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Introduction

Holomorphic dynamics has several points of view: it can be discrete or continuous,
and be studied locally or globally, but all these aspects are, sometimes surprisingly
and in a very fascinating way, linked to one another.

The setting of global discrete holomorphic dynamics is the following: one has a
complex space X of dimension d, and a holomorphic map f : X → X, and wants
to understand the behavior of the iterates f ◦n of f . For example one can check if
the orbit of a point x ∈ X (i.e., the set {f ◦n(x) | n ∈ N}) changes regularly by
moving the starting point x.

On the other hand, local discrete holomorphic dynamics still studies the be-
havior of a map f , but near a given fixed point p, and hence in coordinates one is
interested into the behavior of a holomorphic germ f : (Cd, 0) → (Cd, 0) and its
iterates, existence of basins of attractions, or the structure of the stable set (where
all the iterates of f are defined in a neighborhood of 0).

One of the main techniques to study the dynamics of a family F of holomorphic
germs is looking for normal forms. Roughly speaking, one looks for a (possibly
small) family G of germs, whose dynamics is easier to study, and such that every
f ∈ F can be reduced to a germ g ∈ G by changing coordinates.

Definition. Let f, g : (Cd, 0) → (Cd, 0) be two holomorphic germs. We shall say
that f and g are (holomorphically, topologically, formally) conjugated if there exists
a (biholomorphism, homeomorphism, formal invertible map) φ : (Cd, 0)→ (Cd, 0)
such that

φ ◦ f = g ◦ φ.

Depending on the regularity of the change of coordinates: holomorphic, home-
omorphic, formal, we talk about holomorphic, topological or formal classification.

We can say that holomorphic dynamics was born in 1884, when Kœnigs (in
[Kœn84]) proved a conjugacy result in local discrete dynamics in dimension d = 1.

Theorem (Kœnigs). Let f : (C, 0)→ (C, 0) be a holomorphic germ such that the
multiplier λ := f ′(0) is such that |λ| 6= 0, 1. Then f is holomorphically conjugated
to the linear part z 7→ λz.

ix
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Twenty years later, Böttcher proved a result on the same lines for non-invertible
germs (see [Böt04]).

Theorem (Böttcher). Let f : (C, 0)→ (C, 0) be a holomorphic germ of the form

f(z) = apz
p + ap+1z

p+1 + . . . ,

with p ≥ 2 and ap 6= 0. Then f is holomorphically conjugated to the map z 7→ zp.

Still in the beginning of the 20th century, Leau (see [Lea97a] and [Lea97b]) and
Fatou (see [Fat19]) proved a local conjugacy result for the parabolic case, i.e., when
f : (C, 0)→ (C, 0) is such that its multiplier λ = f ′(0) is a root of 1. Up to taking
a suitable iterate of f , we can suppose that λ = 1.

Definition. Let f : (Cd, 0)→ (Cd, 0) be a holomorphic germ. It is called tangent
to the identity if df0 = Id.

In dimension d = 1, write f : (C, 0)→ (C, 0) in the form

f(z) = z(1 + akz
k + ak+1z

k+1 + . . .),

with k ≥ 1 and ak 6= 0. Then k + 1 is called the parabolic multiplicity of f .

Definition. A parabolic domain in C is a simply connected open domain ∆ such
that 0 ∈ ∂∆.

A parabolic domain ∆ is said to be an attracting petal (resp., repelling petal)
for a map f tangent to the identity if f(∆) ⊂ ∆ and f ◦n(x)→ 0 for every x ∈ ∆
(resp., the same for f−1).

Theorem (Leau, Fatou). Let f : (C, 0)→ (C, 0) be a tangent to the identity germ
with parabolic multiplicity k+1. Then there exist k attracting petals and k repelling
petals such that in every petal f is holomorphically conjugated to z 7→ z+1. Distinct
attracting petals are disjoint, and the same holds for repelling petals. The union of
attracting and repelling petals form a punctured neighborhood of 0.

The formal and topological classifications for this kind of germs are not so diffi-
cult at least to state, but the holomorphic classification is surprisingly complicated:
the moduli space is infinite-dimensional, and the final answer of this question was
given almost 70 years later, independently by Écalle using resurgence theory (see
[Éca81a], [Éca81b], [Éca85]) and Voronin (see [Vor81]).

Fatou, Julia, Cremer, Siegel, Brjuno, Sullivan, Douady, Hubbard, Yoccoz and
many others gave their contribution to the study of holomorphic dynamics in di-
mension 1, and right now most of the main issues for both local and global holo-
morphic dynamics in dimension 1 are solved.
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In higher dimensions, a very fruitful theory has been developed for the global
setting, by Bedford, Sibony, Fornaess, Smillie and many others, whereas in the
local setting only a few simpler cases are well understood, such as the invertible
attracting case, while the more complicated ones are still subject of study, even in
dimension d = 2.

Definition. Let f : (C2, 0) → (C2, 0) be a holomorphic germ, and let us denote
by Spec(df0) = {λ1, λ2} the set of eigenvalues of df0. Then f is said:

• attracting if |λi| < 1 for i = 1, 2;

• superattracting if df0 = 0;

• nilpotent if df0 is nilpotent (i.e., df 2
0 = 0; in particular, superattracting germs

are nilpotent germs);

• semi-superattracting if Spec(df0) = {0, λ}, with λ 6= 0;

• of type (0, D) if Spec(df0) = {0, λ} and λ ∈ D, with D ⊂ C a subset of the
complex plane.

In particular the semi-superattracting germs are the ones of type (0,C∗).
We shall always consider only dominant holomorphic germs, i.e., holomorphic

germs f such that det dfz 6≡ 0. For non-dominant holomorphic germs, the dynamics
is essentially 1-dimensional.

Favre in 2000 gave the holomorphic classification of a special type of germs,
namely the (attracting) rigid germs (see [Fav00]).

Definition. Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ. We denote by
C(f) = {z | det(dfz) = 0} the critical set of f , and by C(f∞) =

⋃
n∈N f

−nC(f) the
generalized critical set of f . Then a (dominant) holomorphic germ f is rigid if:

(i) C(f∞) (is empty or) has simple normal crossings (SNC) at the origin; and

(ii) C(f∞) is forward f -invariant.

Another very interesting class of holomorphic germs is given by strict germs,
that (in dimension 2, but not in higher dimensions) are a subset of rigid germs.

Definition. Let f : (Cd, 0)→ (Cd, 0) be a (dominant) holomorphic germ. Then f
is a strict germ if there exist a SNC divisor with support C and a neighborhood
U of 0 such that f |U\C is a biholomorphism with its image.

Besides giving interesting classes of examples of local dynamics in higher di-
mensions, in the 2-dimensional case rigid and strict germs are very important for
at least two reasons: first, every (dominant) holomorphic germ is birationally con-
jugated to a rigid germ; second, every strict germ gives rise to a compact complex
non-Kähler surface (Kato surface).
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Valuative tree

A very useful tool for the study of holomorphic dynamics (in dimension 2 or higher)
has been borrowed from algebraic geometry: blow-ups. Roughly speaking, a blow-
up of a point p in Cd consists in replacing p by the set P(TpX), i.e., the set of
“directions” through p.

If then one wants to study holomorphic dynamics locally at 0 ∈ C2, one can
look for a suitable modification over 0, (i.e., a sequence of blow-ups, the first one
over 0), to get a simpler dynamical situation on the blown-up space.

These techniques were first used for studying foliations by Seidenberg, Camacho
and Sad, and many others (see, e.g., [Sei68] and [CS82]), and then transferred, by
Hakim, Abate and others, to the tangent to the identity case in local dynamics in
C2 (see [Hak98] and [Aba01b]).

To study local (and global) holomorphic dynamics, Favre and Jonsson in [FJ04]
developed a tool, the valuative tree, that roughly speaking is a way to look at all
possible modifications over the origin.

Using the valuative tree, and the action induced on it by a germ f : (C2, 0)→
(C2, 0), they proved that up to modifications you can suppose that a super-attracting
germ is actually rigid. Let us be more precise.

Definition. Let f : (C2, 0) → (C2, 0) be a (dominant) holomorphic germ. Let
π : X → (C2, 0) be a modification and p ∈ π−1(0) a point in the exceptional
divisor of π. Then we shall call the triple (π, p, f̂) a rigidification for f if the lift
f̂ = π−1 ◦ f ◦ π is a holomorphic rigid germ with fixed point p = f̂(p).

Finding a rigidification is, a priori, extremely hard, since if we have a germ
f : (C2, 0) → (C2, 0), a modification π : X → (C2, 0) and a point p ∈ π−1(0), the
lift f̂ = π−1 ◦ f ◦ π in general is just a rational map, and it is already not easy to
have f̂ to be a holomorphic germ in a fixed point p.

In this thesis we extend Favre’s and Jonsson’s result (see [FJ07, Theorem 5.1])
to germs with non-invertible differential in 0 (for invertible germs, the result is
trivial, being the map already rigid), getting

Theorem. Every (dominant) holomorphic germ f : (C2, 0) → (C2, 0) admits a
rigidification.

Then we shall study more carefully the case of semi-superattracting germs, get-
ting a sort of uniqueness of the rigidification process, and a result on the existence
(and uniqueness) of invariant curves.

Theorem. Let f be a (dominant) semi-superattracting holomorphic germ of type
(0, λ). Then there exist two curves C and D such that the following holds:
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• C is a (possibly formal) curve through 0, with multiplicity equal to 1 and
tangent to the λ-eigenspace of df0, such that f(C) = C.

• D is a (holomorphic) curve through 0, with multiplicity equal to 1 and tangent
to the 0-eigenspace of df0, such that either f(D) = D or f(D) = 0.

• There are no other invariant or contracted (not even formal) curves for f
besides C and D.

Thanks to this result, the formal classification of semi-superattracting rigid
germs can be found. We shall quote here only a consequence of this classification
(see Section 2.5 for the precise statement):

Corollary. The moduli space of semi-superattracting germs in C2 up to formal
conjugacy is infinite-dimensional.

This result shows how difficult (if not impossible) is to give an explicit classifi-
cation of semi-superattracting germs up to holomorphic conjugacy. As a matter of
fact, one has always to consider the complexity of the generalized critical set, that
generally has an infinite number of irreducible components.

With the rigidification result and the last remark in mind, we can then focus on
better understanding the dynamics of rigid germs. For semi-superattracting rigid
germs of type (0,D) Favre’s result gives the holomorphic classification; in this thesis
we focus our attention on a sort of limit case, germs of type (0, 1). Hakim proved
(see [Hak94]) the following result on the existence of basins of attraction.

Definition. Let f : (C2, 0)→ (C2, 0) be a holomorphic germ of type (0, 1). Let C
be the f -invariant (formal) curve associated to the 1-eigenspace of the differential
df0 at 0, parametrized by a suitable (formal) map γ : C[[t]] → C[[z, w]]. Then we
shall call parabolic multiplicity of f the parabolic multiplicity of γ−1 ◦ f |C ◦ γ.

Theorem (Hakim). Let f : (C2, 0) → (C2, 0) be a holomorphic germ of type
(0, 1), with parabolic multiplicity k + 1, and let us denote by Dρ the open disc in
C centered at 0 and with radius ρ > 0. Then there exist k (disjoint) parabolic
domains ∆0, . . . ,∆k−1 ⊂ C, such that, for ρ small enough,

Wj := ∆j × Dρ

are basins of attraction for f and there exist holomorphic submersions

φj : Wj → C

that satisfy the following functional equation:

φj
(
f(p)

)
= φj(p) + 1.
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Notice that, even if the basins of attraction are a product of a parabolic domain
∆j and a disc Dρ, the parabolic domain ∆j ×{0} is not necessarily f -invariant (as
happens for germs tangent to the identity, see [Hak98]), and f might not admit
parabolic curves.

Definition. A parabolic curve for a germ f : (C2, 0) → (C2, 0) at the origin is a
injective holomorphic map ϕ : ∆→ Cd satisfying the following properties:

(i) ∆ is a parabolic domain in C;

(ii) ϕ is continuous at the origin, and ϕ(0) = 0;

(iii) ϕ(∆) is invariant under f , and f ◦n(z)→ 0 for every z ∈ ϕ(∆).

Roughly speaking, Hakim’s result tells us the behavior of “one coordinate” of f
in a basin of attraction. We can focus on understanding the behavior of f also with
respect to the “other coordinate”, to get a complete description of the dynamics f
in the basins of attraction. For the reasons we anticipated above, we shall consider
rigid germs and prove the following result.

Theorem. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of type (0, 1) of
parabolic multiplicity k + 1. Let

Wj := ∆j × Dρ

for j = 0, . . . , k − 1 be basins of attraction for f as above. If there is a parabolic
curve in Wj, then there exists a holomorphic conjugation Φj : Wj → W̃j between
f |Wj

and the map

f̃(z, w) =

(
z

k
√

1 + zk
, zcwd

(
1 + h̃(z)

))
,

where W̃j is a suitable parabolic domain. Moreover, if d ≥ 2 then we can get h̃ ≡ 0.

In particular, the action of such germ in the second coordinate is either mono-
mial or linear with respect to w.

The assumption of the existence of parabolic curves is quite technical; the
feeling on the matter is that, if parabolic curves do not exist, then f should be
conjugated (in each basin of attraction) to a map that in the second coordinate is
affine with respect to w.
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Kato Varieties

Coming back to local dynamics in the attracting case, given an attracting germ
f : (Cd, 0) → (Cd, 0), it is natural to look at its basin of attraction to 0, and
its fundamental domain, i.e., (any dense open subset of) the basin of attraction
modulo the action of f itself.

Starting from the 70’s, Kato, Inoue, Dloussky, Oeljeklaus, Toma and others
proved that one can find some compactifications of these fundamental domains
when f : (C2, 0) → (C2, 0) is also strict, getting interesting examples of compact
complex non-Kähler surfaces, called Kato surfaces.

Kato surfaces are of great interest also for the Kodaira-Enriques classification
of compact complex surfaces. Indeed, they all belong to the so called Class VII.

Definition. A surfaceX is called of class VII if it has Kodaira dimension kod (X) =
−∞ and first Betti number b1 = 1. If moreover X is a minimal model, it is called
of class VII0.

We have to explain now what is the Kodaira dimension of a compact complex
manifold, and what is a minimal model. We shall start from the second.

Definition. A compact complex surface X is called minimal model if it does not
exist a compact complex surface Y and a modification π : X → Y .

This definition can seem difficult to check directly, but thanks to the Castelnuovo-
Enriques criterion (see [GH78, p. 476]), it is equivalent to asking that the surface
X has no exceptional curves, i.e., rational curves with self-intersection −1.

Theorem (Castelnuovo-Enriques Criterion). Let X be a 2-manifold, and D ⊂ X a
curve in X. Then there exists a 2-manifold Y so that π : X → Y is the blow-up of a
point p ∈ Y with D = π−1(p) if and only if D is a rational curve of self-intersection
−1.

So, up to modifications (and hence up to birationally equivalent models), a
compact complex surface can be supposed to be a minimal model.

If reducing to minimal models can be considered as the first step for the clas-
sification of compact complex surfaces, the second step would be sorting surfaces
with respect to the Kodaira dimension.

Definition. Let X be a compact complex n-manifold. For every m ∈ N∗, we shall
call the m-th plurigenera the dimension

Pm := h0
(
X,O (mKX)

)
of the space of holomorphic sections of the line bundle mKX , where KX =

∧n T ∗X
is the canonical bundle of X (here T ∗X denotes the holomorphic cotangent bundle
of X).
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The Kodaira dimension of X is

kod (X) = min{k | Pm = O(mk) for m→ +∞}.

The Kodaira dimension somehow tells us how positive is the canonical bundle.
When Pm = 0 for every m ≥ 1, we shall say that the Kodaira dimension is

−∞.
For a (compact complex) n-manifold, the Kodaira dimension can take values

in {−∞, 0, . . . , n}. The case kod (X) = n is said to be of general type.
In dimension 2, surfaces of general type are not completely understood. There

are results on the structure of the moduli spaces, but it seems not easy to compute
them for all cases.

However for Kodaira dimension 1 and 0 the classification is done and classical,
while for Kodaira dimension −∞, only one case is still not completely understood:
class VII surfaces.

When the second Betti number b2(X) = 0, these surfaces have been completely
classified, thanks to the work of Kodaira ([Kod64], [Kod66]), Inoue ([Ino74]), Bo-
gomolov ([Bog76]), Li, Yau and Zheng ([LYZ94]), Teleman ([Tel94]).

For b2 > 0, the classification is not completed yet. Before describing the known
results, we need a definition.

Definition. Let X be a compact complex n-manifold. A spherical shell is a holo-
morphic embedding i : V ↪→ X, where V is a neighborhood of S2n−1 = ∂B2n ⊂ Cn.
A spherical shell is said global (or GSS ) if X \ i(V ) is connected.

Kato introduced a construction method for surfaces of class VII0 with b2 > 0,
called Kato surfaces (see [Kat78]), that starts from a Kato data.

Definition. Let B = Bε be a closed ball in Cn of center 0 and radius ε > 0, and
π : B̃ → B a modification over 0. Let σ : B → B̃ be a biholomorphism with its
image such that σ(0) is a point of the exceptional divisor of π. The couple (π, σ)
is called a Kato data.

Kato datas and (rigid, strict) germs are strictly related, as the following defi-
nition shows.

Definition. Let (π, σ) be a Kato data. Then we can consider f0 = π ◦σ : B → B,
that turns out to be a holomorphic rigid and strict germ, with a fixed point in 0
the center of B. We shall call this germ the base germ associated to the given Kato
data.

On the other hand, given a (rigid and strict) holomorphic germ f0 : (Cn, 0)→
(Cn, 0), we shall call resolution for f0 a decomposition f0 = π ◦ σ, with π a mod-
ification over 0 and σ a (germ) biholomorphism that sends 0 into a point of the
exceptional divisor of π.
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Then, roughly speaking, a Kato variety is constructed as follows.

Definition. Let (π, σ) be a Kato data. Let B = Bε be a ball in Cn of center
0 and radius ε > 0. The Kato variety associated to the given Kato data is the
quotient of X̃ = π−1(B) \ σ(B) by the action of σ ◦ π : π−1(∂B)→ σ(∂B), that is
a biholomorphism on a suitable neighborhood of π−1(∂B) for ε small enough.

Dloussky in his PhD thesis [Dlo84] studied deeply this construction and prop-
erties of Kato surfaces. Among these properties, we shall underline the following
(see [Kat78] and [DOT03]).

Theorem (Kato, Dloussky-Oeljeklaus-Toma). Let X be a surface of class VII0

with b2 = b2(X) > 0. Then X admits at most b2 rational curves. Moreover, X
admits a GSS if and only if X has exactly b2 rational curves.

There are no known examples of surfaces X of class VII0 that do not admit
global spherical shells, and a big conjecture (called the GSS Conjecture) claims
that there are none.

Dloussky and Oeljeklaus (see [DO99b]) studied the case when the germ f0 arises
from the action at infinity of an automorphism of C2.

Definition. An automorphism f : C2 → C2 is said to be a Hénon map if it is of
the form

f(x, y) =
(
p(x)− ay, x

)
,

with p a polynomial of degree d = deg p ≥ 2.

Polynomial automorphisms of C2 can be subdivided into two classes, elementary
automorphisms, whose dynamics is easier to study, and compositions of Hénon
maps; see [FM89].

The idea is then to consider the extension F : P2 → P2, that has an indetermi-
nacy point at [0 : 1 : 0], and an indeterminacy point for the inverse at [1 : 0 : 0].

Looking at the action of F on the line at infinity, one finds that there is a fixed
point p = [1 : 0 : 0], and the germ Fp := f0 is strict and admits a resolution, and
hence an associated Kato surface.

This new approach gives a connection between the dynamics of f and the Kato
surface X associated to f0: in particular, if we denote by U the basin of attraction
of f to p, then X turns out to be a compactification of the fundamental domain V
of U .

From this dynamical interpretation of Kato surfaces, some questions arise:

• Can we add a point “at infinity” to V and get a (possibly singular) compact
complex manifold? Or equivalently, is the Alexandroff one-point compactifi-
cation of V a (possibly singular) complex manifold?
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• Can we lift objects that are invariant for f0 to X, obtaining some additional
structure on X (such as the existence of subvarieties, foliations, vector fields)?

The first property is actually equivalent to contracting all the rational curves
to a point, that was a result already known for Kato surfaces (see [Dlo84]).

The second phenomenon has been studied for example by Dloussky, Oeljeklaus
and Toma, starting from [Dlo84]; see, e.g., [DO99a], [DOT00] and [DOT01].

Favre, in his PhD thesis (see [Fav00]), used his classification of attracting rigid
germs in C2 and studied the construction of a holomorphic foliation on X, and the
computation of the first fundamental group of the basin U , already obtained using
other techniques by Hubbard and Oberste-Vorth (see [HOV94]), that turns out to
be very complicated.

In this work, we shall study an example of these phenomena in dimension
3. Several aspects become more complicated. First of all, while the structure of
polynomial automorphisms in C2 is pretty clear, in higher dimensions it is still a
subject of research, and we have no “Hénon maps” that we can use. Indeed only a
few cases have been classified: for instance, the automorphisms of degree 2 in C3

(see [FW98] and [Mae01]).
However, Sibony and others identified a special property of Hénon maps, reg-

ularity, and studied maps with this property in higher dimensions, getting a very
fruitful theory on global holomorphic dynamics, using currents and pluripotential
theory.

Definition. Let f : Cn → Cn be a polynomial automorphism, F : Pn → Pn be its
extension to Pn, and denote by I+ and I− the indeterminacy sets for F and F−1

respectively. Then f is said to be regular (in the sense of Sibony) if I+ ∩ I− = ∅.

Furthermore, the structure of birational maps is more complicated in dimension
≥ 3: one can blow-up not only points, but also curves and varieties of higher
dimension, and not every birational map is obtained as a composition of blow-ups
followed by a composition of blow-downs (the inverse of blow-ups, see [Bon02]).
Moreover, the problem of finding an equivalent of minimal models in dimensions
higher than 2 is still open (the project to solve this problem is called “Minimal
Model Program”, based on Mori theory).

So not so much is known about Kato varieties in higher dimensions. We shall
then study the case of a specific regular quadratic polynomial automorphism f :
C3 → C3 in normal form with respect to [FW98], namely

f(x, y, z) = (x2 + cy2 + z, y2 + x, y),

where c ∈ C. The example we chose is essentially the only example of regular
polynomial automorphism in C3 of degree 2. Indeed by direct computation one
gets that I+ = [0 : 0 : 1 : 0] is a point, while I− = {z = t = 0} is a line at infinity.
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In this thesis we shall construct a Kato variety associated to f−1 and its basin
of attraction to [0 : 0 : 1 : 0].

This polynomial automorphism was already considered by Oeljeklaus and Re-
naud in 2006 (see [OR06]), who constructed a different kind of 3-fold (called of
Class L, see [Kat85]) associated to the basin of attraction of f to I−.

We shall then prove the following properties.

Theorem. Let f : C3 → C3 be the regular polynomial automorphism given by

f(x, y, z) = (x2 + cy2 + z, y2 + x, y),

and let f0 = F−1
p be the germ associated to the fixed point at infinity p = [0 : 0 : 1 : 0]

for f−1. Then

• there exists a resolution f0 = π ◦ σ, with π the composition of 6 blow-ups (4
points, 2 curves).

Let X be the Kato variety associated to (π, σ). Then X is a compactification of a
fundamental domain V of the basin of attraction of f0 to 0.

Furthermore, the following properties hold for any variety Y that is birationally
equivalent to X:

• Y is a compactification of V (up to modifications over points in V ), obtained
by adding a suitable divisor E.

• The Kodaira dimension is kod (Y ) = −∞.

• The first Betti number is b1(Y ) = b5(Y ) = 1.

• E cannot be contracted to a point.

• There exists a codimension 1 foliation.

• There do not exist (formal) curves in Y outside E.

Finally, the following properties hold for X (but they are not necessarily birationally
invariant).

• X is obtained from V by adding 6 rational irreducible surfaces.

• For the Betti numbers we have b2(X) = b4(X) = 6 and b3(X) = 0.

• X admits a global spherical shell.

In particular we notice the main difference with the 2-dimensional case: there
does not exist a contraction to a point, that is strictly related to the non-existence
of a canonical “minimal model”; the other properties are however similar to the
case of Kato surfaces.
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Rigid germs

We presented several reasons explaining why rigid and strict germs are interesting.
It is then natural to try and extend Favre’s results on the classification of attracting
rigid germs to higher dimensions.

A classical technique for the study of the classification of attracting germs was
given by Poincaré (1883) and Dulac (1904). Roughly speaking, one can look for a

general conjugation map Φ : (Cd, 0)→ (Cd, 0) between two germs f, f̃ : (Cd, 0)→
(Cd, 0), and study the conjugacy relation Φ◦f = f̃ ◦Φ computing the coefficients of
the formal power series involved. This approach was studied firstly for attracting
invertible germs in the linearization problem, i.e., one looks for a conjugation map
Φ between a given germ f and its linear part f̃(x) = df0x, but it can be used also
for non-invertible germs as well. It turns out that there are formal obstructions for
the linearization of a germ: resonances.

To give definitions and state results for this subject, we need to set a few
notations. Let x = (x1, . . . , xd)

T be some coordinates in (Cd, 0), where T denotes
the transposition of a vector or matrix. If n = (n1, . . . , nd) ∈ Nd, we shall put
xn = xn

1

1 · . . . · xn
d

d , while if N ∈M(c× d,N) is a matrix, we shall denote

xN =
(
xn1 , . . . , xnc

)T
,

where nk is the k-st row of N . Finally, if we have two (vertical) vectors x =
(x1, . . . , xd)

T and y = (y1, . . . , yd)
T of the same dimension d, we shall denote by

xy := (x1y1, . . . , xdyd)
T the product component by component.

Definition. Let f : (Cd, 0) → (Cd, 0) be an attracting germ, written in suitable
coordinates x = (x1, . . . , xd)

T as

f(x) = λx+ g(x),

where λ = (λ1, . . . , λd)
T is the vector of eigenvalues of df0, and g = (g1, . . . , gd)

T

includes the nilpotent linear part. Then a monomial xn is called resonant for the
k-th coordinate if either it arises in the k-th column of (the nilpotent part of) the
Jordan form of df0, or

λn = λk.

where n = (n1, . . . , nd) is such that n1 + · · ·+ nd ≥ 2.

Then the main result of Poincaré-Dulac theory is the following theorem (see
[Ste57], [RR88] or [Ber06, Chapter 4]).

Theorem (Poincaré-Dulac). Let f : (Cd, 0)→ (Cd, 0) be an attracting germ and
set λ = (λ1, . . . , λd)

T the vector of eigenvalues of df0. Then f is holomorphically

conjugated to a map f̃ : (Cd, 0)→ (Cd, 0) of the form

f̃(x) = λx+ g̃(x),
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where g̃ = (g1, . . . , gd)
T contains only resonant monomials.

Germs as in the Poincaré-Dulac theorem, where only resonant monomials ap-
pear, are said in Poincaré-Dulac normal form.

Notice that where λk 6= 0 the k-th coordinate of a Poincaré-Dulac normal form
is polynomial; on the other hand if λk = 0 this theorem gives no informations on
the k-th coordinate, since in this case every monomial is resonant.

It is possible however to further simplify such germs, with a “renormalization”
process, i.e., performing suitable changes of coordinates that preserve the property
of being in Poincaré-Dulac normal form (see for example [AT05] for a renormal-
ization process in the tangent-to-the-identity case, or [AR] for a general procedure
for formal renormalizations).

Then it is natural to study Poincaré-Dulac renormalization phenomena for at-
tracting rigid germs. The new formal obstructions that arise are topological reso-
nances.

While classic resonances for a germ f arise as algebraic relations between the
eigenvalues of its linear part df0, topological resonances appear as an algebraic
relation between the non-zero eigenvalues of df0, and the eigenvalues of a suitable
matrix, called principal part, associated to the topological behavior of the dynamics
of f .

Indeed, one of the main invariants for attracting rigid germs is the following.
Given a germ f : (Cd, 0)→ (Cd, 0), it induces an action f∗ on the first fundamental
group π1(∆d \C(f∞)), where ∆d is a small open polydisc centered in 0, and C(f∞)
denotes the generalized critical set. If q is the number of irreducible components of
C(f∞) (thus f is said q-reducible), then π1(∆d \C(f∞)) ∼= Zq, and f∗ is represented
by a suitable matrix A ∈M(q × q,N). We shall call A the internal action of f , and
we shall say that f has invertible internal action if A is invertible inM(q × q,Q).
Moreover, up to permuting coordinates, we can suppose that

A =

(
Ir 0
C D

)
,

for a suitable r ≤ q. The matrix D ∈ M(p× p,N) is called principal part of f ,
and p = q − r its principal rank.

Now we can define the new resonance relation that arises in this case.

Definition. Let f : (Cd, 0) → (Cd, 0) be an attracting q-reducible rigid germ
with invertible internal action. Let λ = (λ1, . . . , λs)

T be the vector of non-zero
eigenvalues of df0, and D ∈M(p× p,N) the principal part of f . Then a monomial
xn with n = (n1, . . . , ns) and x = (x1, . . . , xs)

T is called topologically resonant for
f if λn is an eigenvalue for D.
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In this case, as well as for classic resonances, we get a finite number of topo-
logically resonant monomials.

Moreover, a holomorphic conjugacy result still holds.

Theorem. Let f : (Cd, 0) → (Cd, 0) be an attracting rigid germ with invertible
internal action of principal rank p, and set λ = (λ1, . . . , λs)

T the vector of non-zero

eigenvalues of df0. Then f is holomorphically conjugated to a map f̃ : (Cd, 0) →
(Cd, 0) of the form

f̃(x) =
(
λx≤s + δ(x≤s), αx

B
≤s+p

(
1 + g̃(x≤s)

)
, h̃(x)

)T
,

where x = (x1, . . . , xd)
T , x≤k := (x1, . . . , xk)

T , and δ = (δ1, . . . , δs)
T has only

resonant monomials.
Moreover α = (αs+1, . . . , αs+p)

T ∈ (C∗)p, g̃ = (gs+1, . . . , gs+p)
T where gk has

only topologically resonant monomials for every k, and h̃ = (hs+p+1, . . . , hd)
T .

Finally,
B =

(
C ′ D

)
,

where D denotes the principal part of f .

The main feature for this normal form is that now g̃ depends only on the first
s coordinates. In particular, the coordinates fk of f with k = s + 1, . . . , s + p
depends only on the first s + p coordinates. This allows for example to construct
in a suitable neighborhood of 0 ∈ Cd an f -invariant foliation of codimension s+ p,
induced by dx1 ∧ . . . ∧ dxs+p, that is actually a subfoliation of the f -invariant
foliation of codimension s induced by dx1 ∧ . . . ∧ dxs.

As a consequence of this result, we shall give the (almost) complete holomorphic
classification of q-attracting rigid germs in Cd with invertible internal action, for
q = d− 1 and q = d.

In particular, for d = 3 we get the classification for 2-reducible and 3-reducible
attracting rigid germs with invertible internal action, while for 0-reducible, i.e.,
invertible germs, the classification follows from the Poincaré-Dulac theorem.

This work is subdivided into 4 chapters. In the first one, containing just some
background material, we recall some notations and standard results on holomorphic
dynamics, algebraic geometry, algebraic topology, complex manifolds. The second
chapter is devoted to valuative tree theory, and the study of semi-superattracting
germs in C2. The third chapter deals with the classification of holomorphic rigid
germs in Cn, while the last chapter is dedicated to Kato varieties.
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Chapter 1

Background

1.1 Holomorphic Dynamics

1.1.1 Local holomorphic dynamics

In this section we shall recall a few definitions and known results in local discrete
holomorphic dynamics.

Local discrete holomorphic dynamics deals with holomorphic maps f : Cd → Cd
(with d ≥ 1 the dimension) with a fixed point at the origin 0 ∈ Cd. We are
interested into orbits of f , i.e., the behavior of the iterates f ◦n, in a neighborhood
of the fixed point, and hence we consider a germ f : (Cd, 0) → (Cd, 0). Usually
two such germs are considered to be equivalent if one can get one from another
through a “change of coordinates”.

Definition 1.1.1. Let f, g : (Cd, 0)→ (Cd, 0) be two holomorphic germs. We shall
say that f and g are (holomorphically, topologically, formally) conjugated
if there exists a (biholomorphism, homeomorphism, formal invertible map) φ :
(Cd, 0)→ (Cd, 0) such that

φ ◦ f = g ◦ φ.

Then one of the main goals of local holomorphic dynamics is to find “normal
forms”, i.e., a (possibly small) family of germs called normal forms, such that a
general germ can be conjugated to one of these.

It is not always possible to find explicit normal forms, but still there are some
objects, called “invariants”, very useful to distinguish two germs that are not con-
jugated.

Definition 1.1.2. Let End(Cd, 0) be the set of holomorphic germs of the form
f : (Cd, 0) → (Cd, 0). A map I : End(Cd, 0) → C, with C a suitable set, is called

1
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(holomorphic, topological, formal) invariant if I(f) = I(g) whenever f and
g are (holomorphically, topologically, formally) conjugated.

A set of invariants I is called complete if also the converse holds: two germs
f and g are conjugated if and only if I(f) = I(g).

Example 1.1.3. Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ. Then the
Jordan form of the differential df0 of f in 0 is a holomorphic and formal (but not
topological) invariant.

Definition 1.1.4. Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ. If f is
holomorphically (resp., formally) conjugated to its linear part, we shall say that f
is holomorphically (resp., formally) linearizable.

1.1.2 Local dynamics in one complex variable

We shall give here a short exposition of classical results in local holomorphic dy-
namics in one complex variable. For a complete exposition on this field, we refer
to [Mil06], [CG93] or [BHar].

Definition 1.1.5. Let f : (C, 0) → (C, 0) be a holomorphic germ with a fixed
point 0 ∈ C. We shall call multiplier the value λ = f ′(0). In particular, such a
germ can be written as a power series

f(z) = λz + a2z
2 + a3z

3 + . . . .

As we have seen in Example 1.1.3, the multiplier of a germ is a holomorphic and
formal conjugacy invariant. Depending on the multiplier, we have the following
subdivision of the set of germs in a few classes.

Definition 1.1.6. Let f : (C, 0) → (C, 0) be a holomorphic germ with multiplier
λ ∈ C. Then f is called

• attracting if |λ| < 1, and in particular it is called superattracting if λ = 0;

• repelling if |λ| > 1;

• rational neutral or parabolic if λ is a root of unity, and in particular it is
called tangent to the identity if λ = 1;

• irrational neutral or elliptic if |λ| = 1 but λ is not a root of unity.

The first result in (local) holomorphic dynamics was given then by Kœnigs
in 1884, and it is the classification of germs f : (C, 0) → (C, 0) in the (invert-
ible) attracting and repelling case (see [Kœn84] for the original paper, and [Mil06,
Theorem 8.2] for a modern exposition).
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Theorem 1.1.7 (Kœnigs). Let f : (C, 0) → (C, 0) be a holomorphic germ such
that the multiplier λ := f ′(0) is such that |λ| 6= 0, 1. Then f is holomorphically
conjugated to the linear part z 7→ λz.

Hence, every germ in the hypothesis of Theorem 1.1.7 (Kœnigs) is holomorphi-
cally (and hence formally) linearizable.

Then in 1904, Böttcher solved the superattracting case. See [Böt04] for the
original paper, and [Mil06, Theorem 9.1] for a modern exposition of the proof.

Theorem 1.1.8 (Böttcher). Let f : (C, 0) → (C, 0) be a holomorphic germ of
the form

f(z) = apz
p + ap+1z

p+1 + . . . ,

with p ≥ 2 and ap 6= 0. Then f is holomorphically conjugated to the map z 7→ zp.

The neutral case is trickier and probably more fascinating.
In the rational case, the first easy result is the following (see for example [Mar00,

Proposition 1.6]).

Proposition 1.1.9. Let f : (C, 0)→ (C, 0) a parabolic germ. Then f is holomor-
phically linearizable if and only if it is topologically linearizable, if and only if there
exists n such that f ◦n is a linear map.

This result already shows how the situation is not so trivial in the parabolic
case as it was in the attracting/repelling case, since a parabolic germ is almost
never linearizable.

From now on we shall focus on the tangent to the identity case: every parabolic
germ can be considered as a tangent to the identity germ up to taking a suitable
iterate.

Thanks to Proposition 1.1.9, a tangent to the identity germ f is (holomorphic,
topologically) linearizable if and only if f is the identity map.

Definition 1.1.10. Let f : (C, 0)→ (C, 0) be a tangent to the identity (holomor-
phic) germ, written on the form:

f(z) = z(1 + akz
k + ak+1z

k+1 + . . .),

with k ≥ 1 and ak 6= 0. Then k + 1 is called the parabolic multiplicity of f .

The parabolic multiplicity of a germ is actually a holomorphic, formal and topo-
logical invariant, and it is a complete invariant for the topological classification.

For the formal classification, it turns out that there exists another invariant,
called index.
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Definition 1.1.11. Let f : (C, 0)→ (C, 0) be a tangent to the identity (holomor-
phic) germ.

We shall call index of f the complex value

β :=
1

2πi

∫
γ

dz

z − f(z)
,

with γ a positive loop around 0.

Definition 1.1.12. A parabolic domain in C is a simply connected open domain
∆ such that 0 ∈ ∂∆.

A parabolic domain ∆ is said to be an attracting petal (resp., repelling
petal) for a tangent to the identity map f if f(∆) ⊂ ∆ and f ◦n(x)→ 0 for every
x ∈ ∆ (resp., the same for f−1).

For the dynamics of such germs, the main result is given by the following
theorem (see [Lea97a], [Lea97b]) and Fatou (see [Fat19] for the original papers,
and [Mil06, Theorems 10.7 and 10.9] for a modern exposition).

Theorem 1.1.13 (Leau, Fatou). Let f : (C, 0) → (C, 0) be a tangent to the
identity germ with parabolic multiplicity k+1. Then there exists k attracting petals,
and k repelling petals, such that in every petal f is holomorphically conjugated to
the map

z 7→ z + 1.

Distinct attracting petals are disjoint one to another, and the same holds for re-
pelling petals. Attracting and repelling petals form a punctured neighborhood of
0.

The holomorphic classification of tangent to the identity germs is very complex,
and depends on a third invariant (besides the parabolic multiplicity and the index),
called sectorial invariant, and introduced independently by Écalle and Voronin,
with different techniques. As a matter of fact, Écalle developed the theory of
“resurgent functions“ (see [Éca81a], [Éca81b], and [Éca85]), while Voronin used a
more analytic approach, studying Stokes phenomena (see [Vor81]).

