

So a holomorphic foliation F shall be given by a vector field of the form

X = X1
∂

∂x1

+X2
∂

∂x2

,

with X1, X2 ∈ m2, or equivalently, by the 1-form

ω = ω1dx1 + ω2dx2,

1Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. e-mail: m.ruggiero@sns.it

83



84 4 Dynamics of foliations in the Siegel domain

where ω1 = −X2 and ω2 = X1.

Definition 4.1.2. Let ω, ω′ be two holomorphic 1-forms with an isolated singular
point 0 ∈ C2. We shall say that they are holomorphically conjugated (resp.,

formally conjugated), and we shall denote it by ω ∼= ω′ (resp., ω
for∼= ω′) if there

exists a biholomorphism (resp. an invertible formal map) Φ such that

Φ∗ω′ = ω. (4.1)

We shall say that they are holomorphically equivalent (resp., formally

equivalent), and we shall denote this by ω ∼ ω′ (resp., ω
for∼ ω′) if there exist

a biholomorphism (resp., an invertible formal map) Φ and a holomorphic non-
vanishing function (resp., formal non-vanishing power series) Ψ such that

Φ∗ω′ = Ψω. (4.2)

Remark 4.1.3. Equations (4.1) and (4.2) correspond respectively to (3.3) and
(3.4) of Definition 3.1.4.

Definition 4.1.4. Let X a holomorphic vector field, or ω a holomorphic 1-form,
with an isolated singular point in 0 ∈ C2, as in Remark 4.1.1. Let X(1) be the
linear part of X, and denote by λ = (λ1, λ2) the eigenvalues of X(1).

Then we say that λ, or X, or ω, belongs to the Siegel domain, if λ1, λ2 6= 0
and the index α := λ2/λ1 ∈ (−∞, 0) = R−.

Remark 4.1.5. This definition of the Siegel domain is equivalent to the Definition
3.3.1 of strict Siegel domain (in dimension 2).

Remark 4.1.6. In particular, if X belongs to the Siegel domain, the two eigen-
values λ1, λ2 as in Definition 4.1.4 are distinct. Therefore X(1) is diagonalizable;
up to a (linear) change of coordinates, we can suppose

Xj = λjxj + fj(x), (4.3)

or equivalently

ω1 = −
(
λ2x2 + f2(x)

)
ω2 = λ1x1 + f1(x),

with fj ∈ m2
2 for j = 1, 2.
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4.2 Formal normalization

Let us recall the formal classification for vector fields in the Siegel domain. This
result follows directly from the formal classification we have already seen in the
previous chapter (see Theorem 3.2.12 and Proposition 3.3.2), but here we present
a more direct proof, that shall be useful for proving results in the next section.

Proposition 4.2.1. Let X be a holomorphic vector field in the Siegel domain, i.e.,
of the form

X = X1
∂

∂x1

+X2
∂

∂x2

,

with Xj = λjxj + fj(x), fj ∈ m2
2, for j = 1, 2, and let α = λ2

λ1
∈ R− be the index at

0. If α ∈ R− \Q−, then

X
for∼= λ1x1

∂

∂x1

+ λ2x2
∂

∂x2

.

If α = −p1
p2
∈ Q−, with p1, p2 ∈ N∗ coprime, then

X
for∼= λ1x1

(
1 + a1(xp11 x

p2
2 )
) ∂

∂x1

+ λ2x2

(
1 + a2(xp11 x

p2
2 )
) ∂

∂x2

, (4.4)

with suitable a1, a2 ∈ m̂1.

Proof. We want to perform a (formal) change of coordinates tangent to the identity,
i.e., of the form

xj = yj + φj(y),

with φj ∈ m̂2
2, for j = 1, 2. In these new coordinates, we obtain

X = Y1
∂

∂y1

+ Y2
∂

∂y2

,

with Yj = λjyj + gj(y), gj ∈ m2
2, for j = 1, 2.

We can compute Xj with respect to the x coordinates, and then perform the
change of coordinates, obtaining

Xj = λjxi + fj(x) = λj
(
yj + φj(y)

)
+ fj

(
y + φ(y)

)
, (4.5)

or we can compute X with respect to the y coordinates, and then consider the
component along ∂

∂xj
, obtaining

Xj =
2∑

k=1

∂xj
∂yk

Yk =
2∑

k=1

(
δkj +

∂φj
∂yk

)(
λkyk + gk(y)

)
, (4.6)
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where δ denotes the Kronecker’s delta function. Comparing (4.5) and (4.6) we get

−λjφj(y) + gj(y) +
2∑

k=1

λk
∂φj
∂yk

yk = fj
(
y + φ(y)

)
−

2∑
k=1

∂φj
∂yk

gk(y).

Expliciting coefficients, we obtain∑
|I|≥2

(δj,Iφj,I + gj,I)y
I = fj

(
y + φ(y)

)
−

2∑
k=1

∂φj
∂yk

gk(y) =: χj(y), (4.7)

where δj,I := λ1ii + λ2i2 − λj, and χj(y) =
∑
|I|≥2 χj,Iy

I is such that χj,I depends

only on φk,H and gk,H with |H| < |I|.
Hence we can solve (4.7) by recursion, by setting

φj,I =


χj,I
δj,I

0

, gj,I =


0 if δj,I 6= 0

χj,I if δj,I = 0
.

If α ∈ R− \ Q−, then δj,I 6= 0 for every j = 1, 2, |I| ≥ 2, and X is linearizable. If
α = −p1

p2
∈ Q−, then δ1,I = 0 if and only if p2(i1 − 1) = p1i2, i.e., if and only if

i1 − 1 = kp1, i2 = kp2, with k ∈ N∗, and analogously with δ2,I ; it follows that we
can reduce the vector field to the form (4.4).

4.3 Holomorphic conjugation and complex sepa-

ratrices

The main result of this section is Theorem 4.3.3, that shall imply the existence of
(at least) two complex separatrices for a foliation that belongs to the Siegel domain
(see Remark 4.3.5).

Definition 4.3.1. Let f =
∑
fIx

I ∈ C[[x1, . . . , xn]], and denote by M(f) :=∑
|fI |xI the majorant series for f (see Definition 3.3.6). We shall call

N(f) :=
∑
|fI | z|I| = M(f)(z, . . . , z) ∈ R[[z]]

the norm series for f . In particular N(f)(ρ) = []f []ρ, see Definition 3.3.7.
If g =

∑
gIx

I ∈ C[[x1, . . . , xn]], we shall say that g is a majorant for f , and
denote this by f ≺ g, if |fI | ≤ |gI | for every I.

Lemma 4.3.2. Let f be in mk
1 ⊆ C{z}, with k ∈ N. Then there exist M,a > 0

such that

f ≺ Mzk

1− az
.
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Proof. From the hypothesis, f/zk ∈ C{z}. Set 1/ρ = lim sup n
√
|an| < ∞, where

f/zk =
∑
anz

n. For every ε > 0 there exists N ∈ N such that for every n > N
we have n

√
|an| < 1/ρ + ε. Fix ε (for example ε = 1), and set a := 1/ρ + ε. Then

(1−az)−1 =
∑

n≥0 a
nzn is such that |an| < an for every n > N . On the other hand,

for n ≤ N the finite sequence |an| /an admits a maximum M . Up to replacing M
by max{M, 1}, we obtain |an| ≤Man for all n ∈ N, that is the assertion.

Theorem 4.3.3. Let X = X1∂1 + X2∂2 be a holomorphic vector field, with Xj of
the form (4.3), and let α = λ2

λ1
∈ C∗ be the index at 0.

If α, α−1 6∈ N \ {1}, then, up to holomorphic conjugacy, we can suppose that
x1x2xj | fj for j = 1, 2.

Proof.

(Step 1). Let us show first that, up to holomorphic conjugacy, we can suppose
that x1x2 | fj for j = 1, 2. For I ∈ N2 and j = 1, 2 put δj,I = i1λ1 + i2λ2 − λj,
and notice that if yI 6∈ 〈y1y2〉, i.e., if i1i2 = 0, then δj,I 6= 0. Indeed, if i1 = 0
then δ1,I = λ2i2 − λ1 = 0 for some i2 ≥ 2 if and only if α−1 ∈ N \ {0, 1}, while
δ2,I = λ2i2 − λ2 = 0 for some i2 ≥ 2 if and only if λ2 = 0 = α; the case i2 = 0 is
perfectly analogous. So we can set

φj,I =


χj,I
δj,I

0

gj,I =


0 if yI 6∈ 〈y1y2〉

χj,I if yI ∈ 〈y1y2〉
.

With this definition (4.7) holds, so we have the (for now only formal) conjugation
we wanted; let us prove that this conjugation is holomorphic.

First of all, we can easily see that there exists δ > 0 such that |δj,I | > δ for
every |I| ≥ 2, j = 1, 2, yI 6∈ 〈y1y2〉.