Remark 1.1.14. Theorem 1.1.13 (Leau, Fatou) gives us k attracting petals P2j and
k repelling petals P2j+1 with j = 0, . . . , k − 1, that alternate to cover a punctured
neighborhood of the origin; moreover it gives 2k conjugations φj : Pj → C for
j = 0, . . . , 2k − 1 between f and the translation map z 7→ z + 1 when j is even,
and z 7→ z−1 when j is odd. In particular one can consider the transition maps in
the intersection of two adjacent petals, φ−1

j+1 ◦φj (where we set φ0 = φ2k). Roughly
speaking, the sectorial invariant describes the analytic behavior of the family of
these transition maps. Its moduli space is infinite-dimensional, and the sectorial
invariant is not easy to compute. For these reasons the research in this field is still
open, trying to find coarser but computable invariants for these germs.
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We will not deal with the neutral irrational case, that has its peculiarities;
in particular the holomorphic classification involves number theory, diophantine
conditions and other fields of mathematics. Just to give an idea of how these
aspects can merge together, if we set λ = e2πiα with α ∈ R \ Q the multiplier
of a germ f , then the dynamical behavior (linearization, existence of periodic
orbits near the fixed point, etc.) of f is strictly related to how α can be well
approximated by rational numbers, and this gives some diophantine conditions,
or even more complex conditions (for example the Brjuno condition or the Perez-
Marco condition) on α. We refer to [Mar00] for an exposition of this matter.

In the following we shall need the formal classification of germs in dimension
1, so we shall state it here, also for summing up all the cases we just described.

Proposition 1.1.15 (Formal classification in (C, 0)). Let f : (C, 0)→ (C, 0) be a
holomorphic germ, and denote by λ = f ′(0) the multiplier. Then

(i) if λ = 0, then f is formally conjugated to x 7→ xp for a suitable p ≥ 2;

(ii) if λ 6= 0, and λr 6= 1 for any r ∈ N∗, then f is formally conjugated to x 7→ λx;

(iii) if λr = 1, then there exist (unique) s ∈ rN∗ and β ∈ C such that f is formally
conjugated to x 7→ λx(1 + xs + βx2s).

1.1.3 Local dynamics in several complex variables

In this Subsection we shall fix some notations on holomorphic germs in higher
dimensions.

First of all, unless otherwise specified, we shall consider only dominant holo-
morphic germs.

Definition 1.1.16. Let f : (C2, 0) → (C2, 0) be a holomorphic germ. Then f is
dominant if det(dfp) is not identically zero.

As in the one dimensional case with the multiplier, we are interested into sub-
dividing holomorphic germs depending on (the eigenvalues, the Jordan form of)
the differential at 0 (see Example 1.1.3).

Definition 1.1.17. Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ, and let us
denote by Spec(df0) = {λ1, . . . , λd} the set of eigenvalues of df0. Then f is said:

• attracting if |λi| < 1 for i = 1, . . . , d;

• superattracting if df0 = 0;

• nilpotent if df0 is nilpotent (i.e., dfd0 = 0; in particular, superattracting
germs are nilpotent germs);
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• tangent to the identity if df0 = Id.

• hyperbolic if |λi| 6= 1 for every i; it is said a saddle, or Siegel hyperbolic
if it is hyperbolic and there is at least one eigenvalue with modulus smaller
than 1, and another with modulus greater than 1.

We shall also use the following definition in the 2-dimensional case.

Definition 1.1.18. Let f : (C2, 0) → (C2, 0) be a holomorphic germ. Then f is
said:

• semi-superattracting if Spec(df0) = {0, λ}, with λ 6= 0;

• of type (0, D) if Spec(df0) = {0, λ} and λ ∈ D, with D ⊂ C a subset of the
complex plane.

In particular the semi-superattracting germs are the ones of type (0,C∗).

Studying the dynamics of an attracting germ f : (Cd, 0)→ (Cd, 0), it is natural
to look at its basin of attraction U , and fundamental domains of U .

Definition 1.1.19. Let f : (Cd, 0) → (Cd, 0) be an attracting holomorphic germ
(with f(0) = 0), and B a ball in Cd where f is defined. We shall call the set

U = Uf (0) := {x ∈ B | f ◦n → 0}

the basin of attraction of f to 0.
If we take the quotient of U by the action of f , we get the space of orbits

U/〉f〈 of U . Then a fundamental domain of U is a open dense subset of the
space of orbits of U .

The study of holomorphic germs, even in dimension 2, is far to be complete,
and only a few classes have been classified, such has the attracting invertible germs.
Another class of holomorphic germs that has been classified (see [Fav00]) is the
one of attracting rigid germs (that contains all attracting invertible germs).

Definition 1.1.20. Let f : (C2, 0) → (C2, 0) be a (dominant) holomorphic germ.
We denote by C(f) = {z | det(dfz) = 0} the critical set of f , and by C∞(f) =⋃
n∈N f

−nC(f) the generalized critical set of f . Then a (dominant) holomorphic
germ f is rigid if:

(i) C∞(f) (is empty or) has simple normal crossings (SNC) at the origin; and

(ii) C∞(f) is forward f -invariant.
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Remark 1.1.21. In [Fav00], the condition (ii) is not explicitly stated in the defini-
tion of a rigid germ, but it is implicitly used. The second property does not follow
from the first one: if for example we consider the map f(z, w) = (λzp, z(1 + w2)),
with p ≥ 1 and λ ∈ C∗, the generalized critical set is {zw = 0}, but f(z, 0) =
(λzp, z) and hence C∞(f) is not forward f -invariant.

As anticipated in the introduction, rigid germs shall be the main object of
this thesis. We shall deal more deeply with (attracting) rigid germs in higher
dimensions in Chapter 3.

1.1.4 Parabolic curves

Studying the tangent to the identity case in dimension d ≥ 2, one would like to
find “petals” such as in dimension one. Parabolic domains and petals are objects
of dimension one, but they can be clearly generalized in higher dimensions.

Definition 1.1.22. A parabolic domain in Cd is a simply connected open do-
main ∆ ⊂ Cd such that 0 ∈ ∂∆.

We shall call d the dimension of the parabolic domain.
A parabolic domain ∆ is said to be attracting for a holomorphic map (germ)

f : (Cd, 0)→ (Cd, 0) if f(∆) ⊂ ∆ and f ◦n(x)→ 0 for every x ∈ ∆.

Sometimes it is not possible to find attracting parabolic domains for a (tangent
to the identity) germ f of maximal dimension, but we can try to find a parabolic
domain of dimension k ≤ d embedded in our space of dimension d.

Definition 1.1.23. A parabolic k-variety for a (tangent to the identity) germ
f : (Cd, 0) → (Cd, 0) at the origin is a injective holomorphic map ϕ : ∆ → Cd
satisfying the following properties:

(i) ∆ is a parabolic domain of dimension k;

(ii) ϕ is continuous at the origin, and ϕ(0) = 0;

(iii) ϕ(∆) is invariant under f , and f ◦n(z)→ 0 for every z ∈ ϕ(∆).

We shall call parabolic curves the parabolic 1-varieties.

1.1.5 Stable and unstable manifolds

In this subsection, we shall present a classical result in holomorphic dynamics, the
Stable/Unstable manifold theorem, stated for holomorphic maps, and its general-
ization, the Hadamard-Perron theorem. For references, see [Aba01a].

First of all, we recall what a dynamical system is.
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Definition 1.1.24. Let f : X → X a continuous map in a topological space X.
We shall call the pair (X, f) a (continuous, discrete) dynamical system.

Definition 1.1.25. Let (X, f) a dynamical system. then a subset U ⊆ X of X is
called forward invariant if f(U) ⊆ U , backward invariant if f−1(U) ⊆ U .

We shall define first the Stable set of a dynamical system (X, f).

Definition 1.1.26. Let (X, f) a dynamical system in a metric space X that fixes
a point p, and denote by ‖x‖ the distance between x and p.

Then we shall call the set

W s
f := {x ∈ X | lim

n→+∞
‖fn(x)‖ = 0}

the stable set for f (at p).

Defining the Unstable set is straightforward when f is invertible.

Definition 1.1.27. Let (X, f) a dynamical system in a metric space X where f
is a homeomorphism that fixes a point p.

Then we shall call the set
W u
f := W s

f−1

the unstable set for f (at p).

For defining the unstable set in the general case, we need a few definitions.

Definition 1.1.28. Let (X, f) be a dynamical system. The dynamical comple-
tion of (X, f) is the dynamical system (X̂, f̂), where

X̂ =
{
x̂ = (xn)n∈Z | X 3 xn+1 = f(xn) for all n ∈ Z

}
,

and f̂ is just the left shift f̂((xn)) := (f(xn)) = (xn+1).
We shall call a point x̂ ∈ X̂ a history (of x0), and we shall call canonical

projection the map π : X̂ → X defined by π(x̂) = x0.

Remark 1.1.29. If (X, f) is a dynamical system, and (X̂, f̂) is its dynamical
completion, then we have that f̂ is a homeomorphism of X̂. If moreover X is
endowed with a distance d, then X̂ inherits a distance function too. For example,
if d is bounded (that can be always be assumed, up to taking a distance that
induces the same topology), we can define

d(x̂, ŷ) :=
∑
n∈Z

and(xn, yn),

where
∑

n∈Z an < +∞.
Finally, if p is a fixed point for f : X → X, then the history p̂ = (p)n∈Z is a

fixed point for f̂ : X̂ → X̂.
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Definition 1.1.30. Let (X, f) be a dynamical system in a metric space X that
fixes a point p, and (X̂, f̂) its dynamical completion.

Then we shall call the set
W u
f := π(W u

f̂
)

the unstable set for f (at p), where W u
f̂

denotes the unstable set for f̂ at p̂ =

(p)n∈Z, and π : X̂ → X the canonical projection.

We shall obtain the Stable/Unstable manifold theorem as a corollary of the
Hadamard-Perron theorem, but to state the latter, we need another definition.

Definition 1.1.31. Given 0 < λ < µ, a linear map L : V → V of a normed vector
space (over C) admits a (λ, µ)-splitting if there is a decomposition V = E+⊕E−
such that L(E+) = E+, L(E−) ⊆ E−, ‖L(v)‖ ≤ λ ‖v‖ for all v ∈ E− and ‖L(v)‖ ≥
µ ‖v‖ for all v ∈ E+.

The dimensions dimE− and dimE+ are called the stable and unstable di-
mension of the splitting.

Theorem 1.1.32 (Hadamard-Perron, see, e.g., [Aba01a, Theorem 3.1.4]). Let
f : (Cd, 0) → (Cd, 0) be a holomorphic germ, and 0 < λ < µ such that df0 admits
a (λ, µ)-splitting Cd = E− ⊕ E+ of unstable dimension k.

Then, up to replacing λ and µ with λ(1+ε) < µ(1−δ), with ε, δ > 0 arbitrarily
small, there exists (locally at 0) a unique k-dimensional C1 manifold W+ and a
unique (d− k)-dimensional C1 manifold W− such that:

(i) 0 ∈ W+ ∩W−;

(ii) W± is tangent to E± at the origin;

(iii) f(W−) ⊆ W−, f(W+) = W+ and f |W+ is invertible;

(iv) ‖f(z)‖ ≤ λ ‖z‖ for all z ∈ W−, and ‖f(z)‖ ≥ µ ‖z‖ for all z ∈ W+;

(v) we have that z0 ∈ W− if and only if there are λ ≤ ν < µ and C > 0 such
that ‖f ◦n(z0)‖ ≤ Cνn ‖z0‖ for all n ≥ 1;

(vi) we have that z0 ∈ W+ if and only if there are λ < ν ≤ µ, C > 0 and an
history ẑ for z0 such that ‖z−n‖ ≤ Cν−n ‖z0‖ for all n ≥ 1;

(vii) the manifolds W± are of class C∞;

(viii) fix a neighborhood U of the origin where f is holomorphic; then the manifold
W+ (resp., W−) is a complex submanifold at all the points z such that there
exists an history ẑ of z such that pm ∈ U for all m ≤ 0 (resp., for all m ≥ 0).
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Theorem 1.1.33 (Stable-Unstable manifold Theorem, [Aba01a, Theorem
3.1.2]). Let f : (Cd, 0) → (Cd, 0) be a holomorphic germ, and 0 < λ < 1 < µ such
that df0 admits a (λ, µ)-splitting Cd = E− ⊕ E+ of unstable dimension k.

Then the stable set W s and the unstable set W u are (resp., (d−k)-dimensional
and k-dimensional) complex manifolds forward (resp., backward) invariant for f .

1.2 Algebraic Geometry

1.2.1 Divisors and Line Bundles

In this section we just set some notations. For a basic exposition of this subject,
see [Sha94, Chapter III, Section 1] and [GH78, Chapter 1, Section 1].

Definition 1.2.1. Unless otherwise stated, we shall mean by n-variety a compact
complex (possibly singular) manifold of complex dimension n, and by n-manifold
a smooth n-variety. Since we shall always consider divisors in non-singular varieties,
with divisor we shall mean either a Weil or Cartier divisor. If D is a divisor in a
manifold X, we shall denote by [D] the (complex) line bundle associated to D.

We shall use additive notations for line bundles: if L1 and L2 are two line
bundles over X, we shall denote L1 + L2 := L1 ⊗ L2 their tensor product.

Hence with our notations, if L is a line bundle, than its dual L∗ = −L, while if
Li = [Di] for i = 1, 2, then L1 + L2 = [D1 +D2].

We shall usually consider divisors up to linear equivalence, and line bundles
up to isomorphism. We shall denote by Pic(X) the Picard group of X, i.e., the
group (with respect to the tensor product) of holomorphic line bundles over X up
to isomorphism.

We shall also use the following property of divisors.

Proposition 1.2.2. Let X be a complex variety, D a divisor in X, and V ⊂ X a
hypersurface that intersects transversely the support of D. Then

[D]|V = [D ∩ V ].

1.2.2 Blow-ups and Modifications

Definition 1.2.3. Let X be a complex manifold of (complex) dimension n ≥ 2,
and let Y ⊂ X be a complex submanifold of dimension 0 ≤ k ≤ n−2. We denote by
E := P(NY⊂X) the projectivization of the normal bundle of Y in X. Then E → Y
is a bundle over Y with fiber Pn−k−1. We shall denote by Ep := P(TpX/TpY ) the
fiber of E → Y in a point p.
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We can equip X̃ := X \ Y ∪ E with a complex structure. Every chart (U, φ)

for X that does not intersect Y will be a chart for X̃ too. If (U, φ) is a chart of X
that intersects Y , and we write φ = (x1, . . . , xn), we can suppose that φ(Y ∩U) =
{xk+1 = . . . = xn = 0}. Then E|Y ∩U has as coordinates(

x1, . . . , xk,

[
∂

∂xk+1

: . . . :
∂

∂xn

])
.

We shall consider Xj = {xj = 0} ⊂ U , Lj = P(ker dxj) = {∂/∂xj = 0} ⊂ E|Y ∩U ,
and Uj := (U\Xj)∪(E|Y ∩U \Lj), for j = k+1, . . . , n. Then we define χj : Uj → Cn,
as

χj(q)h =

{
xh(q) if h ≤ k or h = j,
xh(q)/xj(q) if h > k and h 6= j,

if q ∈ U \Xj; and

χj([v])h =

{
0 if h ≤ k or h = j,
d(xh)p(v)/d(xj)p(v) if h > k and h 6= j,

if [v] ∈ Ep \ Lj.
So X̃, with the natural projection π : X̃ → X, is called the blow-up of X

along Y .
The manifold X̃ is called the total space of the blow-up, the submanifold

Y ⊂ X is called the center, while E = π−1(Y ) ⊂ X̃ is called the exceptional
divisor.

Definition 1.2.4. Let X be a complex n-manifold, Y a complex submanifold of
dimension k, and let π : X̃ → X be the blow-up of X along Y . Let moreover C
be an analytic subset of X not contained into Y . The strict transform of C is
the set C̃ = π−1(C \ Y ) ⊂ π−1(C).

Definition 1.2.5. Let X be a complex n-manifold, and p ∈ X a point. We call
a holomorphic map π : Y → (X, p) a modification over p if π is a composition
of blow-ups, with the first one being a point blow-up along p, and such that π is
a biholomorphism outside π−1(p). We call π−1(p) the exceptional divisor of π,
and we call every irreducible component of the exceptional divisor an exceptional
component. We shall denote by Γ∗π the set of all exceptional components of a
modification π.

We shall call a point p ∈ π−1(0) on the exceptional divisor of a modification
π : X → (Cn, 0) an infinitely near point (we shall consider 0 ∈ Cn as an infinitely
near point too).

We shall also call weight of a modification π the number of blow-ups the
modification is composed by, or equivalently the number of irreducible components
of the exceptional divisor of π, and we shall denote it by weight(π).
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Remark 1.2.6. The situation in dimension 2 is much simpler. Indeed, we can
blow-up only points, and then the exceptional components are all biholomorphic
to P1. Moreover if π : Y → (X, p) is a modification over a complex 2-manifold,
then a point in the exceptional divisor can belong to either one or two exceptional
components.

Definition 1.2.7. We shall denote by B the set of all modifications over 0 ∈ C2.
A point p ∈ E = π−1(0) for a π ∈ B is called free point if it belongs to only
one exceptional component, or equivalently if it is a smooth point in E; it is
called satellite point if it belongs to two exceptional components (that meet
transversely), and hence it is a critical point in E. Satellite points are also known
as corners in literature.

We can equip B with a partial ordering.

Definition 1.2.8. Let π1, π2 ∈ B be two modifications; we say that π1 D π2 if
π1 = π2 ◦ π̃, with π̃ a composition of point blow-ups over the exceptional divisor
of π2.

This partial order could be defined also for modifications in higher dimensions,
giving to them the structure of a poset. But in the 2-dimensional case, B is not
simply a poset, but it has better properties.

Definition 1.2.9. A poset B is a direct system if every (non-empty) finite subset
of B admits a supremum; it is said an inverse system if every (non-empty) subset
of B admits an infimum.

Proposition 1.2.10 ([FJ04, Lemma 6.1]). The set of modifications (B,E) is a
direct and an inverse system.

Definition 1.2.11. Let π1, π2 ∈ B be two modifications. We shall call the supre-
mum π1 ∨ π2 the join between π1 and π2, while we shall denote their infimum by
π1 ∧ π2.

Dual Graph and Dual Complex

Definition 1.2.12. Let X be a complex n-manifold, and D a SNC divisor in X.
Let D1, . . . , Dh be all the irreducible hypersurfaces such that D =

∑h
i=1 aiDi. We

shall call dual complex of D the complex ΓD constructed as follows. The vertices
of ΓD are all the components D1, . . . Dh. Moreover Di1 , . . . , Dik are connected by
a k − 1-simplex for each irreducible component of Di1 ∩ . . . ∩Dik 6= ∅.

Definition 1.2.13. Let X be a complex 2-manifold, and D a SNC divisor in X.
Then the dual complex of D is called dual graph of D.
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Definition 1.2.14. Let π be a modification over (Cn, 0). We shall call dual
complex (resp., dual graph if n = 2) of π the dual complex (resp., dual graph)
of its exceptional divisor E = π−1(0).

Remark 1.2.15. Let us focus on the 2-dimensional case. We can construct the
dual graph of a modification recursively on the number of point blow-ups that
make up the modification.

Let π ∈ B be a modification (over 0). Then the first blow-up is the blow-up of
the origin. This simply gives us an exceptional component E0, and no edges. Now
suppose that we have constructed the dual graph Γ∗π1 of a modification π1 Eπ, and
analyze a point blow-up over π−1

1 (0). If p is a free point, then it belongs to just an
exceptional component, say E: we have to add a vertex (Ep) and an edge between
E and Ep. If p is a satellite point, then it belongs to two exceptional components,
say E and F : we have to add a vertex (Ep), and change the edge between E and
F with two edges, one between E and Ep, and another between Ep and F .

1.2.3 Canonical and Normal Bundles

We shall just fix some notations for canonical and normal bundles.

Definition 1.2.16. Let X be a compact complex n-manifold, and V ⊂ X a
submanifold of X. Then the normal bundle of V in X is the bundle NV⊂X :=
TX|V /TV . We shall usually use the notation NV instead of NV⊂X if the ambient
space is clear from the contest.

Definition 1.2.17. Let X be a compact complex n-manifold. Then the canonical
bundle of X is the linear bundle KX := ∧nT ∗X, where T ∗X is the holomorphic
cotangent bundle over X.

Example 1.2.18. Here are some examples for canonical bundles in easy cases.

• The canonical bundle of Pn is KPn = −(n+ 1)[H], where H is an hyperplane
in Pn (see [GH78, p.146]).

• If we consider X and Y two complex varieties, then we have KX×Y = π∗1KX+
π∗2KY , where π1 and π2 are the projections from X × Y respectively to X
and Y .

The next proposition computes the canonical class of a blown-up manifold; for
proofs, see [GH78, p.608].

Proposition 1.2.19. Let X be a compact complex manifold of dimension n, and
V ⊂ X a submanifold of dimension k. Let π : X̃ → X be the blow-up of X along
V . Then for the canonical classes, we have

KX̃ = π∗KX + (n− k − 1)E,
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where E = π−1(V ) denotes the exceptional divisor of π.

We shall now state two classical results, about the connection between normal
and canonical bundles, known as Adjunction Formulae. For proofs, see for example
[GH78, pp. 146–147].

Proposition 1.2.20 (Adjunction formula 1). Let X be a compact complex mani-
fold, and V ⊂ X a smooth analytic hypersurface. Then

NV = [V ]|V ,

where NV is the normal bundle of V in X, and [V ] is the line bundle on X asso-
ciated to V as a divisor of X.

Proposition 1.2.21 (Adjunction formula 2). Let X be a compact complex mani-
fold, and V ⊂ X a smooth analytic hypersurface. Then

KV = (KX ⊗ [V ])|V .

We shall need the computation of the canonical bundle for ruled surfaces over
P1: we shall discuss about it on Subsection 1.4.4.

1.2.4 Intersection numbers

In this subsection we shall recall a few properties of intersection numbers. See
[Sha94, Chapter IV] for proofs in dimension n = 2 and further details; the extension
to higher dimensions is straightforward.

Definition 1.2.22. Let X be a complex n-manifold, and D1, . . . , Dn some divisors.
We shall denote by D1 ·. . .·Dn ∈ Z the intersection number between D1, . . . , Dn.

Remark 1.2.23. Intersection numbers are invariant with respect to linear equiv-
alence (see [Sha94, Chapter IV, Section 1.3 and 1.4]).

Proposition 1.2.24 ([Sha94, Chapter IV, Section 3.2, Theorem 2.(i)]). Let π :
Y → X be a regular birational map between n-varieties. Let D1, . . . , Dn be divisors
in X. Then

π∗(D1) · . . . · π∗(Dn) = D1 · . . . ·Dn.

Proposition 1.2.25 ([Sha94, Chapter IV, Section 3.2, Theorem 2.(ii)]). Let π :
Y → X be a regular birational map between n-varieties, and denote by E the
exceptional divisor and by L the indeterminacy set of π−1. Let D1, . . . , Dk be
divisors in X, and E1, . . . , En−k be divisors in Y . Assume that 1 ≤ k ≤ n−1, that
there is at least one of the Ej’s whose components are contained in E, and that
one of the Di’s is linearly equivalent to a divisor that does not intersect L. Then

π∗(D1) · . . . · π∗(Dk) · E1 · . . . · En−k = 0.
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Remark 1.2.26. If the map π in Proposition 1.2.25 is such that the indeterminacy
set L of π−1 consists in a finite number of points, then every Di as in the statement
of the Proposition is linearly equivalent to a divisor that does not intersect L (see
[Sha94, Chapter III, Section 3.1, Theorem 1]), so the last condition is always
fulfilled. For example, it happens when π is a composition of blow-ups, whose
centers are in the exceptional divisor of the previous blow-up, and the first one is
over a point of X.

Proposition 1.2.27. Let X be an n-manifold, and let D1, . . . , Dn be divisors in
X. Then

D1 · . . . ·Dn = (D1 · . . . ·Dn−1)|Dn.

Corollary 1.2.28. Let X be a surface, C a curve in it, and π : X̃ → X the blow-
up of X in a smooth point p of C. Let us denote by E the exceptional divisor, and
by C̃ the strict transform of C. Then

E · E = −1, C̃ · C̃ = C · C − 1.

Proof. Since p is a smooth point in C, then π∗C = C̃+E and C̃ meets transversely
E in a point, and hence C̃ · E = 1. Hence applying Proposition 1.2.25 we get

0 = π∗C · E = (C̃ + E) · E = 1 + E · E

and hence E · E = −1. Applying then Proposition 1.2.24 we get

C · C = π∗C · π∗C = (C̃ + E) · (C̃ + E) = C̃ · C̃ + 2C̃ · E + E · E = C̃ · C̃ + 1,

and we are done.

Corollary 1.2.29. Let X be a 3-manifold, and D,E be two divisors in X. Then
we have

D ·D · E =D|E · D|E
=D|D · E|D = ND⊂XE|D.

In particular if D = E we get

D ·D ·D = D|D · D|D = ND⊂X · ND⊂X .

1.2.5 Valuations

Definition 1.2.30. LetR be a ring (commutative, with unity), K its quotient field,
and Γ an abelian totally ordered group. A Krull valuation is a map ν : K∗ → Γ
such that:
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(i) ν(φψ) = ν(φ) + ν(ψ) for all φ, ψ ∈ K∗;

(ii) ν(φ+ ψ) = min{ν(φ), ν(ψ)} for all φ, ψ ∈ K∗;

(iii) ν(1) = 0.

We shall call ν centered if ν(m) > 0. We will call ν(K∗) (resp. ν(R∗)) the value
group (resp. value semi-group) of ν.

Two Krull valuations ν1 : K∗ → Γ1 and ν2 : K∗ → Γ2 are equivalent (ν1 ∼ ν2)
if there exists a strictly increasing homomorphism h : Γ1 → Γ2 such that h◦ν1 = ν2.

Remark 1.2.31. Let R be a ring (commutative, with unity), and K its quotient
field. If ν : R∗ → Γ is a map such that (i), (ii) and (iii) of Definition 1.2.30 holds,
then there exists an unique valuation ν : K∗ → Γ that coincides with the given
map on R∗.

Definition 1.2.32. Let K be a field (the main example will be K = C((x, y))).
A valuation ring over K is a local ring S with quotient field K and such that if
x ∈ K∗ then x ∈ S or x−1 ∈ S.

We can associate a valuation ring to every Krull valuation: if ν : K → Γ is a
Krull valuation, then Rν := {ν ≥ 0}∪{0} is a valuation ring over K (with maximal
ideal {ν > 0}). Vice versa, from a valuation ring S over K we can construct a
Krull valuation νS as follows: we say that x ∼S y if there exists u unit in S such
that x = uy. Then the projection νS : K∗ → K∗/∼S defines a Krull valuation. If
we consider Krull valuations up to equivalence, this correspondence is 1-to-1, and
centered Krull valuations correspond to valuation rings S such that R ∩ mS = m
(with mS the maximal ideal of S).

Definition 1.2.33. Let ν : K∗ → Γ be a Krull valuation. We define:

• the rank rk ν of ν as the Krull dimension of Rν ;

• the rational rank ratrk ν of ν as ratrk ν := dimQ(ν(K∗)⊗Z Q);

• the transcendence degree trdeg ν of ν as the transcendence degree of kν :=
Rν/mν over C.

For proofs and further details on valuations, see [ZS75b, Part VI].

1.3 Algebraic Topology

In this section we shall just recall a few classical results on homotopy, homology
and cohomology groups. For references, see [Hat02].
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Definition 1.3.1. Let X be a topological space. We shall denote by π1(X) the
first homotopy group of X.

Theorem 1.3.2 (Van Kampen Theorem). Let X be a (path-connected) topo-
logical space, decomposed as X = A ∪ B where A and B are two path-connected
open subsets of X such that A ∩ B is path-connected. Let us consider the first
fundamental groups with respect to a base point x0 ∈ A ∩B. Then

π1(X) ∼=
(
π1(A) ∗ π1(B)

)
/N ,

where ∗ denotes the free product, and N is the normal subgroup generated by
iA(g)iB(g)−1 for every g ∈ π1(A ∩ B), where iA : π1(A ∩ B) → π1(A) and
iB : π1(A ∩B)→ π1(B) are the homomorphisms induced by the inclusions.

Definition 1.3.3. Let X be a topological space. We shall denote by Hk(X) the
k-homology group (with coefficients in Z), and by Hk(X) the k-cohomology

group. We shall denote by H̃0(X) (resp., H̃0(X)) the reduced 0-homology (resp.
0-cohomology) group.

Definition 1.3.4. Let X be a topological space. For every k ∈ N, we shall denote
by bk the dimension of Hk(X) the k-homology group. The number bk is called k-th
Betti number.

We shall see now a very powerful tool to compute Homology and Cohomology
groups, the Mayer Vietoris Sequence (in Homology and Cohomology, see [Hat02,
pp: 149–153]).

Theorem 1.3.5 (Mayer Vietoris Sequence in Homology). Let X be a topo-
logical space, and A,B ⊂ X two subspaces such that X is the union of the interiors
of A and B. Then we have the long exact sequence

...
...

...
...

→ Hn(A ∩B) → Hn(A) ⊕ Hn(B) → Hn(A ∪B) →
→ Hn−1(A ∩B) → Hn−1(A) ⊕ Hn−1(B) → Hn−1(A ∪B) →

...
...

...
...

→ H0(A ∩B) → H0(A) ⊕ H0(B) → H0(A ∪B) → 0.

The Mayer Vietoris Sequence holds also for the reduced homology, hence by replac-
ing H̃0 instead of H0.

Theorem 1.3.6 (Mayer Vietoris Sequence in Cohomology). Let X be a
topological space, and A,B ⊂ X two subspaces such that X is the union of the
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interiors of A and B. Then we have the long exact sequence

0 → H0(A ∪B) → H0(A) ⊕ H0(B) → H0(A ∩B) →
→ H1(A ∪B) → H1(A) ⊕ H1(B) → H1(A ∩B) →

...
...

...
...

→ Hn(A ∪B) → Hn(A) ⊕ Hn(B) → Hn(A ∩B) →
...

...
...

... .

The Mayer Vietoris Sequence holds also for the reduced cohomology, hence by re-
placing H̃0 instead of H0.

Theorem 1.3.7 (Poincaré Duality, [Hat02, Theorem 3.30]). Let X be a closed
orientable n-manifold. Then

Hk(X) ∼= Hn−k(X)

for all k = 0, . . . , n.

1.4 Compact Complex Varieties

1.4.1 Minimal models

Definition 1.4.1. Here we shall consider n-manifolds, i.e., compact complex smooth
manifolds of complex dimension n. In this setting, we shall refer to 1-manifolds as
curves, and to 2-manifolds as surfaces.

The first step that has been found to be successful to classify 2-manifolds was
to reduce ourselves to surfaces that do not arise from others by blowing-up: these
surfaces are called “minimal models”.

Definition 1.4.2. A n-manifold X is called minimal model if does not exist a
n-manifold Y and a modification π : X → Y .

Theorem 1.4.3 (Castelnuovo-Enriques Criterion,[GH78, p.476]). Let X be a
2-manifold, and D ⊂ X a rational curve of self-intersection −1. Then there exists
a 2-manifold Y such that X is the total space of the blow-up π : X → Y of a point
p ∈ Y , and D = π−1(p).

Remark 1.4.4. Clearly also the converse of Theorem 1.4.3, since the exceptional
divisor of a point blow-up in dimension 2 has always self-intersection −1. Hence
in dimension 2 we can define minimal model as a 2-manifold that does not have
rational curves with self-intersection −1.



1.4 Compact Complex Varieties 19

1.4.2 Kodaira Dimension

Then the second step for a modern exposition of the classification of surfaces is to
divide them with respect to a birational invariant, called “Kodaira dimension”.

Definition 1.4.5. Let X be a n-manifold. For every m ∈ N∗, we shall call m-th
plurigenera the dimension

Pm := h0
(
X,O (mKX)

)
of the space of holomorphic sections of the line bundle mKX , where KX is the
canonical bundle of X.

Definition 1.4.6. Let X be a n-manifold. The Kodaira dimension of X is

kod (X) = min{k | Pm = O(mk) for m→ +∞}.

The Kodaira dimension tells us somehow how much the canonical bundle is
ample.

When Pm = 0 for every m ≥ 1, with this definition, the Kodaira dimension is
naturally defined to be −∞. There are other definitions for the Kodaira dimension,
where this case is called of Kodaira dimension −1. In the literature, both notations
are used.

Now we shall state some properties of the Kodaira dimension (see [BPVdV84,
Chapter I, Section 7]).

Proposition 1.4.7. Let X be a n-manifold. Then the Kodaira dimension kod (X)
of X is a birational invariant, and

kod (X) ∈ {−∞, 0, . . . , n}.

Definition 1.4.8. Let X be a n-manifold. The canonical graded ring of X is
the graded ring

RX :=
∞⊕
m=0

H0
(
X,O (mKX)

)
.

Proposition 1.4.9. Let X be a n-manifold. Then

kod (X) = trdegCRX − 1,

where trdegC denotes the transcendence degree over C.

In dimension 1, the Kodaira dimension can be easily computed, obtaining the
following result (see [Bea96, Example VII.2]).
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Proposition 1.4.10. Let X be a 1-manifold, i.e., a compact complex Riemann
surface. If g(X) is its genus, then

• kod (X) = −∞ if and only if g(X) = 0, and hence X ∼= P1.

• kod (X) = 0 if and only if g(X) = 1, and hence X is a complex torus.

• kod (X) = 1 if and only if g(X) ≥ 2.

Definition 1.4.11. A n-manifold X with Kodaira dimension kod (X) = n is called
of general type.

In dimension 2, surfaces of general type are not completely understood. There
are results on the structure of the moduli spaces, but it seems not easy to compute
them for all the cases.

However for Kodaira dimension 1 and 0 the classification is done and classical,
while for Kodaira dimension −∞, only one case is still not completely understood.

1.4.3 Class VII

Definition 1.4.12. A surface X is called of class VII if it has Kodaira dimension
kod (X) = −∞ and first Betti number b1 = 1. If moreover X is a minimal model,
it is called of class VII0.

In particular, class VII surfaces are not Kähler, thanks to the next proposition
(see for example [Wel08, Corollary 5.2]).

Proposition 1.4.13. Let X be a compact Kähler manifold. Then odd Betti num-
bers are even.

Then, when the second Betti number b2 = 0, these surfaces have been com-
pletely classified, thanks to the work of Kodaira ([Kod64], [Kod66]), Inoue ([Ino74]),
Bogomolov ([Bog76]), Li, Yau and Zheng ([LYZ94]), Teleman ([Tel94]).

For b2 > 0, the classification is not completed yet. Before describing the known
results, we need a definition.

Definition 1.4.14. Let X be a n-manifold. A spherical shell is a holomorphic
embedding i : V ↪→ X, where V is a neighborhood of S2n−1 = ∂B2n ⊂ Cn. A
spherical shell is said to be global (or GSS) if X \ i(V ) is connected; it is said to
be local otherwise.

Remark 1.4.15. While any n-manifold admits a local spherical shell, the existence
of a global spherical shell is not always possible. For example if n = 1, a global
spherical shell exists only when g ≥ 1, where g denotes the genus.
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Kato introduced a construction method for surfaces of class VII0 with b2 > 0,
called Kato surfaces (see [Kat78]). For these surfaces, the following properties
hold.

Theorem 1.4.16 (Kato). Let X be a surface of class VII0 with b2 = b2(X) > 0.
Then X admits at most b2 rational curves. If moreover X admits a GSS, then X
has exactly b2 rational curves.

Kato conjectured that the converse should also be true. This result has been
proved by Dloussky, Oeljeklaus and Toma (see [DOT03]).

Theorem 1.4.17. If X is a surface of class VII0 with b2 = b2(X) > 0 and with b2

rational curves, then X admits global spherical shells.

There are not known examples of surfaces X of class VII0 that do not admit
global spherical shells, and it has been conjectured that there are none.

1.4.4 Ruled Surfaces

In the following we shall need some knowledge about another class of surfaces
which arise as exceptional divisors of blow-up (of curves).

Definition 1.4.18. A surface X is called ruled surface over a curve C if it is
the total space of a fiber bundle π : X → C with projective lines P1 as fibers. If
moreover C ∼= P1 is a rational curve, then X is called rational.

The next proposition tells us that all fiber bundles can be taken as projectiviza-
tion of vector bundles. For proofs, see [Bea96, Proposition III.7].

Proposition 1.4.19. Every ruled surface over a curve C is isomorphic to the
projectivization P(E) of a holomorphic vector bundle E of rank 2 over C. Two
such surfaces P(E) and P(F ) are isomorphic if and only if there exists a line
bundle L over C such that E ∼= F ⊗ L.

As we shall see, ruled surfaces are surfaces for which the minimal model is not
unique. For the proof of the next proposition, see [Bea96, Chapter III].

Proposition 1.4.20. All ruled surfaces over a curve C are birationally equivalent
to C × P1.

Definition 1.4.21. In the following, we shall need only to blow-up rational curves,
and hence we shall see only rational ruled surfaces.

The following proposition tells us the structure of holomorphic line bundles
over P1. For proofs, see [Bea96, Proposition III.15], or [GH78, p. 516].
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Proposition 1.4.22. Any holomorphic line bundle E of rank r over P1 is decom-
posable, i.e., E ∼= L1 ⊕ . . .⊕ Lr for suitable line bundles Li.

Definition 1.4.23. For every k, h ∈ Z, we shall denote by Fk,h the rational ruled
surface

Fk,h := P(O (k)⊕O (h)).

We shall usually denote by H the fiber of a point, L0 = P(O (k) ⊕ 0) and L∞ =
P(0⊕O (h)), considered as divisors of Fk,h.

For every n ≥ 0, we shall denote by Fn the rational ruled surface

Fn := P(O (n)⊕O (0)) = Fn,0. (1.1)

Remark 1.4.24. In the literature, the notation Fn := F0,n is perhaps more used.
Given a chart C ⊂ P1, the ruling over C is trivial, and we have C× P1. For every
c ∈ P1 we can consider a section Lc = {(z, c) ∈ C × P1} and extend it in Fn.
Then the notation is consistent, i.e., L0 and L∞ defined here are the same as in
Definition 1.4.23. We chose notations in order to have L∞ to be the “special curve“
with respect to other curves Lc, c ∈ C, see Proposition 1.4.26.

Corollary 1.4.25. Any rational ruled surface over P1 is isomorphic to Fn for a
suitable n ≥ 0. The rational ruled surface Fk,h is isomorphic to Fn if and only if
n = |k − h|.

Proposition 1.4.26 ([Bea96, Proposition IV.1]). Let Fn be the rational ruled sur-
face defined by (1.1). Then

(i) Pic(Fn) ∼= ZH ⊕ ZL0, where H ·H = 0, H · L0 = 1 and L0 · L0 = n.

(ii) If n > 0, then L∞ is the unique curve with negative self intersection, L∞ =
L0 − nH, and hence H · L∞ = 1 and L∞ · L∞ = −n.

(iii) Fn ∼= Fm if and only if n = m. Fn is a minimal model for every n 6= 1. F1 is
isomorphic to P2 blown-up once in a point.

Remark 1.4.27. We can explicitly construct a birational map between rational
ruled surfaces.

Let Fn be a rational ruled surface, and H,L0, L∞ as in Definition 1.4.23. We
take X the blow-up of Fn at a point p in a fiber H. Thanks to Corollary 1.2.28,
we have that H̃ · H̃ = −1, where H̃ ∼= P1 is the strict transform of H; moreover, if
we denote by E the exceptional divisor, we have E · E = −1. Finally, if p ∈ L∞,
then the strict transform L̃∞ of L∞ is such that L̃∞ · L̃∞ = −n− 1.

Thanks to Theorem 1.4.3, we can then blow-down H̃, obtaining a surface Y .
We shall denote by E ′ and L′∞ the projections of E and L̃∞ respectively. If p ∈ L∞,
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then L̃∞ does not intersect H̃, and hence L′∞ · L′∞ = −n − 1; otherwise, we have
L′∞ · L′∞ = −n+ 1. In both cases E ′ · · ·E ′ = 0. If we denote by pr : Fn → L∞ the
projection given by the ruled surface structure, then we can define pr′ : Y → L′∞
by pr′ = pr outside E ′, and pr′(E) equal to the point in L′∞ ∩ E ′.

Then Y is a ruled surface, and thanks to Corollary 1.4.25 and Proposition
1.4.26, we have that Y ∼= Fn+1 if p ∈ L∞, and Y ∼= Fn−1 if p 6∈ L∞ (if n > 0, while
Y ∼= F1 if n = 0).

Finally, we shall need the computation on the canonical bundle for rational
ruled surfaces (see for example [Bea96, Proposition III.18]).

Proposition 1.4.28. Let Fn be the ruled surface, and H, L0, L∞ the divisors in
it defined as in Definition 1.4.23.

Then the canonical bundle is

KFn = (−2− n)[H]− 2[L∞] = (−2 + n)[H]− 2[L0].





Chapter 2

Dynamics in 2D

2.1 The Valuative Tree

2.1.1 Tree Structure

In this section we shall work with a given totally ordered set Λ (typical examples
of Λ are R or Q or N), that will be the model of the tree.

Definition 2.1.1. Let (T ,≤) be a poset; then a totally ordered subset S ⊆ T is
full if for every σ1, σ2 ∈ S and τ ∈ T such that σ1 ≤ τ ≤ σ2, then τ ∈ S.

Definition 2.1.2. Let (T ,≤) be a poset; it is a (non-metric) Λ-tree if:

(T1) there exists an unique minimal element τ0 ∈ T , called the root of T ;

(T2) for every τ ∈ T , the set {σ ∈ T | σ ≤ τ} is isomorphic (as ordered sets) to
an interval of Λ;

(T3) every totally ordered full subset S ⊆ T is isomorphic (as ordered sets) to an
interval of Λ.

The third condition is equivalent to:

(T4) for every S ⊆ T , without upper bounds in T , there exists an increasing
(countable) sequence in S without upper bounds in T .

Maximal elements of T are called ends.
A Λ-tree is complete if every increasing (countable) sequence has an upper

bound in T .

Now we fix Λ = R; using the completeness of R, we can define more objects in
an R-tree.

25
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Definition 2.1.3. Let (T ,≤) be an R-tree. For every subset S ⊆ T , we can define∧
σ∈S σ as the infimum over the elements in S (it exists thanks to the completeness

of R). Then we define the (closed) segment between τ1 and τ2 as:

[τ1, τ2] := {τ ∈ T | τ1 ∧ τ2 ≤ τ ≤ τ1 or τ1 ∧ τ2 ≤ τ ≤ τ2},

and analogously the semi-open and open segments [τ1, τ2), (τ1, τ2).

We can define tangent vectors on a point of an R-tree.

Definition 2.1.4. Let (T ,≤) be an R-tree, and τ ∈ T a point. We say that
σ1, σ2 ∈ T \ {τ} are equivalent (σ1 ∼ σ2) if and only if (τ, σ1] ∩ (τ, σ2] 6= ∅.
We call TτT := T \ {τ}/ ∼ the tangent space of T over τ , and we denote by
−→v = [σ] ∈ TτT a tangent vector over τ (represented by σ).

The point τ is a terminal point, a regular point or a branch point if TτT
has 1, 2 or more than 2 tangent vectors respectively.

Using tangent vectors we can define a topology on an R-tree.

Definition 2.1.5. Let (T ,≤) be an R-tree; for every point τ ∈ T and tangent
vector −→v = TτT , define:

Uτ (
−→v ) := {σ ∈ T | −→v = [σ]}.

This sets are the prebasis of a topology on T , called the weak topology on T .

Definition 2.1.6. Let (T ,≤) an R-tree. For every totally ordered segment I =
[τ1, τ2] in T , we can construct a retraction from T to I, defined by:

πI(σ) =

{
σ ∧ τ2 if σ(∧τ2) ≥ τ1 ,
τ1 otherwise.

It can be easily seen that the weak topology is the weakest one for which all
retractions are continuous.

Remark 2.1.7. From an N-tree, we can easily obtain an R-tree by “joining points”;
we can do it even from a Q-tree, completing the Q-tree to an R-tree with a con-
struction similar to the completion of Q to R (see [FJ04, Proposition 3.12]). So we
can extend all these definitions from R-trees to N-trees and Q-trees, considering
the latter trees as embedded in R-trees.

Definition 2.1.8. Let (T ,≤) be a Λ-tree; a parametrization of T is an increasing
(or decreasing) map α : T → Λ whose restriction to any full, totally ordered subset
of T gives a bijection onto an interval of Λ.

When Λ = R, it is sometimes useful to consider parametrizations α : T →
R = [−∞,+∞]. It can be easily seen that all parametrizations are lower semi-
continuous with respect to the weak topology (see [FJ04, Proposition 3.8]).
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Tree Maps

We introduced the objects, Λ-trees; now we define morphisms.

Definition 2.1.9. Let (T ,≤) and (S,≤) be Λ-trees, with roots τ0 and σ0 respec-
tively. A map Φ : T → S is called a tree morphism if Φ induces an order
preserving bijection of [τ0, τ ] onto [σ0,Φ(τ)] for every τ ∈ T .

If Φ is also a bijection, then we call it a tree isomorphism.

For our purposes, we need a larger family of maps between trees than mor-
phisms: for complete R-trees, we can define tree maps.

Definition 2.1.10. Let (T ,≤) and (S,≤) be two complete R-trees, and F : T → S
a map. F is called tree map if the restriction f |I : I → S is weakly-continuous
for every segment I ⊆ T . A tree map is regular if any segment I ⊆ T can be
decomposed into finitely many segments on each of which F is a homeomorphism
onto its image.

Remark 2.1.11. A tree map F : T → T naturally induces a tree map FI : I → I
for every totally ordered segment I, by setting FI := πI ◦ F |I , where πI is the
retraction from T to I.

In the next sections, we will need a fixed point theorem for tree maps; we will
state the result here.

Definition 2.1.12. Let (T ,≤) be a complete R-tree, and F : T → T a tree map.
An end τ ∈ T is weakly attracting for F if there exists a segment I = [τ ′, τ ] such
that τ is a globally attracting fixed point for the induced map FI , i.e., FI(σ) > σ
for all σ ∈ [τ ′, τ). The end is strongly attracting (for F ) when in addition the
segment I can be chosen F -invariant.

Theorem 2.1.13 ([FJ07, Theorem 4.5],[RL]). Let (T ,≤) be a complete R-tree
and F : T → T a tree map (resp. a regular tree map). Then at least one of the
following statements holds:

• F admits a fixed point τ? which is not an end;

• F admits a weakly (resp. strongly) attracting end τ?.

2.1.2 Universal Dual Graph

Given a modification π ∈ B, we can equip the set Γ∗π of all exceptional components
of π with a simplicial tree structure (i.e., an N-tree structure, see [FJ04, pages 51,
52]), given by the dual graph of π as defined in Definition 1.2.14. We shall denote
the order given by the N-tree structure by ≤π.
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From the recursive construction of the dual graph of a modification, as seen in
Remark 1.2.15, we can observe that if π1 E π2 then there is a natural injection of
Γ∗π1 into Γ∗π2 . Since B is an inverse system, we can give the next definition.

Definition 2.1.14. We will call universal dual graph the direct limit of dual
graphs along all modifications in B:

(Γ∗,≤) := lim
−→
π∈B

(Γ∗π,≤π).

The universal dual graph is a way to see all exceptional components of all the
possible modifications, all together at the same time. The next result follows from
this construction.

Proposition 2.1.15 ([FJ04, Proposition 6.2, Proposition 6.3]). The universal dual
graph Γ∗ is a Q-tree, rooted at E0 the exceptional component that arises from the
single blow-up of the origin 0 ∈ C2. Moreover all points are branch points for Γ∗. If
we have an exceptional component E ∈ Γ∗, then p 7→ −→vp = [Ep], where [Ep] ∈ TEΓ∗

is the tangent vector represented by the exceptional component that arises from the
blow-up of p, gives a bijection from E to TEΓ∗.

As we have seen in Remark 2.1.7, we can complete Γ∗ to a complete R-tree Γ,
that will also be called the (complete) universal dual graph.

The (complete) universal dual graph is a very powerful tool, also thanks to all
the structure that arises from the completeness of R. But we do not know how a
holomorphic germ f acts on the universal dual graph. The answer to this question
can be given thanks to the algebraic equivalent to the universal dual graph, the
valuative tree.

2.1.3 Valuations

We shall denote by R = C[[x, y]] the ring or formal power series in 2 coordinates,
and by K = C((x, y)) the quotient field of R, that is the field of Laurent series
in 2 coordinates. Then R is an UFD local ring, with maximal ideal m = 〈x, y〉.
We shall consider [−∞,∞] = R endowed with the standard extension of the usual
order ≤ in R.

Definition 2.1.16. A valuation is a map ν : R→ [0,∞] such that:

(i) ν(φψ) = ν(φ) + ν(ψ) for all φ, ψ ∈ R;

(ii) ν(φ+ ψ) = min{ν(φ), ν(ψ)} for all φ, ψ ∈ R;

(iii) ν(1) = 0.
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Denote by p = {ν =∞} the prime ideal where ν is∞. Then ν is proper if p  m.
For every ideal i ⊂ R, we denote ν(i) := min{ν(φ) | φ ∈ i}; then ν is centered if
it is proper and ν(m) > 0; and it is normalized if it is centered and ν(m) = 1.
We will denote by Ṽ the set of all centered valuations, and by V the set of all
normalized ones.

Let us define a partial order on centered valuations.

Definition 2.1.17. Let ν1, ν2 be two centered valuations; then ν1 ≤ ν2 if and only
if ν1(φ) ≤ ν2(φ) for every φ ∈ R.

The set of all normalized valuations will be the object of main interest: we will
see that it admits an R-tree structure, so we call V the valuative tree.

Remark 2.1.18. The definition of valuation we use is slightly different from the
one of Krull valuations (where ν takes values into an abelian totally ordered group
Γ, see Definition 1.2.30). Indeed we can associate a Krull valuation to every proper
valuation. As a matter of fact, given a proper valuation ν, if p = {ν = ∞}, then
we can have two cases:

p = 0, and ν is a Krull valuation (with Γ = R);

p = 〈φ〉 for a certain φ irreducible; in this case, we can define µ = Krull(ν) : R∗ →
R× Z, as following: if ψ = φnψ′, with ψ′ and φ coprime, then µ(ψ) := (ν(ψ′), n).

On the other hand, there exist centered Krull valuations in C[[x, y]] that do not
arise from proper valuations (they are called exceptional curve valuations, see the
next subsection below for further details).

However, thanks to this inclusion, we can use all invariants and tools known for
the study of Krull valuations, as for instance the correspondence with valuation
rings, or invariants such as the rank, the rational rank, or the transcendence degree
of a Krull valuation.

2.1.4 Classification of Valuations

We shall now describe the classification of valuations, following [FJ04]. Most of the
properties stated here will be clearer after reading the rest of this section, when
we will describe the tree structure of the valuative tree. For more details see also
[Spi90] and [ZS75b].

Divisorial Valuations

Divisorial valuations are the ones with rk ν = ratrk ν = trdeg ν = 1. They are
associated to an exceptional component E of a modification π; in particular νE is
defined by

νE(φ) := (1/bE) divE(π∗φ),
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where divE is the vanishing order along E, π∗φ = φ ◦ π and 1/bE is necessary to
have a normalized valuation (bE ∈ N∗ is known as the generic multiplicity of
νE, see [FJ04, page 64], or the second Farey weight of E, see [FJ04, page 122]).
The set of all divisorial valuations is often denoted by Vdiv.

The most important example is the multiplicity valuation, defined by

νm(φ) := m(φ) = max{n | φ ∈ mn};

it is associated to a single blow-up over the origin. We will write νm if we want to
consider the multiplicity as a valuation (or better, as a point on the valuative tree),
and m if we want to consider only the multiplicity of an element of R = C[[x, y]].

Irrational Valuations

Irrational valuations are the ones with rk ν = 1, ratrk ν = 2 and trdeg ν = 0.

Divisorial and irrational valuations are called quasimonomial valuations,
their set will be denoted by Vqm. For a geometric interpretation of quasimonomial
valuations, see [FJ04, pages 16, 17].

Important examples of quasimonomial valuations are monomial valuations.
Fix local coordinates (x, y); then the monomial valuation of weights (s, t) is defined
by

νs,t

(∑
i,j

ai,jx
iyj

)
= min{si+ tj | ai,j 6= 0}.

They are normalized when min{s, t} = 1.

Curve Valuations

Curve valuations are the ones with rk ν = ratrk ν = 2 and trdeg ν = 0.

They are associated to a (formal) irreducible curve (germ) C = {ψ = 0}; in
particular νC is defined by

νC(φ) :=
C · {φ = 0}
m(C)

,

where with C · D we denote the standard intersection multiplicity between the
curves C and D, and m(C) = m(ψ) is the multiplicity of C (in 0). We will often
use the notation νψ instead of νC .

Analytic and non-analytic curve valuations have the same algebraic behavior,
but they will play a different role as eigenvaluations, as we shall see in the proof
of Theorem 2.3.2.
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Infinitely Singular Valuations

Infinitely singular valuations are the ones with rk ν = ratrk ν = 1 and trdeg ν = 0.
It is not so simple to give a geometric interpretation of infinitely singular valu-

ations, but we can think them as curve valuations associated to “curves” of infinite
multiplicity.

They can be recognized also as valuations with infinitely generated value groups.

Exceptional Curve Valuations

As anticipated before, there are also Krull valuations that does not come from
proper valuations; they are called exceptional curve valuations, and they have
the same invariants as curve valuations: rk ν = ratrk ν = 2 and trdeg ν = 0. See
[FJ04, page 18] for more details.

2.1.5 The Valuative Tree

Theorem 2.1.19 ([FJ04, Theorem 3.14]). (V ,≤) is a complete R-tree, with root
νm. We will call (V ,≤) the valuative tree.

Proposition 2.1.20 ([FJ04, Proposition 3.20]). The valuative tree (V ,≤) has the
following properties:

(i) branch points are the divisorial valuations, and the tangent space on every
divisorial valuation is in bijection with P1(C);

(ii) regular points are the irrational valuations;

(iii) all terminal points are ends (and vice versa, the converse is always true), and
they are curve or infinitely singular valuations.

2.1.6 Skewness, multiplicity and thinness

The valuative tree admits (at least) two natural parametrizations (skewness and
thinness) and a concept of multiplicity, very useful for example to distinguish the
type of valuations. For definitions and properties we refer to [FJ04, Chapter 3].

Definition 2.1.21. For ν ∈ V , we define its skewness α(ν) ∈ [1,∞] as

α(ν) := sup

{
ν(φ)

m(φ)
: φ ∈ m

}
.



32 2 Dynamics in 2D

Proposition 2.1.22 ([FJ04, Theorem 3.26]). The skewness α : V → [1,∞] is a
parametrization for the valuative tree. Moreover:

(i) the multiplicity valuation is the only one with α(νm) = 1;

(ii) for divisorial valuations we have α(νE) ∈ Q;

(iii) for irrational valuations we have α(ν) ∈ R \Q;

(iv) for curve valuations we have α(νC) =∞;

(v) for infinitely singular valuations we have α(ν) ∈ (1,∞].

Skewness alone does not characterize the type of a valuation: we need a way
for telling infinitely singular valuations apart from the others. For this purpose,
we introduce the multiplicity of a valuation.

Definition 2.1.23. Let ν ∈ V be a normalized valuation. We can define its
multiplicity m(ν) as

m(ν) = min{m(φ) | νφ ≥ ν, φ irreducible curve}.

Proposition 2.1.24 ([FJ04, Proposition 3.37]). If µ ≤ ν then m(µ) divides m(ν).
Further m(ν) =∞ if and only if ν is infinitely singular.

The next proposition tells us something about the behavior of multiplicity in a
segment [νm, ν], with ν ∈ V .

Proposition 2.1.25 ([FJ04, Proposition 3.44]). For any valuation ν ∈ V, there
exists a unique sequence of divisorial valuations (νi)

g
i=0 and a unique strictly in-

creasing sequence of integers (mi)
g
i=0 such that

νm = ν0 < ν1 < . . . < νg < νg+1 = ν,

and m(µ) = mi for µ ∈ (νi, νi+1], for i = 0, . . . , g. Moreover m0 = 1, while
mi | mi+1 for i = 1, . . . g − 1.

Definition 2.1.26. We call the sequence (νi)
g
i=0 the approximating sequence

of a valuation ν. We remark that g =∞ if and only if m(ν) =∞, if and only if ν
is an infinitely singular valuation.

Putting together skewness and multiplicity, we obtain thinness.
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Definition 2.1.27. Let ν ∈ V be a valuation with approximating sequence (νi)
g
i=0;

we define the thinness A(ν) ∈ [2,∞] of ν as

A(ν) := 2 +

g∑
i=0

mi(α(νi+1)− α(νi)) = 2 +

∫ ν

νm

m(µ)dα(µ),

where α is the skewness, m the multiplicity, and mi are defined as in Proposition
2.1.25.

Proposition 2.1.28 ([FJ04, Theorem 3.46]). The thinness A : V → [2,∞] is a
parametrization for the valuative tree. Moreover:

(i) the multiplicity valuation is the only one with A(νm) = 2;

(ii) for divisorial valuations we have A(νE) ∈ Q;

(iii) for irrational valuations we have A(ν) ∈ R \Q;

(iv) for curve valuations we have A(νC) =∞;

(v) for infinitely singular valuations we have A(ν) ∈ (2,∞].

2.1.7 Universal dual graph and valuative tree

Here we shall clarify the connection between the universal dual graph and the
valuative tree. For stating it, we need the following definition.

Center of a Valuation

Definition 2.1.29. Let X be a complex 2-manifold, and V an irreducible subva-
riety in X. We shall denote by OX,V the ring of regular functions in V .

Definition 2.1.30. Let (R1,m1) and (R2,m2) be two local rings with the same
quotient field. Then we shall say that (R1,m1) dominates (R2,m2) if R1 ⊇ R2

and R2 ∩m1 = m2.

The next theorem is a classic result of algebraic geometry: see [ZS75b, Part VI,
Chapter 5], or [Har77] for a modern exposition.

Theorem 2.1.31 ([Har77, Theorem 4.7]). Let ν be a Krull valuation on K =
C((x, y)) ⊃ C(x, y), Rν the associated valuation ring and π : X → (C2, 0) a
modification. Then there exists a unique irreducible submanifold V of X such that
Rν dominates OX,V . Moreover if ν is centered, then V is a point or an exceptional
component in π−1(0).

This V is called the center of ν in X.
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The isomorphism

The center of a valuation is the main concept allowing to pass from valuations to
exceptional components. The idea is to associate to a valuation, a (finite or infinite)
sequence of infinitely near points, where every point is the center of the valuation
in a suitable total space for a modification. This idea gives us the relation between
exceptional components and (divisorial) valuations, and between the universal dual
graph and the valuative tree.

Theorem 2.1.32 ([FJ04, Theorem 6.22]). The map E 7→ νE is a tree isomorphism
from the universal dual graph Γ∗ to the set of all divisorial valuations Vdiv. It can
be extended to a tree isomorphism from the (complete) universal dual graph Γ to
the valuative tree V.

Favre and Jonsson prove a stronger result: they give a parametrization of the
universal dual graph (the Farey parametrization, see [FJ04, page 122]), and a
concept of multiplicity of an exceptional component, and show that these objects
correspond to thinness and multiplicity on the valuative tree.

Infinitely near points, best approximations and open sets

Thanks to the correspondence between the universal dual graph and the valuative
tree (and to Proposition 2.1.15), we can see a correlation between infinitely near
points and certain open sets of the valuative tree. But first we need to know the
behavior of the center of the pull back of a valuation through a modification.

Proposition 2.1.33 ([FJ04, Proposition 6.32]). Let π : X → (C2, 0) ∈ B be a
modification, and ν ∈ V a valuation. Let Dπ := {νE | E ∈ Γ∗π} be the set of all
(divisorial) valuations associated to an exceptional component of π, and

Eπ,ν = {νE ∈ Dπ | (νE, ν) ∩ Dπ = ∅}.

Then Eπ,ν contains one or two valuations.

(i) When Eπ,ν = {νE}, then either νE = ν and the center of ν in X is E; or
νE 6= ν, and the center of ν in X is the free point p ∈ E associated (through
Proposition 2.1.15) to the tangent vector in νE represented by ν.

(ii) If Eπ,ν = {νE, νF}, then the center of ν in X is the satellite point p ∈ E ∩ F .
This point is the one in E (resp. in F ) associated to the tangent vector in
νE (resp. νF ) represented by ν.

Definition 2.1.34. We call the elements of Eπ,ν the best approximations of ν
for π (or in Γ∗π).
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From this result we can obtain a characterization of valuations whose center is
a given infinitely near point.

Proposition 2.1.35 ([FJ04, Corollary 6.34]). Let p ∈ π−1(0) be an infinitely near
point of a modification π : X → (C2, 0); let U(p) be the set of all valuations whose
center in X is p. Then U(p) is weakly open in V. More precisely, let us denote by Ep
the exceptional component obtained by a single blow-up over p; if p is a free point,
and E is the unique exceptional component that contains p, then U(p) = UE([Ep]),
while if p is a satellite point, the intersection point of two exceptional components
E,F , then U(p) = UE([Ep]) ∩ UF ([Ep]) (up to the identification between universal
dual graph Γ and valuative tree V).

2.2 Dynamics on the Valuative Tree

Definition

In this section we will define the action f• : V → V induced by a holomorphic germ
f : (X, p) → (Y, q) (where X and Y are two complex 2-manifolds). We shall also
assume that f is dominant, i.e., rk df is not identically ≤ 1 near p.

A holomorphic germ f : (X, p) → (Y, q) naturally induces an action f ∗ on
R = C[[x, y]], by composition: φ 7→ f ∗φ = φ ◦ f . The natural way to define an
action on (centered) valuations seems to be the dual action f∗ν = ν ◦ f ∗; explicitly
we have f∗ν(φ) = ν(φ ◦ f). This definition works for Krull valuations, but not for
valuations: if ν ∈ V , then clearly f∗ν is a valuation, but it might not be proper.
More precisely, f∗ν is not centered if and only if ν = νC is a curve valuation, with
C = {φ = 0} an irreducible curve contracted to q by f (that is to say if f ∗m ⊆ 〈φ〉).
In this case C has to be a critical curve, and f∗ν is not proper.

Definition 2.2.1. Let f : (X, p) → (Y, q) be a (dominant) holomorphic germ.
We call contracted critical curve valuations for f the valuations νC with C
a critical curve contracted to q by f . We denote by Cf the set of all contracted
critical curve valuations for f .

Remark 2.2.2. Cf has a finite number of elements, all ends for the valuative tree.

So if ν ∈ V \Cf , then f∗ν is a centered valuation, but not normalized generally.
The norm will be f∗ν(m) = ν(f ∗m): we can renormalize this valuation and obtain
an action f• : V \ Cf → V .

Definition 2.2.3. Let f : (X, p)→ (Y, q) be a (dominant) holomorphic germ. For
every valuation ν ∈ V we define c(f, ν) := ν(f ∗m) the attraction rate of f along
ν; if ν = νm is the multiplicity valuation, then we simply write c(f) := c(f, νm) the
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attraction rate of f . For every valuation ν ∈ V\Cf we define f•ν := f∗ν/c(f, ν) ∈
V . If f : (X, p) → (X, p), we will also define c∞(f) := limn→∞

n
√
c(fn) the

asymptotic attraction rate of f .

Up to fix coordinates in p and q, we can consider a germ f : (X, p)→ (Y, q) as
a germ f : (C2, 0) → (C2, 0): from now on we will state results in the latter case,
but they can be easily extended to the general case.

Proposition 2.2.4 ([FJ07, Proposition 2.4]). The map f• : V \ Cf → V preserves
the type of valuations (divisorial, irrational, curve, infinitely singular). Moreover,
there exists an integer N ≥ 1 such that for every ν ∈ V the set f−1

• {ν} has
cardinality at most N .

We will need to know the geometric behavior of f•, especially when evaluated
on divisorial or curve valuations.

Proposition 2.2.5 ([FJ07, Proposition 2.5]). Let ν be a divisorial valuation, and
set ν ′ := f•ν. Then there exist modifications π : X → (C2, 0) and π′ : X ′ → (C2, 0),
and exceptional components E ∈ Γ∗π, E ′ ∈ Γ∗π′ such that ν = νE, ν ′ = νE′ and

such that the map f lifts to a holomorphic map f̂ : X → X ′ sending E onto E ′.
Moreover,

c(f, νE) =
bE′

bE
k,

with bE, b
′
E the generic multiplicities of νE and νE′ respectively, and k ≥ 1 is the

largest integer such that f̂ ∗E ′ ≥ kE as divisors.

Proposition 2.2.6 ([FJ07, Proposition 2.6]). Let C be an analytic irreducible
curve such that f(C) 6= {0} (i.e., νC 6∈ Cf). Then C ′ := f(C) is an analytic
irreducible curve and f•νC = νC′. Further,

c(f, νC) =
m(C ′)

m(C)
e(f, C),

where e(f, C) ∈ N∗ denotes the topological degree of the restriction f |C : C → C ′.

Remark 2.2.7. The proof of Proposition 2.2.6 shows that a similar result is also
valid for formal irreducible curves. In particular, if t 7→ Φ(t) and t 7→ Ψ(t) are
parametrizations of C and C ′ respectively, then the topological degree of f |C :
C → C ′ is defined by e(f, C) = m(Ψ−1◦f ◦Φ(t)), where m denotes the multiplicity
function on C[[t]].

In order to have an action on V , we should extend f• to contracted critical
curve valuations.
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Proposition 2.2.8 ([FJ07, Proposition 2.7]). Suppose C is an irreducible curve
germ such that f(C) = {0} (i.e. νC ∈ Cf). Then c(f, νC) =∞. Further, the limit
of f•ν as ν increases to νC exists, and it is a divisorial valuation that we denote
by f•νC. It can be interpreted geometrically as follows. There exist modifications
π : X → (C2, 0) and π′ : X ′ → (C2, 0), such that f lifts to a holomorphic map
f̂ : X → X ′ sending C to a curve germ included in an exceptional component
E ′ ∈ Γ∗π′, for which f•νC = νE′.

For other properties of the action f•, we refer to [FJ07, Section 2].

Regularity

Theorem 2.2.9 ([FJ07, Theorem 3.1]). Let f : (C2, 0)→ (C2, 0) be a (dominant)
holomorphic germ. Then f• : V → V is a regular tree map. Moreover any segment
I where f•|I is an homeomorphism with the image can be decomposed into a finite

number of segments where we have α(f•ν) = a+bα(ν)
c+dα(ν)

, for some a, b, c, d ∈ N with
ad 6= bc.

The situation is much simpler when we deal with invertible germs.

Proposition 2.2.10. Let Φ : (C2, 0) → (C2, 0) be a (dominant) invertible holo-
morphic germ. Then the skewness α, the multiplicity m and the thinness A are
invariant for the action of Φ• : V → V.

Proof. Since Φ is invertible, the action Φ∗ : R → R is an isomorphism. It follows
then directly from the definition of skewness that α is invariant for the action of
Φ•.

Analogously, the multiplicity of a curve is invariant up to biholomorphisms, and
from the definition of multiplicity of a valuation as the minimum of the multiplicity
of suitable curves, we get the invariance through the action of Φ• in this case.

Since the thinness is defined starting from skewness and multiplicity, the result
follows.

Remark 2.2.11. Let f : (C2, 0) → (C2, 0) be an holomorphic (dominant) germ,
π : X → (C2, 0) and π′ : X ′ → (C2, 0) be two modifications, and let f̂ = (π′)−1 ◦
f ◦π : X 99K X ′ be the lift of f . Then in general f̂ is just defined as a rational map
(being π and π′ birational morphisms). Let us recall an useful criterion, based on
the behavior of f•, for establishing if this rational map f̂ is indeed holomorphic in
a certain infinitely near point p ∈ π−1{0}.

Proposition 2.2.12 ([FJ07, Proposition 3.2]). Let π : X → (C2, 0) and π′ : X ′ →
(C2, 0) be two modifications, and let f̂ : X 99K X ′ be the lift of f . For an infinitely
near point p ∈ π−1{0} ⊂ X, let U(p) ⊂ V be the open set of valuations whose
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center on X is p. Then f̂ is holomorphic at p if and only if f•U(p) does not contain
any divisorial valuation associated to an exceptional component of π′. When f̂ is
holomorphic at p, the point p′ = f̂(p) is characterized by f•U(p) ⊆ U(p′).

Definition 2.2.13. Directly from Theorem 2.2.9, one can see that f induces a
tangent map d(f•)ν : TνV → Tf•νV , for every ν ∈ V . Indeed, if ν ∈ V is a
valuation and −→v ∈ TνV is a tangent vector, then we can choose µ ∈ −→v such that
f• is an homeomorphism between [ν, µ] and [f•ν, f•µ]. So we can define d(f•)ν(

−→v )
as the tangent vector in f•ν represented by f•µ. It follows from the regularity of
f• that this is a good definition. We will often omit the point ν where we are
considering the tangent map, and write d(f•)ν = df•.

The next proposition will show some geometrical properties that we can deduce
from the behavior of the tangent map on a divisorial valuation.

Proposition 2.2.14 ([FJ07, Proposition 3.3]). Let ν ∈ V be a divisorial valuation,
and denote ν ′ = f•ν. Then let π : X → (C2, 0) and π′ : X ′ → (C2, 0) be two
modifications such that ν = νE and ν ′ = νE′, with E,E ′ two exceptional components
in Γ∗π and Γ∗π′ respectively. For every infinitely near point p ∈ E, let −→vp be the
tangent vector in ν associated to p, and analogously let −→vp′ be the tangent vector in

ν ′ associated to p′ ∈ E ′. Then df•(
−→vp) = −→vp′, with p′ = f̂(p).

Remark 2.2.15. When a divisorial valuation ν = ν? is a fixed valuation for
f• (what we shall call eigenvaluation), applying Proposition 2.2.14, we have that
f̂ |E : E → E is a rational map from E ∼= P1(C) onto itself; so it admits a (non-
critical) fixed point p?, and df• admits a fixed tangent vector −→vp? on ν?.

Eigenvaluations and Basins of Attraction

In the previous sections we have recalled that f• is a regular tree map (see Theo-
rem 2.2.9), and that regular tree maps admit a fixed point (see Theorem 2.1.13):
applying this result to f• we obtain eigenvaluations.

Theorem 2.2.16 ([FJ07, Theorem 4.2]). Let f : (C2, 0)→ (C2, 0) be a (dominant)
holomorphic germ. Then there exists a valuation ν? ∈ V such that f•ν? = ν?,
and c(f, ν?) = c∞(f) =: c∞. Moreover ν? cannot be a contracted critical curve
valuation, and neither a non-analytic curve valuation if c∞ > 1. If ν? is an end,
then there exists ν0 < ν? (arbitrarily close to ν?), such that c(f, ν0) = c∞, f•
preserves the order on {ν ≥ ν0} and f•ν > ν for every ν ∈ [ν0, ν?). Finally, we
can find 0 < δ ≤ 1 such that δcn∞ ≤ c(fn) ≤ cn∞ for every n ≥ 1.

Definition 2.2.17. Let f : (C2, 0) → (C2, 0) be a (dominant) holomorphic germ.
A valuation ν? ∈ V is called fixed valuation for f if f•ν? = ν?. It is called
eigenvaluation for f if it is a quasimonomial fixed valuation, or a fixed valuation
which is a strongly attracting end.
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Remark 2.2.18. In the rest of this chapter, we will always consider quasimonomial
eigenvaluations whenever possible. Therefore when we will say that an eigenvalu-
ation ν? is an end, we implicitly state that quasimonomial eigenvaluations do not
exist.

Thanks to the next lemma, we can avoid a few cases for the type of an eigen-
valuation.

Lemma 2.2.19 ([FJ07, Lemma 7.7]). For any ν ∈ V \ Cf we have

c(f, ν)A(f•ν) = A(ν) + ν(Jf),

where A denotes thinness and Jf is the Jacobian determinant of f .

Corollary 2.2.20. Let f be a (dominant) holomorphic germ, and let ν? be an
eigenvaluation for f . Then:

(i) if c∞(f) > 1 then ν? cannot be a non-analytic curve valuation;

(ii) if c∞(f) = 1 then ν? cannot be a quasimonomial valuation.

Proof. The first assertion has been already stated in Theorem 2.2.16.
Let us suppose c∞(f) = 1. Then applying [FJ07, Lemma 7.7] to the eigenval-

uation (and recalling that c∞(f) = c(f, ν?) by Theorem 2.2.16) we obtain

A(ν?) = A(ν?) + ν?(Jf),

that can be satisfied only if A(ν?) =∞. It follows that ν? cannot be a quasimono-
mial valuation.

In order to study the behavior of a generic lift f̂ : X → X ′, we have to study
the dynamics on the open sets U(p) with p an infinitely near point.

Proposition 2.2.21 ([FJ07, Proposition 5.2]). Let f be a (dominant) holomorphic
germ, and let ν? be an eigenvaluation for f .

(i) If ν? is an end for V, then for any ν0 ∈ V with ν0 ≤ ν?, and ν0 sufficiently
close to ν?, f• maps the segment I = [ν0, ν?] strictly into itself and is order-
preserving there. Moreover, if we set U = U(−→v ), where −→v is the tangent
vector at ν0 represented by ν?, then f• also maps the open set U strictly into
itself and fn• → ν? as n→∞ in U .

(ii) If ν? is divisorial, then there exists a tangent vector −→w at ν? such that for
any ν0 ∈ V representing −→w and sufficiently close to ν?, f• maps the segment
I = [ν?, ν0] into itself and is order-preserving there. Moreover, if we set
U = U(−→v ) ∩ U(−→w ), where −→v is the tangent vector at ν0 represented by ν?,
then f•(I)⊂⊂I, f•(U)⊂⊂U , and fn• → ν? as n→∞ on U .
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(iii) If ν? is irrational, then there exist ν1, ν2 ∈ V, arbitrarily close to ν?, with
ν1 < ν? < ν2 such that f• maps the segment I = [ν1, ν2] into itself. Let
−→vi be the tangent vector at νi represented by ν? (for i = 1, 2), and set U =
U(−→v1) ∩ U(−→v2). Then f•(U) ⊆ U . Further, either f•|2I = idI or fn• → ν? as
n→∞ on U .

2.3 Rigidification

2.3.1 General result

Definition 2.3.1. Let f : (C2, 0) → (C2, 0) be a (dominant) holomorphic germ.
Let π : X → (C2, 0) be a modification and p ∈ π−1(0) a point in the exceptional
divisor of π. Then we shall call the triple (π, p, f̂) a rigidification of f if the lift
f̂ = π−1 ◦ f ◦ π is a holomorphic rigid germ in p.

In this section we shall prove the existence of a rigidification for every germ.
This is a generalization of a previous result of Favre and Jonsson (see [FJ07, Theo-
rem 5.1]). Here there are five cases instead of the four of [FJ07, Theorem 5.1]: the
new case is (ii), when we have a non-analytic curve eigenvaluation, and it arises
only when we deal with f having a non-nilpotent differential. The other cases are
treated as in [FJ07, Theorem 5.1].

Theorem 2.3.2. Every (dominant) holomorphic germ f : (C2, 0)→ (C2, 0) admits
a rigidification.

Proof. Let ν? be an eigenvaluation for f (that exists thanks to Theorem 2.2.16).
Let us split the proof into five cases, depending on the type of ν?.

(i) Let ν? = νC be a non-contracted analytic curve valuation. Pick ν0 as in
Proposition 2.2.21.(i). By increasing it, we can suppose ν0 divisorial. We can
even assume that there is a modification π : X → (C2, 0) such that ν0 = νE0

with E0 ∈ Γ∗π an exceptional component, and such that C̃, the strict transform
of C by π, has normal crossings (we can for example consider a modification
π1 such that ν0 = νE0 , a modification π2 such that the strict transform of
C by π2 has normal crossing, and then pick the join π = π1 ∨ π2). Thanks
to our choices for π there is a unique exceptional component E ∈ Γ∗π which
intersects C̃ in a free point p. Since p is a free point, from Proposition 2.1.33
the best approximation of νC for π is unique, and this is νE. In particular
ν0 ≤ νE < νC , and νE can be chosen arbitrarily close to νC (by increasing ν0).
Moreover, the basin of attraction U = UνE([ν?]) given by Proposition 2.2.21 is
equal to U(p) (see [FJ04, Corollary 6.34]). From Proposition 2.2.21 it follows
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f•U⊂⊂U . From Proposition 2.2.12, the lift f̂ = π−1 ◦ f ◦ π is holomorphic in
p, and f̂(p) = p.

By increasing ν0, we may assume that U contains no critical curve valuations,
or preimages of νC (by f•), except νC itself.

It follows that C∞(f̂) = E or C∞(f̂) = E ∪ C̃ has normal crossings. The
first case arises when C̃ (the fixed curve) is not a critical curve for f (and we
shall see that it can happen only when c∞(f) = 1). From Proposition 2.2.6,
f̂(C̃) = C̃, while E is contracted to p by f̂ (since f•νE > νE); so C∞(f̂) is
forward f̂ -invariant, and f̂ is rigid.

(ii) Let ν? = νC be a non-analytic curve valuation. Pick ν0 as in Proposition
2.2.21. By increasing ν0, we can suppose ν0 divisorial. Let π ∈ B be a
modification such that ν0 = νE0 . From Proposition 2.1.33 there exists a
unique best approximation νE of ν? for π (it is unique because ν? is an end
of V). We have ν0 ≤ νE < νC , that can be chosen arbitrarily close to νC (by
increasing ν0). We consider now U = U(p) = UνE([ν?]).

From Proposition 2.2.21 and Proposition 2.2.12, it follows f•U⊂⊂U , and the
lift f̂ = π−1 ◦ f ◦ π is holomorphic in p, and f̂(p) = p. By shrinking U(p), we
can avoid all critical curve valuations.

It follows that C∞(f̂) = E has normal crossings. Moreover, E is contracted
to p by f̂ (because f•νE > νE), C∞(f̂) is forward f̂ -invariant and f̂ is rigid.