From (4.7), taking majorant series, we obtain

δM(φj) ≺
∑
|I|≥2

|δj,Iφj,I | yI ≺M(gj)+M(fj)
(
y+M(φ)

)
+

2∑
k=1

∂M(φj)

∂yk
M(gk). (4.8)

If yI ∈ 〈y1y2〉, then φj,I = 0 and these terms do not enter the estimates; if
yI 6∈ 〈y1y2〉, then gj,I = 0 for j = 1, 2. So we can omit M(g1) and M(g2) in (4.7),
obtaining

δM(φj) ≺M(fj)
(
y +M(φ)

)
. (4.9)
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Taking norm series, and summing for j = 1, 2, we have

δN(φ) = δ
(
N(φ1) +N(φ2)

)
≺

2∑
k=1

M(fk)
(
z +N(φ1), z +N(φ2)

)
≺

2∑
k=1

M(fk)
(
z +N(φ1) +N(φ2), z +N(φ2) +N(φ1)

)
,

and then

N(φ) ≺ δ−1N(f)
(
z +N(φ)

)
.

Now we apply Lemma 4.3.2 at δ−1N(f) ∈ m2
1: there exist M,a > 0 such that

N(f)

δ
≺ Mz2

1− az
.

Now set u := N(φ)/z ∈ m̂1. If we show that u is holomorphic, then φ (and g)
will be holomorphic too, finishing the proof of the first step. Putting together the
estimates, we obtain

N(φ)

z
≺ 1

δz
N(f)

(
z +N(φ)

)
≺

M
(
z +N(φ)

)2

z
(
1− a(z +N(φ))

) =
Mz2

(
1 +N(φ)/z

)2

z
(
1− az(1 +N(φ)/z)

) ,

and hence

u ≺ Mz(1 + u)2

1− az(1 + u)
. (4.10)

Let us compare u with the solution v ∈ m̂1 of

v =
Mz(1 + v)2

1− az(1 + v)
. (4.11)

First of all, let us see that v is holomorphic: directly from (4.11) we obtain

(M + a)zv2 +
(
(2M + a)z − 1

)
v +Mz = 0,

and then

v =
1− (2M + a)z −

√
1− 2(2M + a)z + a2z2

2(M + a)z
;

so v ∈ m1 is holomorphic.
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Set 1 + u =
∑

n≥0 unz
n and 1 + v =

∑
n≥0 vnz

n (in particular u0 = v0 = 1).
Then we have

Mz(1 + u)2

1− az(1 + u)
= M

∞∑
n=1

zn
n+1∑
k=2

ak−2
∑
J∈Nk

|J |=n−k+1

uj1 · · ·ujk ,

and hence the coefficient of zn is of the form Pn(u0, . . . , un−1) for every n ≥ 1, with
Pn a suitable polynomial with striclty positive coefficients (analogous deductions
can be made for v).

Then from (4.10) and (4.11) we get

un ≤ Pn(u0, . . . un−1), vn = Pn(v0, . . . , vn−1).

Now, using and induction argument, we shall show that un ≤ vn for every n.
For the basis of the induction, u0 = v0 = 1. Let us suppose that uj ≤ vj for every
j = 1, . . . n− 1; then

un ≤ Pn(u1, . . . , un−1) ≤ Pn(v1, . . . vn−1) = vn,

where the last inequality arises from the positivity of coefficents of Pn, and from
the induction hypothesis. Hence u ≺ v, and u is holomorphic.

(Step 2). Thanks to the first step, we can suppose that x1x2 | fj for j = 1, 2. As
before, if |I| ≥ 2 e yI 6∈ 〈y1y2yj〉, then δj,I 6= 0. We have to show it only for ij = 1:
if j = 1 then 0 = δ1,I = λ1 +λ2i2−λ1 if and only if λ2 = 0, and the same for j = 2
(for simmetry).

So we can define

φj,I =


χj,I
δj,I

0

, gj,I =


0 if yI 6∈ 〈y1y2yj〉

χj,I if yI ∈ 〈y1y2yj〉
.

We can as before estimate δj,I from below for yI 6∈ 〈y1y2yj〉 with a δ > 0,
obtaining again an estimate as in (4.8). We want to obtain an estimate as in (4.9),

omitting the terms M(gj) and
∂M(φj)

∂yk
M(gk) for k = 1, 2.

As before, only terms with I such that yI 6∈ 〈y1y2yj〉 are involved in the esti-

mates, while M(gk) ∈ 〈y1y2yk〉; so we can surely omit M(gj) and
∂M(φj)

∂yj
M(gj).

Concerning
∂M(φj)

∂yi
M(gi) with i 6= j, thanks to our hypothesis on f , we know

that the right-hand side of (4.7) is a multiple of y1y2, so the same should be true for
the left-hand side; but gj is also a multiple of y1y2, and then φj for j = 1, 2 should

be too. It follows also that
∂M(φj)

∂yi
is a multiple of yj, so

∂M(φj)

∂yi
M(gi) ∈ 〈y1y2yj〉 as

desired.
So (4.9) holds for this change of coordinates too, and the argument used in the

first step implies that φ is holomorphic, as claimed.
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Directly from Theorem 4.3.3, we have

Corollary 4.3.4. Let ω = X1dx2 − X2dx1 be a holomorphic 1-form, with Xj of
the form (4.3), and let α = λ2

λ1
∈ C∗ be the index at 0.

If α, α−1 6∈ N \ {1}, then

ω ∼ x1dx2 − αx2

(
1 + f(x)

)
dx1, (4.12)

with x1x2 | f .

Proof. Thanks to Theorem 4.3.3, we have

ω ∼= λ1x1

(
1 + f1(x)

)
dx2 − λ2x2

(
1 + f2(x)

)
dx1,

with x1x2 | fj, for j = 1, 2. Since λ1(1 + f1(x)) is invertible (in C{x}), up to
holomorphic equivalence we can divide by that factor. Being x1x2 | f1, the inverse
of this factor is of the form λ−1

1 (1 +x1x2g(x)), with g ∈ C{x}. Multiplying this by
λ2(1 + f2(x)), we obtain the assertion.

Remark 4.3.5. It follows directly from Corollary 4.3.4 that every foliation in the
Siegel domain admits at least two complex separatrices (of the form {xj = 0} for
j = 1, 2).

4.4 Holomorphic equivalence and holonomy

In this section we shall prove Mattei-Moussu’s Theorem 4.4.4 (see [MM80]), a sort
of converse of Lemma 1.4.4 for a foliation in the Siegel domain. For the proof, the
computations in the next remark shall be useful.

Remark 4.4.1. Now we try to compute first terms of the holonomy of the hor-
izontal complex separatrix of a foliation given by a 1-form ω as in (4.12). Let
L0 = {x2 = 0} \ {0} be the horizontal complex separatrix. We can suppose, up to
conjugating by a suitable linear map, that f is holomorphic in a neighborhood U
of the closed polydisk P1 := D× D, and that 0 is the unique singular point of F in
U . Consider an analytic curve γ : [0, 1] → L0. For every a ∈ D, we shall consider
the vertical transverse section {x1 = a}. For every y small enough, there is a lift γy
of γ such that γy(0) = (γ(0), y) and γ(t, y) := γy(t) ∈ Ly for a suitable leaf Ly. By
analiticity, we can write γ(t, y) = (γ(t), h(t, y)) for a suitable analytic map h (such
that h(0, y) = y). Directly from definitions, we have then that hγ(y) = h(1, y).
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The condition γ(t, y) ∈ Ly is equivalent to

ω

(
∂γ

∂t
(t, y)

)
= 0.

We can write

h(t, y) =
∑
k≥0

hk(t)y
k, with hk(0) = δk,1 =

{
1 if k = 1
0 otherwise.

Then putting all together, we obtain

∂γ

∂t
(t, y) = γ′(t)

∂

∂x1

+
∂h

∂t
(t, y)

∂

∂x2

;

0 = ω
(
∂γ
∂t

(t, y)
)

= γ(t)∂h
∂t

(t, y)− αh(t, y)
(

1 + f
(
γ(t, y)

))
γ′(t)

⇓
∂h
∂t

(t, y) = αh(t, y)
(

1 + f
(
γ(t, y)

))γ′(t)
γ(t)

. (4.13)

Example 4.4.2. Let us compute the holonomy for γ(t) = e2πit, and hence of the
horizontal complex separatrix L0 (we still suppose that x2 | f). Expanding in
power series (in y) both sides in (4.13), and comparing terms of the same degree,
we have h0 ≡ 0, and {

h′1(t) = 2πiαh1(t),
h1(0) = 1,

and then h1(t) = e2πiαt. In particular we obtain h(y) = h(1, y) = e2πiαy +∑
k≥2 hk(1)yk; it follows that h has rotation number equal to α, and hence h−1

has rotation number equal to −α.