(iii) Let ν? be an infinitely singular valuation, and pick ν0 < ν? as in Proposition
2.2.21.(i) (we can assume ν0 divisorial). The multiplicity function m is non-
decreasing, integer-valued and unbounded on the segment [νm, ν?), so there
exist jump points form arbitrarily close to ν?. Let ν be such a point, with ν0 ≤
ν < ν?. Recalling Proposition 2.1.25, these points are divisorial valuations,
and from [FJ04, Proposition 6.40] there exists a modification π : X → (C2, 0)
such that ν = νE, with E ∈ Γ∗π, and the center of ν? in X is a free point
p ∈ E. Now we set U = U(p): being p ∈ π−1(0), it follows that U contains
no valuations νF for F ∈ Γ∗π, and from Proposition 2.2.21 we have f•U⊂⊂U .
As always, from Proposition 2.2.12 we have that the lift f̂ = π−1 ◦ f ◦ π
is holomorphic in p, and f̂(p) = p; increasing ν0 (i.e. shrinking U(p)), we
can assume that U contains no critical curve valuations. So C∞(f̂) = E has
normal crossings. As in the previous case, f•(νE) > νE, so f̂(E) = p, C∞(f̂)
is forward f̂ -invariant and f̂ is rigid.

(iv) Let ν? = νE be a divisorial valuation, and pick ν0 as in Proposition 2.2.21.(ii)
(we can assume ν0 = νE0 divisorial). Pick a modification π : X → (C2, 0)
such that E,E0 ∈ Γ∗π, and let F ∈ Γ∗π be the best approximation of E for
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π (see Proposition 2.1.33). Replace ν0 by νF . The set U in Proposition
2.2.21 is of the form U = U(p), with p the satellite point in E ∩ F . As
before f•(U) ⊆ U , and, by our choice of F and by Proposition 2.2.12, the lift
f̂ = π−1 ◦ f ◦ π is holomorphic in p, and f̂(p) = p. By increasing ν0 (i.e.,
shrinking U(p)), we can assume that U contains no critical curve valuations
for f . So C∞(f̂) = E∪F has normal crossings. Moreover, fn• → ν? on U , and
so F is contracted to p by f̂ , while E is fixed; so C∞(f̂) is forward f̂ -invariant
and f̂ is rigid.

(v) Let ν? be an irrational valuation, and pick ν1 and ν2 such that ν1 < ν? < ν2, as
in Proposition 2.2.21.(iii), and let U be the basin of attraction determined by
ν1 and ν2. Thanks to [FJ07, Lemma 5.6], up to shrinking U , we can suppose
that U = U(p), with p an infinitely near point. From Proposition 2.2.12, we
have that the lift f̂ = π−1◦f ◦π is holomorphic in p, and f̂(p) = p. Moreover,
shrinking U , we can avoid critical curve valuations, and have C∞(f̂) = E ∪F
with normal crossings.

Let us study the dynamics on C∞(f̂). From Proposition 2.2.21, we have three
cases: If f•|U = idU , then both E and F are fixed by f•; if f•|U 2 = idU (but
f•|U 6= idU), then E and F are exchanged by f•; finally if f•|U 2 6= idU , then
f•U⊂⊂U , and both E and F are contracted to p. In every case, we see that
C∞(f̂) is forward f̂ -invariant and f̂ is rigid.

Remark 2.3.3. Studying the behavior of π•, with π : (X, p)→ (C2, 0) a modifica-
tion, we see that π• is a bijection between V and U(p). Moreover, from the relation
f̂ = π−1 ◦ f ◦ π, we see that π• gives us a conjugation between f̂• and f•|U(p). So

from the dynamics of f• on U(p), we can obtain informations on the rigidification
f̂ . For example, when fn• → ν?, then f̂ will have a unique eigenvaluation π−1

• ν?.

Remark 2.3.4. Let p be a satellite point, and E and F the exceptional components
that contain p. Choose local coordinates (x, y) in p such that E = {x = 0} and
F = {y = 0}. Then considering π• : V → U(p), we have that π•(νx) = νE
and π•(νy) = νF . Moreover, π• gives us a bijection between the segment I =
(νx, νy) of all (normalized) monomial valuations in (x, y) and (νE, νF ). We can
also parametrize I with valuations such as νs,t := π∗µs,t, with µs,t the monomial
valuation on local coordinates (x, y) and of weights (s, t), satisfying bEs + bF t =
1. The latter condition is necessary to have νs,t normalized; bE and bF are the
generalized multiplicity of νE and νF respectively (see [FJ04, Ch. 6]).
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2.3.2 Semi-superattracting case

In this section we deal with the semi-superattracting case, proving the uniqueness
of the eigenvaluation in this case (see Theorem 2.3.8). We shall write

Dλ :=

(
λ 0
0 0

)
.

Lemma 2.3.5. Let f be a (dominant) semi-superattracting holomorphic germ,
such that df0 = Dλ with λ 6= 0, and let π : X → (C2, 0) be the single blow-up in
0 ∈ C2, with E := π−1(0) ∼= P1(C) the exceptional divisor. Set p = [1 : 0] ∈ E, and
let f̂ : (X, p)→ (X, p) be the lift of f through π. Then f̂ is a semi-superattracting
holomorphic germ, and df̂p ∼= Dλ.

Proof. Since df0 = Dλ, we have

f(x, y) =
(
λx+ f1(x, y), f2(x, y)

)
, (2.1)

with f1, f2 ∈ m2. In the chart π−1({x 6= 0}) we can choose (u, t) coordinates in
p ∈ E such that

(x, y) = π(u, t) = (u, ut).

So for the lift f̂ = π−1 ◦ f ◦ π we have

f ◦ π(u, t) =
(
λu+ f1(u, ut), f2(u, ut)

)
,

and then

f̂(u, t) =

(
λu+ f1(u, ut),

f2(u, ut)

λu+ f1(u, ut)

)
.

We have u2 | f1(u, ut), f2(u, ut); if we set f̂ = (g1, g2), we have

g1(u, t) = λu
(
1 +O(u)

)
g2(u, t) =

u2O(1)

λu
(
1 +O(u)

) = αu+O(u2),

with α = λ−1a2,0, if f2(x, y) =
∑

i+j≥2 ai,jx
iyj. It follows that

df̂p =

(
λ 0
α 0

)
∼= Dλ.

So f̂ is a holomorphic germ with df̂p ∼= Dλ.
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Proposition 2.3.6. Let f be a (dominant) semi-superattracting holomorphic germ
such that df0 = Dλ with λ 6= 0, ν? an eigenvaluation for f , and (π, p, f̂) a rigidi-
fication obtained from ν? as in Theorem 2.3.2. Then df̂p ∼= Dλ and ν? = νC is a
(possibly formal) curve valuation, with m(C) = 1.

Proof. For proving this result, we have to follow the proof of Theorem 2.1.13, as
given in [FJ07, Theorem 4.5], under the assumption df0

∼= Dλ. Starting from any
ν0 (as in the proof of [FJ07, Theorem 4.5]), we take any end ν ′0 > f•ν0, and we
consider the induced tree map F0 on I0 = [ν0, ν

′
0]. Let ν1 be the (minimum) fixed

point of F0. Since f• has no quasimonomial eigenvaluations (see Corollary 2.2.20),
then ν1 ≥ f•ν0. Up to choosing ν ′0 such that ν ′0 6∈ d(f•)ν0([f•ν0]), we can suppose
that ν1 = f•ν0.

Let us apply this argument for ν0 = νm. If f is as in (2.1), then ν1 = f•ν0 is a
divisorial valuation associated to an exceptional component E1 obtained from the
exceptional component E0 of a single blow-up of 0 ∈ C2 only by blowing-up free
points (i.e., the generic multiplicity b(νE1) of νE1 is equal to 1): as a matter of fact,
f∗ν0(x) = 1 while f∗ν0(φ) ∈ N for every φ ∈ R.

Applying this argument recursively (as in the proof of [FJ07, Theorem 4.5]),
we get the assertion on the type of eigenvaluation.

For the result on df̂p, we only have to observe that, on the proofs of Theorem
2.3.2 and [FJ07, Theorem 5.1] in the case of an analytic curve eigenvaluation, up to
shrink the basin of attraction, we can choose the infinitely near point p such that
νEp has generic multiplicity b(νEp) equal to 1, where Ep denotes the exceptional
component obtained blowing-up p. Then, the modification π on the rigidification
is the composition of blow-ups of free points, and then we can apply (recursively)
Lemma 2.3.5 and obtain the thesis.

Lemma 2.3.7. Let f be a (dominant) semi-superattracting holomorphic germ such
that df0 = Dλ with λ 6= 0. Then, up to a (possibly formal) change of coordinates,
we can suppose that

f(x, y) =
(
λx
(
1 + f1(x, y)

)
, yf2(x, y)

)
,

with f1, f2 ∈ m.

Proof. First of all, we can suppose that

f(x, y) =
(
λx+ g1(x, y), g2(x, y)

)
,

with g1, g2 ∈ m2.
Thanks to Proposition 2.3.6, we know that there is an eigenvaluation ν? = νC

with C = {φ = 0} a (possibly formal) curve, with φ(x, y) = y− θ(x) for a suitable
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θ. Up to the (possibly formal) change of coordinates (x, y) 7→ (x, y− θ(x)), we can
suppose that φ = y, and in particular, since C is fixed by f , that y|g2. Then we
have

f(x, y) =
(
λx
(
1 + f1(x, y)

)
+ h(y), yf2(x, y)

)
,

with f1, f2 ∈ m and h ∈ m2. We shall denote g2(x, y) = yf2(x, y).
Now we only have to show that up to a (possibly formal) change of coordinates,

we can suppose h ≡ 0. We consider a change of coordinates of the form Φ(x, y) =
(x + η(y), y), with η ∈ m2. In this case we have Φ−1(x, y) = (x − η(y), y). So we
have

Φ−1 ◦ f ◦ Φ(x, y) (2.2)

=
(
λ
(
x+ η(y)

)(
1 + f1 ◦ Φ(x, y)

)
+ h(y)− η ◦ g2 ◦ Φ(x, y), yf2 ◦ Φ(x, y)

)
.

We notice that the second coordinate of (2.2) is always divisible by y; we only
have to show that there exists a suitable η such that the first coordinate of (2.2),
valuated on (0, y), is equal to 0. Hence we have to solve

λη(y)
(

1 + f1

(
η(y), y

))
+ h(y)− η ◦ g2

(
η(y), y

)
= 0. (2.3)

If we set η(y) =
∑

n≥2 ηny
n, h(y) =

∑
n≥2 hny

n, 1 + f1(x, y) =
∑

i+j≥0 fi,jx
iyj and

g2(x, y) =
∑

i+j≥2 gi,jx
iyj (with gn,0 = 0 for every n), then we have

λ
∑
i+j≥0

fi,j
∑

H∈Ni+1

ηHy
|H|+j +

∑
n≥2

hny
n =

∑
k

ηk

(∑
i+j≥2

gi,jη(y)iyj

)k

. (2.4)

Comparing the coefficients of yn in both members, we get

ληn + l.o.t. = l.o.t.,

where l.o.t. denotes a suitable function depending on ηh only for h < n. So thanks
to (2.4) we have a recurrence relation for the coefficients ηn that is a solution of
(2.3).

Theorem 2.3.8. Let f be a (dominant) semi-superattracting holomorphic germ.
Then f admits a unique eigenvaluation ν?, that has to be a (possibly formal) curve
valuation with multiplicity m(ν?) = 1. Let us denote ν? = νC, with m(C) = 1.
Then, (only) one of the following holds:

(i) the set of valuations fixed by f• consists only of the eigenvaluation ν?, there
exists (only) one contracted critical curve valuation νD, and in this case, it
has to be m(D) = 1;
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(ii) the set of valuations fixed by f• consists of two valuations, the eigenvaluation
ν?, and a curve valuation νD, where D is a (possibly formal) curve with
m(D) = 1.

In both cases, C and D have transverse intersection, i.e., their intersection number
is C ·D = 1.

Proof. Thanks to Lemma 2.3.7, we can suppose (up to formal conjugacy) that

f(x, y) =
(
λx
(
1 + g1(x, y)

)
, yg2(x, y)

)
,

where g1, g2 ∈ m. We shall denote f2(x, y) = yg2(x, y).
It follows that the eigenvaluation ν? given by Proposition 2.3.6 is ν? = νw, while

νx is either fixed by f• or a contracted critical curve valuation.
We only have to show that there are no other fixed valuations.
First of all, we want to notice what happens during the process used in the proof

of Proposition 2.3.6 to tangent vectors at the valuation ν0 = νm. Let us consider
the family of valuations νθ,t, where θ ∈ P1(C) and t ∈ [1,∞], described as follows:
if we denote φθ = y − θx when θ ∈ C, and ψ∞ = x, then νθ,t is the valuation of
skewness α(νθ,t) = t in the segment [νm, νφθ ], i.e., the monomial valuation defined
by νθ,t(φθ) = t and νθ,t(x) = 1 if θ ∈ C, and ν∞,t(x) = t, ν∞,t(y) = 1.

Then we have that ν1 = f•(νm) = ν0,m(f2), where m denotes the multiplicity
function, while f•(νθ,t) ≥ ν1 for every θ ∈ C and t, since f•(νθ,t)(x) = 1 = ν1(x),
f•(νθ,t)(y) ≥ m(f2) = ν1(y) and ν1 is the minimum valuation that assumes those
values on x and y.

We shall denote by −→vθ the tangent vector in νm represented by νθ,∞, and by
−→u∞ the tangent vector in ν1 represented by νm; then it follows from what we have
seen that df•(

−→vθ ) 6= −→u∞ for every θ 6= ∞, and hence there are no fixed valuations

in Uνm(−→vθ ) for every θ 6= 0,∞.
Moreover, applying this argument recursively as in the proof of Proposition

2.3.6, we obtain that there are no other fixed valuations in Uνm(−→v0), except for the
eigenvaluation νw.

It remains to check for valuations in Uνm(−→v∞). For this purpose, let us consider
f•(ν∞,t). For simplicity, we shall denote ν∞,t = ν0,1/t for every t ∈ [0, 1] From direct
computation, we have that f∗(ν∞,t)(x) = t, while

f∗(ν∞,t)(y) =
∧
j

(ajt+ bj),

for suitable aj ∈ N∗, bj ∈ N. It follows that f•(ν∞,t) = ν∞,g(t) for a suitable map
g(t), such that g(t) < t, and that d(f•)ν∞,t([νw]) = [νw] (where the latter tangent
vector belongs to the proper tangent space). Letting t go to∞, we obtain that the
only fixed valuation in Uνm(−→v∞) is νx, and we are done.
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Remark 2.3.9. Theorem 2.3.8 shows that every semi-superattracting germ f has
two (formal) invariant curves: the first one C associated to the eigenvaluation,
and hence to the eigenvalue λ of df0; the second one D associated to the fixed
or contracted critical curve valuation, and hence to the eigenvalue 0 of df0. If f
is of type (0,C \ D), then both these curves are actually holomorphic, thanks to
Theorem 1.1.33 (Stable-Unstable Manifold Theorem). In the general case of f of
type (0,C∗), one can at least recover the manifold associated to the eigenvalue 0 of
df0, using Theorem 1.1.32 (Hadamard-Perron). In particular the curve D is always
holomorphic. However C is not always holomorphic in general (see for example
Proposition 2.7.5).

2.4 Rigid Germs

In this section we will introduce the classification of attracting rigid germs in
(C2, 0) up to holomorphic and formal conjugacy (for proofs, see [Fav00]), and the
classification of rigid germs of type (0,C \ D) in (C2, 0) up to formal conjugacy.

For stating them, we shall need 3 invariants.

• The generalized critical set: if f : (C2, 0) → (C2, 0) is a rigid germ then
C = C∞(f) is a curve with normal crossings at the origin, and it can have
0, 1 or 2 irreducible components, that is to say that C∞(f) can be empty
(if and only if f is a local biholomorphism in 0), an irreducible curve, or a
reducible curve (with only 2 irreducible components); we will call f regular,
irreducible or reducible respectively.

• The trace: if f is not regular, we have 2 cases: either tr df0 6= 0, and df0

has a zero eigenvalue and a non-zero eigenvalue, or tr df0 = 0, and df0 is
nilpotent.

• The action on π1(∆2 \ C∞(f)): as C∞(f) is backward invariant, f induces
a map from U = ∆2 \ C∞(f) (here ∆2 denotes a sufficiently small polydisc)
to itself, and so an action f∗ on the first fundamental group of U . When f
is irreducible, then π1(U) ∼= Z, and f∗ is completely described by f∗(1) ∈ N∗
(f preserves orientation); when f is reducible, then π1(U) ∼= Z ⊕ Z, and f∗
is described by a 2× 2 matrix with integer entries (in N).

Definition 2.4.1. Let f : (C2, 0)→ (C2, 0) a rigid germ. Then f belongs to:

Class 1 if f is regular;

Class 2 if f is irreducible, tr df0 6= 0 and f∗(1) = 1;

Class 3 if f is irreducible, tr df0 6= 0 and f∗(1) ≥ 2;
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Class 4 if f is irreducible, tr df0 = 0 (this implies f∗(1) ≥ 2);

Class 5 if f is reducible, tr df0 6= 0 (this implies det f∗ 6= 0);

Class 6 if f is reducible, tr df0 = 0 and det f∗ 6= 0;

Class 7 if f is reducible, tr df0 = 0 and det f∗ = 0.

Class C∞(f) tr df0 det f∗
1 0 (empty)
2 1 (irreducible) 6= 0 = 1
3 ≥ 2
4 = 0 (≥ 2)
5 2 (reducible) 6= 0 (6= 0)
6 = 0 6= 0
7 = 0

Remark 2.4.2. If f is irreducible, up to a change of coordinates we can assume
C∞(f) = {x = 0}. Then just using that {x = 0} is backward invariant, we can
write f in the form

f(x, y) =
(
αxp

(
1 + φ(x, y)

)
, f2(x, y)

)
,

with φ, f2 ∈ m. It can be easily seen that f∗ = p ≥ 1.
Analogously, if f is reducible, up to a change of coordinates we can assume

C∞(f) = {xy = 0}. Then just using that {xy = 0} is backward invariant we can
write f in the form

f(x, y) =
(
λ1x

ayb
(
1 + φ1(x, y)

)
, λ2x

cyd
(
1 + φ2(x, y)

))
,

with φ1, φ2 ∈ m. In this case f∗ is represented by the 2× 2 matrix

M(f) :=

(
a b
c d

)
. (2.5)

2.4.1 Attracting rigid germs

Now we will state some of the results proved in [Fav00]; we recall normal forms only
for classes that will be useful. We shall denote by zC[z] the set of all polynomials
P such that z | P , and by mq[z] ⊂ zC[z] the set of such polynomials whose degree
is less than q.

Theorem 2.4.3 ([Fav00, Ch.1]). Let f : (C2, 0) → (C2, 0) be an attracting (holo-
morphic) rigid germ. Then f is locally holomorphically conjugated to one of the
following:
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Class 1 let α, β be the two non-zero eigenvalues for df0, such as (1 >) |α| ≥
|β| (> 0); if for any k ∈ N∗ we have αk 6= β (no resonance), then f ∼=
(αz, βw); if there exists k ∈ N∗ such that αk = β (resonance), then
f ∼= (αz, βw + εzk), with ε ∈ {0, 1}.

Class 2 f ∼= (λz, wzq + P (z)), with λ = tr df0, q ∈ N∗ and P ∈ mq[z].

Class 3 f ∼= (zp, λw), with λ = tr df0 and p = f∗(1).

Class 4 f ∼= (zp, βzqw + Q(z)), with p = f∗(1), β 6= 0, q ∈ N∗ and Q ∈ zC[z];
more precisely, if k := q/(p − 1), then if k 6∈ N or β 6= 1 (non-special),
then Q ∈ mq[z]; otherwise if k ∈ N and β = 1 (special), then Q(z) =
P (z) + ak+qz

k+q with P ∈ mq[z] and ak+q ∈ C.

Class 5 f ∼= (λz, zcwd), with λ = tr df0, c ≥ 1 and d ≥ 2.

Class 6 f ∼= (λ1z
awb, λ2z

cwd), with λ1λ2 6= 0, ad 6= bc, b + d ≥ 2, a + c ≥ 2 or
(a, c) = (0, 1), and ad = 0 or a+b, c+d ≥ 2; moreover, if 1 6∈ Spec(M(f))
(if and only if (a− 1)(d− 1) 6= bc), we can suppose λ1 = λ2 = 1.

Class 7 f ∼= (λ1z
awb(1 +φ1(z, w)), λ2z

cwd(1 +φ2(z, w))), with λ1λ2 6= 0, ad = bc,
and φ1, φ2 ∈ m.

All germs in classes 2–4 have C∞(f) = {z = 0}, and all germs in classes 5–7
have C∞(f) = {zw = 0}.

The formal classification coincides with the holomorphic one, except for class
2, where one can suppose P ≡ 0.

Remark 2.4.4. During the proof of Theorem 2.4.3, in [Fav00, Step 1 on page 491,
and First case on page 498], the author starts from a germ of the form

f(z, w) =
(
αzp
(
1 + g(z, w)

)
, f2(z, w)

)
,

with φ, f2 ∈ m, and uses Theorem 1.1.7 (Kœnigs) and Theorem 1.1.8 (Böttcher) in
[Fav00, Theorem 3.1 and Theorem 3.2] respectively to assume, up to holomorphic
conjugacy, that g ≡ 0 (and α = 1 if p ≥ 2). That argument does not work. Let
us denote by Φ(z, w) = (φw(z), w) the conjugation given by those theorems, and

f̃ = Φ ◦ f ◦Φ−1. We shall also denote f(z, w) = (f
(1)
w (z), f

(2)
w (z)), and analogously

for f̃ . By hypothesis φw(z) is such that φw ◦ f (1)
w ◦ φ−1

w (z) = αzp (with α = 1 if
p ≥ 2).

Then we have that

f̃ (1)
w (z) = φ

f
(2)
w (φ−1

w (z))
◦ f (1)

w ◦ φ−1
w (z),
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and hence it does not coincide with αzp.
We also note that if |α| > 1, there still is Theorem 1.1.7 (Kœnigs), but the

result is false (see Counterexample 2.4.11).
Nevertheless, one can obtain this result in the attracting case in the following

way.
We want to solve the conjugacy relation

Φ ◦ f = e ◦ Φ, (2.6)

where e is a germ of the form

e(z, w) =
(
αzp, e2(z, w)

)
,

with e2 ∈ m.
We look for a solution of the form

Φ(z, w) =
(
z
(
1 + φ(z, w)

)
, w
)

,

with φ ∈ m.
Then from the conjugacy relation (2.6) (comparing the first coordinate) we get

(1 + g)(1 + φ ◦ f) = (1 + φ)p.

Then we can consider

1 + φ =
∞∏
k=0

(
1 + g ◦ fk

)1/pk+1

, (2.7)

that would work if that product converges. But since f is attracting, there exists
0 < ε < 1 such that ‖f(z, w)‖ ≤ ε ‖(z, w)‖, while since g ∈ m, there exists M > 0
such that |g(z, w)| ≤M ‖(z, w)‖. It follows that

∞∑
k=0

p−(k+1)
∣∣g ◦ fk(z, w)

∣∣ ≤ ∞∑
k=0

M

p

(
ε

p

)k
=

M

p− ε
<∞,

and hence (2.7) defines an holomorphic germ φ, and hence a holomorphic map Φ
that satisfies the conjugacy relation (2.6) in the first coordinate.

To choose e2 such that (2.6) holds also for the second coordinate, we have to
solve

f2 = e2 ◦ Φ,

but since Φ is a holomorphic invertible map, we can just define e2 = f2 ◦ Φ, and
we are done.

Notice that this approach would not work for rigid germs of type (0,C\D), not
even formally.
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2.4.2 Rigid germs of type (0,C \ D)

Here we are going to study formal normal forms for rigid germs of type (0,C \D).
As notation, if f(x, y) =

∑
i,j fi,jx

iyj is a formal power series, and I = (i1, . . . , ik)
and J = (j1, . . . , jk) are two multi-indices, then we shall denote by fI,J the product

fI,J =
k∏
l=1

fil,jl .

Moreover, when writing the dummy variables of a sum, we shall write the dimension
of a multi-index after the multi-index itself. For example, I(n) shall denote a multi-
index I ∈ Nn. We shall group together the multi-indices with the same dimension,
separating these groups by a semi-colon, and we shall omit the dimension when it
is equal to 1. For example, ∑

n,m;I,J(n);K(m)

shall denote a sum over n,m ∈ N, I, J ∈ Nn and K ∈ Nm. As a convention, a
multi-index of dimension 0 is an empty multi-index. We shall use a similar notation
later for rigid germs in higher dimensions, see Subsection 3.1.1.

Remark 2.4.5. If f : (C2, 0) → (C2, 0) is a semi-superattracting holomorphic
germ, recalling Remark 2.3.9, we have two invariant curves, C and D, with trans-
verse intersection and multiplicity equal to 1, that play the role of the Unstable-
Stable manifold (see 1.1.5). In particular, the formal conjugacy classes of f |C and
f |D are formal invariants.

Moreover, up to formal conjugacy, we can suppose that C = {y = 0} and
D = {x = 0}. Let us set f = (f1, f2); then, up to a formal change of coordinates,
we can suppose that f1(x, 0) is equal to one of the formal normal forms given by
Proposition 1.1.15.

Indeed, if φ ∈ C[[x]] is the formal conjugation between f1(x, 0) and its formal
conjugacy class h(x), the formal map Φ(x, y) = (φ(x), y) is a conjugation between
f and a map g, with g1(·, 0) = h(·).

We shall refer at the normal form h of a germ f as the first (formal) action
of f .

Lemma 2.4.6. Let f : (C2, 0) → (C2, 0) be a semi-superattracting holomorphic
germ. Then, up to formal conjugacy, we can suppose that

f(x, y) =
(
h(x), g(x, y)

)
,

with h the first action of f , and g ∈ m2.
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Proof. We can suppose that f is of the form

f(x, y) =
(
λx
(
1 + f1(x, y)

)
, g2(x, y)

)
,

with f1 ∈ m and y|g2 ∈ m2.
We want to find a conjugation map of the form Φ(x, y) = (x(1 + φ(x, y)), y)

that conjugates f with

e(x, y) =
(
λx
(
1 + e1(x)

)
, e2(x, y)

)
,

with y|e2 ∈ m2, and λx(1 + e1(x)) = h(x).
Let us set 1+f1(x, y) =

∑
i+j≥0 fi,jx

iyj, g2(x, y) =
∑

i+j≥2 gi,jx
iyj, 1+φ(x, y) =∑

i+j≥0 φi,jx
iyj and 1 + e1(x) =

∑
i≥0 eix

i.
Then for the first coordinate of the conjugacy equation Φ ◦ f = e ◦ Φ we have∑

i+j≥0

φi,jλ
i+1xi+1

∑
I,J∈Ni+1

fI,Jx
|I|y|J |

∑
H,K∈Nj

gH,Kx
|H|y|K| (2.8)

| | (2.9)

λ
∑
h

ehx
h+1

∑
N,M∈Nh+1

φN,Mx
|N |y|M |. (2.10)

If we denote by In,m and by IIn,m the coefficients of xnym respectively of (2.8) and
(2.10), we have

In,m =
∑

i,j;I,J(i+1);H,K(j)
i+1+|I|+|H|=n
|J |+|K|=m

φi,jλ
i+1fI,JgH,K ; IIn,m =

∑
h;N,M(h+1)
h+1+|N |=n
|M |=m

λehφN,M .

If we denote by lower order terms all terms depending on φi,j for (i, j) lower than
the ones that appear in the equation (with respect to the lexicographic order), we
get

10
mφn−1,0λ

n(f0,0)n + l.o.t. = In,m = IIn,m = λe0φn−1,m + l.o.t.,

where 1 is the Kronecker’s delta function. In particular, for n = 0 we have 0 =
I0,m = II0,m = 0 for every m ∈ N, while for every m ≥ 1 we have In,m = l.o.t. for
every n ∈ N∗. Since λe0 = λ 6= 0, we can use (2.9) to define recursively φn,m for
every m ≥ 1 once we have defined the base step for m = 0.

But the case m = 0 is exactly the same as consider the formal classification of
f̃(x) = λx(1 + f1(x, 0)) as a map in one complex variable. Then, again recalling
Remark 2.4.5 and putting all together, we can define a formal map Φ that solves
the conjugacy relation Φ ◦ f = e ◦ Φ.
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We shall now give the formal classification of semi-superattracting rigid germs
(the attracting case actually follows from Theorem 2.4.3).

Theorem 2.4.7. Let f : (C2, 0)→ (C2, 0) be a (holomorphic) semi-superattracting
rigid germ. Let λ ∈ C∗ be the non-zero eigenvalue of df0.

(i) If |λ| < 1 or λ = e2πiθ with θ ∈ R \ Q, then f is formally conjugated to the
map

(z, w) 7→ (λz, zcwd).

(ii) If |λ| > 1, then f is formally conjugated to the map

(z, w) 7→
(
λz, zcwd(1 + εzl)

)
,

where ε ∈ {0, 1} if λl = d (resonant case), and ε = 0 otherwise.

(iii) If there exists r ∈ N∗ such that λr = 1, then f is formally conjugated to the
map

(z, w) 7→
(
λz(1 + zs + βz2s), zcwd(1 + ε(zr))

)
,

where r|s and β ∈ C, while ε is a formal power series in zr, and ε ≡ 0 if
d ≥ 2.

In all cases, c ≥ 0, d ≥ 1 and c+ d ≥ 2.

Proof. Thanks to Lemma 2.4.6 and simple considerations on rigid germs (see Re-
mark 2.4.2), we can suppose that

f(x, y) =
(
h(x), xcyd

(
1 + g(x, y)

))
for a suitable g ∈ m, and where h(x) = λx(1 + δ(x)) is the first action of f .

We want to find a conjugation Ψ of the form Ψ(x, y) = (x, y(1 + ψ(x, y))),
between f and

e(x, y) =
(
h(x), xcyd

(
1 + ε(x)

))
,

for a suitable ε.
Then for the second coordinate of the conjugacy equation Ψ◦f = e◦Ψ we have

xcyd
∑
i+j≥0

ψi,jλ
ixi
∑
L∈Ni

δLx
|L|

∑
I,J∈Nj+1

gI,Jx
|I|y|J | (2.11)

| | (2.12)

xcyd
∑
h

εhx
h
∑

H,K∈Nd
ψH,Kx

|H|y|K|. (2.13)
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If we denote by In,m and by IIn,m the coefficients of xc+nyd+m respectively of
(2.11) and (2.13), we have

In,m =
∑

i,j;L(i);I,J(j+1)
i+cj+|L|+|I|=n

dj+|J |=m

ψi,jλ
iδLgI,J ; IIn,m =

∑
h;H,K(d)
h+|H|=n
|K|=m

λεhψH,K ;

Then for (n,m) 6= (0, 0) we get

10
mψn,0λ

n + l.o.t. = In,m = IIn,m = dψn,m + l.o.t.,

where 1 is the Kronecker’s delta function. Hence if m > 0, we can use (2.12) to
define recursively ψn,m; for m = 0, we can have some resonance problems, when
λn = d, that is exactly the condition expressed in (ii) and (iii). In these cases,
studying the dependence of IIn,0 on εh, we get

IIn,0 = εn + l.o.t.,

where l.o.t. denotes here the dependence on lower order terms εh with h < n. So
for each n that gives us a resonance, there exists a εn that satisfies In,0 = IIn,0.
Putting all together, and eventually performing a conjugacy by a linear map, we
obtain the thesis.

Remark 2.4.8. We notice that in the statement of Theorem 2.4.7, f belongs to
Class 2 if and only if d = 1, to Class 3 if and only if c = 0, and to Class 5 otherwise.

Remark 2.4.9. The composition α ◦ f•, where α is either skewness or thinness,
is not affected by slightly changing the non-null coefficients of a germ f (as far as
we keep these coefficients non-null). What changes is the action of the differential
df• in suitable tangent spaces.

So the difference between normal forms in the resonant case of Theorem 2.4.7
lies in the action of df•, that is not invariant by change of coordinates, but has a
very complicated behavior.

Remark 2.4.10. Let φ(x, y) =
∑
φn,mx

nym be a formal power series. Then φ is
holomorphic (as a germ in 0) if and only if there is M such that

|φn,m| ≤Mαnβm.

In particular, if φ is holomorphic, then lim supn
n
√
|φn,m| <∞ for every m ∈ N,

and the same holds if we exchange the role of m and n.

We shall see now that when one has rigid germs of type (0,C \D), one cannot
generally perform either the conjugacy of Lemma 2.4.6 or the one of Theorem 2.4.7
in a holomorphic way (this behavior is the opposite of the (0,D) case).
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Counterexample 2.4.11. Let us show that the conjugation given by Lemma
2.4.6 cannot be always holomorphic. Let f(x, y) = (λx(1 + y), xy) with |λ| > 1
and e(x, y) = (λx, e2), and let

Φ(x, y) =
(
x
(
1 + φ(x, y)

)
, ψ(x, y)

)
be the (formal) conjugation given by Lemma 2.4.6. Let us use the same notations
as in the proof of Theorem 2.4.7; then we already know that there is a formal
conjugation Φ between f and e, with φ defined as in the proof of Lemma 2.4.6. In
this case, it becomes:

φn,m =
∑
h,k,l
h+k=n
l+k=m

λhφh,k

(
h+ 1
l

)
. (2.14)

Computing (2.14) for m = 0 we get

φn,0 = λnφn,0,

and hence φn,0 = 0 for every n 6= 0 (while we fixed φ0,0 = 1). Computing (2.14)
for m = 1 we get

φn,1 = (n+ 1)λnφn,0 + λn−1φn−1,1 = 10
n + λn−1φn−1,1,

where 1 denotes the Kronecker’s delta function, and hence

φn,1 = λn(n−1)/2.

Recalling Remark 2.4.10, we have that φ is not holomorphic.

Remark 2.4.12. Suppose that we have a germ f = (λx, f2), with |λ| > 1, that is
formally conjugated to (λx, xcyd) (i.e., we are not in the resonance case). The proof
of Theorem 2.4.7 shows also that the conjugation with the normal forms is unique
when we ask it to be of the form Ψ(x, y) = (x, y(1+ψ)). But if we consider a general
conjugation map Φ = (φ1, φ2), since we have two invariant curves D = {x = 0}
and C = {y = 0}, then we have x|φ1 and y|φ2, and since the first coordinate is
λx, from direct computation we also have that φ1(x, y) = x. So Φ is unique up to
a linear change of coordinates. Hence, to prove that two germs are formally but
not holomorphically conjugated, we only have to show that the conjugation found
during the proof of Theorem 2.4.7 is not holomorphic.

Counterexample 2.4.13. Let us show that also the conjugation given by Theo-
rem 2.4.7 cannot be always holomorphic. Let f(x, y) = (λx, xy(1+y)) with |λ| > 1
and e(x, y) = (λx, xy), and let

Ψ(x, y) =
(
x,w

(
1 + ψ(x, y)

))
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be the (formal) conjugation given by Theorem 2.4.7. Let us use the same notations
as in the proof of Theorem 2.4.7; then we already know that there is a formal
conjugation Φ between f and e, with ψ defined as in the proof of Theorem 2.4.7.
In this case, it becomes:

ψn,m =
∑
h,k,l
h+k=n
l+k=m

λhψh,k

(
k + 1
l

)
. (2.15)

Computing (2.15) for m = 0 we get

ψn,0 = λnψn,0,

and hence ψn,0 = 0 for every n 6= 0 (while we fixed ψ0,0 = 1). Computing (2.15)
for m = 1 we get

ψn,1 = λnψn,0 + λn−1ψn−1,1 = 10
n + λn−1ψn−1,1,

where 1 denotes the Kronecker’s delta function, and hence

ψn,1 = λn(n−1)/2,

and again we have that ψ is not holomorphic.

2.5 Formal Classification of Semi-superattracting

Germs

2.5.1 Invariants

In this subsection we shall introduce a few invariants for the formal classification
of semi-superattracting germs, that arise from the rigidification process.

Remark 2.5.1. Let f, e : (C2, 0) → (C2, 0) be two (formal) germs and let us
consider a conjugacy relation of the form

(C2, 0)

Φ

��

f // (C2, 0)

Φ

��
(C2, 0)

e // (C2, 0)

.
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Then the induced action on the valuative trees

V

Φ•

��

f• // V

Φ•

��
V e• // V

,

gives a conjugacy relation with conjugation Φ•.
Thanks to Proposition 2.2.10, we have that

α
(
Φ•(ν)

)
= α(ν),

m
(
Φ•(ν)

)
= m(ν),

A
(
Φ•(ν)

)
= A(ν),

where α is the skewness, m is the multiplicity, and A is the thinness.
Hence for a germ f : (C2, 0) → (C2, 0), the action of α ◦ f•, m ◦ f•, A ◦ f• are

invariants by formal conjugacy.

Definition 2.5.2. Let f : (C2, 0) → (C2, 0) be a (dominant) holomorphic germ.
We shall call flexibility of f the number

flex(f) := min
{

weight(π) | (π, p, f̂) is a rigidification for f
}

.

We shall say that f is r-flexible if flex(f) ≤ r.

Remark 2.5.3. The flexibility of a (dominant) germ f is well defined as a integer
number flex(f) ∈ N thanks to Theorem 2.3.2. Moreover, f is rigid if and only if
flex(f) = 0.

Finally, let us consider a conjugation Φ between two (dominant) germs f, e,
and the induced action Φ• as in Remark 2.5.1.

A rigidification (π, p, f̂) for f gives a basin of attraction U(p) ⊂ V , while Φ•
sends U(p) in a suitable open set U(q) ⊂ V .

Thanks to the invariance of parametrizations and multiplicity (see Proposi-
tion 2.2.10 and Remark 2.5.1), we have that q is an infinitely near point in the
exceptional divisor of a suitable modification ρ such that weight(π) = weight(ρ).

It follows that the flexibility of a germ is a formal invariant.

We shall focus now our attention on the semi-superattracting case.

Remark 2.5.4. Let f : (C2, 0) → (C2, 0) be a semi-superattracting (dominant)
germ. Then thanks to Remark 2.4.5 and Lemma 2.4.6 we can suppose, up to formal
conjugacy, that the two (formal) fixed curves C and D given by Theorem 2.3.8 (see



58 2 Dynamics in 2D

also Remark 2.3.9) are defined by C = {y = 0} and D = {x = 0} respectively, and
f is of the form

f(x, y) =
(
h(x), g(x, y)

)
, (2.16)

with h the first action of f , and g ∈ m2.

We are now interested in simplifying the second coordinate of such a germ up
to formal conjugacy, as we have done in Theorem 2.4.7 for the rigid case. We shall
need some notations to make computations.

Definition 2.5.5. Let f(x, y) =
(
h(x), g(x, y)

)
be a semi-superattracting rigid

germ as in (2.16). Write g(x, y) =
∑

i,j gi,jx
iyj. For every (i, j) ∈ N×N, we denote

〈(i, j)〉 = {n,m ∈ N× N : n ≥ i and m ≥ j}.