Example 4.4.3. Let us make the same computation but for γ : [0, 1 − ε] → L0,
defined by γ(t) = (1 − t)e2πiθ (and suppose as before that x2 | f). Arguing as
before from (4.13) we obtain (h0 ≡ 0 and){

h′1(t) = − α
1−th1(t),

h1(1) = 1;

then h1(t) = (1− t)α.
In particular we obtain hγ(y) = h(1− ε, y) = εαy+

∑
k≥2 hk(1− ε)yk. If we are

in the Siegel domain, the main problem we have to deal with is that εα → ∞ as
ε→ 0.
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Theorem 4.4.4 (Mattei-Moussu, 1980). Let ω and ω̃ be two 1-forms in the
Siegel domain:

ω = x1dx2 − αx2

(
1 + f(x)

)
dx1,

ω̃ = x1dx2 − αx2

(
1 + f̃(x)

)
dx1,

with α ∈ R−. Then ω ∼ ω̃ if and only if h ∼= h̃, where h and h̃ are the holonomies
of the horizontal complex separatrices of ω and ω̃ respectively.

Proof. The direct implication is Lemma 1.4.4. Let us prove the other implication.
Thanks to Corollary 4.3.4, we can suppose that x1x2 | f, f̃ . In particular we

can write f = x1g, f̃ = x1g̃; up to conjugacy by a linear map, we can suppose g, g̃

to be holomorphic in neighborhoods U , Ũ of the closed polydisk P1 = D2
of radius

1, with |g| , |g̃| < 1/2 in P1, and that 0 is the unique singular point of ω, ω̃ in U, Ũ
respectively. Now suppose that h ∼= h̃, with h, h̃ calculated on t 7→ e2πit, with base
point x1 = 1. Then there exists φ : (C, 0)→ (C, 0) such that

h = φ−1 ◦ h̃ ◦ φ. (4.14)

For x 6= 0, let us define

Φ(x, y) =
(
x, h̃γ ◦ φ ◦ h−1

γ (y)
)

,

where γ is a curve from 1 to x with support in L0 := D× {0}, and hγ and h̃γ are
the holonomies along γ (of Fω and Fω̃ respectively).

We first notice that this definition does not depend on the choice of γ. We
already know that holonomies depend only on homotopy classes (see Theorem
1.3.8). Let γ1, γ2 be two curves from 1 to x; then we want to prove that

h̃γ1 ◦ φ ◦ h−1
γ1

= h′γ2 ◦ φ ◦ h
−1
γ2

,

which is equivalent to
h̃−1
γ2
◦ h̃γ1 ◦ φ ◦ h−1

γ1
◦ hγ2 = φ. (4.15)

If we denote by γ1 · γ−1
2 the loop obtained following γ1 and γ2 (on the opposite

direction), then (4.15) is equivalent to

h̃γ1·γ−1
2
◦ φ ◦ h−1

γ1·γ−1
2

= φ. (4.16)

Being γ1 · γ−1
2 a loop, we have hγ1·γ−1

2
= hk, with k = [γ1 · γ−1

2 ]; the same is true for

h̃γ1·γ−1
2

= h̃k. Then (4.16) is equivalent to

h̃k ◦ φ ◦ h−k = φ,
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which follows directly from (4.14).
So Φ is well defined and holomorphic on {x1 6= 0}; moreover it defines an

holomorphic equivalence between the two foliations outside {x1 6= 0}, sending
leaves into leaves. We would like to extend Φ on {x1 = 0} too, in order to have the
equivalence on the whole neighborhood of 0, and hence the thesis. We shall then
prove that Φ is bounded in {x1 6= 0}, implying that Φ is analitically extendable
and concluding the proof.

To estimate Φ(x, y), we compute it using the curve γ = γ1 · γ2, where, if
x = |x| e2πiθ, then γ1 : [0, θ] → L0 is given by t 7→ e2πit (a curve along the unit
circle), and γ2 : [0,− log |x|]→ L0 is given by t 7→ x

|x|e
−t (a curve along a radius of

the unit circle).
Since Φ(x, y) is bounded in {|x| = 1}×D (by compactness), there exists M > 0

independent of θ such that ∣∣∣h̃γ1 ◦ φ ◦ h−1
γ1

(y)
∣∣∣ ≤M |y| .

Now we have to estimate holonomies along γ2.
From (4.13), applied to h̃γ2 =: h̃2, we get

∂h̃2

∂t
(t, y) = −αh̃2(t, y)

(
1 + f̃(γ2(t, y))

)
;

solving this equation and taking the real part we have

log

∣∣∣∣∣ h̃2(t, y)

y

∣∣∣∣∣+ αt ≤ k̃(t, y),

where

k̃(t, y) :=

∣∣∣∣α ∫ t

0

f̃

(
x

|x|
e−s, h̃2(s, y)

)
ds

∣∣∣∣
≤ |α|

∫ t

0

e−s
∣∣∣∣g̃( x

|x|
e−s, h̃2(s, y)

)∣∣∣∣ ds;
then, since |g̃| < 1/2, we have

k̃(t, y) ≤ |α| (1− e
−t)

2
.

It follows that ∣∣∣h̃2(t, y)
∣∣∣ ≤ |y| e−αte |α|(1−e−t)2 .
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Analogously for h2 := h−1
γ2

, we consider γ−1
2 : [0,− log |x|] → L0 given by t 7→

xet, and we obtain from (4.13)

∂h2

∂t
(t, y) = αh2(t, y)

(
1 + f̃

(
γ2(t, y)

))
.

Solving this equation and taking the real part we have

log

∣∣∣∣h2(t, y)

y

∣∣∣∣− αt ≤ k(t, y),

where

k(t, y) :=

∣∣∣∣α ∫ t

0

f
(
xes, h2(s, y)

)
ds

∣∣∣∣
≤ |α|

∫ t

0

|x| es
∣∣g(xes, h2(s, y)

)∣∣ ds;
then, since |g| < 1/2, we have

k(t, y) ≤ |α| |x| (e
t − 1)

2
.

It follows that

|h2(t, y)| ≤ |y| eαte
|α||x|(et−1)

2 .

Putting together all the estimates, with t = − log |x|, we get∣∣∣h̃γ2 ◦ h̃γ1 ◦ φ ◦ h−1
γ1
◦ h−1

γ2
(y)
∣∣∣ ≤ ∣∣∣h̃γ1 ◦ φ ◦ h−1

γ1
◦ h−1

γ2
(y)
∣∣∣ |x|α e |α|(1−|x|)2

≤
∣∣h−1
γ2

(y)
∣∣M |x|α e |α|(1−|x|)2

≤ |y|M |x|−α e
|α||x|(|x|−1−1)

2 |x|α e
|α|(1−|x|)

2

≤ |y|Me|α|(1−|x|),

which is uniformly bounded for x ∈ D∗.

Remark 4.4.5. Thanks to Corollary 3.3.16, we know that there is only one con-
jugacy class of holomorphic foliations with α, α−1 6∈ R− ∪ N \ {0} (they are all
linearizable), and hence Theorem 4.4.4 holds generally for α, α−1 ∈ N \ {0}. The
next example will show that this result holds also for α = 1, but it cannot be
extended to the case α or α−1 ∈ N \ {0, 1}.
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Counterexample 4.4.6. Let n ∈ N\{0}, a ∈ C∗ and consider the foliations given
by

(nz1 + azn2 )∂1 + z2∂2,

as in (3.19). We have seen in Corollary 3.3.16 that two such foliations associ-
ated to different a are not holomorphically equivalent if n ≥ 2, while they are all
equivalent if n = 1. We have also computed the first terms of the Taylor series of
the holonomy of the unique complex separatrix (the horizontal one, see Theorem
3.4.4) in Theorem 3.4.7: let us repeat that computation, and focus our attention
on the dependence on the parameter a. Recalling the proof of Theorem 3.4.7, the
holonomy ha(s) is such that

ha(s) = µseδa(s),

with µ = e
2πi
n and δa ∈ m1 such that

1 + asn
(

2πi

n
+ δa(s)

)
= e−nδa(s) =

∞∑
j=0

(
− nδa(s)

)j
j!

. (4.17)

Let us write δa(s) =
∑∞

l=1 bls
l, where bl depends on a, and set b0 = 2πi

n
. Then

(4.17) is equivalent to

asn

(
∞∑
l=0

bls
l

)
=
∞∑
j=1

(−n)j

j!

(
∞∑
l=1

bls
l

)j

;

if we rearrange terms in order to have power series (in s) in both members, we
obtain

a
∞∑
m=n

bm−ns
m =

∞∑
m=1

sm

 m∑
j=1

(−n)j

j!

∑
L∈(N∗)j
|L|=m

bl1 · · · blj

 . (4.18)

From (4.18) we obtain the recursion

nbm = −abm−n +
m∑
j=2

(−n)j

j!

∑
L∈(N∗)j
|L|=m

bl1 · · · blj ,

for m ≥ n, and b1 = · · · bn−1 = 0.
We can see by induction that bln+j = 0 for j = 1, . . . n−1 and every l ∈ N, while

bln = alcl for a suitable cl that does not depend on a. Then δa(s) :=
∑∞

j=1 bjs
j =∑∞

l=1 cla
lsnl, and for the holonomy we have

ha(s) = µseδa(s) = µs

(
1 +

∞∑
l=1

dla
lsnl

)
,
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with suitable dl that does not depend on a.

By performing the linear change of coordinate s 7→ a−1s, we obtain that ha(s)
is holomorphically conjugated to h1(s), so the holonomies are conjugated even
though the foliations are not when n ≥ 2.

Besides for n = 1, we see that this holonomy is not linearizable, and hence
Theorem 4.4.4 holds also in this case.

For having a complete answer for the holomorphic classification of foliations in
the Siegel domain, we have to discover how many germs can be holonomies of the
horizontal complex separatrix. The answer (all germs with rotation number α can
be obtained as holonomies), given by Yoccoz and Perez-Marco, is a little hard to
prove, and we shall present it in the last section (see Theorem 4.6.1).

4.5 Topology of leaves

We have seen in Example 4.4.2 that the holonomy of the horizontal complex sepa-
ratrix given by a 1-form as in (4.12), with index α ∈ R−, has α as rotation number.
As a references for local dynamics in this case, see [Mil06, Section 10] or [BH09,
Chapter 4] for the parabolic case (α ∈ Q), and [Mil06, Section 11], [Mar03] or
[BH09, Chapter 5] for the irrational case (α ∈ R \Q). Here we give a list of results
that will be useful for drawing our conclusions on the topology of the leaves of
Siegel foliations.

Let us denote by

Sα :=
{
f ∈ C{z} : f ′(0) = e2πiα

}
the set of germs with rotation number α.

First suppose that α = p/q ∈ Q; then f ∈ Sp/q is linearizable if and only if
f q = id. Moreover, if f q 6= id, then we have Leau-Fatou’s theorem (see [Mil06,
Theorem 10.7]): there exist attracting and repelling petals that cover a pointed
neighborhood of the origin. In particular, the orbit of a point can accumulate
the origin forward, backward, or both, depending whether the point lies in an
attracting petal, in a repelling one, or in the intersection of two consecutive petals.

If α ∈ R− \Q−, we consider its continuous fractions expansion, and we denote
by pn/qn the n-th convergent (see [Mar03], or [BH09, Section 3 of Chapter 5]).
Then we say that

• α satisfies the Brjuno condition if
∑

n
log qn+1

qn
<∞;

• α satisties the Perez-Marco condition if
∑

n
log log qn+1

qn
<∞.
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Then α satisfies the Brjuno condition if and only if every f ∈ Sα is linearizable; if
α satisfies the Perez-Marco condition, then for every non-linearizable germ f ∈ Sα
there exist periodic orbits arbitrarily close to the origin. If α does not satisfies the
Perez-Marco condition, then there exists a germ f ∈ Sα without periodic orbits
arbitrarily close to the origin.

Let us study now the topology of the leaves.

Example 4.5.1. We study the linear case, and hence the leaves of the foliation
given by

ω = x1dx2 − αx2dx1.

In this case we can explicitly solve the equation ω = 0, obtaining y = kxα. In
particular, if α ∈ Q−, then every leaf is closed, while if α ∈ R− \ Q−, then the
only closed leaves are the horizontal and vertical complex separatrices, and the
other leaves are bounded away from the complex separatrices (they are dense in
{|y| = |k| |x|α}).

For the general case we have to use another approach. Set Cj(R) := {|xj| = R}
for j = 1, 2. The idea is to consider the intersections of the leaves with C1(R), and
then to describe leaves by gluing these intersections along radial curves, through
holonomies. Moreover, to study intersections with C1(R), we will use the holonomy
h of the horizontal complex separatrix L0.

Let us denote by hR the holonomy along the circle {|x1| = R}, with vertical
transverse sections, for every R > 0. These holonomies are conjugated to one
another.

The idea is the following: start from the point (R, y), and then follow the
holonomy along the circle {|x1| = R}. We will come back to the point R, but
generally on a different height: (R, hR(y)). We can follow the circle once again,
obtaining (R, h2

R(y)), and so on. Checking the behavior of the orbit of hR, we can
find properties for the intersection of the leaves with C1(R): for example, if y has
a periodic orbit, then this intersection is a closed curve, while if the orbit is not
periodic, this intersection is an open curve (homeomorphic to R).

We can also repeat this study inverting the role of x1 and x2, using the holonomy
of the vertical complex separatrix with rotation number α−1.

Example 4.5.2. We already treated the linear (and hence linearizable) case; here
we deal with the non linearizable case. Let us suppose:

• α = p/q ∈ Q−, and the holonomy h (of the horizontal complex separatrix)
not linearizable. Then we can have attracting orbits, repelling orbits (that
escapes from the given neighborhood of the origin), and orbits that are for-
ward and backward attracted by the origin (when we take a point on the
intersection of two petals). It follows that we can have open leaves tending
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to both horizontal and vertical complex separatrices, or, in the last case,
leaves tending to the horizontal (or the vertical) complex separatrix, while
being bounded away from the vertical one (the horizontal one respectively).

• α ∈ R− \ Q−, and suppose that h is not linearizable. If α satisfies the
Perez-Marco condition, then there are periodic orbits arbitrarily close to
the origin, and hence there are closed leaves arbitrarily near the horizontal
(respectively, the vertical) complex separatrix. If the Perez-Marco condition
is not satisfied, and h is without periodic orbits near the origin, then we do
not have closed leaves near the origin (besides the horizontal and the vertical
complex separatrices).

4.6 Construction of foliations with prescribed ho-

lonomy

This last section will be dedicated to the following important result (see [PMY94]),
that gives us a complete answer to the holomorphic classification of foliations in
the Siegel domain.

Theorem 4.6.1 (Perez-Marco-Yoccoz, (1994)). Let h ∈ Sα be a holomorphic
germ with rotation number α ∈ R−. Then there exists f ∈ m2 so that h is the
holonomy of the horizontal complex separatrix of the foliation given by the 1-form

ω = w1dw2 − αw2

(
1 + f(w)

)
dw1.

We shall first describe the main idea of the proof, then we shall introduce some
technical tools, and finally we shall give the detailed proof.

Idea of the proof. We know that every foliation on the Siegel domain has at least 2
complex separatrices (see Remark 4.3.5). So in order to study such foliations (let us
say generated by the 1-form ω as in Theorem 4.6.1), we can consider D \ {w1w2 =
0}, where D ⊆ C2 is a neighborhood of the origin, take its universal covering given
by w = E(y) = (e2πiy1 , e2πiy2), and consider the pull-back Ω2 = E∗ω.

In the linear case, we have

ω = w1dw2 − αw2dw1,

Ω2 = 2πie2πi(y1+y2)(dy2 − αdy1) ∼ dy2 − αdy1;

thus we have a foliation made by parallel (complex) lines. In the general case we
will have a foliation with leaves “near to” the linear case.
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Projecting through E is equivalent to taking the quotient under the action of

T1(y) = (y1 + 1, y2),
T2(y) = (y1, y2 + 1).

The idea is to consider the foliation arising from the linear case on the universal
covering space, and quotienting for a different action, let us say one generated by
suitable F1, F2, in order to obtain a different foliation on the base space. It will
be very important to connect this point of view and the original one, through a
diffeomorphism y = v(x) that allows us to switch from the linear foliation to the
original (lifted) foliation, such that Tj ◦ v = v ◦ Fj for j = 1, 2.

It is not so difficult to obtain a C∞ foliation with the prescribed holonomy; but
to obtain a holomorphic foliation we shall have to solve a ∂-equation, with a bound
for the norm of the solution: in this way we will manage to deform the C∞ foliation
and to transform it into a holomorphic one, without changing the holonomy.

For computations, it will be easier to find a foliation with a prescribed inverse
of the holonomy of the horizontal complex separatrix, and to set β = −α ∈ R+.

We set here some definitions and notations.

Definition 4.6.2. Let M be a complex manifold of complex dimension n. Let
ω1, . . . , ωn be C∞ (1, 0)-forms on M , forming a basis for the holomorphic cotangent
space on M .

For any g ∈ C∞(M), we shall denote by ∂jg the j-th coordinate of ∂g with
respect to the basis {ω1, . . . , ωn}, and by ∂jg the j-th coordinate of ∂g with respect
to the basis {ω1, . . . , ωn}, i.e.,

dg = ∂g + ∂g =
∑
j

(
(∂jg)ωj + (∂jg)ωj

)
.

We shall also denote by gj,k the coordinates of ∂∂g with respect to those bases, so
that

∂∂g =
∑
j,k

gj,kωj ∧ ωk.

If f =
∑

j fjωj is a (0, 1)-form, we set |f |2 =
∑

j

∣∣fj∣∣2.

Remark 4.6.3. Not every ∂-equation can be solved in a generic complex manifold.
During the proof, we shall show that, up to shrinking the neighborhood D, we can
work on a Stein manifold, where ∂-equations can be solved.