Then we set
W(g) :=

⋃
gi,j 6=0

〈(i, j)〉,

and we denote by ∂W(g) a minimal set of generators of W(g), i.e., a minimal subset
of W(g) such that ⋃

(i,j)∈∂W(g)

〈(i, j)〉 = W(g).

We finally denote by C(W(g)) the set of vertices in the convex hull of W(g).
We shall not write explicitly the dependence on g if it is clear from the contest.

Remark 2.5.6. Let f(x, y) =
(
h(x), g(x, y)

)
be a semi-superattracting rigid germ

as in (2.16).
In Definition 2.5.5 we took ∂Wg “a minimal set” of generators of W(g). As a

matter of fact, ∂W(g) exists and it is unique.
If we set

p := min{i : (i, j) ∈W},
dl := min{j : (i, j) ∈W, i ≤ l} (for p ≤ l ≤ q).

then we have that the sequence (dl) is decreasing, and hence it stabilizes, let us
say at l = q:

dq−1 > dq = dq+n =: d for n ∈ N,

where we denote dp−1 = +∞ if p = q.
We shall also denote by D = {dl} the set of values of the sequence (dl).
Then if for every j ∈ D we set

cj := min{i | di = j},
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then we can define ∂W(g) as

∂W(g) = {(cj, j) | j ∈ D}.

With these definitions, we can write

f(x, y) =

(
h(x),

q∑
l=p

xlydlf (l)

)
, (2.17)

where h is the first action, f (l) = f (l)(y) for p ≤ l < q, and f (q) = f (q)(x, y).
Moreover, f (l)(0) 6= 0 whenever dl−1 > dl (it includes f (q)(0, 0) 6= 0).

Remark 2.5.7. Let f : (C2, 0) → (C2, 0) be a semi-superattracting (dominant)
germ written as in (2.17). Let W be as in Definition 2.5.5, and we shall set q and
d as in Remark 2.5.6.

Then f is r-flexible if and only if

W ⊆ {(i, j) ∈ N2 | r(j − d) + (x− q) ≥ 0}.

Indeed, in the proof of Theorem 2.1.13, to find an eigenvaluation as in Theorem
2.3.2, in our case we just have to consider blow-ups of free points, written in
coordinates as π(x, y) = (x, xy).

Moreover, thanks to Theorem 2.3.8, this is the only way to get an eigenvalua-
tion.

Hence, we have just to lift f through π until we get a rigid germ.
By direct computation, we get the statement.

Remark 2.5.8. In the next proposition, starting from a semi-superattracting
(dominant) germ f : (C2, 0) → (C2, 0) written as in (2.17), we shall consider
the map s : [0,+∞]→ [0,+∞] given by

s(t) :=
∧

(i,j)∈W

i+ tj,

where W is defined as in Definition 2.5.5.
First of all, we notice that (m,n) ∈ 〈(i, j)〉 if and only if m + tn ≥ i + tj for

every t, and it follows that

s(t) =
∧

(i,j)∈∂W

i+ tj.

Next, if we consider two points Pr = (ir, jr) ∈ N2 for r = 0, 1, and we consider the
segment between them, with Pr = (ir, jr) := rP1 + (1− r)P0 for r ∈ [0, 1], then∧

r∈[0,1]

ir + tjr =
∧
r=0,1

ir + tjr,
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and hence it follows that
s(t) =

∧
(i,j)∈C(W)

i+ tj.

So s(t) is uniquely determined by C(W). We shall now see that also the converse
is true.

In fact, a point (i, j) ∈ W is in C(W) if and only if there exists a open semi-
plane V = {(x, y) ∈ R2 | a(x − i) + b(y − j) > 0} for suitable a, b > 0, such that
V ⊃W \ {(i, j)}.

But then for every (x, y) ∈ V we have

x+ y

(
b

a

)
> i+ j

(a
b

)
,

and we are done.

Proposition 2.5.9. Let f be a (dominant) semi-superattracting holomorphic germ
as in (2.16).

Then the set C(W) is a formal conjugacy invariant for f .

Proof. Let us consider the induced map f• : V → V on the valuative tree, and
in particular the restriction of f• on the interval I = [νx, νy]. Let us denote by α
the skewness parametrization, by νt the unique valuation in [νm, νy] with skewness
α(νt) = t if t ≥ 1, and the unique valuation in [νm, νx] with skewness α(νt) = 1/t
if t ≤ 1. Then f•νt = νs(t) with

s(t) =
∧

(i,j)∈W

i+ tj.

Thanks to Remark 2.5.1, the function s(t) is a formal conjugacy invariant. But
thanks to Remark 2.5.8, C(W) is uniquely determined by the map s(t), and we are
done.

2.5.2 Classification

Definition 2.5.10. In the following theorem, we shall use a few notations for
subsets of N2 (or Z2). Let W ⊆ Z2, k, a, b ∈ Z and (i, j) ∈ Z2. Then we shall
denote

kW = {(kn, km) ∈ Z2 | (n,m) ∈ W},
W = {(n,−m) ∈ Z2 | (n,m) ∈ W},

(i, j) +W = {(i+ n, j +m) ∈ Z2 | (n,m) ∈ W},
Wa = {(n,m) ∈ W | n ≥ a},
W b = {(n,m) ∈ W | n ≤ b}.
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We notice that in particular 〈(i, j)〉 = (i, j) + N2. When writing a subset of Z2

modified by some of these operations, we shall implicitly intersect the result with
N2, obtaining a subset of N2.

Moreover, on the points in N2 we shall consider the following lexicographic
order:

(n1,m1) > (n2,m2) iff m1 > m2, or m1 = m2 and n1 > n2;

and we shall denote by l. o. t. terms of lower order with respect to this lexicographic
order on the indices. In the case we are considering an equation that depends on
several variables, we shall denote by l. o. t.(φ) the terms of lower order with respect
to indices of the formal power series φ.

Theorem 2.5.11. Let f = (f1, f2) be a (dominant) semi-superattracting holomor-
phic germ. Let h be the first action, λ the non-zero eigenvalue of df0, and d = dq
as in Remark 2.5.6. Then, up to formal conjugacy, we have

f(x, y) =

(
h(x),

q∑
l=p

xlydlf (l)

)

(with f (l) as in Remark 2.5.6), so that:

(i) if λu 6= d for every u ∈ N∗ (no resonance), then f (q) ∈ C∗. This normal
form is unique up to conjugations of the form Ψ(x, y) = (α1x, α2y), with
α1, α2 ∈ C∗.

(ii) if there exists u ∈ N∗ such that λu = d ≥ 2 (degenerate, simple reso-
nance), then f (q) = a0 + aux

u, with a0 ∈ C∗ and au ∈ C. In this case,
h(x) = λx, and this normal form is unique up to conjugations of the form
Ψ(x, y) = (αz, w(ψ0,0 + ψu,0x

u)), with α, ψ0,0 ∈ C∗ and ψu,0 ∈ C.

(iii) if there exists u ∈ N∗ such that λu = d = 1 (non-degenerate, full reso-
nance), then f (q) = f (q)(xu), with f (q)(0) ∈ C∗. This normal form is unique
up to conjugations of the form Ψ(x, y) = (αx, yψ(xu)), with α, ψ(0) ∈ C∗.

Proof. Recalling Remark 2.5.6, we can suppose that f is of the form

f(x, y) =
(
h(x),

q∑
l=p

xlydlf (l)
)

.

We will write h(x) = λxg(x), with g(0) = 1.
We shall call e the normal form candidate, of the form

e(x, y) =
(
h(x),

q∑
l=p

xlydle(l)
)

,
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with e(l) = e(l)(y) for p ≤ l < q and e(q) = e(q)(x). We shall look for a conjugation
map Φ of the form Φ(x, y) = (x, y(1 + ψ)): since we have to fix the coordinate
axes in order to maintain the special form and thanks to Remark 2.4.12 and some
considerations that arise from the proof of Proposition 1.1.15, we have no loss of
generality considering only this kind of conjugation map; so we want to solve the
conjugacy equation Φ ◦ f = e ◦ Φ.

We shall set g(x) =
∑

h ghx
h; moreover f (l)(y) =

∑
k f

(l)
k yk for p ≤ l < q,

f (q)(x, y) =
∑

i,j f
(q)
i,j x

iyj, e(l)(y) =
∑

k e
(l)
k y

k for p ≤ l < q, e(q)(x) =
∑

h e
(q)
h xh and

1+ψ(x, y) =
∑

i,j ψi,jx
iyj. Sometimes it shall be useful to denote some coefficients

that depend only by one parameter, as coefficients that depend on two parameters:
for example, we shall write f

(l)
j = f

(l)
0,j.

Writing explicitly in formal power series the second coordinate of the conjugacy
equation, we get∑

i,j

ψi,jλ
ixi
∑
M(i)

gMx
|M |
∑

I,J,L(j+1)

x|L|y|dL|f
(L)
I,J x

|I|y|J | (2.18)

| | (2.19)
q−1∑
l=p

xl
∑
k

e
(l)
k y

dl+k
∑

H,K(dl+k)

ψH,Kx
|H|y|K| + yd

∑
h

e
(q)
h xq+h

∑
H,K(d)

ψH,Kx
|H|y|K|. (2.20)

If we denote by In,m and by IIn,m the coefficients of xnym respectively of (2.8)
and (2.10), we have

In,m =
∑

i,j;M(i),I,J,L(j+1)
i+|M |+|L|+|I|=n
|dL|+|J |=m

ψi,jλ
igMf

(L)
I,J ; IIn,m =

∑
l,k;H,K(dl+k)
l+|H|=n

dl+k+|K|=m

e
(l)
k ψH,K +

∑
h;H,K(d)
q+h+|H|=n
d+|K|=m

e
(q)
h ψH,K ; (2.21)

we shall also denote En,m = IIn,m − In,m.
So we have to solve the equations

En,m = 0 (2.22)

for every (n,m) ∈ N × N, with respect to ψ, while we would like to set as many
coefficients of e as possible equal to 0.

If (n,m) 6∈W, then En,m = 0, so equation (2.22) is automatically satisfied.
Let us consider (n,m) ∈W. Then we have that

En,m = R̃n,m

(
ψi,j (i, j) ∈ (n,m)−W,

e
(l)
h (l, h) ∈ (0,m) + W

n∧q

)
,

for a suitable function R̃n,m, where we have explicited the dependence from e and
ψ.
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First of all, we notice that

Eq,d = e
(q)
0 ψd0,0 − f

(q)
0,0ψ0,0,

and, since ψ0,0 = 1, from equation (2.22) applied to (q, d) we get that e
(q)
0 = f

(q)
0 is

an invariant.
Let us consider (n,m) ∈ 〈(q, d)〉 \ {(q, d)} ⊂W. Then we have

En,m = de
(q)
0 ψn−q,m−dq − δqmλn−qψn−q,0f

(q)
0,0 + l.o.t.(ψ). (2.23)

We have already seen that e
(q)
0 = f

(q)
0,0 , so the leading coefficient is reduced to

cn−q,m−d := e
(q)
0 (d − δqmλ

n−q). Whenever cn,m 6= 0, from Eq+n,d+m we can define
recursively

ψn,m = Rn,m

(
e

(l)
h | (l, h) ∈ (0, dq +m) + W

q)
, (2.24)

with Rn,m a suitable function, depending on the indicated coefficients e
(l)
h and the

other given datas (such as f and λ).
This is always the case if we are in case (i), while cu,0 = 0 if we are in case (ii),

and cku,0 = 0 for every k ∈ N∗ if we are in case (iii).
In all these cases, the leading term of Eq+n,d with respect to e(q) is

Eq+n,d = e(q)
n + l.o.t.(e(q)). (2.25)

Since the leading term Eq+n,d with respect to ψ is vanishing thanks to resonances,
we can define (recursively in case (iii)) e(q). We notice that the definition of e(q) is
not unique in case (iii), since it depends on the choice we have on ψku,0 for k ∈ N∗,
while it is uniquely determined in case (ii) (and obviously (i)).

Consider now (n,m) ∈W \ 〈(q, d)〉. In this case we have

En,m = e
(n)
m−dn + l.o.t.(e)

= R̃n,m

(
ψi,j | (i, j) ∈ (n,m)−W; e

(l)
h | (l, h) ∈ (0,m) + W

n)
.

We want to show, using equation (2.24) for explicitating the dependence of ψi,j from

e
(l)
h , that actually the φi,j’s with (i, j) ∈ (n,m)−W depend only on coefficients of

e smaller than e
(n)
m−dn (with respect to the lexicographic order previously defined).

Indeed, the maximum j that appears is j = m − dn , and in this case i ≤ n − 1
and we are done. So from E(l)

dl+h
for p ≤ l < q and h ≥ 0 we can define recursively

e
(l)
h = S

(l)
h

(
egk | (g, k) ∈ (0, dl + h) + W

l)
.

Hence we have found e, and a Φ that solves the conjugacy equation, and we are
done.
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2.6 Rigid Germs of type (0, 1)

Definition 2.6.1. Let f : (C2, 0)→ (C2, 0) be a holomorphic germ of type (0, 1).
Thanks to Theorem 2.3.8, we have a (formal) curve C = {y = θ(x)} that is
invariant for the action of f . Moreover, f |C is a (formal) tangent to the identity
map from C to C, i.e., with

(
f |C
)′

(0) = 1. We shall call parabolic multiplicity
of f the parabolic multiplicity of f |C .

Remark 2.6.2. The definition of parabolic multiplicity just given coincide with
the definition of multiplicity in [Hak94].

Definition 2.6.3. Let R and ρ be two positive real numbers, and k ∈ N∗. Then
we define

PR :={x ∈ C | Rex > R},
VR,ρ :={(x, y) ∈ C2 | x ∈ PR, |y| < ρ}.

Let us denote by DR and UR,ρ the images of PR and VR,ρ under the inversion in
the first coordinate (x, y) 7→ (x−1, y), so we have

DR :=

{
x ∈ C |

∣∣∣∣x− 1

2R

∣∣∣∣ < 1

2R

}
,

UR,ρ :={(x, y) ∈ C2 | x ∈ DR, |y| < ρ}.

There are k branches of k
√
x in DR (since 0 6∈ DR). Let {∆R,j}j=0,...,k−1 be the

images of DR by these determinations. Let us define

WR,ρ,j := {(x, y) ∈ C2 | x ∈ ∆R,j, |y| < ρ}, for j = 0, . . . , k − 1.

Theorem 2.6.4 ([Hak94, Section 4]). Let f : (C2, 0) → (C2, 0) be a holomorphic
germ of type (0, 1), with parabolic multiplicity k+1. Then for every j = 0, . . . , k−1,
and for suitable R, ρ > 0 small enough, there exists holomorphic maps

φj : WR,ρ,j → C

such that
φ
(
f(p)

)
= φ(p) + 1.

Moreover

φj(x, y) =
1

xk
(
1 +O(xk log x, y)

)
.

Remark 2.6.5. Recalling Remark 2.4.2, if we have a holomorphic rigid germ of
type (0, 1), then we can suppose that

f(x, y) =
(
x
(
1 + g(x, y)

)
, xcyd

(
1 + h(x, y)

))
, (2.26)

where g(0, 0) = h(0, 0) = 0.
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Lemma 2.6.6. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of type
(0, 1) of parabolic multiplicity k + 1. Then for every j = 0, . . . , k − 1 and for
suitable R, ρ > 0 small enough, if we set Wj = WR,ρ,j, there exists a holomorphic

conjugation Φj : Wj → W̃j between f |Wj
and the map

(x, y) 7→
(

x
k
√

1 + xk
, xcyd

(
1 + h(x, y)

))
, (2.27)

where h(x, y) = O(xk log x, x, y), and W̃j is a suitable parabolic domain.

Proof. Up to linear transformations, we can suppose that j = 0. Let us set

Ψ(x, y) =

(
1

xk
, y

)
,

Φ(x, y) =
(
φ(x, y), y

)
,

where φ = φ0 is given by Theorem 2.6.4. If we consider the conjugation Υ :=
Ψ−1 ◦ Φ, then we have that

Υ(x, y) = Ψ−1
(
x−k
(
1 +O(xk log x, y)

)
, y
)

=
(
x
(
1 +O(xk log x, y)

)
, y
)

.

By directly computing Υ ◦ f ◦Υ−1 we get the statement.

Corollary 2.6.7. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of type
(0, 1) of parabolic multiplicity k + 1. Let us set W = WR,ρ,j for suitable j ∈
{0, . . . , k − 1}, R, ρ > 0 small enough. If there exists a parabolic curve {y = θ(x)}
in W , then there exists a holomorphic conjugation Φ : W → W̃ between f |W and
the map

(x, y) 7→
(

x
k
√

1 + xk
, xcyd

(
1 + h(x, y)

))
, (2.27)

where h(x, y) = O(xk log x, x, y), d ≥ 1, and W̃ is a suitable parabolic domain.

Proof. Thanks to Lemma 2.6.6, we just have to prove that, with the existence of
a parabolic curve, we can get d ≥ 1 in equation 2.27. Let us suppose that we can
obtain (2.27) with d = 0. Then we just need to conjugate by (x, y) 7→ (x, y− θ(x))
and we are done.

Theorem 2.6.8. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of type
(0, 1) of parabolic multiplicity k + 1 that belongs to Class 3 or 5 (i.e., d ≥ 2 if f
is written as in (2.26)). Then for every j = 0, . . . , k − 1 and for suitable R, ρ > 0



66 2 Dynamics in 2D

small enough, if we set Wj = WR,ρ,j, there exists a holomorphic conjugation Φj :

Wj → W̃j, with W̃j a suitable parabolic domain, between f |Wj
and the map

f̃(x, y) =

(
x

k
√

1 + xk
, xcyd

)
; (2.28)

equivalently, conjugating by Ψ(x, y) = (x−k, y), f |Wj
is holomorphically conjugated

to
(x, y) 7→ (x+ 1, x−c/kyd).

Proof. As always, we can suppose j = 0 and W = W0. Thanks to Lemma 2.6.6,
we can suppose that f |W is as in (2.27). Let us consider the maps

Φn(x, y) =
(
x, y(1 + φn(x, y)

)
, with 1 + φn =

n∏
i=1

(1 + h ◦ f i−1)d
−i

. (2.29)

Then we have that(
Φn ◦ f

)
2
(x, y) =xcyd

(
1 + h(x, y)

) n∏
i=1

(
1 + h ◦ f i(x, y)

)d−i
=xcyd

n+1∏
i=1

(
1 + h ◦ f i−1(x, y)

)d1−i
= xcydφn+1(x, y)

=
(
f̃ ◦ Φn+1

)
2
(x, y).

Hence if φn tends to a holomorphic map φ∞ =: φ in W , we are done.
But from (2.29), taking the log of the absolute value, we just have to prove that

∞∑
n=1

d−n
∣∣h ◦ f ◦n−1

∣∣
converges in W . Since h(x, y) = O(xk log x, x, y), for every ε > 0 there exists
M > 0 big enough such that |h(x, y)| ≤M |(x, y)|1−ε, while since we are in W that
is invariant for f , we have that there exists C > 0 such that |fn(x, y)| < C. Then
we have

∞∑
n=1

d−n
∣∣h ◦ f ◦n−1

∣∣ ≤ 2M
∞∑
n=1

d−nMC1−ε,

that converges if d ≥ 2.

Remark 2.6.9. Actually in the last estimate of the proof of Theorem 2.6.8, we
just need that |fn(x, y)| ≤ CΛn for a suitable C > 0, 0 < Λ < d. In particular,
if we have a germ of type (0, λ) with |λ| < d and such that the first coordinate
depends only on x, then a result analogous to Theorem 2.6.8 holds. We notice that
when |λ| < d, we have seen in the last section that we have no resonances, while
exactly for |λ| = d we can have them (in particular, when λ = d).
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Lemma 2.6.10. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of type
(0, 1) of parabolic multiplicity k + 1 as in (2.27), with d = 1 (i.e., it belongs to
class 2). Set (xn, yn) = f ◦n(x0, y0). Then there exist R, ρ > 0 such that for every
j = 0, . . . , k − 1 we have

|xn|k =
|x0|k∣∣1 + nxk0

∣∣ ,
|yn| ≤ (2 |x0|c)n |y0| ,

in WR,ρ,j. In particular,

|xn| = O

(
1

n1/k

)
.

Proof. The proof is straightforward; we just notice that for the first coordinate of
fn, we have that it is conjugated through (x, y) 7→ (x−k, y) to the map x 7→ x+ n,
and hence it is of the form

x 7→ x
k
√

1 + nxk
.

Theorem 2.6.11. Let f : (C2, 0) → (C2, 0) be a holomorphic rigid germ of type
(0, 1) of parabolic multiplicity k + 1 that belongs to Class 2 (i.e., d = 1 if f is
written as in (2.26), recalling Corollary 2.6.7). Let us set W = WR,ρ,j for suitable
j ∈ {0, . . . , k − 1}, R, ρ > 0 small enough. If there exists a parabolic curve {y =

θ(x)} in W , then there exists a holomorphic conjugation Φ : W → W̃ between f |W
and the map

f̃(x, y) =

(
x

k
√

1 + xk
, xcy

(
1 + h̃(x)

))
, (2.30)

with h̃(x) = O(xk log x, x).

Proof. Thanks to Lemma 2.6.6, we can suppose that f |W is as in (2.27). We shall
write it on the form

(x, y) 7→
(
g̃(x), xcyd

(
1 + h̃(x) + k(x, y)

))
. (2.27)

Let us consider the maps

Φn(x, y) =
(
x, y(1 + φn(x, y)

)
, with 1 + φn =

n∏
i=1

(1 + l ◦ f i−1)d
−i

(2.31)

and

l(x, y) =
yk(x, y)

1 + h̃(x)
.
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Then we have that(
Φn ◦ f

)
2
(x, y) =xcyd

(
1 + h(x, y)

) n∏
i=1

(
1 + l ◦ f i(x, y)

)d−i
=xcyd

(
1 + h̃(x)

) n+1∏
i=1

(
1 + l ◦ f i−1(x, y)

)d1−i
= xcyd

(
1 + h̃(x)

)
φn+1(x, y)

=
(
f̃ ◦ Φn+1

)
2
(x, y).

Hence if φn tends to a holomorphic map φ∞ =: φ in W , we are done.
But from (2.31), taking the log of the absolute value, we just have to prove that

∞∑
n=1

∣∣l ◦ f ◦n−1
∣∣

converges in W . Since l(x, y) = yl̃(x, y), with l̃ bounded in W , we can suppose, up
to shrinking W , that |l(x, y)| < y |y|. Using Lemma 2.6.10, we have

∞∑
n=1

∣∣l ◦ f ◦n−1
∣∣ ≤ 2

∞∑
n=0

|yn| ≤ 2 |y0|
∞∑
n=0

(
2 |x0|c

)n
,

that converges for |x0| < 1/2 (hence for R > 1).

Remark 2.6.12. With the same techniques, we can also suppose that h̃(x) in
Theorem 2.6.11 does not have terms of degree > k, in the sense that we can erase
all terms divisible by xk+1, up to logarithms. Indeed, let us suppose that f is
on the form of (2.30), and write h̃(x) = h̃1(x) + h̃2(x), where h̃1(x) = O(xk) (up

to logarithms) and h̃2(x) with terms of degree ≥ k + 1 up to logarithms. Let us
denote

f̃(x, y) =

(
x

k
√

1 + xk
, xcy

(
1 + h̃1(x)

))
,

and consider the maps

Φn(x, y) =
(
x, y(1 + φn(x, y)

)
, with 1 + φn =

n∏
i=1

(1 + l ◦ f i−1)d
−i

and

l(x, y) = l(x) =
h̃2(z)

1 + h̃1(x)
.

As usual Φ∞ is the conjugation we want, up to showing the convergence of φn to
φ∞ =: φ.
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Taking the log of the absolute value, we just have to prove that

∞∑
n=1

∣∣l ◦ f ◦n−1
∣∣

converges in W . Thanks to our assumptions on h̃1 and h̃2, there exists C > 0 such
that |l(x)| < C |x|k+1−ε for a ε small enough. Using again Lemma 2.6.10, we have
that |xn| ≤ C ′n−1/k for |x0| small enough. Then we have

∞∑
n=1

∣∣l ◦ f ◦n−1
∣∣ ≤ C

∞∑
n=0

|xn|k+1−ε ≤ C

(
C ′

1

n1/k

)k+1−ε

,

that converges (for ε < 1).

2.7 Normal Forms

2.7.1 Nilpotent case

Favre and Jonsson studied the superattracting case (see [FJ07, Theorem 5.1]); the
nilpotent case is almost the same, there is in fact just one little difference between
them (see Remark 2.7.4).

Lemma 2.7.1. Let f be a (dominant) holomorphic germ, with df0 non-invertible,
ν? an eigenvaluation for f , and (π, p, f̂) a rigidification obtained from ν? as in
Theorem 2.3.2.

Assume ν? is not a divisorial valuation. Then c∞(f̂) = c∞(f).

Proof. Directly from the definition of f̂ as lift of f , we have π ◦ f̂ = f ◦ π. Let
µ? = π−1

• (ν?) (in this case µ? is an eigenvaluation for f̂). Then:

c(π◦f̂ , µ?) = c(f̂ , µ?) · c(π, f̂•µ?) = c(f̂ , µ?) · c(π, µ?)
||

c(f◦π, µ?) = c(π, µ?) · c(f, π•µ?) = c(π, µ?) · c(f, ν?).

From Theorem 2.2.16 we have c(f, ν?) = c∞(f) and c(f̂ , µ?) = c∞(f̂); so, if
c(π, µ?) <∞, we have c∞(f) = c∞(f̂). But c(π, µ?) =∞ if and only if µ? ∈ ∂U(p);
following the proof of Theorem 2.3.2, this (always) happens if and only if ν? is a
divisorial valuation.

Lemma 2.7.2. Let f : (C2, 0) → (C2, 0) be a holomorphic germ. Then df0 is
nilpotent if and only if c∞(f) > 1.
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Proof. If df0 is nilpotent, then df 2
0 = 0, and c(f 2) ≥ 2; we have c(f 2n) ≥ 2n, and

c∞(f) ≥
√

2. On the contrary, if df0 is not nilpotent, then dfn0 6= 0 for every n ∈ N,
and then c(fn) = 1, that implies also c∞(f) = 1.

Theorem 2.7.3. Let f be a (dominant) nilpotent holomorphic germ, ν? an eigen-
valuation for f , and (π, p, f̂) a rigidification obtained from ν? as in Theorem 2.3.2.
Then:

(i) if ν? is a (non-contracted) analytic curve valuation, then f̂ ∼= (za, zcwd), with
d ≥ a ≥ 2, c ≥ 1, a = c∞(f);

(ii) ν? cannot be a non-analytic curve valuation;

(iii) if ν? is an infinitely singular valuation, then f̂ ∼= (za, αzcw + P (z)), with
2 ≤ a ∈ N, c ≥ 1, α 6= 0, and P ∈ zC[z] (P 6≡ 0);

(iv) if ν? is a divisorial valuation, then f̂ ∼= (zawb, αw), with a = c∞(f) ≥ 2,
b ≥ 1 and α 6= 0;

(v) if ν? is an irrational valuation, then either f̂ ∼= (zn, wn) with 2 ≤ n =
c∞(f) ∈ N, or f̂ ∼= (wb, zc) with b, c ≥ 1 and c∞(f) =

√
bc 6∈ Q, or

f̂ ∼= (λ1z
awb, λ2z

cwd), with a, b, c, d ≥ 1, ad − bc 6= 0, λ1, λ2 6= 0 (we can
suppose λ1 = λ2 = 1 if bc 6= (a − 1)(d − 1)); c∞(f) is an eigenvalue of the
matrix with entries (a, b, c, d), and it is the larger one if and only if c(f̂) is
greater than the smaller one.

Proof. We split as usual the proof into five cases, depending on the type of ν?.

(i) If ν? = νC is a (non-contracted) analytic curve valuation, then we have seen
in part (i) of the proof of Theorem 2.3.2 that C∞(f̂) = E ∪ C̃ or C∞(f̂) = E,
and in both cases E is contracted and C̃ is fixed by f̂ . First of all, we know
from Lemma 2.7.1 and Lemma 2.7.2 that f̂ is nilpotent, and so tr df̂p = 0.

In the first case C∞(f̂) = E ∪ C̃ is reducible: so f̂ is of class 6 or 7. We can
choose (z, w) local coordinates in p such that E = {z = 0}, C̃ = {w = 0},
and

f̂(z, w) =
(
λ1z

awb
(
1 + φ1(z, w)

)
, λ2z

cwd
(
1 + φ2(z, w)

))
,

with φ1(0, 0) = φ2(0, 0) = 0, and λ1, λ2 6= 0.

Let us denote by M = M(f̂) the 2 × 2 matrix as in (2.5): f̂ is of class 6 if
and only if detM 6= 0.

Since E is contracted, then a, c ≥ 2, while C̃ fixed implies b = 0 and d ≥ 1.
So M is invertible (triangular) and f̂ is of class 6. By Theorem 2.4.3, up to
local conjugation we can suppose φ1 = φ2 = 0.
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Thanks to Lemma 2.7.1, Theorem 2.2.16 and Proposition 2.2.6, we know that
c∞(f) = c∞(f̂) = c(f̂ , νC̃) = e(f̂ , C̃) = a, and then we have a ≥ 2, and d ≥ 2

(being a = c∞(f̂) = min{a, d}). In particular 1 6∈ Spec(M), and we can also
suppose λ1 = λ2 = 1.

Putting together all the informations, we have

f̂(z, w) ∼= (za, zcwd),

with d ≥ a ≥ 2, c ≥ 1 (and a = c∞(f)).

In the second case, C∞(f̂) = E is irreducible, so f̂ is of class 4. By Theorem
2.4.3, we can choose local coordinates (z, w) such that E = {z = 0}, C̃ =
{w = 0}, and

f̂(z, w) =
(
za, αzcw + P (z)

)
,

with a ≥ 2 and c ≥ 1. Since C̃ is fixed, then P ≡ 0. But in this case, there
is a monomial eigenvaluation ν, defined by ν(z) = a − 1 and ν(w) = c (and
opportunely renormalized): a contradiction, since f̂n• → νw on V \ {νz} (see
Remark 2.3.3 and Theorem 2.3.2).

(ii) Corollary 2.2.20.

(iii) If ν? is an infinitely singular valuation, then we have seen in part (iii) of the
proof of Theorem 2.3.2 that C∞(f̂) = E and f̂(E) = p. Again, we know
from Lemma 2.7.1 and Lemma 2.7.2 that f̂ is nilpotent, and so tr df̂p = 0;

moreover C∞(f̂) is irreducible, and then f̂ is of class 4. So we can choose
(z, w) local coordinates in p such that E = {z = 0}, and

f̂(z, w) =
(
za, αzcw + P (z)

)
,

with a ≥ 2 and c ≥ 1. Since fn• → ν? in U(p), no curve valuation is fixed by
f̂ , and P 6≡ 0. Moreover, c∞(f) = a (see [FJ07, p. 25]).

(iv) If ν? = νE is a divisorial valuation, then we have seen in part (iv) of the
proof of Theorem 2.3.2 that C∞(f̂) = E ∪ F , with E,F ∈ Γ∗π two adjacent
exceptional components of a modification π. Moreover, F is contracted to p
by f̂ , while E is fixed. In this case we cannot apply Lemma 2.7.1, but we
know that C∞(f̂) is reducible, and so we can choose (z, w) local coordinates
in p such that E = {z = 0}, F = {w = 0}, and

f̂(z, w) =
(
λ1z

awb
(
1 + φ1(z, w)

)
, λ2z

cwd
(
1 + φ2(z, w)

))
,

with φ1(0, 0) = φ2(0, 0) = 0, and λ1, λ2 6= 0. Since E is fixed by f̂ , then
c = 0 (and a ≥ 1); since F is contracted, we have b, d ≥ 1. Choosing a non-
critical fixed point of df• (see Remark 2.2.15) in Proposition 2.2.21, we can
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also suppose d = 1. Using notations as in point (i), we have tr(df̂0) = λ2 6= 0,
so f̂ is of class 5, and

f̂ ∼= (zawb, αw),

with α = λ2 6= 0, a ≥ 2 and b ≥ 1 (and in this case c∞(f̂) = 1). From direct
computations (using Lemma 2.2.19) it follows that a = c∞(f).

(v) Let us finally suppose ν = ν? an irrational valuation. As we have seen in
part (v) of the proof of Theorem 2.3.2, C∞(f̂) = E ∪ F , with E,F ∈ Γ∗π two
adjacent exceptional components of the modification π. Recalling Lemma
2.7.1, we know that f̂ is of class 6 or 7, and we can choose (z, w) local
coordinates in p such that E = {z = 0}, F = {w = 0}, and

f̂(z, w) =
(
λ1z

awb
(
1 + φ1(z, w)

)
, λ2z

cwd
(
1 + φ2(z, w)

))
,

with φ1(0, 0) = φ2(0, 0) = 0, and λ1, λ2 6= 0.

As always we denote by M = M(f̂) the 2× 2 matrix of entries (a, b, c, d) as
in (2.5).

For the dynamics on C∞(f̂), we have seen in Proposition 2.2.21 that there
are three cases.

Let us denote I = [νE, νF ], U = U(p), and J = [νz, νw]: by our choices we
have π•(J) = I. If f•|I = idI , then both E and F are fixed by f•; in this case
b = c = 0, while a, d ≥ 2. Then detM 6= 0 (M is diagonal), and 1 6∈ Spec(M),
so f̂ is of class 6, and conjugated to (za, wd). Moreover, f•|I = idI implies
f̂• = idJ , and this easily implies a = d(= c∞(f)). So in this case we have

f̂ ∼= (zn, wn),

with 2 ≤ n = c∞(f) ∈ N.

If f•|I2 = idI (but f•|I 6= idI), then E and F are exchanged by f•; in this case
a = d = 0, while b, c ≥ 1 (not both = 1). Then detM 6= 0, and 1 6∈ Spec(M),
so f̂ is of class 6, and

f̂ ∼= (wb, zc),

with c∞(f) =
√
bc.

Moreover, we know that µ? := π−1
• ν? is an irrational valuation (see Proposi-

tion 2.2.4), and from direct computations we get
√
bc = c∞(f) 6∈ Q.

Finally if f•|I2 6= idI , then f•U⊂⊂U , and both E and F are contracted to
p. This time we have a, b, c, d ≥ 1; we claim that detM 6= 0 in this case too.
For every s, t ≥ 0, let us consider the monomial valuations µs,t in the local
coordinates (z, w) defined by µs,t(z) = s and µs,t(w) = t. Then (see Remark
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2.3.4), I is parametrized by νs,t = π∗µs,t, with s, t satisfying bEs + bF t = 1.

It is easy to see that bEνE = ν0,1 and bFνF = ν1,0, while f̂∗µ1,0 = µa,b, and

f̂∗µ0,1 = µc,d. Since f• is injective in I, we have that µa,b and µc,d are not

proportional, that is to say ad 6= bc and detM 6= 0. So we have again f̂ of
class 6, and:

f̂ ∼= (λ1z
awb, λ2z

cwd),

where a, b, c, d ≥ 1, ad 6= bc and we can suppose λ1 = λ2 = 1 if (a−1)(d−1) 6=
bc. A direct computation shows that c∞(f) ∈ Spec(M), and it is the larger
eigenvalue if and only if c(f̂) is greater than the smaller eigenvalue.

Remark 2.7.4. The unique difference between the superattracting case and the
nilpotent case is that, in the nilpotent case, one has c∞(f) ≥

√
2, while in the

superattracting case one has c∞(f) ≥ 2. Moreover, thanks to Lemma 2.7.1, when
the eigenvaluation ν? is not divisorial, then for the lift f̂ we have c∞(f) = c∞(f̂).
So to obtain the result for the nilpotent case, we have just to ignore the hypothesis
c∞(f̂) ≥ 2 (when ν? is not divisorial).

2.7.2 Semi-superattracting case

Germs of type (0,D∗)

Proposition 2.7.5. Let f be a (dominant) holomorphic germ of type (0,D∗), ν? an
eigenvaluation for f , and (π, p, f̂) a rigidification obtained from ν? as in Theorem
2.3.2. Let λ ∈ D∗ be the non-zero eigenvalue of df0. Then ν? can be only a (formal)
curve valuation, and:

(i) if ν? is a (non-contracted) analytic curve valuation, then f̂ ∼= (λx, xcyd), with
c ≥ 1 and d ≥ 1;

(ii) if ν? is a non-analytic curve valuation, then f̂ ∼= (λx, xqy+P (x)), with q ≥ 1,
and P ∈ xC[x] with degP ≤ q, P 6≡ 0.

Proof. The first assertion follows from Theorem 2.3.8.

(i) If ν? = νC is a (non-contracted) analytic curve valuation, then directly from
Theorem 2.7.3 we have that C∞(f̂) = E∪ C̃ or C∞(f̂) = E, and in both cases
E is contracted and C̃ is fixed by f̂ . We also know from Proposition 2.3.6
that tr df̂p = λ 6= 0.
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In the first case C∞(f̂) = E ∪ C̃ is reducible: so f̂ is of class 5. Hence we can
choose local coordinates (x, y) in p such that E = {x = 0}, C̃ = {y = 0},
and

f̂(x, y) = (λx, xcyd),

with c ≥ 1 and d ≥ 2.

In the second case C∞(f) = E is irreducible: so f̂ is of class 2 or 3, but since
E is contracted to 0 by f̂ , then f̂ is of class 2. Hence we can choose local
coordinates (x, y) such that E = {x = 0}, C̃ = {y = 0}, and

f̂(x, y) =
(
λx, xqy + P (x)

)
,

with q ≥ 1. Since C̃ is fixed, then P ≡ 0.

(ii) Let us suppose ν? = νC a non-analytic curve valuation. We have seen in the
proof of Theorem 2.3.2 that C∞(f̂) = E, and E is contracted to 0 by f̂ . We
also know from Proposition 2.3.6 that tr df̂p = λ 6= 0, so f̂ is of class 2 or

3. But only for maps in class 2 f̂ contracts the component E in C∞(f̂). So
we are in class 2 and we can choose local coordinates (x, y) at p such that
E = {x = 0}, and

f̂(x, y) =
(
λx, xqy + P (x)

)
,

with q ≥ 1, and P ∈ xC[x] with degP ≤ q. Since fn• → ν? in U(p), no
analytic curve valuation (besides νx) is fixed by f̂ , and P 6≡ 0.

Germs of type (0,C \ D)

Proposition 2.7.6. Let f be a (dominant) holomorphic germ of type (0,C \ D),
ν? an eigenvaluation for f , and (π, p, f̂) a rigidification obtained from ν? as in
Theorem 2.3.2. Let λ ∈ C \ D be the non-zero eigenvalue of df0. Then ν? can be

only an analytic curve valuation, and f̂
for∼= (λx, xcyd(1 + εxl)), with c ≥ 1, d ≥ 1,

l ≥ 1 and ε = 0 if λl 6= d, or ε ∈ {0, 1} if λl = d.