Definition 4.6.4. Let X be a complex manifold. Denote by O(X) the set of
holomorphic functions f : X → C. We say that X is a Stein manifold if:
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(i) O(X) separates points, i.e., for every x 6= y ∈ X there exists f ∈ O(X)
such that f(x) 6= f(y);

(ii) X is holomorphically convex, i.e., for every compact set K ⊆ X, the
holomorphic envelope K̂ = {x ∈ X : |f(x)| ≤ maxK |f | ∀f ∈ O(X)} is
compact.

Stein manifolds are strictly related to plurisubharmonic functions, as Theorem
4.6.7 shows.

Definition 4.6.5. Let X be a complex manifold, and φ : X → R a C2 function.
The Levi form of φ is the hermitian form L(φ, x) on TxX defined in local coordi-
nates by

L(φ, x)(ζ) =
∑
j,k

∂2φ

∂zj∂zk
(x)ζjζk.

Definition 4.6.6. Let X be a complex manifold. A C2 function φ : X → R is
strictly plurisubharmonic if the Levi form L(φ, x) is positive-definite for every
x ∈ X. It is called an exaustion if φ−1((−∞, a]) is relatively compact in X for
every a ∈ R.

We shall see now a classical charaterization of Stein manifold, whose proof can
be found in [Hör73, Theorem 5.2.10].

Theorem 4.6.7 (Grauert, 1958). A complex manifold X is a Stein manifold if
and only if there exists a strictly plurisubharmonic function φ : X → R which is an
exhaustion.

We shall need to solve the ∂-equation with bounds, in order to control the
deformation. The following theorem will be fundamental: for the proof, see [Hör73,
Chapters IV and V], or [PMY94, Section III].

Theorem 4.6.8 (Hörmander, 1965-1973). Let M be a Stein manifold of complex
dimension n, endowed with a Hermitian metric. Let ω1, . . . , ωn be C∞ (1, 0)-forms
on M , forming a basis for the holomorphic cotangent space on M . Set dV =(
i
2

)n
ω1 ∧ ω1 ∧ · · · ∧ ωn ∧ ωn.

Let alj,k, c
l
j,k
∈ C∞(M) be such that

∂ωl =
∑
j,k

alj,kωj ∧ ωk (with alj,k = −alk,j);

∂ωl =
∑
j,k

cl
j,k
ωj ∧ ωk.
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Suppose that there exist continuous functions θ0, θ1 : M → R such that∣∣alj,k∣∣ ≤ θ0,
∣∣∣clj,k∣∣∣ ≤ θ0,∣∣∂ealj,k∣∣ ≤ θ1,
∣∣∣∂eclj,k∣∣∣ ≤ θ1,∣∣∂ealj,k∣∣ ≤ θ1,
∣∣∣∂eclj,k∣∣∣ ≤ θ1,

for every e = 1, . . . , n. Then there exists A > 0 (depending only on n) with
the following property: given a function θ : M → R+, a strictly plurisubharmonic
function χ ∈ C2(M), and a ∂-closed C∞ (0, 1)-form f on M such that∑

j,k

χj,kζjζk ≥ (θ + A(θ2
0 + θ1)) |ζ|2 (4.19)

for some A > 0, and ∫
M

θ−1 |f |2 e−χdV <∞, (4.20)

then there exists u ∈ C∞(M) such that

∂u = f ,∫
M

|u|2 e−χdV ≤
∫
M

θ−1 |f |2 e−χdV .

Now we can prove Theorem 4.6.1.

Proof (of Theorem 4.6.1). Fix a C∞ function η : R → [0, 1] such that η ≡ 1 in
(−∞, 1/3] and η ≡ 0 in [2/3,+∞), and denote β = −α > 0.

We have h−1 of the form h−1(z) = e2πiβz + O(z2) by assumption. Up to
homotheties, we can suppose that h−1 is holomorphic in the unitary disk D, and
that h−1(D∗) ⊂ C∗. Let z 7→ H(z) = z + β + φ(z) be the lift of h−1 through
π : H → D∗ given by z 7→ e2πiz, with H holomorphic in H, where φ is Z-periodic,
and limImz→∞ φ(z) = 0. Again up to homotheties in D∗, we may assume that∣∣Diφ(z)

∣∣ ≤ C1e
−2πImz ∀i = 0, . . . , 4, ∀z ∈ H. (4.21)

We split the proof into seven steps.

(Step 1). Let us construct the C∞ 1-form Ω0. Set

U = {x ∈ C2 | Im(x2 + βx1) > 0},

and define F1, F2 : U → C2 by

F1(x) =
(
x1 + 1, x2 + φ(x2 + βx1)

)
,

F2(x) = (x1, x2 + 1).
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We can easily see that

F1 ◦ F2 = F2 ◦ F1

m
(x1 + 1, x2 + 1 + φ(x2 + 1 + βx1)) = (x1 + 1, x2 + 1 + φ(x2 + βx1)),

and the last equation holds since φ is Z-periodic.
Then we can quotient (a subset of) U by F1, F2. Define v0, v1 : U → C by

setting

v0(x) = η(Rex1)φ(x2 + βx1),

v1(x) = η(Rex1) log
(
1 +Dφ(x2 + βx1)

)
.

Remark 4.6.9. Both v0 and v1 are Z-periodic on the second coordinate, thanks
to the Z-periodicity of φ.

Now let us define v : U → C2 by

y = v(x) =
(
x1, x2 + v0(x)

)
,

and set
Ω0 = ev1(x)(dx2 + βdx1),

so that Ω0 is a C∞ (1, 0)-form.

Lemma 4.6.10. Let ∂l be a partial derivative of order l ≤ 3. There exists C2 > 0
such that ∣∣∂lvj(x)

∣∣ ≤ C2e
−2πIm(x2+βx1) ∀x ∈ U, j = 0, 1.

Proof. It follows from definitions and (4.21)

Let T1.T2 : C2 → C2 be given by

T1(y) = (y1 + 1, y2),

T2(y) = (y1, y2 + 1).

Lemma 4.6.11. We have

(i) v ◦ F2 = T2 ◦ v and F ∗2 Ω0 = Ω0 in U ;

(ii) v ◦ F1 = T1 ◦ v and F ∗1 Ω0 = Ω0 for x ∈ U ∩ F−1
1 (U) and |Rex1| ≤ 1/3.

Proof.
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(i) We have

v ◦ F2(x) = v(x1, x2 + 1) =
(
x1, x2 + 1 + v0(x1, x2 + 1)

)
T2 ◦ v(x) = T2

(
x1, x2 + v0(x)

)
=
(
x1, x2 + 1 + v0(x)

)
.

They are equal thanks to the Z-periodicity of v0(x1, ·).
For the pull back of Ω0 we have

(F ∗2 Ω0)x = ev1(x1,x2+1)(dx2 + βdx1) = (Ω0)x,

again thanks to the Z-periodicity of v1(x1, ·).

(ii) Let us write F1(x) =: (f1(x), f2(x)); then we have

v ◦ F1(x) = v
(
x1 + 1, x2 + φ(x2 + βx1)

)
=
(
x1 + 1, x2 + φ(x2 + βx1) + η(Rex1 + 1)φ(f2 + βf1)

)
T1 ◦ v(x) = T1

(
x1, x2 + v0(x)

)
=
(
x1 + 1, x2 + η(Rex1)φ(x2 + βx1)

)
.

The condition x ∈ U ∩ F−1(U) is necessary to have all members well defined;
moreover if |Rex1| ≤ 1/3 then η(Rex1) = 1 and η(Rex1 + 1) = 0, and hence the
two members coincide.

For the pull back of Ω0 we have

(F ∗1 Ω0)x = (Ω0)F1(x) ◦ d(F1)x;

But

d(F1)x =

(
1 0

βDφ(x2 + βx1) 1 +Dφ(x2 + βx1)

)
;

it follows

(F ∗1 Ω0)x = ev1◦F1(x)
((

1 +Dφ(x2 + βx1)
)
dx2 + βDφ(x2 + βx1)dx1 + βdx1

)
= eη(Rex1+1) log(1+Dφ(f2+βf1))

(
1 +Dφ(x2 + βx1)

)
(dx2 + βdx1)

=
(
1 +Dφ(x2 + βx1)

)
(dx2 + βdx1),

since η(Rex1 + 1) = 0 when |Rex1| ≤ 1/3. On the other hand,

Ωx = eη(Rex1) log(1+Dφ(x2+βx1))(dx2 + βdx1) =
(
1 +Dφ(x2 + βx1)

)
(dx2 + βdx1),

since η(Rex1) = 1 when |Rex1| ≤ 1/3.
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Fix ε ∈ (0, 1), and set β1 = β(1 + ε) and β2 = β(1 − ε) (both in R+). Set
I(y) = Im(y2 + βy1), and Ij(y) = Im(y2 + βjy1) for j = 1, 2. For every R > 0, we
define

VR =

{
y ∈ C2 : −1

4
< Reyj <

5

4
for j = 1, 2; I(y) > 0, I1(y)I2(y) > R

}
,

UR = v−1(VR) ⊂ U .

Note that I1 and I2 are invariant under the action of T1 and T2.

Remark 4.6.12. If y ∈ VR, we have

4I(y)2 =
(
I1(y) + I2(y)

)2
= I1(y)2 + I2(y)2 + 2I1(y)I2(y) ≥ 4I1(y)I2(y) > 4R,

and hence
I(y) >

√
R.

Lemma 4.6.13. There exists R1 > 0 such that for every R > R1:

(i) v|UR is a C∞ diffeomorphism on VR;

(ii) UR/〈F1,F2〉 =: MR is a complex manifold, and v induces a C∞ diffeomorphism
v : MR → VR/Z2 = VR/〈T1,T2〉;

(iii) Ω0 induces a C∞ (1, 0)-form Ω1 on MR.

Proof. Suppose x′, x′′ ∈ UR such that v(x′) = v(x′′). Then x′1 = x′′1 and x′2+v0(x′) =
x′′2 + v0(x′′), and thanks to Lemma 4.6.10 we get

|x′2 − x′′2| ≤ |v0(x′)− v0(x′′)| ≤ C2e
−2πI(x) |x′2 − x′′2| , (4.22)

with x a suitable point on the segment between x′2 and x′′2.
If y ∈ UR, thanks to Remark 4.6.12 we have that I(y) = I(v(x)) >

√
R.

For I(x) we have

I(x) = I(y)− Im(v0(x)) ≥ I(y)− C2e
−2πI(x)

thanks to Lemma 4.6.10; it follows that, up to choose R large enought, we can
suppose that I(x) >

√
R/2. From (4.22) we obtain

|x′2 − x′′2| ≤ C2e
−π
√
R |x′2 − x′′2| ,

and hence x′2 = x′′2 as soon as C2e
−π
√
R < 1, and v is injective. The first point

easily follows.
For the second one, MR is a complex manifold, since F1 and F2 are holomorphic.
To take the quotient by the action of F1 in UR means that x ∼ x′ if and only

if x′ = F1(x) (or the symmetric relation); in particular, |Rex1| = |Rey1| ≤ 1
4
< 1

3
,

and from Lemma 4.6.11 we obtain the well-definiteness and the regularity for v,
and the third result.
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(Step 2). From now on, we have to focus on the hypotheses on Theorem 4.6.8,
and on Theorem 4.6.7. In particular now we shall discuss properties of a specific
basis (ω1, ω2) for the holomorphic cotangent space on MR.

Denote by πR : UR →MR the canonical projection, and define on MR (or UR)

hj(x) = Im(x2 + v0(x) + βjx1) = Im(y2 + βjy1) = Ij(y) for j = 1, 2,

hm(x) =
h1(x) + h2(x)

2
= Im

(
x2 + v0(x) + βx1

)
= Im(y2 + βy1) = I(y);

finally set ωj = ∂hj for j = 1, 2.

Lemma 4.6.14. For every R > R1:

(i) the (1, 0)-forms ω1, ω2 form a basis of the holomorphic cotangent space to MR;

(ii) if dV =
(
i
2

)2
ω1 ∧ ω1 ∧ ω2 ∧ ω2, and dV0 =

(
i
2

)2
dx1 ∧ dx1 ∧ dx2 ∧ dx2, then

there exists C3 > 0 such that

C−1
3 dV0 ≤ π∗RdV ≤ C3dV0

in UR.

(iii) ∂ω1 = ∂ω2 = 0, and there exists C4 > 0 such that

∂ω1 = ∂ω2 = ∂∂Imv0 =
∑
j,k

cj,kωj ∧ ωk,

with cj,k ∈ C∞(MR) and∣∣cj,k∣∣ , ∣∣∂lcj,k∣∣ , ∣∣∂lcj,k∣∣ ≤ C4e
−2πhm, (4.23)

for every j, k, l.

Proof.

(i) Since v is a diffeomorphism for R > R1, we can compute derivatives in the y
coordinates. Then

ωj = ∂hj =
1

2i
(dy2 + βjdy1);

thus ω1 and ω2 are not proportional and never zero.

(ii) For j = 1, 2, we have

ωj = ∂hj =
1

2i
(dx2 + βjdx1) + ∂Imv0(x); (4.24)

∂hj = − 1

2i
(dx2 + βjdx1) + ∂Imv0(x);
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so we have to show only that |∂Imv0| and
∣∣∂Imv0

∣∣ are bounded in UR. But

|v0| ≤ |φ(x2 + βx1)| ≤ 1

2
e−2πIm(x2+βx1) ≤ 1

2
,

and similar estimates hold for ∂v0 and ∂v0.

(iii) We obviously have ∂2 = ∂
2

= 0, while from (4.24) we have

∂ωj = ∂∂(Imv0).

Thanks to point (i), we can consider {ω1, ω2} as a basis of the holomorphic cotan-
gent space. The estimates for the coefficients follow then from Lemma 4.6.10. We
note that we can estimate e−2πI(x) ≤ C̃e−2πhm(x), by the same argument we used
in the proof of Lemma 4.6.13.(i).

(Step 3). Here we shall prove that, up to choosing R large enough, MR is a Stein
manifold.

Thanks to Theorem 4.6.7, we have to construct an exhaustive striclty plurisub-
harmonic function on MR.

Now we shall describe a procedure to obtain functions on MR, for which we
can easily estimate the Levi form with respect to the basis {ω1, ω2} (see Lemma
4.6.14.(i)).

Set BR := {h ∈ R2 | h1, h2 > 0, h1h2 > R}. Let ψ̃ : BR → R be a C2 function.
Let us suppose R > R1. We can associate to ψ̃ a function ψ : UR → R defined by

ψ(z) = ψ̃
(
h1(z), h2(z)

)
.

Since R > R1, we can use the basis {ω1, ω2} (see Lemma 4.6.14.(i)):

∂∂ψ =
∑
j,k

ψj,kωj ∧ ωk. (4.25)

Lemma 4.6.15. We have

ψj,k =

[
∂2ψ̃

∂hj∂hk
+ cj,k

(
∂ψ̃

∂h1

+
∂ψ̃

∂h2

)]
◦ (h1, h2). (4.26)
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Proof. Let us compute all coefficients in the standard basis:

ωj =
∑
l

∂hj
∂xl

dxl,

ωj ∧ ωk =
∑
l,m

∂hj
∂xl

∂hk
∂xm

dxl ∧ dxm,

∑
j,k

cj,kωj ∧ ωk =
∑
l,m

∑
j,k

cj,k
∂hj
∂xl

∂hk
∂xm

dxl ∧ dxm

=
∑
l,m

∂2hs
∂xl∂xm

dxl ∧ dxm,

where s = 1, 2, thanks to Lemma 4.6.14.(iii).
Moreover

∂ψ

∂xm
=
∑
p

∂ψ̃

∂hp
(h1, h2) · ∂hp

∂xm
,

∂2ψ

∂xl∂xm
=
∑
q

(∑
p

∂2ψ̃

∂hp∂hq
(h1, h2) · ∂hp

∂xm
· ∂hq
∂xl

+
∂ψ̃

∂hp
(h1, h2) · ∂2hp

∂xl∂xm

)

=
∑
p,q

∂2ψ̃

∂hp∂hq
(h1, h2) · ∂hp

∂xm
· ∂hq
∂xl

+

(∑
p

∂ψ̃

∂hp
(h1, h2)

)
·

(∑
j,k

cj,k
∂hj
∂xl
· ∂hk
∂xm

)
.

It follows that

∂∂ψ =
∑
l,m

∂2ψ

∂xl∂xm
dxl ∧ dxm

=
∑
p,q

(
∂2ψ̃

∂hp∂hq
(h1, h2)

∑
l,m

∂hp
∂xm

· ∂hq
∂xl

dxl ∧ dxm

)

+

(∑
p

∂ψ̃

∂hp
(h1, h2)

)
·
∑
j,k

(
cj,k
∑
l,m

∂hj
∂xl
· ∂hk
∂xm

dxl ∧ dxm

)

=
∑
p,q

∂2ψ̃

∂hp∂hq
(h1, h2)ωq ∧ ωp +

(∑
p

∂ψ̃

∂hp
(h1, h2)

)(∑
j,k

cj,kωj ∧ ωk

)
.

Comparing (4.25) with the latter equation we get (4.26).
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Now apply this construction three times:

ψ̃(0)(h1, h2) =− log(h1h2 −R) = − log ρ, where ρ := h1h2 −R;

ψ̃(1)(h1, h2) =h2
1 + h2

2;

ψ̃(2)(h1, h2) =− π(h1 + h2) = −2πhm.

We want to estimate Levi forms in this three cases, but first we need a lemma:

Lemma 4.6.16. For (h1, h2) ∈ BR we have that

h2
2 |ζ1|2 + h2

1 |ζ2|2 +R(ζ1ζ2 + ζ2ζ1) ≥h
2
1h

2
2 −R2

h2
1 + h2

2

(
|ζ1|2 + |ζ2|2

)
≥ ρR

2h2
m

(
|ζ1|2 + |ζ2|2

)
, (4.27)

for every ζ1, ζ2 ∈ C.