Proof. Thanks to Theorem 2.3.8, we know that ν? has to be a (formal) curve
valuation.

Let us suppose ν? = νC a non-analytic curve valuation. From the proof of
Theorem 2.3.2 and Proposition 2.2.21.(i) we know that fn• → νC on a suitable
open set U = U(p), and hence f̂n• → νC̃ on V \ νE, where C̃ is the strict transform
of C (and it is non-analytic as well). Notice that νE is an analytic curve valuation if
considered on the valuative tree where f̂• acts. In particular, E is the only analytic
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curve fixed by f̂ , that is in contradiction with Theorem 1.1.33 (Stable-Unstable
Manifold Theorem), since we know from Proposition 2.3.6 that Spec(df̂p) = {0, λ}
and |λ| > 1. So ν? = νC is a (non-contracted) analytic curve valuation.

Then the assertion on normal forms follows from Theorem 2.4.7.

Germs of type (0, ∂D)

Proposition 2.7.7. Let f be a (dominant) holomorphic germ of type (0, ∂D), ν? an
eigenvaluation for f , and (π, p, f̂) a rigidification obtained from ν? as in Theorem
2.3.2. Let λ ∈ ∂D be the non-zero eigenvalue of df0. Then ν? can be only a (formal)
curve valuation, and:

(i) if λ is not a root of unity, then f̂
for∼= (λx, xcyd), with c, d ≥ 1;

(ii) if λr = 1 is a root of unity, then f̂
for∼=
(
λx(1 + xs + βx2s), xcyd(1 + ε(xr))

)
,

where c, d ≥ 1, r|s and β ∈ C, while ε is a formal power series in xr, and
ε ≡ 0 if d ≥ 2

Proof. The first assertion follows from Theorem 2.3.8, while the normal forms are
given by Theorem 2.4.7.

2.7.3 Some remarks and examples

Remark 2.7.8. The proof of Theorem 2.3.2 gives a general procedure to obtain
a rigid germ. But in specific instances we can choose an infinitely near point
lower that the one indicated. In particular, if ν? is divisorial, it can happen that
U = U(p) can be associated to a free point p, and not to a satellite one. If this is
the case, we obtain a irreducible rigid germ, of class 2 or 3; and it has to be of class
3, since the generalized critical set E is invariant but not contracted by f̂ . So, for
example, if f̂ is still attracting, then f̂ ∼= (zp, αw), with p ≥ 2 and 0 < |α| < 1
(with α = λ if df0 = Dλ).

Example 2.7.9. We present an example of the phenomenon we described in Re-
mark 2.7.8. Set

f(z, w) = (zn + wn, wn),

with n ≥ 2 an integer. We easily see that νm is an eigenvaluation for f . We want
to study the action of f̂ on the exceptional component E = E0 that arises from
the single blow-up of the origin. We can study it by checking the action of f• on
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E := {νy−θx | θ ∈ C} ∪ {νx}, where we fix the correspondence θ 7→ νy−θx between
E ∼= P1(C) and E (setting ∞ 7→ νx). Direct computations show that

f̂ |E : θ 7→ θn

1 + θn
.

Now set p = θ ∈ E such that θ is a non-critical fixed point for f̂ |E, i.e., such that
θn + 1 = θn−1, and lift f to a holomorphic germ f̂ on the infinitely near point p.
Using the same arguments as in the proof of Theorem 2.3.2, we can tell that f̂ is
a rigid germ.

We show this claim by direct computations. Let us make a blow-up in 0 ∈ C2:{
z = u,
w = ut;

{
u = z,
t = w/z;

we obtain

f̂(u, t) =

(
un(1 + tn),

tn

1 + tn

)
.

Choosing the local coordinates (u, v := t− θ), we obtain

f̂(u, v) =
(
un
(
1 + (v + θ)n

)
, vξ(v)

)
,

for a suitable invertible germ ξ. In particular, f̂ is a rigid germ, it belongs to
class 3, and (by direct computation) it is locally holomorphically conjugated to
(u, v) 7→ (un, αv), for a suitable α 6= 0, whereas Theorem 2.7.3 would give us a
germ that belongs to class 5. In this case, we recover the result of Theorem 2.7.3
simply by taking the lift of g = f̂ when we blow-up the point [0 : 1] ∈ E, and
obtaining

ĝ(x, y) =
(
xnyn−1χ(y), vξ(v)

)
,

for a suitable invertible germ χ; this germ is locally holomorphically conjugated to
(xnyn−1, αy).

Remark 2.7.10. We can apply Theorem 2.7.3, Propositions 2.7.5, 2.7.6 and 2.7.7
even when f is rigid itself: the result is that we can avoid some kind of rigid germs.
First of all, from the proof of Theorem 2.7.3 (and recalling Proposition 2.3.6), one
can see that Class 7 can be always avoided (hence Class 7 is not “stable under
blow-ups”). Moreover, from the proof of Theorem 2.3.2, we see that the germs we
obtain after lifting are such that f̂• has always only one fixed point µ? = π−1

• ν?
of the same type of ν?, with two exceptions: either ν? is divisorial, and µ? turns
out to be an analytic curve valuation (contracted by π), or ν? is an irrational
eigenvaluation, and in this case it can happen that f̂• = id on [νz, νw].
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In the first case reapplying Propositions 2.7.5, 2.7.6 and 2.7.7 we see that we
obtain the same type of germ. In the second case, we have, up to local holomorphic
conjugacy, that f̂(z, w) = (zn, wn), with a suitable n ≥ 2. Then all valuations
on [νz, νw] are eigenvaluations, and reapplying Theorem 2.7.3, we obtain a rigid
germ that belongs to a different class. In particular, making a single blow-up on
the origin, and considering the germ at [1 : 1], we obtain a germ of the form
(nz(1 + h(z)), wn) for a suitable holomorphic map h such that h(0) = 0, that is
(by direct computation) holomorphically conjugated to (nz, wn).

Example 2.7.11. Reapplying Theorem 2.7.3, as just seen in the last remark, we
usually obtain the same normal form type. But there are cases where the normal
form can change (staying rigid).

Consider for example the rigid germ f(z, w) = (w2, z3). Then the only eigen-
valuation ν? is the monomial valuation on (z, w), such that ν?(x) = 1 and ν?(w) =√

3/2. Then an infinitely near point p that works in Theorem 2.7.3 can be obtained
after three blow-ups: the first at 0 (and we obtain E0), the second at [1 : 0] ∈ E0

(and we obtain E1), the third at [0 : 1] (and we obtain E2). We can choose
p = [0, 1] ∈ E2, and the lift we obtain is f̂(z, w) = (w6, z).





Chapter 3

Rigid Germs in higher dimension

3.1 Definitions

3.1.1 Notations

In this section, we shall specify all the notations we are going to use for formal
power series in this chapter.

First of all, for variables or functions in all formulas, we shall denote by bold
letters the vectors, such as x or f , and by standard letters the coordinates; for
example x = (x1, . . . , xd)

T .

In this chapter, we shall be careful to distinguish between horizontal and vertical
vectors. So vectors in Cd shall be vertical vectors, while differentials of maps
f : (Ck, 0)→ (Ch, 0) shall be a matrix df0 ∈M(h× k,C).

Definition 3.1.1. Let x = (x1, . . . , xk)
T and A = (aji ) ∈ M(h× k,Q). Then we

shall denote

xA =
(
(xA)1, . . . (x

A)h
)T

, (xA)i =
k∏
j=1

x
aji
j .

Notice that if ai := eiA is the i-th row of A, where ei is the i-th element of the
canonical (dual) basis, then (xA)i = xai .

Definition 3.1.2. Let f(x) be a formal power series in d (complex) variables
x = (x1, . . . , xd)

T . Than we shall write

f(x) =
∑
i∈Nd

fix
i,

where i are (horizontal) vectors i = (i1, . . . , id).

79
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If we have f(x) =
(
f1(x), . . . , fc(x)

)T
we shall denote

fk(x) =
∑
i∈Nd

fk,ix
i.

Definition 3.1.3. We shall denote by m the maximal ideal of C[[x]], with x =
(x1, . . . , xd)

T . In particular m is generated by x1, . . . , xd, and it is the set of formal
power series f such that f(0) = f0 = 0. If we would like to specify the number of
coordinates, we shall write md.

Definition 3.1.4. In the following, we shall use a few non-standard notations,
that are going to be specified here. If λ ∈ C and A ∈ M(k × h,C) is a matrix,
then as usual we shall denote by

λA ∈M(k × h,C)

the product component by component between λ and every element of A.
Let a ∈ M(k × 1,C) be a vertical vector, and b ∈ M(k × h,C) be a matrix.

We shall denote by

a ··b = b ··a ∈M(k × h,C), (a ··b)ji = aib
j
i

the product component by component between elements of a and rows of b. When
h = 1, we shall omit the product symbol ·· and simply write ab.

Analogously, let a ∈M(1× k,C) be a horizontal vector, and b ∈M(h× k,C)
be a matrix. We shall denote by

a ··b = b ·· a ∈M(h× k,C), (a ··b)ji = ajbji

the product component by component between elements of a and columns of b.
Finally, let A ∈ M(h× k,C) and B ∈ M(k × l,C) be two matrices, then we

shall denote by
A ·B ∈M(h× l,C)

the standard matrix product. When h = 1 or l = 1, and hence we are considering
the standard product between a matrix and a vector, we shall omit the product
symbol ·.

We notice that depending on the dimension of factors, when we omit the prod-
uct symbol, only one between · and ·· is defined, unless we are in some trivial cases
where the two products coincide (namely, when k = 1 in both cases).

For sums, if A,B ∈M(k × h,C), we shall as usual denote by

A+B ∈M(k × h,C)
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the standard sum component by component.
Let λ ∈ C be a complex number and A ∈ M(k × h,C) be a matrix. Then we

shall denote by
λ+ A ∈M(k × h,C)

the matrix obtained from A by adding λ to each entry.

Remark 3.1.5. Let us consider the map f : Ck → Ch given by

f(x) = xA,

where A ∈ M(h× k,N). We want to compute dfx ∈ M(h× k,C) for every
x ∈ Ck.

First of all f = (f1, . . . , fh)
T , where

fi(x) = xai =
k∏
j=1

x
aji
j .

Then we have that

(df)ji :=
∂fi
∂xj

= ajix
aix−1

j .

Using our notations, we get

(df)i = xaiai ··
(
x−I
)T

,

where we are considering the product between a scalar, a vector 1×k, and another
vector 1× k, coordinate by coordinate.

For the matrix expression, we get then

df = A ··xA ··
(
x−I
)T

,

where we are considering this time the product between a matrix h × k, a vector
h×1, and a vector 1×k. We notice that in this case we have to apply the products
from left to right to make them have sense, but we would obtain the same result
by multiplying the first and the second factor as matrices, and then multiplying
the two matrices h× k component by component.

Definition 3.1.6. Let f(x) be a formal power series in d (complex) variables
x = (x1, . . . , xd)

T . Let I = (i1, . . . , in)T ∈ M(n× d,N) be a vector of multi-
indices. Then we shall denote by fI the product

fI =
n∏
l=1

fil .
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We shall denote by |I| the vector in M(1× d,N) given by

|I| =
n∑
l=1

il.

Definition 3.1.7. Let f(x) = (f1, . . . , fr)
T be a r-uple of formal power series in

d (complex) variables x = (x1, . . . , xd)
T . Let n = (n1, . . . , nr) ∈ M(1× r,N) be

a multi-index, and I = (I1, . . . , Ir) be a (horizontal) vector of matrices, where
I l ∈M(nl × d,N). Then we shall denote by fI the product

fI =
r∏
l=1

fl,Il .

We shall denote by |I| the vector in M(1× d,N) given by

|I| =
r∑
l=1

∣∣I l∣∣ .
Remark 3.1.8. Let f(x) be a formal power series in d (complex) variables x =
(x1, . . . , xd)

T , and n ∈ N∗ Then(
f(x)

)n
=
∑
I

fIx
|I|,

where the dummy variable I varies in M(n× d,N).
Then suppose that we have f(x) = (f1(x), . . . , fr(x))T an r-uple of formal

power series in d (complex) variables x = (x1, . . . , xd)
T , and n = (n1, . . . nr) ∈

M(1× r,N), with n 6= 0. In this case we have

(
f(x)

)n
=

r∏
j=1

(
fj(x)

)nj =
∑
I

fIx
|I|,

where the dummy variable is I = (I1, . . . , Ir), where I l ∈ M(nl × d,N) for l =
1, . . . , r.

If N ∈M(s× r,N), we shall have((
f(x)

)N)
h

=
(
f(x)

)nh
for h = 1, . . . , s, where nh = ehN is the h-th row of N . .

For the estimates in the next sections, we shall need the following Lemma and
Proposition.
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Lemma 3.1.9. Let f = (f1, . . . , fr)
T be an r-uple (of formal power series), and let

D ∈M(s× r,Q) (with s ≥ 1). Then we have

log fD = D log(f),

where log here means that we are taking the log coordinate by coordinate.

Proof. It easily follows from direct computations: set D = (dji ); then fD is a s-uple
g = (g1, . . . , gs)

T , with

gi = fdi =
r∏
j=1

(fi)
dji .

Taking the log, we have

log gi =
r∑
j=1

dji log fj,

and we are done.

Proposition 3.1.10. Let {fn}n be a sequence of r-uples of formal power series in
x, and let {Dn}n be a sequence of matrices in M(s× r,Q) (with s ≥ 1). Then∏

n

(
1 + fn

)Dn
converges if and only if ∑

n

Dnfn

does.

Proof. It follows from Lemma 3.1.9 and the analogous result in dimension one,
taking the log of the absolute value.

Definition 3.1.11. To simplify notations on the sums, we shall use the following
encoding.

In Definition 3.1.2 and Remark 3.1.8 we saw three sums.

• The first one with i ∈M(1× d,N). In this case we shall simply write∑
i

.

• The second sum was with I ∈M(n× d,N). In this case we shall write∑
I(n)

.

We shall call n the dimension of I.
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• The last sum was with I = (I1, . . . , Ir), where I l ∈ M(nl × d,N). Here we
shall write ∑

I(n)

.

We shall call n the (pluri-)dimension of I.

In general, when writing some conditions for a sum, if we sum vectors of dif-
ferent dimensions, we shall mean that the smaller vector has 0 in the non-written
variables.

As a convention, a multi-index of dimension 0 is an empty multi-index.
We shall often need to study the coefficients of a formal power series, that will

depend on some data, and some variables (e.g., r formal power series φ(x)). We
will focus on terms that depend on the higher degree possible for our variables; we
shall denote then by l. o. t.(φ) all terms that depend on coefficients of φ of degrees
smaller than the ones we are considering, with respect to a certain total order on
indices that shall be specified case by case.

To estimate the convergence of some formal power series, we shall need the
following definition.

Definition 3.1.12. Let φ be a convergent power series in d complex variables
x = (x1, . . . ,xd)

T , and ρ > 0. The majorant ρ-norm of φ is

[]φ[]ρ := sup{|φ(x)| : ‖x‖ < ρ} ∈ [0,+∞].

We shall call

Mρ := {φ : []φ[]ρ < +∞}

the ρ-majorant space.

3.1.2 Invariants

We shall consider the following (natural) generalization of rigid germs given in
Definition 1.1.20.

Definition 3.1.13. Let f : (Cd, 0)→ (Cd, 0) be a (dominant) holomorphic germ.
We denote by C(f) = {z | det(dfz) = 0} the critical set of f , and by C(f∞) =⋃
n∈N f

−nC(f) the generalized critical set of f . Then a (dominant) holomorphic
germ f is rigid if:

(i) C(f∞) (is empty or) has simple normal crossings (SNC) at the origin; and

(ii) C(f∞) is forward f -invariant.



3.1 Definitions 85

Especially in the last chapter, we shall be interested in another special class of
holomorphic germs: strict germs.

Definition 3.1.14. Let f : (Cd, 0)→ (Cd, 0) be a (dominant) holomorphic germ.
Then f is a strict germ if there exist a SNC divisor with support C and a
neighborhood U of 0 such that f |U\C is a biholomorphism with its image.

In dimension strictly higher than 2, there are strict germs that are not rigid,
as the following example shows.

Counterexample 3.1.15. Let us consider the holomorphic germ f : (C3, 0) →
(C3, 0) given by

f(x, y, z) =
(
λx, x(1 + y2), y(1 + z)

)
,

with λ 6= 0. If we compute the differential df , we get

df =

 λ 0 0
1 + y2 2xy 0

0 1 + z y

 ,

and hence C(f) = {xy = 0}. It follows by direct computation that C(f∞) = C(f) =
{xy = 0}, but if we consider the image of {y = 0}, we get

f(x, 0, z) = (λx, x, 0),

and hence C(f∞) is not (forward) f -invariant and f is not rigid.
On the other hand, we shall show that f is a biholomorphism with its image

outside C(f∞). We want to show that every point (X, Y, Z) ∈ f(xy 6= 0) has only
one inverse (x, y, z) near the origin. From

(X, Y, Z) = f(x, y, z) =
(
λx, x(1 + y2), y(1 + z)

)
we get 

x = X
λ

,

y =
√

λY
X
− 1,

z = Z
y
− 1,

where y is actually multivalued: we have to decide which branch of
√
· we want to

consider (there are no problems of branch points, since we have supposed y 6= 0).
Let us denote by y0 and y1 = −y0 the two possible values for y. Then, the point
z = Z/y − 1 is near 0 if and only if y ∼ Z; let us say that y0 is such that y0 ∼ Z,
then y1 ∼ −Z, and

z =
Z

y1

− 1 ∼ Z

−Z
− 1 = −2,

that is far away from 0. It follows that for every point (X, Y, Z) in the image of
{xy 6= 0} there is exactly one preimage near the origin, and we are done.
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Remark 3.1.16. Counterexample 3.1.15 can be easily generalized, with the same
arguments, to germs of the form

f(x, y, z) =
(
g(x), a(x) + b(x)yp, c(x)yqz + d(x)yk

)
,

with λ ∈ C∗, p ≥ 2, q, k ≥ 1, and a, b, c, d holomorphic functions in x not identically
0, and g an invertible holomorphic map.

Such an f is never rigid, but if k ≤ q and gcd(p, k) = 1, then f is strict.
Here p, q, k play the same role of p, q, k in rigid germs of Class 4 of Theorem

2.4.3, and the condition that p, q, k have to satisfy in order to have a strict germ
is the same as in [Fav00, Proposition 1.5].

Definition 3.1.17. Let f : (Cd, 0) → (Cd, 0) be a rigid germ. Then f is called
q-reducible if C(f∞) has q irreducible components.

Remark 3.1.18. The reducibility of a rigid germ is clearly a formal (and hence
also holomorphic) invariant. Up to a change of coordinates one can suppose that
a q-reducible rigid germ is such that C(f∞) = {x1 · . . . · xq = 0}.

Definition 3.1.19. Let f : (Cd, 0)→ (Cd, 0) be a rigid germ. We shall call total
rank of f the number of non-zero eigenvalues of df0, or equivalently the rank of
dfd0 .

Definition 3.1.20. Let f : (Cd, 0)→ (Cd, 0) be a rigid germ. Let us consider ∆d

a small polydisc with center in 0. Being C(f∞) backward invariant, f induces a
map f∗ : π1(∆d \ C(f∞))→ π1(∆d \ C(f∞)).

Remark 3.1.21. If f : (Cd, 0)→ (Cd, 0) is a q-reducible rigid germ, then π1(∆d \
C(f∞)) ∼= Zk. So f∗ is given by a q × q matrix M = M(f) with integer entries.

On the other hand, if x are coordinates such that C(f∞) = {x1 · . . . · xq = 0},
then it follows directly from the condition of C(f∞) being f -backward invariant,
that

f(x) =
(
αxA1

(
1 + g(x)

)
,h(x)

)T
, (3.1)

where x = (x1, . . . , xd)
T = (x1, xq+1, . . . , xd)

T . α ∈ (C∗)q, g : (Cd, 0) → Cq and
h : (Cd, 0) → Cd−q are such that g(0) = 0 and h(0) = 0, and A is a suitable
matrix in M(q × q,N).

By direct computations, one can compute M for a germ as in (3.1), and find
that

M = A.

Definition 3.1.22. Let f : (Cd, 0) → (Cd, 0) be a q-reducible germ. We shall
call A = A(f) ∈ M(q × q,N) as in Remark 3.1.21 the internal action of f , and
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we shall say that f has invertible internal action if detA 6= 0, i.e., if A is
invertible in M(q × q,Q). We shall call internal rank of f the number of non-
zero eigenvalues of the linear part of x 7→ xA, or equivalently the rank of the linear
part of x 7→ xA

q
, where x = (x1, . . . , xq)

T .

Remark 3.1.23. Let f : (Cd, 0)→ (Cd, 0) be a q-reducible rigid germ of internal
rank r and total rank s. Then we obviously have that 0 ≤ r ≤ s and r ≤ q.

Actually if A = A(f), then r is just the number of rows ai = eiA of A such
that ai = ei. In particular, up to permuting coordinates, we can suppose

A =

(
Ir 0
C D

)
. (3.2)

In this case, f being with invertible internal action simply means that D is invert-
ible.

Definition 3.1.24. Let f : (Cd, 0)→ (Cd, 0) be a q-reducible attracting rigid germ
with internal rank r as in (3.1), with A = A(f) as in (3.2). Then we shall call
D = D(f) ∈ M(p× p,N) the principal part of f , and its dimension p = q − r
the principal rank of f .

The classification of attracting rigid germs in C2 given by Favre in [Fav00] shows
that class 7, the only class with a non-invertible internal action, can be studied
by semi-conjugating the germ and obtaining a germ of class 4. With this idea
in mind, and since the direct study of germs with an invertible internal action is
easier, we shall start focusing on conjugacy classes for attracting rigid germs with
an invertible internal action.

3.2 Classification

3.2.1 Poincaré-Dulac theory

The formal classification of attracting invertible germs is a classical result by
Poincaré (1983) and Dulac (1904); the phenomenon that appears in this case is
resonance.

Definition 3.2.1. Let f : (Cd, 0) → (Cd, 0) be an attracting germ, written in
suitable coordinates x as

f(x) =
(
λx + g(x)

)
,

where λ = (λ1, . . . , λd)
T is the vector of eigenvalues of df0 (that we suppose in

upper-triangular Jordan form). Then a monomial xn is called resonant for the
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k-th coordinate if either it arises in the k-th column of (the nilpotent part of) the
Jordan form of df0, or n = (n1, . . . , nd) with n1 + · · ·+ nd ≥ 2 and

λn = λk.

Remark 3.2.2. In the literature, sometimes the monomials that arise in the Jor-
dan form of the linear part of a germ f are not considered to be resonant.

The Poincaré-Dulac Theory will not tell us anything on the coordinates where
we have a super-attracting behavior (in fact, if λj = 0, then every monomial is
resonant for the j-th coordinate), but can gives us very useful informations on the
linear part.

Proposition 3.2.3. Let f : (Cd, 0)→ (Cd, 0) be an attracting germ, whose differ-
ential df0 has λ = (λ1, . . . , λd) as eigenvalues. Let us suppose that

1 > |λ1| ≥ |λ2| ≥ . . . ≥ |λs| > |λs+1| = . . . = |λd| = 0, (3.3)

where s ∈ {0, . . . , d} is the total rank of f . Then f has only a finite number of
resonant monomials for the k-th coordinate for every k = 1, . . . , s; moreover a res-
onant monomial xn for the k-th coordinate is such that n = (n1, . . . , nk−1, 0, . . . , 0)
for every k = 1, . . . , s.

Proof. Let us consider a general resonant relation for the k-th coordinate:

λn
1

1 · . . . · λn
d

d = λk.

If k ≤ s, then nj = 0 for every j > s (otherwise we would have λk = 0), and
also for j ≥ k, since if we would take the absolute value on both members, we
would have that |λm| ≥ 1 for a suitable m ∈ Nd \ {0}, that is in contrast with the
assumption of attractivity of f .

So we only have to deal with the case of an expression of the form

λ
n1

1 . . . λ
nk

j = λk+1 =: µ.

Taking the log of the absolute value (or equivalently Re log), we have

k∑
i=1

niRe log λi = Re log µ.

Being f attracting, then Re log λi < 0 for every i and Re log µ < 0, and

ni ≤ −Re log µ

mink{−Re log λk}
,

and we are done.
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Theorem 3.2.4 (Formal Poincaré-Dulac). Let f : (Cd, 0) → (Cd, 0) be an
attracting germ. Then, up to a formal change of coordinates, we have

f =
(
λx + g(x)

)
,

where λ = (λ1, . . . , λd)
T is the vector of eigenvalues of df0, and g = (g1, . . . , gd)

T

with gk that contains only resonant monomials for the k-th coordinate.

Corollary 3.2.5. Let f : (Cd, 0)→ (Cd, 0) be an attracting germ. Then for every
N ∈ N there exists a polynomial change of coordinates such that

f =
(
λx + g(x) + R(x)

)
,

where λ = (λ1, . . . , λd)
T is the vector of eigenvalues of df0, g = (g1, . . . , gd)

T

with gk that contains only resonant monomials for the k-th coordinate, and R =
(R1, . . . , Rd)

T with Rk ∈ mN .

For analogous of the following result for invertible attracting germs, see [Ste57]
or [RR88]; we also refer to [Ber06, Chapter 4] for an extensive exposition on this
subject.

Theorem 3.2.6 (Poincaré-Dulac). Let f : (Cd, 0) → (Cd, 0) be an attracting
germ. Then, up to a holomorphic change of coordinates, we have

f(x) =
(
λx + g(x)

)
, (3.4)

where λ = (λ1, . . . , λd)
T is the vector of eigenvalues of df0, and g = (g1, . . . , gd)

T

with gk that contains only resonant monomials for the k-th coordinate.

Proof. Thanks to Corollary 3.2.5, we can suppose that f is of the form

f(x) =
(
λ1x1 + δ(x) + R(x),h(x)

)T
, (3.5)

where λ1 = (λ1, . . . , λs)
T is the vector of non-zero eigenvalues of df0, ordered as

in 3.3, δ = (δ1, . . . , δs)
T is such that δk has only resonant monomials for the k-th

coordinate, R = (R1, . . . , Rs)
T is such that Rk ∈ mN for an arbitrarily big N ∈ N,

and h = (hs+1, . . . , hd)
T are such that hk(x) − εkxk−1 ∈ 2 for every k, where εk

arises from the nilpotent part of the Jordan form of df0. Let us consider a candidate
f̃ for a map conjugated to f , of the form

f̃(x) =
(
λ1x1 + δ(x) + R̃(x), h̃(x)

)T
,

with R̃ and h̃ analogous to R and h of (3.5). We shall prove that we can find

a conjugation Φ such that f is conjugated to f̃ with R̃ ≡ 0 by induction on the
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coordinates. Let us suppose that Ri ≡ 0 for every i = 1, . . . , j − 1, and let us find
a conjugation

Φ(x) =
(
x1, . . . , xj−1, xj + φ(x), xj+1, . . . , xd

)
,

with φ ∈ m2. From the conjugacy relation Φ ◦ f = f̃ ◦Φ in the j-th coordinate, we
find

(Φ ◦ f)j(x) = λjxj + δj(x1, . . . , xj−1) +Rj(x) + φ ◦ f(x)

(f̃ ◦Φ)j = λjxj + λjφ(x) + δj(x1, . . . , xj−1),

and hence

Rj(x) + φ ◦ f(x) = λjφ(x).

Then a solution of this equation is

φ(x) =
∞∑
n=0

λ−n−1
j Rj ◦ f◦n(x).

Since Rj ∈ mN , then there exist M > 0 such that |Rj(x)| ≤M ‖x‖N for ‖x‖ small
enough, while being f attracting, we have that ‖f◦n(x)‖ ≤ Λn ‖x‖ for |λj| < Λ =
(|λj|+ 1)/2 < 1. Then we get

|φ(x)| ≤
∞∑
n=0

|λj|−n−1MΛnN ‖x‖N =≤
∞∑
n=0

|λj|−n−1M |λj|−1 ( |λj|−1 ΛN
)n ‖x‖N ,

that converges for ‖x‖ small enough if we pick N such that ΛN < λj.

Definition 3.2.7. An attracting germ f : (Cd, 0) → (Cd, 0) written in suitable
coordinates as

f(x) =
(
λx + g(x)

)
, (3.4)

where λ = (λ1, . . . , λd)
T is the vector of eigenvalues of df0, and g = (g1, . . . , gd)

T

with gk that contains only resonant monomials for the k-th coordinate, is called in
Poincaré-Dulac normal form.

Remark 3.2.8. In particular, this result shows how we can choose a polynomial
normal form for invertible germs. While this thing is still true for all attracting
rigid germs in dimension 2 (see Theorem 2.4.3), we shall see that it is no longer
true in higher dimensions (see Remark 3.2.25).
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3.2.2 Topological Resonances

Remark 3.2.9. So, thanks to Theorem 3.2.6 and Remark 3.1.21, if we have f :
(Cd, 0)→ (Cd, 0) an attracting q-reducible rigid germ of total rank s and principal
rank p, up to a linear change of coordinates we can write it in the following way:

f(x) =
(
λx1 + δ(x1),αyB

(
1 + g(x)

)
,h(x)

)T
, (3.6)

where x = (x1, . . . , xd)
T , x1 = (x1, . . . , xs)

T and y = (x1, xs+1, . . . , xs+p)
T ; δ =

(δ1, . . . , δs)
T , δk ∈ m2 has only resonant monomials for the k-th coordinate, g =

(gs+1, . . . , gs+p)
T with gk ∈ m for every k, and h = (hs+p+1, . . . , hd)

T with hk −
εkxk−1 ∈ m2 for every k, for a suitable εk ∈ {0, 1} to take care of possible con-
tributions to the nilpotent part of df0.. Here λ = (λ1, . . . , λs)

T is a s-uple of the
non-zero eigenvalues of df0, so we have 0 < |λi| < 1 for i = 1, . . . , s, being f
attracting.

As in (3.2), we split the matrix B as

B :=
(
C D

)
. (3.7)

Starting then from a rigid germ as in (3.6), and hence in particular in Poincaré-
Dulac normal form, we would like now to change coordinates in order to simplify
the second (bunch of) coordinates, but still obtaining a germ in Poincaré-Dulac
normal form. This process is called “renormalization”, and for rigid germs in
higher dimensions, it arises a new phenomenon that does not appear in dimension
2: topological resonances.

Definition 3.2.10. Let f : (Cd, 0) → (Cd, 0) be an attracting q-reducible rigid
germ of total rank s and principal rank p, written as in (3.6). Then a monomial xn

1

with n ∈ M(1× s,N) and x1 = (x1, . . . , xs)
T is called topologically resonant

for f if λn is an eigenvalue for D.

Proposition 3.2.11. Let f : (Cd, 0) → (Cd, 0) be an attracting rigid germ. Then
f has only a finite number of topologically resonant monomials.

Proof. Let us set λ and D = D(f) as in Definition 3.2.10.
First of all, D has only a finite number of eigenvalues µ.
Let us suppose that there exists n such that λn = µ, i,e,,

λ
n1

1 . . . λn
s

s = µ.

Taking the log of the absolute value (or equivalently Re log), we have

s∑
i=1

niRe log λi = Re log µ.
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Being f attracting, then Re log λi < 0 for every i, then we must have Re log µ < 0,
and

ni ≤ −Re log µ

mink{−Re log λk}
,

and we are done.

Theorem 3.2.12. Let f : (Cd, 0)→ (Cd, 0) be an attracting q-reducible rigid germ
with invertible internal action, of total rank s and principal rank p. Then up to
(formal) change of coordinates, we have

f(x) =
(
λx1 + δ(x1),αyB

(
1 + g(x1)

)
,h(x)

)T
, (3.16)

with the same conditions as in Remark 3.2.9, where g contains only topologically
resonant monomials.

Proof. Let us take f as in (3.6) and f̃ as in (3.16), but with δ̃, g̃ and h̃ instead of
δ, g and h respectively; then let us consider a conjugation of the form

Φ(x) =
(
x1,x2

(
1 + φ(x)

)
,x3

)T
,

with x = (x1,x2,x3)T .
Taking the second group of coordinates for the conjugacy relation

Φ ◦ f = f̃ ◦Φ,

and simplifying the factor αyB, we get

I :=
(
1 + g(x)

)(
1 + φ ◦ f(x)

)
| | (3.8)

II :=
(
1 + φ(x)

)D(
1 + g̃ ◦Φ(x)

)
.

Let us set 1 + φk(x) =
∑

i φk,ix
i, then 1 + gk(x) =

∑
i gk,ix

i and analogously
for 1 + g̃k for all k = s+ 1, . . . , s+ p. Moreover, set λkxk + δk(x) =

∑
i δk,ix

i for all
k = 1, . . . , s and finally hk(x) =

∑
i hk,ix

i for all k = s+ p+ 1, . . . , d.
Then

Ik =
∑
i

φk,i
(
λx1 + δ(x1)

)i1αi2yi2B
(
1 + g(x)

)i2+ek
(
h(x)

)i3 .
=
∑
i

φk,iα
i2yi2B

∑
I(i1)

δIx
|I|

∑
J(i2+ek)

gJx
|J|
∑
L(i3)

hLx|L|,

where we split i = (i1, i2, i3).
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If we denote by Ik,n the coefficient of xn of Ik, i.e.,

Ik =
∑
n

Ik,nxn,

then we have
Ik,n =

∑
i;I(i1);J(i2+ek);L(i3)
i2B+|I|+|J|+|L|=n

φk,iα
i2δIgJhL. (3.9)

Analogously

IIk =
∑
j

g̃k,jx
j
(
1 + φ(x)

)ekD+j2

=
∑
j

g̃k,jx
j
∑

K(ekD+j2)

φKx|K|.

Let us denote by IIk,n the coefficient of xn of IIk; then we have

IIk,n =
∑

j;K(ekD+j2)
j+|K|=n

g̃k,jφK. (3.10)

We want now to study the higher order terms in Ik,n and IIk,n with respect to
the following order: for an index m = (m1, . . . ,md), we first consider the value
m1 + . . .+md, and then the lexicographic order on all the variables.

Then we have
IIk,n = ekDφn + l. o. t.(φ), (3.11)

where φn = (φs+1,n, . . . , φs+p,n)T .
In fact, from (3.10), to have the highest order for φ, we must take j = 0; then

K has pluri-dimension ekD; to have the highest order, we should maximize the
order of one of the factors of φK, and take the order 0 for the others. Then (3.11)
follows.

For (3.9) we are now interested in the pluri-order n: we get

Ik,n = λn1φk,n11
0
n2

10
n3

+ l. o. t.(φ), (3.12)

where 1 denotes the Kronecker’s delta function.
Indeed, from (3.9), since

i2B =
(

i2C i2D
)

,

and D is such that ekD > ek, we have i2D > i2 if i2 6= 0, and hence we must have
n2 = 0. For analogous reasons we have n3 = 0, and (3.12) follows because the
linear part of δ is upper triangular, and thanks to the chosen order on indices.
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Putting together all coordinates, from

In = IIn, (3.13)

we get
Dφn = λn1φn1

10
n2

10
n3

+ l. o. t.(φ). (3.14)

So if n is not resonant, we can define φn recursively, and take g̃k,n = 0 for each k.
If n is resonant, we first notice that

IIk,n = g̃k,n + l. o. t.(g̃). (3.15)

Then we can define (recursively) g̃n such that (3.13) holds even for resonant mono-
mials.

Remark 3.2.13. We could be more precise in Theorem 3.2.12. In fact, if n is
resonant then equation (3.14) is a linear system, represented by L = D − λnIp,
on φn (which has p variables and p equations) that is not invertible, but it has a
kernel of dimension equal to the geometric multiplicity mg = dim Ker(D − λnIp).

Let us suppose that the first h := p −mg lines of L are linearly independent:
then the last mg lines of L gives us, thanks to (3.15), mg linear conditions on g̃n
to be satisfied, while from the first h lines of L we can set h coordinates of φn to
be zero.

Remark 3.2.14. We have seen how we can define recursively the conjugation Φ.
In particular, we can obtain the “normal” form (3.16) up to an arbitrarily high
order M by conjugating by a polynomial map (and hence, a biholomorphism).

Theorem 3.2.15. Let f : (Cd, 0) → (Cd, 0) be an attracting rigid germ with
invertible internal action of total rank s. Then up to a holomorphic change of
coordinates, we have

f(x) =
(
λx1 + δ(x1),αyB

(
1 + g(x1)

)
,h(x)

)T
, (3.16)

with the same conditions as in Remark 3.2.9, where g contains only topologically
resonant monomials.

Proof. Let us use the same notations as in the proof of Theorem 3.2.12. Recalling
Remark 3.2.14, we can suppose that f is as in (3.6), with

g(x) = g̃(x1) + R(x),

with R = (Rs+1, . . . , Rs+p)
T and Rk ∈ mM for every k, for a suitable M to be

chosen. Then (3.8) in this case is(
1 + g̃(x1) + R(x)

)(
1 + φ ◦ f(x)

)
=
(
1 + φ(x)

)D(
1 + g̃(x1)

)
, (3.17)
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since g̃ does not depend on x2.
But in this case, we can find a direct solution of (3.17), given by

1 + φ =
∞∏
k=1

(
1 + e ◦ f◦k−1

)D−k
, (3.18)

where

e(x) =
R(x)

1 + g̃(x1)
.

We notice that each component of e is still in mM .
If we set

φn(x) =
n∏
k=1

(
1 + e ◦ f◦k−1

)D−k
,

then we have(
1 + e(x)

)(
1 + φn ◦ f(x)

)
=
(
1 + e(x)

) n∏
k=1

(
1 + e ◦ f◦k(x)

)D−k
=

n+1∏
k=1

(
1 + e ◦ f◦k−1(x)

)D−k+1

=
(
1 + φn+1(x)

)D
.

We only have to prove that φn converges to φ = φ∞.
Thanks to Proposition 3.1.10, we just have to prove that

∞∑
k=1

D−k
(
e ◦ f◦k−1

)
converges in a neighborhood of 0. Since ek ∈ mM for each k, we have that there
exists K > 0 such that ‖e(x)‖ ≤ K ‖x‖M , while being f attracting, there exists
0 < Λ < 1 such that, for ‖x‖ small enough, we have

∥∥f◦k(x)
∥∥ ≤ Λk ‖x‖.

Then we have for ‖x‖ small enough∥∥∥∥∥
∞∑
k=1

D−k
(
e ◦ f◦k−1

)∥∥∥∥∥ ≤
∞∑
k=1

∣∣D−k∣∣ ∥∥e ◦ f◦k−1
∥∥ ≤ ∞∑

k=1

∣∣D−1
∣∣kKΛ(k−1)M ‖x‖M .

If we choose M big enough to have
∣∣D−1

∣∣ΛM < 1, the sum converges and we are
done.