Proof. For the first inequality, we equivalently have to show that

h4
2 |ζ1|2 + h4

1 |ζ2|2 + 2R Re
(
ζ1ζ2

) (
h2

1 + h2
2

)
+R2

(
|ζ1|2 + |ζ2|2

)
≥ 0.

If ζ1 = 0 then the latter inequality is simply

h4
1 |ζ2|2 +R2 |ζ2|2 ≥ 0,

which is obviously true.
If ζ1 6= 0, set µ = ζ2/ζ1 ∈ C; in this case we obtain

h4
2 |ζ1|2 + h4

1 |µ|
2 |ζ1|2 + 2R Reµ |ζ1|2

(
h2

1 + h2
2

)
+R2 |ζ1|2

(
1 + |µ|2

)
≥ 0,

and we can simplify |ζ1|2. Then

h4
2 + h4

1 |µ|
2 + 2R Reµ

(
h2

1 + h2
2

)
+R2

(
1 + |µ|2

)
≥ h4

2 + h4
1(Reµ)2 + 2R Reµ

(
h2

1 + h2
2

)
+R2

(
1 + (Reµ)2

)
= (h2

2 +R Reµ)2 + (Reµ h2
1 +R)2 ≥ 0.

For the second inequality, we only have to show that

h2
1h

2
2 −R2

h2
1 + h2

2

≥ ρR

2h2
m

,

that is (
h2

1h
2
2 −R2

)
(h1 + h2)2 ≥ 2

(
h2

1 + h2
2

)
ρR.

Using that h1h2 > R in BR and the definition of ρ, we obtain

2R(h1 + h2)2 ≥ 2R
(
h2

1 + h2
2

)
,

which holds since h1h2 ≥ 0.
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Lemma 4.6.17. There exists C5 > 0 such that∑
j,k

ψ
(0)

j,k
ζjζk ≥ ρ−1

(
(2h2

m)−1R− C5hme
−2πhm

)
|ζ|2 ;∑

j,k

ψ
(1)

j,k
ζjζk ≥

(
2− C5hme

−2πhm
)
|ζ|2 ;∑

j,k

ψ
(2)

j,k
ζjζk ≥ −C5e

−2πhm |ζ|2 .

Proof. We want to apply Lemma 4.6.15 to ψ(0), ψ(1) and ψ(2).
In the first case we have

Dψ̃0 = ρ−1

(
−h2

−h1

)
, D2ψ̃0 = ρ−2

(
h2

2 R
R h2

1

)
;

hence∑
j,k

ψ
(0)

j,k
ζjζk = ρ−2

(
h2

2 |ζ1|2 + h2
1 |ζ2|2 +R(ζ1ζ2 + ζ2ζ1)

)
− 2ρ−1hm

∑
j,k

cj,kζjζk.

But then, using (4.27) from Lemma 4.6.16 and (4.23) from Lemma 4.6.14, we get∑
j,k

ψ
(0)

j,k
ζjζk ≥ ρ−1

(
R

2h2
m

− 4hmC4e
−2πhm

)
|ζ|2 .

In the second case we have

Dψ̃1 =

(
2h1

2h2

)
, D2ψ̃1 =

(
2 0
0 2

)
;

so from Lemma 4.6.15 we have∑
j,k

ψ
(1)

j,k
ζjζk = 2 |ζ|2 + 4hm

∑
j,k

cj,kζjζk.

Thanks to (4.23) from Lemma 4.6.14, we obtain∑
j,k

ψ
(1)

j,k
ζjζk ≥ (2− 8hmC4e

−2πhm) |ζ|2 .

In the last case we have

Dψ̃2 =

(
−π
−π

)
, D2ψ̃1 = 0;
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hence from Lemma 4.6.15 we have∑
j,k

ψ
(2)

j,k
ζjζk = −π

∑
j,k

cj,kζjζk ≥ (−2πC4e
−2πhm) |ζ|2 ,

using (4.23) from Lemma 4.6.14 again, and we are done.

Lemma 4.6.18. There exists R2 ≥ R1 such that MR is a Stein manifold for every
R > R2.

Proof. Set ψ = ψ(0) + ψ(1) ∈ C∞(MR). We want to show that ψ is an exhaus-
tive plurisubharmonic function for MR (for R large enough). To show that ψ is
plurisubharmonic, thanks to Lemma 4.6.17, we only have to ask for hme

−2πhm (for
ψ(1)) and h3

me
−2πhm (for ψ(0)) to be small enough. So we only have to ask for an R

large enough (since hm >
√
R in MR).

Now we want to prove that ψ−1(−∞, a] is relatively compact in MR for every
a ∈ R. We have ψ = − log ρ + h2

1 + h2
2; we have h1h2 = ρ + R, and hence

h2
1 +h2

2 ≥ 2h1h2 = 2(ρ+R). Now if we suppose that ψ(h1, h2) ≤ a, then we obtain

a ≥ ψ(h1, h2) = h2
1 + h2

2 − log ρ ≥ 2R + 2ρ− log ρ,

and hence ρ has to be bounded. Then ‖(h1, h2)‖2 = h2
1 +h2

2 ≤ a+log ρ is bounded.

(Step 4). Here we solve the problem ∂ui = −∂vi =: fi, for i = 0, 1, using twice
Theorem 4.6.8.

Remark 4.6.19. We could obviously take ui = −vi, but we want a “small” solu-
tion, for which we can control the norm, as in Hörmander’s estimates.

We must show that the hypotheses of Theorem 4.6.8 holds for certain θ, χ,
while we have fixed fi, and we showed that {ω1, ω2} is a basis for the holomorphic
cotangent space in MR (for R > R1, see Lemma 4.6.14.(i)). Moreover, aij,k ≡ 0 and
c1
j,k

= c2
j,k

= cj,k.

Thanks to Lemma 4.6.14.(iii), if R > R1 then we can choose θ0 = θ1 =
C4e

−2πhm .
Now we want to apply Hörmander’s estimates for the plurisubharmonic weight

χ = ψ(0) + ψ(2).

Lemma 4.6.20. There exists R3 ≥ R2 such that for R > R3 we have that χ is a
plurisubharmonic function on MR and (4.19) holds.
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Proof. From Lemma 4.6.17 we have∑
j,k

χj,kζjζk ≥
(

R

2ρh2
m

− C5e
−2πhm

(
hm
ρ

+ 1

))
|ζ|2 ;

in particular, χ is plurisubharmonic for R large enough.
Set θ = R

3ρh2m
; we have

R

2ρh2
m

− C5e
−2πhm

(
hm
ρ

+ 1

)
= θ +

R

6ρh2
m

− C5e
−2πhm

(
hm
ρ

+ 1

)
.

We want to choose R large enough to have

R

6ρh2
m

− C5e
−2πhm

(
hm
ρ

+ 1

)
≥ A(θ2

0 + θ1),

or equivalently

R

6
− C5ρh

2
me
−2πhm

(
hm
ρ

+ 1

)
≥ AC4ρh

2
me
−2πhm

(
1 + C4e

−2πhm
)

. (4.28)

Studying the behavior of both members as hm tends to∞, since p(x)e−2πx → 0
when x → ∞ for every polynomial p, and remembering that 0 ≤ ρ ≤ h2

m − R,
we have the first member in (4.28) tends to R/6 while the second one tends to 0
(whatever is the value of A), and hence (4.28) holds for R large enough.

Lemma 4.6.21. There exists R4 ≥ 0 such that for R ≥ R4 the integral estimate
(4.20) holds. In particular we have∫

MR

θ−1 |f |2 e−χdV ≤ 1.

Proof. Directly from definitions we have that

θ−1e−χ |fj|2 =
3h2

mρ

R
ρe2πhm |fj|2 .

Thanks to Lemma 4.6.10, and arguing as in Lemma 4.6.14, we find that there
exists C̃ > 0 such that

|fj| ≤ C̃e−2πhm .

Then we obtain

θ−1e−χ |fj|2 ≤
3C̃2h2

mρ
2

R
e−2πhm ,

which decays exponentially to 0 when R →∞. Then for R large enough we have
the thesis.
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Corollary 4.6.22. Set R5 = max{R3, R4}. Then for every R > R5 there exists
uj such that ∂uj = fj = −∂vj, and∫

MR

|uj|2 ρe2πhmdV ≤ 1, (4.29)

for j = 0, 1.

Proof. We only have to apply Theorem 4.6.8, recalling Lemma 4.6.20 and Lemma
4.6.21

(Step 5). Now we construct a holomorphic 1-form Ω2 from Ω0, using the distorsion
u1, and connecting it with the linear case (where we quotient by the action of F1, F2)
through the biholomorphism ṽ.