Remark 3.2.16. The main difference between the result of Theorem 3.2.15 and
(3.6) is that in (3.16) g depends only on the first s coordinates. In particular,
the coordinates fk of f with k = s + 1, . . . , s + p depends only on the first s +
p coordinates. This allows to construct for example an f -invariant foliation of
codimension s + p, induced by dx1 ∧ . . . ∧ dxs+p, that is actually a subfoliation of
the f -invariant foliation of codimension s induced by dx1 ∧ . . . ∧ dxs.
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3.2.3 Affine actions

Remark 3.2.17. Let us suppose that f : (Cd, 0)→ (Cd, 0) is an attracting (d−1)-
reducible rigid germ with invertible internal action. Let us denote by r the internal
rank, s the total rank and p the principal rank of f . Then, thanks to Theorem
3.2.15, up to holomorphic conjugacy we can suppose that

f(x) =
(
λx1,αyB

(
1 + g(x1)

)
, h(x)

)T
, (3.19)

with x = (y, xd)
T , y = (x1,x2)T , x1 = (x1, . . . , xr)

T , g with only resonant monomi-
als. Moreover, we already dealt with the case of ∂h

∂xd
(0) 6= 0, or equivalently s = r+1

(see Theorem 3.2.4 (Poincaré-Dulac)), so we can suppose that ∂h
∂xd

(0) = 0.
Taking the differential df0, we get

df0 =


λ ·· I 0 0

∗ D ··αyB
(
1 + g(x1)

)
··x−I2 0

∗ ∗ ∂h
∂xd

 .

Since C(f∞) = {x1 · . . . · xd−1 = 0}, we get

∂h

∂xd
= ylu(x),

with l ∈M(1× d− 1,N) and u(0) 6= 0. Integrating, we obtain

h(x) = µyl
(
1 + ε(x)

)
+ p(y),

with ε(0) = 0 and p(0) = 0 (and l 6= 0, thanks to the condition on h). Summing
up, we get

f(x) =
(
λx1,αyB

(
1 + g(x1)

)
, µyl

(
1 + ε(x)

)
+ p(y)

)
. (3.20)

In this case, we can get the following result, an analogous of what happens in the
2-dimensional case for Classes 2 and 4 of Theorem 2.4.3 (see [Fav00, pp. 491–494]).

Theorem 3.2.18. Let f : (Cd, 0) → (Cd, 0) be an attracting (d − 1)-reducible
rigid germ with invertible internal action, of internal and total rank r. Then up to
holomorphic conjugacy, we have

f(x) =
(
λx1,αyB

(
1 + g(x1)

)
, µylxd + p(y)

)T
, (3.21)

with λ = (λ1, . . . , λs) is the vector of non-zero eigenvalues of df0, x = (y, xd)
T , y =

(x1, xr+1, . . . , xd−1)T , l 6= 0 ∈ M(1× d− 1,N), g with only (internal) resonant
monomials, and p(y) ∈ m is a suitable analytic function.
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Proof. During the proof, we shall omit all the transpositions of vectors to have
them vertical.

Thanks to Remark 3.2.17, we can suppose that f is of the form (3.20). Let us

denote by f̃ the map we want to obtain, as in (3.21), with p̃ instead of p.
We shall consider a conjugation of the form

Φ(x) =
(
y, xd(1 + φ(x))

)
,

and we will consider the conjugacy relation Φ ◦ f = f̃ ◦ Φ. Comparing the last
coordinate of the conjugacy relation, we get:(

f̃ ◦Φ
)
d
(x) = µylxd

(
1 + φ(x)

)
+ p̃(y)

| | (3.22)(
Φ ◦ f

)
d
(x) = µylxd

(
1 + ε(x)

)(
1 + φ ◦ f(x)

)
+ p(y)

(
1 + φ ◦ f(x)

)
. (3.23)

We want now to split (3.23) in two parts, one that depends on xd, and one that
does not.

Since ∫ 1

0

d

dt
φ
(
f(y, txd)

)
dt = φ

(
f(x)

)
− φ
(
f(y, 0)

)
,

we get

φ
(
f(x)

)
= φ

(
λx1,αyB

(
1 + g(x1)

)
, p(y)

)
+

∫ 1

0

d

dt
φ
(
f(y, txd)

)
dt,

and ∫ 1

0

d

dt
φ
(
f(y, txd)

)
dt =

∫ 1

0

∂φ

∂xd

(
f(y, txd)

)∂(µylxd(1 + ε(x)) + p(y)
)

∂xd
xddt

= µylxd

∫ 1

0

∂φ

∂xd

(
f(y, txd)

)(
1 + η(y, txd)

)
dt,

where η(x) := ε(x) + xd
∂ε
∂xd

(x).

So (3.23) can be written as

µylxd

((
1 + ε(x)

)(
1 + φ ◦ f(x)

)
+ p(y)

∫ 1

0

∂φ

∂xd

(
f(y, txd)

)(
1 + η(y, txd)

)
dt

)
+ p(y)

(
1 + φ

(
λx1,αyB

(
1 + g(x1)

)
, p(y)

))
.

Then thanks to (3.22), we get

1 + φ(x) = 1 + ε(x) + Tφ(x) (3.24)

p̃(y) = p(y)
(

1 + φ
(
λx1,αyB

(
1 + g(x1)

)
, p(y)

))
, (3.25)
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where

Tφ(x) :=
(
1 + ε(x)

)
φ ◦ f(x) + p(y)

∫ 1

0

∂φ

∂xd

(
f(y, txd)

)(
1 + η(y, txd)

)
dt. (3.26)

The candidate solution for (3.24) is given by

φ =
∞∑
k=0

T kε; (3.27)

we need to prove that this sum is convergent.

Lemma 3.2.19 (Cauchy’s Lemma). For every 0 < θ < 1 and φ ∈Mρ, we have

max


[]
∂φ

∂x1

[]
θρ

, . . . ,

[]
∂φ

∂xd

[]
θρ

 ≤ []φ[]ρ
ρ(1− θ)

.

If moreover φ(0) = 0, then for every x such that ‖x‖ ≤ θρ, we have

|φ(x)| ≤ []φ[]ρ
ρ(1− θ)

‖x‖ .

Next proposition will end the proof of Theorem 3.2.18

Proposition 3.2.20. There exist σ > 0, K > 0, 0 < ε < 1 such that for every
φ ∈Mσ and for every n ∈ N, we have

‖T nφ(x)‖ ≤ K(1− ε)n ‖x‖ ,

for ‖x‖ < σ.

Proof. Let us fix some constants Λ̃,Λ, and ε > 0 such that

1 > Λ̃ > Λ > ρ(df0) > 0 and 1− 3ε > Λ,

where ρ denotes the spectral radius.
For σ > 0 small enough, we have for every x such that ‖x‖ < σ:

|p(y)| ≤ B ‖y‖ ,

‖f(x)‖ ≤ Λ ‖x‖ ,

Λ (1 + max{[]ε[]σ, []η[]σ}) ≤ 1− 2ε,

for a suitable B > 0, since ε, η and h are holomorphic and equal to 0 in 0. Moreover,
B can be chosen as small as we want, up to a change of coordinates of the form
x 7→ (y, bxd).
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Let us assume that

B ≤ min{Λ, ε(1− Λ̃)(Λ̃− Λ)}.

Now pick a φ ∈ Mσ, and let A > 0 such that |φ(x)| ≤ A ‖x‖ for ‖x‖ small
enough, and hence []φ[]σ ≤ Aσ for σ small enough.

We want to estimate
∣∣∣ ∂φ∂xd (f(x))

∣∣∣ for ‖x‖ < σ.

Applying Lemma 3.2.19 (Cauchy’s Lemma) twice, first to ∂φ
∂xd

, with θ = Λ/Λ̃

and ρ = σΛ̃ (and hence θρ = Λσ), and then to φ with θ = Λ̃ and ρ = σ, we get

∣∣∣∣ ∂φ∂xd (f(x))

∣∣∣∣ ≤ ∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣+

[]
∂φ
∂xd

[]
Λ̃σ

Λ̃σ(1− ΛΛ̃−1)
‖f(x)‖

≤
∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣+
[]φ[]σ

σ(1− Λ̃)Λ̃σ(1− ΛΛ̃−1)
Λ ‖x‖

=

∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣+
Λ[]φ[]σ

σ2(1− Λ̃)(Λ̃− Λ)
‖x‖ .

Now we are ready to estimate |Tφ(x)|. For the first part of (3.26), we have, for
‖x‖ < σ,

∣∣(1 + ε(x)
)
φ ◦ f(x)

∣∣ ≤ (1 + []ε[]σ
)
AΛ ‖x‖ ,

while for the integral part, we have

|p(y)|
∣∣∣∣∫ 1

0

∂φ

∂xd

(
f(y, txd)

)(
1 + η(y, txd)

)
dt

∣∣∣∣ ≤ B ‖y‖
(
1 + []η[]σ

) ∣∣∣∣∫ 1

0

∂φ

∂xd

(
f(y, txd)

)
dt

∣∣∣∣
≤ B ‖y‖

(
1 + []η[]σ

)(∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣+
Λ[]φ[]σ

σ2(1− Λ̃)(Λ̃− Λ)
‖x‖

)
.
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So

|Tφ(x)| ≤A
≤1−2ε︷ ︸︸ ︷

Λ
(
1 + []ε[]σ

)
‖x‖+B ‖y‖

(
1 + []η[]σ

)(∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣+
Λ[]φ[]σ ‖x‖

σ2(1− Λ̃)(Λ̃− Λ)

)

≤A(1− 2ε) ‖x‖+B

≤‖x‖︷︸︸︷
‖y‖

(
1 + []η[]σ

) ∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣
+ σ−2

<σ︷︸︸︷
‖y‖

≤1−2ε<1︷ ︸︸ ︷
Λ
(
1 + []η[]σ

) ≤ε︷ ︸︸ ︷
B

(1− Λ̃)(Λ̃− Λ)

≤Aσ︷︸︸︷
[]φ[]σ ‖x‖

≤A(1− 2ε) ‖x‖+B
(
1 + []η[]σ

) ∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣ ‖x‖+ Aε ‖x‖

≤
(
A(1− ε) + C

∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣) ‖x‖ ,

where C := B
(
1 + []η[]σ

)
≤ 1− 2ε.

So we have proved that for every φ ∈ Mσ, if A is such that |φ(x)| ≤ A ‖x‖
when ‖x‖ < σ, then there exists C < 1 such that

|Tφ(x)| ≤
(
A(1− ε) + C

∣∣∣∣ ∂φ∂xd (0)

∣∣∣∣) ‖x‖ (3.28)

for ‖x‖ < σ. We would like to apply (3.28) to Tφ instead of φ, trying to get a
recursion on the estimates. We need then to estimate ∂Tφ

∂xd
(0). We obtain

∂Tφ

∂xd
(0) =

∂ε

∂xd
(0)

=0︷ ︸︸ ︷
φ ◦ f(0) +

(
1 +

=0︷︸︸︷
ε(0)

)∂φ ◦ f

∂xd
(0) +

=0︷︸︸︷
p(0)

(
. . .

)
=
∂φ

∂xd
(0)

∂fd
∂xd

(0).

Since ∣∣∣∣∂fd∂xd
(0)

∣∣∣∣ ≤ ρ(df0) < Λ,

we have ∣∣∣∣∂Tφ∂xd
(0)

∣∣∣∣ ≤ Λ
∂φ

∂xd
(0),

and recursively ∣∣∣∣∂T nφ∂xd
(0)

∣∣∣∣ ≤ Λn ∂φ

∂xd
(0).
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Let us define recursively

A0 := A, An+1 := (1− ε)An + CΛn ∂φ

∂xd
(0); (3.29)

applying recursively (3.28), we get that∣∣∣∣∂T nφ∂xd
(x)

∣∣∣∣ ≤ An ‖x‖ .

Now we just want to estimate An using (3.29). But

An+1

(1− ε)n+1
=

An
(1− ε)n

+
C

1− ε

(
Λ

1− ε

)n
∂φ

∂xd
(0).

It follows that

An
(1− ε)n

− A0 =
C

1− ε
∂φ

∂xd
(0)

n−1∑
k=0

(
Λ

1− ε

)k
≤ C

1− ε
∂φ

∂xd
(0)

(
1− Λ

1− ε

)−1

.

Hence

An ≤
(
A+

C

1− ε− Λ

∂φ

∂xd
(0)

)
(1− ε)n = K(1− ε)n,

where K = A+ C
1−ε−Λ

∂φ
∂xd

(0), and we are done.

Proposition 3.2.20 is exactly the estimate we need to prove that φ defined by
(3.27) is actually well defined and holomorphic, so it is an holomorphic solution of
(3.24). Then using (3.25) we find p̃, and we are done.

Remark 3.2.21. Theorem 3.2.18 tells us that, given a (d−1)-reducible rigid germ
f : (Cd, 0) → (Cd, 0) with invertible internal action and only internal resonances,
then we can change coordinates holomorphically in order to have that the last
coordinate fd of f is an affine function on xd (with coefficients that depend on the
other coordinates).

3.2.4 Remarks

Remark 3.2.22. To summarize what we have done in this section, let us consider
q-reducible (dominant) attracting rigid germs f : (Cd, 0)→ (Cd, 0), with invertible
internal action, of internal rank r and total rank s.

Then Theorem 3.2.4 (Poincaré-Dulac) gives directly the holomorphic classifi-
cation when q = 0, i.e., for invertible germs.
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If we consider germs with q = d, then Theorem 3.2.15 gives the holomorphic
classification (up to being sharper on resonant monomials in g, see Remark 3.2.13,
and on coefficients α), setting r = s and q = d.

For germs with q = d − 1, Theorem 3.2.18 gives (more or less, see Remark
3.2.25) the classification in this case.

For germs with 1 ≤ q ≤ d−2, we can apply Theorem 3.2.6 and Theorem 3.2.15
to fix the first q coordinates; it remains to study what one can obtain for the last
d− q coordinates.

We shall summarize the results obtained for d and (d − 1)-reducible germs in
dimension d in the next two Corollaries.

Corollary 3.2.23. Let f : (Cd, 0) → (Cd, 0) be an attracting d-reducible rigid
germ with invertible internal action, of internal rank r. Then up to a holomorphic
change of coordinates, we have

f(x) =
(
λx1,αxB

(
1 + g(x1)

))T
, (3.30)

where x = (x1, xr+1, . . . , xd), λ ∈ (D∗)r is a vector made by the non-zero eigenval-
ues of df0, α ∈ (C∗)d−r, g that contains only resonant monomials, and

B =
(
C D

)
∈M(d− r × d,N)

is such that D is invertible, and every row di of D is such that |di| =
∑

j dji ≥ 1
and di 6= ei.

Finally, we can suppose ‖α‖ arbitrarily small, while the coordinates of α have
to satisfy mg(1) conditions, where mg(1) is the geometric multiplicity of 1 for D.

Proof. The statement directly follows from Theorem 3.2.15 applied to r = d. For
the conditions on D, they come from directly checking the critical set of f as in
(3.30), while the computation on α follows from studying these germs up to a linear
change of coordinates.

Corollary 3.2.24. Let f : (Cd, 0)→ (Cd, 0) be an attracting (d−1)-reducible rigid
germ with invertible internal action, of internal rank r and total rank s.

Then up to a holomorphic change of coordinates we have

f(x) =
(
λx1,αyB

(
1 + g(x1)

)
, µylxd + p(y)

)T
, (3.31)

with x = (y, xd)
T , y = (x1, xr+1, . . . , xd−1)T , l ∈ M(1× d− 1,N), g with only

internal resonant monomials, and p(y) ∈ m is a suitable analytic function.
If moreover r = s, and hence l = 0, we have that p(y) is a polynomial with

only resonant monomials (for the last coordinate).
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Proof. It follows directly from Theorem 3.2.18.

Remark 3.2.25. While studying (d−1)-reducible rigid germs in dimension d (with
only internal resonances), following the proof of Theorem 2.4.3 as given in [Fav00],
we should consider change of coordinates of the form

Φ(x) = (y, xd + q(y))T (3.32)

(we are using the notations of Corollary 3.2.24). In dimension 2, one can obtain
(holomorphically) that p is a polynomial in y = x1. This is no longer true, not
even formally, in higher dimensions. Indeed, by computing the coefficients in the
conjugacy relation, on can show that there are infinitely many coefficients of p
that cannot be taken as 0 up to a change of coordinates of the form (3.32). It can
be also shown that, in order to maintain the normal form as in (3.31), one can
(basically) consider only change of coordinates such as (3.32).

We could also have been sharper for example on checking which conditions one
can impose on α on (3.31): actually one can achieve the same results as in the case
of Corollary 3.2.23, with the same techniques, but since the classification would
not be complete as well, we did not put it in the statement of Corollary 3.2.24.

3.3 Rigid germs in dimension 3

In this section with the next theorem, we shall summarize what we have proved for
(dominant) attracting rigid germs in dimension 3. We shall omit the transpositions
on vectors.

Theorem 3.3.1. Let f : (C3, 0)→ (C3, 0) be an attracting (dominant) q-reducible
rigid germ with invertible internal action, of internal rank r and total rank s. Let
us denote by λ1, . . . , λs the non-zero eigenvalues of df0.

Then up to holomorphic change of coordinates, we have:

q = 0: we order λi such that |λ1| ≥ |λ2| ≥ |λ3|. Then

f(x) =
(
λ1x1, λ2x2 + g2(x1), λ3x3 + g3(x1, x2)

)
.

If λ2 = λn1 for a suitable n ∈ N∗, then g2(x1) = εxn1 ; moreover, if λ3 = λm1
for a suitable m ∈ N∗, then g3(x1, x2) is a homogeneous polynomial of degree
m, where x1 has weight 1 and x2 has weight n, while if λ3 6= λm1 for every
m ∈ N∗, then g3 ≡ 0.

If λ2 6= λn1 for every n ∈ N∗, then g2 ≡ 0; moreover, if λ3 = λn1λ
m
2 for suitable

n,m ∈ N (not both 0), then g3(x1, x2) = εxn1x
m
2 , otherwise g3 ≡ 0.

Finally, if λ1 = λ2 or λ2 = λ3, we can suppose that the coefficients of g2 and
g3 are such that df0 is in Jordan form.
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q = 1: we split the classification with respect to the values of r and s.

r = 1: if s = 2 then up to holomorphic conjugacy we have

f(x) =
(
λx1, µx2 + δxu1 , γx

l
1x3 + p(x1, x2)

)
,

where λ, µ are the two non-zero eigenvalues of df0, δ ∈ C if λu = µ,
while δ = 0 otherwise; moreover l ≥ 1.

If s = 1 then we have

f(x) =
(
λ1x1, g(x), h(x)

)
for suitable g, h.

r = 0: if s = 2 then up to holomorphic conjugacy we have

f(x) =
(
xa1, λx2, µx3 + δxu2

)
,

where λ, µ are the two non-zero eigenvalues of df0, δ ∈ C if λu = µ,
while δ = 0 otherwise; moreover a ≥ 2.

If s = 1 then up to holomorphic conjugacy we have

f(x) =
(
xa1, λx2, γx

l
1x3 + p(x1, x2)

)
,

where λ is the non-null eigenvalue of df0, a ≥ 2 and l ≥ 1.

If s = 0 then we have

f(x) =
(
xa1, g(x), h(x)

)
for suitable g, h, and a ≥ 2.

q = 2: we split the classification with respect to the values of r and s.

r = 2: then s = 2 and

f(x) =
(
λ1x1, λ2x2, x

l
1x

m
2 x3 + p(x1, x2)

)
,

where l,m ≥ 1 and p is a suitable holomorphic map in m2.

r = 1: if s = 2 we have

f(x) =
(
λx1, µx2 + δxu1 , x

a
1x

c
3

)
,

where a ≥ 1, c ≥ 2, λ, µ are the two non-zero eigenvalues of df0, δ ∈ C
if λu = µ, while δ = 0 otherwise.

If s = 1 then we have

f(x) =
(
λx1, x

a
1x

b
2, x

l
1x

m
2 x3 + p(x1, x2)

)
,

where l +m ≥ 1, a+ l ≥ 1, b ≥ 1, b+m ≥ 2, and p(x1, x2)− νx2 ∈ m2

for a suitable ν).
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r = 0: if s = 1, then

f(x) =
(
α1x

a
1x

b
2(1 + ηxv3), α2x

c
1x

d
2, λx3

)
, (3.33)

where ad 6= bc, c + d ≥ 2, max{a − 1, b} ≥ 1, and if v satisfies the
resonance relation (µv − a)(µv − d) = bc, η ∈ C (η = 0 otherwise).

If s = 0, then

f(x) =
(
α1x

a
1x

b
2, α2x

c
1x

d
2, γx

l
1x

m
2 x3 + p(x1, x2)

)
,

where ad 6= bc, c + d ≥ 2, max{a− 1, b} ≥ 1, l + m ≥ 1 and p ∈ m2 is
a suitable holomorphic map.

q = 3: we split the classification with respect to the values of r = s.

r = 2: then
f(x) =

(
λ1x1, λ2x2, x

a
1x

b
2x

c
3

)
,

with a, b ≥ 1, c ≥ 2.

r = 1: then
f(x) =

(
λ1x1, α1x

a1
1 x

b1
2 x

c1
3 (1 + ηxn1 ), α2x

a2
1 x

b2
2 x

c2
3

)
,

with a1, a2 ∈ N, b1c2 6= b2c1, a1 + a2 ≥ 1, b1 + b2 ≥ 2, c1 + c2 ≥ 2, and
if (λn1 − b1)(λn1 − c2) = b2c1, then η ∈ C, otherwise η = 0.

r = 0: then
f(x) = αxA,

with α ∈ (C∗)3, and A = (aji ) ∈ M(3× 3,N) is the internal action (or
equivalently the principal part) of f , such that a1

i +a2
i +a3

i ≥ 2 for every
i = 1, 2, 3.

Proof. The proof is straightforward using Theorem 3.2.4 (Poincaré-Dulac), The-
orem 3.2.15, and Theorem 3.2.18 for q = 2. Here the resonance relations have
been made explicit in each case (see also Remark 3.2.13). Some considerations on
coefficients arise by changes of coordinates of the form x 7→ γx.





Chapter 4

Construction of non-Kahler
3-folds

4.1 Kato Surfaces, Rigid Germs and Hénon Maps

4.1.1 Kato Surfaces

Masahide Kato gives (see [Kat78]) a method to construct compact complex surfaces
of class V II0 with b2 > 0 that admit a global spherical shell, the so called Kato
surfaces.

Definition 4.1.1. Let B = Bε be a closed ball in C2 of center 0 and radius ε > 0,
and π : B̃ → B a modification over 0. Let σ : B → B̃ be a biholomorphism with
its image such that σ(0) is a point of the exceptional divisor of π. The couple
(π, σ) is called a Kato data.

Remark 4.1.2. From a Kato data (π, σ) we can construct a manifold X. If
B = Bε is a ball in C2 of center 0 and radius ε > 0, roughly speaking we take
X̃ = π−1(B) \ σ(B), and take the quotient by σ ◦ π : π−1(∂B) → σ(∂B), that
is a biholomorphism (for ε small enough). This is the main idea, for the precise
construction (in dimension 3) see Subsection 4.2.3. The manifold so constructed
admits evidently a global spherical shell; namely, it is the natural embedding of a
neighborhood of π−1(∂B) (or equivalently of σ(∂B)).

Definition 4.1.3. Let (π, σ) be a Kato data. The compact complex surface con-
structed as in 4.1.2 is the Kato surface associated to the given Kato data.

Definition 4.1.4. Let (π, σ) be a Kato data. Then we can consider f0 = π ◦ σ :
B → B, that turns out to be a holomorphic germ, with a fixed point in 0 the center
of B. We shall call this germ the base germ associated to the given Kato data.

107
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In general, given a holomorphic germ f0 : (Cn, 0) → (Cn, 0), we shall call
resolution for f0 a decomposition f0 = π ◦ σ, with π a modification over 0 and σ
a (germ) biholomorphism that sends 0 into a point of the exceptional divisor of π.
We shall also denote f0 = (π, σ) if we want to stress the Kato data instead of the
base germ.

Dloussky and others studied this phenomenon very deeply. Here we just want
to list a few results on Kato surfaces (see [Dlo84] for proofs).

Theorem 4.1.5. Let f0 = (π, σ) a Kato data and X the Kato surface associated
to it. Then the following statements hold.

(i) X is a Class VII0 surface.

(ii) X admits a global spherical shell.

(iii) b2(X) = weight(π).

(iv) X has exactly b2(X) rational curves. It has also an elliptic curve if and only
if f0 is holomorphically conjugated to (x, y) 7→ (αx, xcy). There are no other
(compact) curves.

4.1.2 Hénon maps

Polynomial automorphisms of C2 can be subdivided into two classes, elementary
automorphisms, whose dynamics is easier to study, and compositions of Hénon
maps (see [FM89]).

Definition 4.1.6. An automorphism f : C2 → C2 is said to be a Hénon map if
it is of the form

f(x, y) =
(
p(x)− ay, x

)
, (4.1)

with p a polynomial of degree d = deg p ≥ 2.

Remark 4.1.7. Consider a Hénon map such as in (4.1), with p(x) = p0 + . . . pdx
d.

Up to an affine change of coordinates, a Hénon map can be chosen such that p is
monic (i.e., pd = 1), and pd−1 = 0.

Remark 4.1.8. Let us consider a Hénon map f : C2 → C2 as in (4.1), and its
extension F : P2 → P2 to P2. Then, computing the indeterminacy sets I+ and I−

of F and F−1 respectively, one gets

I+ = {[0 : 1 : 0]},
I− = {[1 : 0 : 0]}.

In particular, I+ ∩ I− = ∅.
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In order to extend some results for Hénon maps in higher dimensions, one
need some candidates to replace Hénon maps, since the structure of polynomial
automorphisms of Cn is not yet completely understood.

One property of Hénon maps has been identified, by Sibony (see [Sib99]) and
many others, in order to extend several results to higher dimensions: regularity.

Definition 4.1.9. Let f : Cn → Cn be a polynomial automorphism, F : Pn → Pn
be its extension to Pn, and denote by I+ and I− the indeterminacy sets of F
and F−1 respectively. Then f is said to be regular (in the sense of Sibony) if
I+ ∩ I− = ∅.

Dloussky and Oeljeklaus (see [DO99b]) studied the case when the germ f0

arises from the action at infinity of an automorphism of C2. Indeed, starting from
a Hénon map f , taking the action F induced in P2 and a fixed point p in the line
at infinity, one can find a germ f0 := Fp, and a resolution f0 = π ◦ σ to construct
a Kato surface.

We shall see in detail an example of this phenomenon.

Example 4.1.10. Let us take as example, for the sake of simplicity, the simplest
Hénon map:

f(x, y) = (x2 − y, x).

Then its induced map in P2 is F : P2 → P2 given by

F [x : y : t] = [x2 − yt : xt : t2].

Computing the inverse of f , we get

f−1(x, y) = (y, y2 − x)

and
F−1[x : y : t] = [yt : y2 − xt : t2].

Studying the action of F at infinity, we see that the indeterminacy set for F is
I+ = {[0 : 1 : 0]}, while the indeterminacy set of F−1 is I− = {[1 : 0 : 0]}.
Moreover, denoting by p the point [1 : 0 : 0], we have that the dynamics of F in
{t = 0} is very simple: F (q) = p for every q 6∈ I+, while F [0 : 1 : 0] is the whole
line at infinity. In particular p is a fixed point for F ; let us consider the germ
f0 := Fp. Choosing the chart {x 6= 0}, we get

f0(y, t) =

(
t

1− yt
,

t2

1− yt

)
.

We want now to find a resolution for f0.
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The strict germ f0 fails to be a biholomorphism in its critical set {t = 0}:
outside it is clearly a biholomorphism with its image, since it is given by an au-
tomorphism of C2. So the idea is to blow-up the image through f0 of the line
E

(0)
0 := {t = 0}. Since in this case f0(y, 0) = 0, we blow-up the origin. So

let us consider the blow-up π1 in 0, and we choose coordinates (y1, t1) such that
(y, t) =: (y0, t0) = π1(y1, t1) = (y1, y1t1). Hence we get

f1(y, t) := π−1
1 ◦ f0(y, t) =

(
t

1− yt
, t

)
.

In this case we have two divisors, E
(1)
0 = {t1 = 0} and E

(1)
1 = {y1 = 0} in these

coordinates. Here f1({t = 0}) = 0 the intersection of these two divisors, so we
blow-up it, and call the blow-up π2. We choose coordinates (y2, t2) such that
(y1, t1) = π2(y2, t2) = (y2t2, t2), and we get

f2(y, t) := π−1
2 ◦ f1(y, t) =

(
1

1− yt
, t

)
.

Another exceptional component E
(2)
2 = {t2 = 0} arises, while E

(1)
i lifts to their

strict transforms E
(2)
i (for i = 0, 1). In this case f2({t = 0}) = (1, 0), that is a free

point in E
(2)
2 . We first change coordinates by a translation (y2, t2) = τ̃2(ỹ2, t̃2) =

(ỹ + 1, t̃), and we get

f̃2 : (y, t) = τ̃−1
2 ◦ f2(y, t) =

(
yt

1− yt
, t

)
,

and then we blow-up the origin in these coordinates, by taking (ỹ2, t̃2) = π̃3(y3, t3) =
(y3t3, t3). Let us denote π3 = τ̃2 ◦ π̃3; then we get

f3(y, t) := π−1
3 ◦ f2(y, t) =

(
y

1− yt
, t

)
.

Here we have a new exceptional divisor E
(3)
3 = {t3 = 0}, and as before the strict

transforms of the former three divisors, that we shall denote by E
(3)
i for i = 0, 1, 2.

Moreover f3 is a (germ) biholomorphism that takes (y, t) = 0 into the smooth point

(y3, t3) = 0, that belongs only to E
(3)
3 .

Hence, defining
π = π1 ◦ π2 ◦ π3 and σ = f3

we have found the resolution of f0 = π ◦ σ.
We can construct now the Kato surface associated to f0 = π ◦ σ: by the

identification of the construction, two divisors, E
(3)
0 and E

(3)
3 , glue together giving

a divisor E0, while the other divisors E
(3)
i for i = 1, 2 are not affected, and each

one gives us a divisor that we shall call Ei.
We shall denote by E the union of Ei for i = 0, . . . , 2 (thought as curves in X).
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4.1.3 Dynamical properties of some Kato surfaces

Remark 4.1.11. When we get a Kato data from a polynomial automorphism of
C2 as we have seen in Example 4.1.10, the Kato surface associated has a dynamical
interpretation. Indeed, we can consider the basin of attraction Uf (p) of f : C2 → C2

in p, that is an open subset of C2. This open set contains a neighborhood B of p
(without the line at infinity), being f0 an attracting germ.

Since π is a biholomorphism outside the exceptional divisor, and σ−1(E
(3)
3 ∩

σ(B)) = {t = 0} ∩ B, to identify through the action of f0 means, in X \ E, to
identify through f , and hence to take a fundamental domain for Uf (p). So the
Kato surface X can be seen as a compactification of a fundamental domain for
Uf (p), by adding E (that in this case is made by 3 irreducible rational curves).

Question 4.1.12. At this point, two natural questions arise.

(i) Does there exist the compactification to a point Y of the fundamental domain
X \ E such that Y is a (singular) surface?

(ii) Can we obtain some informations on X by studying the local dynamics of
the germ f0?

The first question is equivalent to asking if we can contract the divisor E to
a point, thus obtaining a compact complex surface (possibly singular in the point
where we contracted). Let us define properly this phenomenon.

Definition 4.1.13. Let X be a n-manifold, and EX ↪→ X (the support of) a
divisor. Consider then EY a k-variety (resp., EY = {p}), and the diagram

X

E

OO

// EY

A contraction (resp., to a point) is a (possibly singular) n-variety Y and arrows
such that the diagram

X // Y

EX

OO

// EY

OO

commutes.

Then there is a result by Grauert that gives us the answer in the 2-dimensional
case.
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Theorem 4.1.14 ([Gra62, Chapter 4, Section 8 e), pp.366–367]). Let X be a
surface and E ⊂ X (the support of) a divisor. If the intersection matrix of E is
negative defined, then there exists the contraction of E to a point.

Thanks to this result and direct computation, it can be seen that for Kato
surfaces, one can always contract the exceptional divisor.

Theorem 4.1.15 ([Dlo84, Part II, 2]). Let X be the Kato surface associated to a
Kato data f = (π, σ), and E the exceptional divisor of π plus the critical set for f .
Then there exists the contraction of E to a point.

Let us show the computation of the intersection matrix of E of Example 4.1.10.
We first need a lemma.

Lemma 4.1.16. Let X be a surface, p ∈ X a point, and π : X̃ → X the blow-up
of X along p, with exceptional divisor E. Then we have

(i) E · E = −1,

(ii) if p is a smooth point of an irreducible curve D, we have that D̃·D̃ = D·D−1,

where D̃ is the strict transform of D through π.

Proof. Thanks to Proposition 1.2.25, we have that

0 = π∗(D) · E = D̃ · E + E · E,

and since D̃ and E meet transversely, we have D̃ · E = 1 and hence E · E = −1.
Thanks to Proposition 1.2.24, we have that

D ·D = π∗D · π∗D = D̃ · D̃ + 2D̃ · E + E · E = D̃ · D̃ − 1.

Example 4.1.17. Let us make the computation of the intersection matrix of E in
the case of Example 4.1.10. We proceed step by step by blow-up.

• We first start with E
(0)
0 the line (at infinity) in P2, that has self-intersection

E
(0)
0 · E

(0)
0 = 1.

• Then we blow-up a smooth point in E
(0)
0 , and thanks to Lemma 4.1.16 we

get E
(1)
1 · E

(1)
1 = −1 and E

(1)
0 · E

(1)
0 = 0.

• Now we blow-up the point in the intersection of the two divisors, and hence
E

(2)
2 · E

(2)
2 = −1, E

(2)
1 · E

(2)
1 = −2 and E

(2)
0 · E

(2)
0 = −1.
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• Finally we blow-up a smooth point in E
(2)
2 , getting E

(3)
3 · E

(3)
3 = 1, E

(3)
2 ·

E
(3)
2 = −2, while the last two do not change, and hence E

(3)
1 ·E

(3)
1 = −2 and

E
(3)
0 · E

(3)
0 = −1.

To understand what happens when we glue, first of all the identification does not
affect E

(3)
i for i = 1, 2, and hence E1 · E1 = −2 and E2 · E2 = −2. To compute

E0 · E0, we have to look at the situation in the universal covering of X. Indeed
we obtain that E0 is the strict transform of E

(3)
3 by two blow-ups, and hence

E0 · E0 = E
(3)
3 · E

(3)
3 − 2 = −3. In general, if we have n blow-ups, and hence a

gluing between E
(0)
0 and E

(n)
n , we get E0 · · ·E0 =

(
E

(n)
n

)2

+
(
E

(n)
0

)2

−
(
E

(0)
0

)2

.

See Subsection 4.2.3 for the construction of the universal covering, and Subsection
4.3.3(Gluing) for the analogous situation in dimension 3.

Hence we get the matrix  −3 0 2
0 −2 1
2 1 −2

 ,

that is negative defined.

We shall focus now on Question 4.1.12.(ii). One can easily see is that if f0 =
(π, σ) is a Kato data, then f is a (irreducible) strict germ. Then there is a sort of
“dictionary” between dynamical objects for f : (C2, 0) → (C2, 0) and geometrical
objects for its Kato surface X. See [Dlo84, Part II, Chapter 0] and [DO99a] for
further details.

Proposition 4.1.18. Let X be the Kato surface associated to a strict germ f =
π ◦ σ : (C2, 0)→ (C2, 0). Then

(i) each invariant curve C for f0 corresponds to a (elliptic) curve on X;

(ii) invariant vector fields for f0 correspond to global vector fields on X;

(iii) invariant foliations for f0 correspond to global (possibly singular) foliations
on X.

Starting from a Hénon map f , we get an explicit formula for f0, and Favre
showed in [Fav00] that f0 is an attracting strict germ of class 4, and gave the
normal forms for such germs (see Theorem 2.4.3). In particular we get:

Theorem 4.1.19 ([Fav00, Proposition 2.2]). Let f : C2 → C2 a Hénon map, of
the form

f(x, y) =
(
p(x)− ay, x

)
, (4.1)



114 4 Construction of non-Kahler 3-folds

where deg p = d and a ∈ C∗. Consider f0 the germ in the fixed point at infinity
[1 : 0 : 0] for the extension F : P2 → P2 of f . Then f0 is holomorphically conjugated
to

f̃(x, y) =
(
xd,

a

d
x2d−2y + xd−1

(
1 +R(x)

))
. (4.2)

Remark 4.1.20. Thanks to Theorem 4.1.19, we get two things. First, the normal
form (4.1.19) has the first coordinate that depends only on x, and hence there
exists a foliation, namely the one given by dx, that is invariant for f . One can see
directly from the proof of Theorem 4.1.19 that {x = 0} is the line at infinity in P2.
This foliation induces a foliation F on the Kato surface X which has E as a leaf
(see 4.1.18).

Moreover, the normal form (4.2) has another property: for every x fixed, the
second coordinate is affine on y: this gives a special way how to go from a leaf to
another, and allows also to compute the first fundamental group of the basin of
attraction, as we shall see in the next theorem.

Theorem 4.1.21 ([HOV94, Sections 7, 8], see also [Fav00, Theorem 2.4]). Let
f : C2 → C2 be a Hénon map

f(x, y) =
(
p(x)− ay, x

)
, (4.1)

where deg p = d and a ∈ C∗. Let us denote by Ω the basin of attraction for f at
p = [1 : 0 : 0]. Then

π1(Ω) ∼= Z
[

1

d

]
:=
{m
dn

: m ∈ Z and n ∈ N
}

.

4.2 Construction in the 3D case

4.2.1 The example

In the following we are going to analyze the construction of a Kato 3-fold associated
to the action at infinity at a suitable point p for a polynomial automorphism in
C3. Let us consider

f(x, y, z) =
(
x2 + cy2 + z, y2 + x, y

)
, (4.3)

with c ∈ C. Its inverse is

f−1(x, y, z) =
(
y − z2, z, x− (y − z2)2 − cz2

)
.

Hence f is a polynomial automorphism of degree 2, with a polynomial inverse f−1

of degree 4.
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We extend f and f−1 to P3 = {[x : y : z : t]}; then we get

F [x : y : z : t] = [x2 + cy2 + zt : y2 + xt : yt : t2],

F−1[x : y : z : t] =
[
yt3 − z2t2 : zt3 : xt3 − (yt− z2)2 − cz2t2 : t4

]
.

The action of F and F−1 on the plane at infinity {t = 0} is given by

F [x : y : z : 0] = [x2 + cy2 : y2 : 0 : 0],

F−1[x : y : z : 0] = [0 : 0 : −z4 : 0];

in particular the sets of indeterminacy of F and F−1 are given by

I+ = {t = x = y = 0} = {[0 : 0 : 1 : 0]},
I− = {t = z = 0}.

Remark 4.2.1. We clearly have I+ ∩ I− = ∅, i.e. F and F−1 are regular (in the
sense of Sibony).

We want to focus our attention on F−1, and its behavior at infinity. The action
of F−1|t=0 is very simple, everything (besides the line I−) is contracted to the only
fixed point p = [0 : 0 : 1 : 0] (that is also the only point in I+).