For R > R5, we set

V̂R =

{
y ∈ C2 | 0 ≤ Reyj ≤ 1, I(y) > 0, Ij(y) >

1 + βj
2

+
√
R

}
,

ṼR =
{
y ∈ C2 | 0 ≤ Reyj ≤ 1, I(y) > 0, Ij(y) > 1 + βj +

√
R
}

,

ÛR = v−1(V̂R).

For i = 0, 1, we set ṽi = vi + ui ◦ πR, defined on UR. We obviously have that
the ṽi are holomorphic in UR, by construction.

Lemma 4.6.23. There exists R6 > R5 such that for every R > R6 and i = 0, 1,
j = 1, 2 we have

|ṽi| ≤ C6e
−πhm,

∣∣∣∣ ∂ṽi∂xj

∣∣∣∣ ≤ C6e
−πhm, in ÛR,

for a suitable constant C6 > 0.

Proof. Let x0 ∈ ÛR, and consider the ball

B2
δ = {

∣∣x− x0
∣∣ < δ}.

We claim that B2
δ ⊆ UR for R large enough.

Indeed from Lemma 4.6.10, |v0(x)| ≤ C2e
−2πhm tends to 0 as R tends to ∞, so

v is uniformly close to the identity when R is large enough, and the claim follows
from definitions of UR and ÛR.

Moreover, for x ∈ B2
δ and R large enough, then there exists C̃ (independent of

x0) such that ∣∣hm(x)− hm(x0)
∣∣ ≤ C̃.
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Since

hj(x) >
1 + βj

2
+
√
R for j = 1, 2,

it follows

ρ(x) = h1(x)h2(x)−R > R +
√
R(1 + β) +

(1 + β1)(1 + β2)

4
−R >

√
R.

Since ṽi is holomorphic, |ṽi|2 is plurisubharmoinic and hence the submean inequal-
ity holds:∣∣ṽi(x0)

∣∣2 ≤ 1

vol(B2
δ)

∫
B2
δ

|ṽi(x)|2 dV0 ≤
2

vol(B2
δ)

∫
B2
δ

(
|vi(x)|2 + |ui(x)|2

)
dV0.

From the integral estimate (4.29), also using Lemma 4.6.14, we get

1 ≥
∫
MR

|ui|2 ρe2πhmdV ≥
∫
B2
δ

|ui|2
√
Re2π(hm(x0)−C̃)C−1

3 dV0,

and hence
2

vol(B2
δ)

∫
B2
δ

|ui(x)|2 dV0 ≤
2C3

vol(B2
δ)
√
R
e2π(C̃−hm(x0)).

Moreover, from Lemma 4.6.10, we have

|vi|2 ≤ C2
2e
−4πhm ≤ C2

2e
−2π
√
Re−2πhm ≤ C2

2e
−2π
√
Re2πC̃e−2πhm(x0),

and hence
2

vol(B2
δ)

∫
B2
δ

|vi|2 dV0 ≤ 2C2
2e
−2π
√
Re2πC̃e−2πhm(x0).

Putting together all the estimates, we obtain the assertion.
For the derivatives, we use a Cauchy estimate∣∣∣∣ ∂ṽi∂xj

(x0)

∣∣∣∣ ≤ max{|ṽi(x)| | x ∈ B2
δ}

δ
≤ δ−1e−π(hm(x0)−C̃),

and we are done.

Set:

ṽ(x) =
(
x1, x2 + ṽ0(x)

)
;

Ω̃0 =eṽ1(x)(dx2 + βdx1);

ŨR =ṽ−1(ṼR) ∩ ÛR;

M̃R =π(ŨR).
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Lemma 4.6.24. There exists R7 ≥ R6 such that for every R > R7

(i) ṽ|ŨR is a biholomorphism on ṼR, and it induces a biholomorphism between

M̃R and ṼR/Z2 =: W̃R;

(ii) Ω̃0 induces a holomorphic (1, 0)-form Ω2 = (ṽ−1)∗Ω̃0 on W̃R, and we have

Ω2 ∼ A1(y)βdy1 + A2(y)dy2,

with Aj such that

|Aj(y)− 1| ≤ C7e
−πhm(ṽ−1(y)). (4.30)

Proof.

(i) Thanks to Lemma 4.6.23, we have that ṽi is close to the identity as R grows to
∞; arguing as in the proof of Lemma 4.6.13, we have that ṽ is a biholomorphism
on ṼR for R large enough. Moreover, it induces a well defined biholomorphism on
M̃R, since ṽ0 = v0 +u0, where v0 induces a map on M̃R, while u0 is already defined
as a map in MR ⊃ M̃R.

(ii) Using the same argument as in point (i), but with ṽ1 instead of ṽ0, we see that
Ω2 is well defined.

If we set x = ṽ−1(y), then

d(ṽ)x =

(
1 0
∂ṽ0
∂x1

1 + ∂ṽ0
∂x2

)
x

=⇒ d(ṽ−1)y =

(
1 +

∂ṽ0

∂x2

)−1

·
(

1 + ∂ṽ0
∂x2

0

− ∂ṽ0
∂x1

1

)
x

,

and hence

(Ω2)y = (Ω̃0)x ◦ d((ṽ)−1)y

= eṽ1(x)

[
βdy1

(
1− β−1

∂ṽ0
∂x1

1 + ∂ṽ0
∂x2

)
+ dy2

1

1 + ∂ṽ0
∂x2

]

∼ βdy1

(
1− β−1

∂ṽ0
∂x1

1 + ∂ṽ0
∂x2

)
+ dy2

(
1−

∂ṽ0
∂x2

1 + ∂ṽ0
∂x2

)
,

Applying Lemma 4.6.23, we obtain

|A1 − 1| =

∣∣∣∣∣β−1
∂ṽ0
∂x1

1 + ∂ṽ0
∂x2

∣∣∣∣∣ ≤ C6β
−1e−πhm

1− C6e−πhm
≤ C6e

−πhm

β(1− C6e−π
√
R)

;

|A2 − 1| =

∣∣∣∣∣
∂ṽ0
∂x2

1 + ∂ṽ0
∂x2

∣∣∣∣∣ ≤ C6e
−πhm

1− C6e−πhm
≤ C6e

−πhm

1− C6e−π
√
R

,

because hm ≥
√
R, and we are done.
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(Step 6). We finally define our candidate Ω for the 1-form whose foliation has
the prescribed holonomy (for the horizontal complex separatrix).

We simply take Ω2, project it through E outside the horizontal and vertical
complex separatrices, and extend it to the whole neighborhood of the origin. Let
us describe the details.

Since the Aj are Z2-periodic and thanks to (4.30), we can write

Aj(y) = 1 +Bj(y),

with Bj a suitable bounded Z2-periodic holomorphic function (for j = 1, 2). We
also notice that Bj(y) → 0 when hm(ṽ−1(y)) → ∞ (see (4.30)), or, equivalently,
when I(y)→∞ (since ṽ tends to the identity when R grows to ∞). Set

DR = {w ∈ C2 : |w2| |w1|βj < e−2π(1+βj+
√
R)},

D∗R = {w ∈ DR : w1w2 6= 0},

and denote
w = E(y) = (e2πiy1 , e2πiy2).

Notice that D∗R = E(ṼR), and E : W̃R → D∗R is a biholomorphism.
If we set Bj = Bj ◦ E and Ω = (E−1)∗Ω2, then

Ω ∼ β

2πiw1

(1 +B1)dw1 +
1

2πiw2

(1 +B2)dw2

∼ βw2(1 +B1)dw1 + w1(1 +B2)dw2.

This foliation on D∗R can be extended to a holomorphic foliation on DR.

(Step 7). Now we only have to check that Ω has holonomy of the horizontal
complex separatrix equal to h.

Let F0 be the foliation defined by Ω̃0 on ŨR, and F the foliation defined by Ω
on DR. Leaves of F0 are defined by points with a costant value for x2 + βx1, and
F is the image of F0 through E ◦ ṽ.

Set:

Σ = {w ∈ DR : w1 = 1} (the vertical section on 1);

Σ∗ = Σ \ {(1, 0)} = Σ ∩D∗R,

Σ0 = {x ∈ UR : x1 = 0} (the corresponding vertical section on UR);

Σ1 = {x ∈ UR : x1 = 1} = F1(Σ0).

The map E ◦ ṽ|Σ0 is an universal covering of Σ∗, while z 7→ e2πiz is a coordinate
on Σ∗.
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We have that the images of (0, x2) and F1(0, x2) = (1, x2 +φ(x2)) through E ◦ ṽ
coincide; but (1, x2 + φ(x2)) and (0, x2 + β + φ(x2)) = (0, H(x2)) belong to the
same leaf of F0.

It follows that the holonomy with respect to Σ for F along [0, 1] 3 t 7→ (e−2πit, 0)
on the horizontal complex separatrix is h−1, and hence h is the holonomy of the
horizontal complex separatrix for F .
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premières. Ann. Sci. École Norm. Sup. (4), 13(4):469–523, 1980.

[Mou93] Robert Moussu. Singularités d’équations différentielles holomorphes
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