Let us consider now the germ f0 = F−1
p ; considering the chart of P3 given by

{z 6= 0}, after conjugating by (x, y, t) 7→ (x, y,−t), we have

f0(x, y, t) =

(
t2(1 + yt), t3, t4

)
(1 + yt)2 + ct2 + xt3

. (4.4)

Remark 4.2.2. The structure of polynomial automorphisms in Cd for d ≥ 3 is not
well known (opposite to the 2-dimensional case, with the factorization into Hénon
maps and elementary maps, see Subsection 4.1.2), and only a few cases have been
classified. For instance, the automorphisms of degree 2 in C3 has been classified
up to affine conjugacy: see [FW98] and [Mae01].

Moreover by direct computation, one can see that regular automorphisms be-
long to classes

H4 : f(x, y, z) =
(
P (x, y) + az,Q(y) + x, y

)
,

H5 : f(x, y, z) =
(
P (x, y) + az,Q(x) + by, x

)
,

with a, b 6= 0, degP = degQ = 2 and P (x, 0) 6= 0 (see [FW98, Theorem 2.1]).
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With respect to the classification given in [Mae01], regular automorphisms be-
long to class H1 and H2 of shift-like mappings (2-shift), of the form

f(x, y, z) =
(
y, z, y2 + L(y, z) + dx

)
◦
(
y, z, P ′(y, z) + d′x

)
, (4.5)

with d, d′ 6= 0, and suitable polynomials L, P ′ with degL = 1, degP ′ = 2.
In particular, our example (4.3) belongs to class H4, with a = 1, P (x, y) =

x2 + cy2 and Q(y) = y2, and up to permuting coordinates can be decomposed as
in (4.5). Indeed, if we denote by f the polynomial automorphism as in (4.3) and
by σ the permutation σ(x, y, z) = (z, x, y), we have

σ ◦ f ◦ σ−1(x, y, z) =
(
y, z, y2 + x

)
◦
(
y, z, y2 + cz2 + x

)
.

Remark 4.2.3. The polynomial automorphism (4.3) has been considered also by
Oeljeklaus and Renaud (see [OR06]). They studied the basin of attraction by f to
the line at infinity I−, and constructed a Class L 3-variety (introduced by Kato,
see [Kat85]).

Here we are considering the inverse map f−1 to construct a Kato 3-fold, and
to study its algebraic and dynamical properties in detail.

4.2.2 Resolution of f0

In order to get a Kato data from f0, our goal now is to find a resolution of f0, i.e.,
to decompose f0 as a composition of two maps, π◦σ, where π is a modification over
p, and σ is an automorphism between a neighborhood of p and a neighborhood of
a suitable point q ∈ π−1(p).

Our strategy is then to blow-up the image of E
(0)
0 := {t = 0} = C(f0) with

respect to f0, to consider the lifted map f1 = π−1
1 ◦ f0, where π1 denotes the

blow-up we described, and reiterate the process.
We shall denote by (x0, y0, t0) := (x, y, t) the coordinates in 0 when considered

in the image of f0 : (C3, 0)→ (C3, 0).
We shall also make all the computations of blow-ups in suitable local charts.

(1st blow-up). We blow-up the point (0, 0, 0); we consider local coordinates
(x1, y1, t1) such that (x0, y0, t0) = π1(x1, y1, t1) = (x1, x1y1, x1t1). Then the ex-

ceptional divisor is given by E
(1)
1 = {x1 = 0}, and the lifted map f1 is given

by

f1(x, y, t) := π−1
1 ◦ f0(x, y, t) =

(
t2(1 + yt)

(1 + yt)2 + ct2 + xt3
,

t

(1 + yt)
,

t2

(1 + yt)

)
.

We have that f1(t = 0) = (0, 0, 0).
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(2nd blow-up). We blow-up the point (0, 0, 0); we consider local coordinates
(x2, y2, t2) such that (x1, y1, t1) = π2(x2, y2, t2) = (x2y2, y2, y2t2). Then the excep-

tional divisor is given by E
(2)
2 = {y2 = 0}, and the lifted map f2 is given by

f2(x, y, t) := π−1
2 ◦ f1(x, y, t) =

(
t(1 + yt)2

(1 + yt)2 + ct2 + xt3
,

t

(1 + yt)
, t

)
.

We have that f2(t = 0) = (0, 0, 0).

(3rd blow-up). We blow-up the point (0, 0, 0); we consider local coordinates
(x3, y3, t3) such that (x2, y2, t2) = π3(x3, y3, t3) = (x3t3, y3t3, t3). Then the ex-

ceptional divisor is given by E
(3)
3 = {t3 = 0}, and the lifted map f3 is given by

f3(x, y, t) := π−1
3 ◦ f2(x, y, t) =

(
(1 + yt)2

(1 + yt)2 + ct2 + xt3
,

1

(1 + yt)
, t

)
.

We have that f3(t = 0) = (1, 1, 0).

(Translation to (1, 1, 0)). Before performing the next blow-up, we need to
translate; we then consider local coordinates (x̃3, ỹ3, t̃3) such that (x3, y3, t3) =

τ̃3(x̃3, ỹ3, t̃3) = (x̃3 + 1, ỹ3 + 1, t̃3). Then the shifted map f̃3 is given by

f̃3(x, y, t) := τ̃−1
3 ◦ f3(x, y, t) =

(
−t2(c+ xt)

(1 + yt)2 + ct2 + xt3
,
−yt

(1 + yt)
, t

)
.

Obviously we have f̃3(t = 0) = (0, 0, 0).

(4th blow-up). We blow-up the point (0, 0, 0); we consider local coordinates
(x4, y4, t4) such that (x̃3, ỹ3, t̃3) = π̃4(x4, y4, t4) = (x4t4, y4t4, t4). Then the ex-

ceptional divisor is given by E
(4)
4 = {t4 = 0}, and the lifted map f4 is given by

f4(x, y, t) := π̃−1
4 ◦ f̃3(x, y, t) =

(
−t(c+ xt)

(1 + yt)2 + ct2 + xt3
,
−y

(1 + yt)
, t

)
.

We have that f4(x, y, 0) = (0,−y, 0), i.e., f4(t = 0) = {x4 = t4 = 0}.
(5th blow-up). We blow-up the line {x4 = t4 = 0}; we consider local coordi-

nates (x5, y5, t5) such that (x4, y4, t4) = π5(x5, y5, t5) = (x5t5, y5, t5). Then the

exceptional divisor is given by E
(5)
5 = {t5 = 0}, and the lifted map f5 is given by

f5(x, y, t) := π−1
5 ◦ f4(x, y, t) =

(
−(c+ xt)

(1 + yt)2 + ct2 + xt3
,
−y

(1 + yt)
, t

)
.

We have that f5(x, y, 0) = (−c,−y, 0), i.e., f5(t = 0) = {x5 = −c, t5 = 0}.
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(Translation to (−c, 0, 0)). We again need to translate before performing the
next blow-up; we then consider local coordinates (x̃5, ỹ5, t̃5) such that (x5, y5, t5) =

τ̃5(x̃5, ỹ5, t̃5) = (x̃5 − c, ỹ5, t̃5). Then the shifted map f̃5 is given by

f̃5(x, y, t) := τ̃−1
5 ◦ f5(x, y, t) =

(
t(2cy − x+ cy2t+ c2t+ cxt2)

(1 + yt)2 + ct2 + xt3
,
−y

(1 + yt)
, t

)
.

Obviously we have f̃5(x, y, 0) = (0,−y, 0), i.e., f̃5(t = 0) = {x̃5 = t̃5 = 0}.

(6th blow-up). We blow-up the line {x̃5 = t̃5 = 0}; we consider local coordi-
nates (x6, y6, t6) such that (x̃5, ỹ5, t̃5) = π̃6(x6, y6, t6) = (x6t6, y6, t6). Then the

exceptional divisor is given by E
(6)
6 = {t6 = 0}, and the lifted map f6 is given by

f6(x, y, t) := π̃−1
6 ◦ f̃5 =

(
2cy − x+ cy2t+ c2t+ cxt2

(1 + yt)2 + ct2 + xt3
,
−y

(1 + yt)
, t

)
.

We have at last that f6 is an invertible germ, that takes p into q := (x6 = 0, y6 =
0, t6 = 0).

Definition 4.2.4. We set πi = τ̃i−1 ◦ π̃i for i = 4, 6. We shall denote by X0 the
projective space P3, and by Xi for i = 1, . . . 6 the total space of the blow-up of
X0 through π1 ◦ . . . ◦ πi. We shall also denote the strict transform of E

(i)
i through

πi+1 ◦ · · · ◦ πk by E
(k)
i (for 0 ≤ i < k ≤ 6), that is a divisor in Xk.

We have then decomposed f = π ◦ σ, where π = π1 ◦ . . . ◦ π6 is a composition
of blow-ups of smooth centers, and σ = f6 is an invertible germ from p to the free
point q.

Remark 4.2.5. While the “minimal” resolution f = π ◦ σ of a strict attracting
germ f : (Cd, 0)→ (Cd, 0) is unique in dimension d = 2, in higher dimension there
is not a concept of minimal resolution, and indeed several resolutions are possible.

For example, in the resolution we gave of f0 defined by (4.4), instead of per-
forming the 2nd blow-up π2, we could proceed as following.

We first blow-up the line {x1 = y1 = 0}, considering local coordinates (x′2, y
′
2, t
′
2)

such that (x1, y1, t1) = π′2(x′2, y
′
2, t
′
2) = (x′2y

′
2, y
′
2, t
′
2).

Then we blow-up the line {y′2 = t′2 = 0}, considering local coordinates (x′3, y
′
3, t
′
3)

such that (x′2, y
′
2, t
′
2) = π′3(x′3, y

′
3, t
′
3) = (x′3, y

′
3, y
′
3t
′
3).

Then, locally with respect to the coordinates chosen, we have π2 = π′2 ◦ π′3,
and hence we could consider these two blow-ups instead of the original π2, without
changing the rest of the resolution, and we get a new resolution (made by seven
blow-ups instead of six).
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ỹ3

E
(6)
x̃3

E
(6)
4

E
(6)
x̃5

E
(6)
5

E
(6)
6

E0

E3

E1 E2

E5

E4

4.2.3 Construction and universal covering

The Kato variety

Let us consider the chart of P3 where the map f is given by f0, centered in p =
[0 : 0 : 1 : 0].
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We shall denote by Bε the open ball of radius ε centered in 0, and by Σε its
boundary.

In Subsection 4.2.2 we proved that f0 = π ◦ σ, where π = π1 ◦ . . . ◦ π6 and
σ = f6 is an invertible germ from p to q ∈ E(6)

6 ; in particular σ : Bε → σ(Bε) is a
biholomorphism for ε small enough.

We denote Bπε = π−1(Bε), that is a neighborhood of the exceptional divisor

E =
⋃6
i=1E

(6)
i of π, and Σπ

ε = π−1(Σε) its boundary, that intersects E
(6)
0 .

On the other hand, σ(Bε) is a neighborhood of q that intersects E only in E
(6)
6

for ε small enough.
We want to construct a 3-dimensional compact complex manifold, by taking

Aπε := Bπε \ σ(Bε) and identifying Σπ
ε and σ(Σε) through σ ◦ π.

In fact, it is better to identify a neighborhood of Σπ
ε and one of σ(Σε) through

σ ◦ π.
We set Σε−,ε+ := Bε+ \ Bε− , and denote Σπ

ε−,ε+ = π−1(Σε−,ε+) = Bπε+ \ Bπε− ;
finally we consider

A := Aπε−,ε+ := Bπε+ \ σ(Bε−). (4.6)

For 0 < ε− < ε+ small enough, we have that σ ◦ π is a biholomorphism between
Σπ
ε−,ε+ and σ(Σε−,ε+). We finally define

X := A/∼,

where ∼ denotes the identification given by σ ◦ π between Σπ
ε−,ε+ and σ(Σε−,ε+).

Since σ ◦ π : Σπ
ε−,ε+ → σ(Σε−,ε+) is a biholomorphism, then X is a compact

complex manifold. Moreover we have that σ ◦ π sends Σπ
ε−,ε+ ∩E

(6)
0 biholomorphi-

cally into σ(Σε−,ε+) ∩ E(6)
6 , and hence E

(6)
0 and E

(6)
6 glue together to get a divisor

E0.

Definition 4.2.6. Let X be the Kato variety described above. We shall denote
by E0 the divisor in X obtained gluing together E

(6)
0 and E

(6)
6 . We shall moreover

denote by Ei the divisor induced by E
(6)
i in X for i = 1, . . . , 5.

Remark 4.2.7. As we have pointed in Remark 4.1.2, X admits a global spherical
shell, the one given by the map σ : Σε−,ε+ → X (or equivalently π−1 : Σε−,ε+ → X),
well defined since we are identifying A through σ ◦ π to obtain X.

While the existence of a global spherical shell is preserved by blow-ups in dimen-
sion 2 (since we can blow-up only points, and we can move a GSS a little in order
to avoid the blown-up point), this is not anymore true in higher dimensions, since
we could blow-up a curve that intersects the GSS (even for small perturbations of
it), loosing in this way the spherical shell.

So admitting a GSS is not a birational invariant, i.e., even if X admits a GSS,
there could be birationally equivalent models that do not admit any GSS.
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The universal covering

We want now to construct a (universal) covering of X.

Consider A = Aπε−,ε+ as in (4.6), and take (Ai)i∈Z infinite copies of A. Instead
of identifying through σ ◦ π the borders of the same copy, we shall identify Σπ

ε−,ε+

in Ai+1 with σ(Σε−,ε+) in Ai for every i ∈ Z. We get in this way a complex analytic

(non-compact) 3-fold X̃. Denoting by (xi)i∈Z the infinite copies of a point x ∈ A,
we have then a natural automorphism

g̃ : X̃ → X̃

given by

g̃(xi) = xi+1

on Ai. This automorphism is indeed well defined: if yi ∼ xi+1, i.e., yi = σ◦π(xi+1),
where xi+1 ∈ Σπ

ε−,ε+ ⊂ Ai+1 and yi ∈ σ(Σε−,ε+) ⊂ Ai, then

g̃(yi) = yi+1 = σ ◦ π(xi+2) = σ ◦ π
(
g̃(xi+1)

)
,

and hence g̃(yi) ∼ g̃(xi+1).

Moreover, the canonical projection

ω : X̃ → X̃/{g̃j | j ∈ Z} ∼= X

makes (X̃, ω) a covering of X.

We shall see that actually X̃ is an universal covering (see Corollary 4.3.9).

Other constructions

Remark 4.2.8. Let us suppose to start from X0 = P3 and to perform the 6
blow-ups π1, . . . , π6 defined as in Definition 4.2.4, obtaining X6. We showed that
there is a biholomorphism σ : (X0, p) → (X6, q), and we glued together suitable
neighborhoods of p and q to get our Kato variety X. Instead of gluing in this way,
we can glue X6 with A1 as in (4.6), as we did for the universal covering. This
means that, after the gluing, we perform another 6 blow-ups, π7, . . . , π12, that are
locally the same as π1, . . . , π6, after the identification given by σ, obtaining some
complex manifolds that we shall call respectively X7, . . . , X12. We could obviously
continue this kind of construction with an infinite number of copies {Aj}j∈N∗ of A,
as we did for the universal covering, obtaining πi+6j and Xi+6j for i = 1, . . . , 6 and
j ∈ N∗; we can also take the limit of this process and get a non-compact manifold
X∞.
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Definition 4.2.9. Let X0 = P3, π = π1 ◦ . . . ◦ π6 and E
(j)
i for 0 ≤ i ≤ j ≤ 6 as

in Definition 4.2.4, and σ : (X0, p)→ (X6, q), where f0 = π ◦ σ is the resolution of
f0 the germ as in (4.4), as we have seen in Subsection 4.2.2. We shall denote by
πk the blow-ups defined as in Remark 4.2.8 for k ∈ N∗, and recursively, by Xk the
blow-up of Xk−1 through πk. We shall define recursively on Xk, by E

(k)
h the strict

transform of E
(k−1)
h through πk for h = 0, . . . , k − 1, and by E

(k)
k the exceptional

divisor of πk.
We shall denote by X∞ the non-compact manifold obtained by taking the limit

of this process.

Remark 4.2.10. We can define a map gj : Aj → Aj+1 as for the universal covering,

that gives us isomorphisms between suitable neighborhoods of E
(k)
i and E

(k)
i+6 if k

is big enough, and i ≥ 1. This is trivial for 6 - i, and it works in general since

E
(6)
0 ∩ E

(6)
6 is empty. Moreover, locally there is a projection ω as for the universal

covering, that gives an isomorphism between suitable neighborhoods of E
(k)
i+6j and

Ei in X, again for k big enough, a suitable j and i = 1, . . . , j.

4.3 Algebraic properties

4.3.1 Topology of the divisors

We want now to explicit the topology of all these exceptional divisors.

Definition 4.3.1. We shall use the following notations.

(i) P2 denotes the complex projective plane and D
(0)
0 a line in it.

(ii) P2
1 is the blow-up of P2 at a (free) point in D

(0)
0 , D

(1)
0 is the strict transform

of D
(0)
0 , while D

(1)
1 is the exceptional divisor.

(iii) P2
2 is the blow-up of P2

1 at the (free) point in D
(1)
0 ∩ D

(1)
1 , D

(2)
i denotes the

strict transform of D
(1)
i for i = 0, 1, and D

(2)
2 is the exceptional divisor.

(iv) P2
3a is the blow-up of P2

2 at the (satellite) point in D
(2)
1 ∩D

(2)
2 , D

(3a)
i denotes

the strict transform of D
(2)
i for i = 0, 1, 2, and D

(3a)
3 is the exceptional divisor.

(v) P2
3b is the blow-up of P2

2 at the (free) point in D
(2)
0 ∩D

(2)
2 , D

(3b)
i denotes the

strict transform of D
(2)
i for i = 0, 1, 2, and D

(3b)
3 is the exceptional divisor.

(vi) Fn is the ruled surfaces over P1 which has a curve L∞ of self-intersection −n.
We shall denote by H the fiber over a point.
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(vii) We shall denote by (Fn)1 the blow-up of Fn at a point q in H but not in

L∞. We shall denote by H(1) the strict transform of H and by D
(1)
1 the

exceptional divisor. We shall denote by (Fn)2 the blow-up of (Fn)1 at the

(free) point in H(1) ∩ D(1)
1 . We shall denote by H(2) the strict transform of

H(1), by D
(2)
1 the strict transform of D

(1)
1 , and by D

(2)
2 the exceptional divisor.

Finally, we shall denote by (Fn)3a the blow-up of (Fn)2 at the (satellite) point

in D
(2)
1 ∩D

(2)
2 . We shall denote by H(3a) the strict transform of H(2), by D

(3)
i

the strict transform of D
(2)
i for i = 1, 2, and by D

(3a)
3 the exceptional divisor.

In every case, with an abuse of notation, we shall denote by a divisor D also its
pull-back by a suitable modification. For example, we shall denote by H in (Fn)1,
(Fn)2 and (Fn)3a respectively, the divisor

H = H(1) +D
(1)
1 = H(2) +D

(2)
1 + 2D

(2)
2 = H(3) +D

(3)
1 + 2D

(3)
2 + 3D

(3)
3 .

Proposition 4.3.2. Let X be the Kato variety and E0, . . . , E5 the divisors de-
scribed in Definition 4.2.6. Then

E0
∼= (F3)3a,

E1
∼= P2

2,

E2
∼= P2

1,

E3
∼= P2

3b,

E4
∼= P2,

E5
∼= F2.

Proof. We shall proceed step-by-step; we start from E
(0)
0
∼= P2 (actually we are

interested on the local structure in p, so we can think of E
(0)
0 as an open ball in

C2).

(1st blow-up). We blow-up a point in E
(0)
0 , so we have

E
(1)
0
∼= P2

1, E
(1)
1
∼= P2.

(2nd blow-up). We blow-up a point in the intersection of E
(1)
0 and E

(1)
1 , so we

have
E

(2)
0
∼= P2

2, E
(2)
1
∼= P2

1, E
(2)
2
∼= P2.

(3rd blow-up). We blow-up the intersection point between E
(2)
0 , E

(2)
1 and E

(2)
2 ,

so we have

E
(3)
0
∼= P2

3a, E
(3)
1
∼= P2

2, E
(3)
2
∼= P2

1, E
(3)
3
∼= P2.
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(4th blow-up). We blow-up a free point in E
(3)
3 (i.e., this point doesn’t belong to

other exceptional divisors), so we have

E
(4)
0
∼= P2

3a, E
(4)
1
∼= P2

2, E
(4)
2
∼= P2

1, E
(4)
3
∼= P2

1, E
(4)
4
∼= P2.

(5th blow-up). We blow-up a line L in E
(4)
4
∼= P2 that intersects E

(4)
3 in one point,

so we have

E
(5)
i
∼= E

(4)
i for i = 0, 1, 2, 4, E

(5)
3
∼= P2

2, E
(5)
5
∼= F2.

The last relation is obtained since we are blowing up the rational curve L, and

hence E
(5)
5 is a rational ruled surface. Moreover N

L⊂E(4)
4

= O (1) and N
E

(4)
4 ⊂X4

∣∣∣
L

=

O (−1) (see Subsection 4.3.5(5th blow-up)). Hence, by Corollary 1.4.25, E
(5)
5
∼=

F1,−1
∼= F2.

(6th blow-up). We blow-up a curve C in E
(5)
5
∼= F2 that intersects E

(5)
3 in one

point (C = L−c with the notations of Remark 1.4.24), so we have

E
(6)
i
∼= E

(5)
i for i = 0, 1, 2, 4, 5, E

(6)
3
∼= P2

3b, and E
(6)
6
∼= F3.

The last relation is obtained since we are blowing up the rational curve C, and
hence E

(6)
6 is a rational ruled surface. Moreover N

C⊂E(5)
5

= O (2) (see Proposition

1.4.26) and N
E

(5)
5 ⊂X5

∣∣∣
C

= O (−1) (see Subsection 4.3.5(6th blow-up)). Hence, by

Corollary 1.4.25, E
(6)
6
∼= F2,−1

∼= F3.

(Gluing). After the identification, the only divisors that changes their topology
are the ones glued together. So

Ei ∼= E
(6)
i for i = 1, . . . , 5.

The new divisor is made by E
(6)
6 , where we replace a neighborhood of a free point

(not in L∞) with a neighborhood of the blown-up point. It follows that

E0
∼= (F3)3a.

We notice that since y6 = −y in E
(6)
6 , the role of D

(0)
0 in the starting X0 is played

here by H, and hence the sequence of blow-ups is the one described in Definition
4.3.1.
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4.3.2 Homology Groups

In this subsection we will compute the homology groups of our manifold.

Proposition 4.3.3 ([GH78, p. 605]). Let X be a compact complex manifold,

and π : X̃ → X the blow-up of a submanifold L in X. Let us denote by E the
exceptional divisor. Then we have

H∗(X̃) = π∗H∗(X)⊕
(
H∗(E)/π∗H∗(L)

)
.

Corollary 4.3.4. Let X be a compact complex manifold of dimension n, and
π : X̃ → X the blow-up of a point p in X. Let us denote by E the exceptional
divisor. Then we have

H i(X̃) = π∗H i(X)⊕
{
Z if i = 2k, k = 1, . . . , n− 1,
0 otherwise.

Proof. We apply Proposition 4.3.3 to L = {p}; here E ∼= Pn−1, for which the
cohomology is

H i(Pn−1) =

{
Z if i = 2k, k = 0, . . . , n− 1,
0 otherwise.

Moreover H i(L) = Z if i = 0 and it is trivial otherwise. finally π∗H0(L) ∼= Z and
we are done.

Proposition 4.3.5. The homology groups for E = Fh are

H0(E) = H4(E) = Z, H2(E) = Z2, Hi(E) = 0 otherwise.

Proof. E has a structure of bundle π : E → L over L ∼= P1, with fiber P1. We
denote L ∼= P1 = C ∪ {∞}. We want to use twice Theorem 1.3.5 (Mayer-Vietoris
sequence in homology). Let us consider U = π−1(C) and V = E \ L where L here
denotes the 0-section of the bundle. In this case, U ∼ P1 (being C contractible),
and V ∼ P1 (we can retract V to the ∞-section for example), U ∩ V ∼= C2 ∼ {p},
and U ∪ V = E \ {q} =: Ê, where q is the point ∞ in the 0-section L. Then
Theorem 1.3.5 applied to U and V is

→ 0 → 0 ⊕ 0 → H4(Ê) →
→ 0 → 0 ⊕ 0 → H3(Ê) →
→ 0 → Z ⊕ Z → H2(Ê) →
→ 0 → 0 ⊕ 0 → H1(Ê) →
→ 0 → 0 ⊕ 0 → H̃0(Ê) → 0,
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and hence H2(Ê) ∼= Z⊕ Z ∼= Z2, and H̃i(Ê) = 0 otherwise.

We now use Theorem 1.3.5 for Ê and B, where B is a small ball with center q.
Here Ê ∩B ∼ S3, while Ê ∪B = E. Then we get

→ 0 → 0 ⊕ 0 → H4(E) →
→ Z → 0 ⊕ 0 → H3(E) →
→ 0 → Z2 ⊕ 0 → H2(E) →
→ 0 → 0 ⊕ 0 → H1(E) →
→ 0 → 0 ⊕ 0 → H̃0(E) → 0,

and hence H2(E) ∼= Z2, H0(E) ∼= H4(E) ∼= Z and Hi(E) = 0 otherwise.

Corollary 4.3.6. Let X be a compact complex manifold of dimension 3, and π :
X̃ → X the blow-up of a line L ∼= P1 in X. Then we have

H i(X̃) = π∗H i(X)⊕
{
Z if i = 2, 4,
0 otherwise.

Proof. We apply Proposition 4.3.3, using the computation of Proposition 4.3.5.
We have H i(L) = H i(P1) = Z if i = 0, 2, and H i(L) = 0 otherwise. Moreover we
have

π∗ : H0(L)→ H0(E)

1 7→ 1,

π∗ : H2(L)→ H2(E)

1 7→ (1, 0),

and we get the statement.

Corollary 4.3.7. For ε > 0 small enough, we have for Bπ = Bπε constructed as in
Subsection 4.2.3 that

H0(Bπ) ∼= Z, H2(Bπ) ∼= Z6, H4(Bπ) ∼= Z6, H6(Bπ) ∼= Z, Hi(Bπ) = 0 otherwise.

Proof. It follows directly from Corollaries 4.3.4 and 4.3.6 and Theorem 1.3.7 (Poincaré
Duality).

Proposition 4.3.8. For 0 < ε− < ε+ small enough, we have for X = Aπε−,ε+/∼
constructed as in Subsection 4.2.3 that

H0(X) ∼= Z, H1(X) ∼= Z, H2(X) ∼= Z6,H3(X) = 0,

H4(X) ∼= Z6, H5(X) ∼= Z, H6(X) ∼= Z.
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Proof. Let us set ε = (ε+ + ε−)/2 and δ = (ε+ − ε−)/2, and denote by pr the
projection pr : Aπε−,ε+ → X. We want to use twice Theorem 1.3.5 (Mayer-Vietoris

sequence in homology). First we consider Theorem 1.3.5 for U = Aπε,ε =
◦
Aπε and

V = σ(Bε+).
We have V ∼= B6 ∼ {p}, while U ∩ V = σ(Σε,ε+) ∼ S5 and U ∪ V = Bπε+ ,

for which we already computed the homology group in Corollary 4.3.7. Then the
Mayer-Vietoris sequence is

→ 0 → H4(U) ⊕ 0 → Z6 →
→ 0 → H3(U) ⊕ 0 → 0 →
→ 0 → H2(U) ⊕ 0 → Z6 →
→ 0 → H1(U) ⊕ 0 → 0 →
→ 0 → H̃0(U) ⊕ 0 → 0 → 0.

Then we get H0(U) = Z, H1(U) = 0, H2(U) = Z6, H3(U) = 0, H4(U) = Z6.
We shall need also Theorem 1.3.6 (Mayer-Vietoris sequence in cohomology),

getting

0 → 0 → H̃0(U) ⊕ 0 → 0 →
→ 0 → H1(U) ⊕ 0 → 0 →

and hence H̃0(U) = 0 and H1(U) = 0.
Now we consider pr(U) ∼= U and W = pr(Σπ

ε−,ε+): we have pr(U) ∪W = X,
W ∼ S5 and W ∩ pr(U) ∼ S5 t S5, where t denotes the disjoint union. We have

→ 0 → Z6 ⊕ 0 → H4(X) →
→ 0 → 0 ⊕ 0 → H3(X) →
→ 0 → Z6 ⊕ 0 → H2(X) →
→ 0 → 0 ⊕ 0 → H1(X) →
→ Z → 0 ⊕ 0 → H0(X) → 0.

Then we get H0(X) = Z, H1(X) = Z, H2(X) = Z6, H3(X) = 0, H4(X) = Z6,
while, since X is a compact orientable manifold of dimension 6, we have H6(X) = Z
and H5(X) ∼= H1(X) thanks to Theorem 1.3.7 (Poincaré Duality).

Using Theorem 1.3.6, we get

0 → H̃0(X) → 0 ⊕ 0 → Z →
→ H1(X) → 0 ⊕ 0 → 0 →

and hence H5(X) ∼= H1(X) = Z, and we are done.

Corollary 4.3.9. The covering X̃ of X defined in Subsection 4.2.3 is an universal
covering.
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Proof. Let A and (Ai)i∈Z be as in Subsection 4.2.3. From the proof of Proposition
4.3.8 it follows that the first fundamental group π1(A) = 0, while the sets Σπ

ε−,ε+

and σ(Σε−,ε+) are homotopically equivalent to S5, that is again simply connected.
Then the assertion follows from Theorem 1.3.2 (Van Kampen Theorem).

Corollary 4.3.10. The Kato variety X defined as in Subsection 4.2.3 is non-
Kähler.

Proof. From Proposition 4.3.8 we have that the first Betti number of X is b1(X) =
1, while for Kähler manifolds the odd Betti numbers have to be even (see 1.4.13).

Proposition 4.3.11. Let X and Y be two compact complex birationally equivalent
3-folds. Then the first fundamental groups π1(X) and π1(Y ) are isomorphic.

Proof. Without loss of generality, we can suppose that Y = X̃ is the blow-up
π : Y → X along a center C (a point or a curve).

Let us consider the induced map π∗ : π1(X̃)→ π1(X).
Let us take an arc γ in X, and denote by [γ] its class in π1(X). Since C has

(real) dimension 2 in a 6-dimensional space, we can perturb γ continuously in order
to avoid C. But π is invertible outside C, hence we can consider γ̃ = π−1 ◦ γ, that
satisfies π∗([γ̃]) = [γ], and π∗ is surjective.

Analogously, we can consider γ̃ an arc in X̃, and perturb it in order to avoid
the exceptional divisor E (since it has (real) dimension 4 in a 6-dimensional space);
this implies the injectivity of π∗.

Remark 4.3.12. Proposition 4.3.11 implies that the first Betti number b1 is a
birational invariant (in the sense that every birationally equivalent models have
the same first Betti number). It follows that all birationally equivalent models of
the Kato variety X we are studying have b1 = 1 and hence they are all non-Kähler.
For the other Betti numbers, we have b0 = b6 = 1 the number of connected
components, while we have seen that b1 = b5 are birational invariants. On the
contrary, b2 = b4 and b3 can change under performing blow-ups. Indeed, we have
seen that if we blow-up a point or a line, the second Betti number b2 grows by one,
while b3 can change by blowing-up curves of genus greater than or equal to 1 (it
can be shown with similar computations to the ones showed above in this section).

4.3.3 Intersection numbers

We want now to compute all the intersection numbers for all the divisors we have.

Definition 4.3.13. We shall use the following encoding. If we consider E
(k)
i for

0 ≤ i ≤ k in Xk, we shall write
E

(k)
i : Mi,
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where Mi = (mi,j,h)j,h ∈M(i× i,Z) is such that mi,j,h = E
(k)
i · E

(k)
j · E

(k)
h , and we

shall write only entries with j ≤ h (≤ i). Since intersection numbers are invariant
under permutation of the divisors, we get all the intersection numbers, and one
entry for each triple up to permutations.

We shall use analogous notations for E0, . . . E5 in X.

Lemma 4.3.14. Let π : Y → X be a single blow-up of a point p in a 3-manifold
X, and denote by E the exceptional divisor. Let D1, . . . , Dh and E1, . . . , Ek be
divisors in X such that for all i, j we have π∗(Di) = D̃i and π∗(Ej) = Ẽj +E, that

is, p 6∈ Di while p is a smooth point in Ej, where D̃ denotes the strict transform
of a divisor D through π. Then we have the following relations.

(i) E3 = 1.

(ii) E2 · Ẽi = −1, E · Ẽi · Ẽj = 1 for all i, j.

(iii) E2 · D̃i = 0, E · D̃i · D̃j = 0 for all i, j.

(iv) E · D̃i · Ẽj = 0 for all i, j.

(v) D̃i · D̃j · D̃l = Di ·Dj ·Dl, D̃i · D̃j · Ẽl = Di ·Dj ·El and D̃i · Ẽj · Ẽl = Di ·Ej ·El
for all i, j, l.

(vi) Ẽi · Ẽj · Ẽl = Ei · Ej · El − 1 for all i, j, l.

Proof. First of all, recalling Remark 1.2.26, we can apply Propositions 1.2.24 and
1.2.25.

From Proposition 1.2.25 applied to Ei, E, E, we get

0 = E3 + E2 · Ẽi

and hence
E2 · Ẽi = −E3.

From Proposition 1.2.25 applied to Ei, Ej, E, we get

0 = E3 + E2 · (Ẽi + Ẽj) + E · Ẽi · Ẽj

and hence
E · Ẽi · Ẽj = E3.

From Proposition 1.2.24 applied to Ei, Ej, El, we get

Ei ·Ej ·El = E3 +E2(Ẽi + Ẽj + Ẽl) +E(Ẽi · Ẽj + Ẽi · Ẽl + Ẽj · Ẽl) + Ẽi · Ẽj · Ẽl,
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and hence
Ẽi · Ẽj · Ẽl = Ei · Ej · El − E3.

If we pick in the last relation Ei, Ej, El three distinct surfaces that intersect trans-

versely at p, then Ei · Ej · El = 1, while Ẽi, Ẽj, Ẽl do not intersect, and hence

Ẽi · Ẽj · Ẽl = 0 and E3 = 1. So we got (i), (ii) and (vi). The point (iii) is
given directly by Proposition 1.2.25. To prove (iv), we apply Proposition 1.2.25 to
Di, Ej, E: we get

0 = E2 · D̃i + E · D̃i · Ẽj
and we conclude using (iii). Finally, to prove (v), the first case is given directly by
Proposition 1.2.24. For the second case, we apply Proposition 1.2.24 to Di, Dj, El:
we get

Di ·Dj · El = D̃i · D̃j · E + D̃i · D̃j · Ẽl,

and we conclude again by using (iii). The third case follows analogously using (iii)
and (iv).

Proposition 4.3.15. Let X be the Kato variety and E0, . . . , E5 the divisors de-
scribed in Definition 4.2.6. Then we have the following situation for intersection
numbers.

E0 :
(
−4

)
E1 :

(
−1 −3

−1

)
E2 :

 0 0 −2
0 −2

0

 E3 :


0 1 1 −1

1 1 −1
1 −1

0



E4 :


0 0 0 0 0

0 0 0 0
0 0 0

1 −2
4

E5 :


2 0 0 1 0 −3

0 0 0 0 0
0 0 0 0

0 1 −2
−2 1

4

 .

Proof. We proceed step by step, blow-up by blow-up. We start from one divisor,

E
(0)
0 , which has self-intersection E

(0)
0

3
= 1 (being a plane in P3).

E
(0)
0 :

(
1
)

(1st blow-up). We have π∗1(E
(0)
0 ) = E

(1)
0 +E

(1)
1 . Thanks to Lemma 4.3.14 we have

E
(1)
0 :

(
0
)

E
(1)
1 :

(
1 −1

1

)
.
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(2nd blow-up). We have π∗2(E
(1)
0 ) = E

(2)
0 + E

(2)
2 and π∗2(E

(1)
1 ) = E

(2)
1 + E

(2)
2 .

Thanks to Lemma 4.3.14 we have

E
(2)
0 :

(
−1

)
E

(2)
1 :

(
0 −2

0

)
E

(2)
2 :

 1 1 −1
1 −1

1

 .

(3rd blow-up). We have π∗3(E
(2)
0 ) = E

(3)
0 + E

(3)
3 , π∗3(E

(2)
1 ) = E

(3)
1 + E

(3)
3 and

π∗3(E
(2)
2 ) = E

(3)
2 + E

(3)
3 . Thanks to Lemma 4.3.14 we have

E
(3)
0 :

(
−2

)
E

(3)
1 :

(
−1 −3

−1

)
E

(3)
2 :

 0 0 −2
0 −2

0



E
(3)
3 :


1 1 1 −1

1 1 −1
1 −1

1

 .

(4th blow-up). We have π∗4(E
(3)
0 ) = E

(4)
0 , π∗4(E

(3)
1 ) = E

(4)
1 , π∗4(E

(3)
2 ) = E

(4)
2 and

π∗4(E
(3)
3 ) = E

(4)
3 + E

(4)
4 . Thanks to Lemma 4.3.14 we have

E
(4)
0 :

(
−2

)
E

(4)
1 :

(
−1 −3

−1

)
E

(4)
2 :

 0 0 −2
0 −2

0



E
(4)
3 :


1 1 1 −1

1 1 −1
1 −1

0

 E
(4)
4 :


0 0 0 0 0

0 0 0 0
0 0 0

1 −1
1

 .

(5th blow-up). In this case we blow-up a line L ⊂ E
(4)
4 .

We have π∗5(E
(4)
i ) = E

(5)
i for i = 0, 1, 2, 3, and π∗4(E

(4)
4 ) = E

(5)
4 +E

(5)
5 . Then we

have

E
(5)
0 :

(
−2

)
E

(5)
1 :

(
−1 −3

−1

)
E

(5)
2 :

 0 0 −2
0 −2

0



E
(5)
3 :


1 1 1 −1

1 1 −1
1 −1

0

 E
(5)
4 :


0 0 0 0 0

0 0 0 0
0 0 0

1 −2
4


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E
(5)
5 :


0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 1 −1
−2 1

0

 .

The computations are made with the same techniques as in the proof of Lemma
4.3.14, using Proposition 1.2.24 for π5, Proposition 1.2.25 for π4 ◦ π5 (see Remark
1.2.26). We also use Proposition 1.2.27 and Proposition 1.2.2 to prove

E
(5)
3 · E

(5)
3 · E

(5)
5 = E

(5)
3

∣∣∣
E

(5)
5

· E(5)
3

∣∣∣
E

(5)
5

= H ·H = 0,

E
(5)
4 · E

(5)
5 · E

(5)
5 = E

(5)
5

∣∣∣
E

(5)
4

· E(5)
5

∣∣∣
E

(5)
4

= L · L = 1,

where H is the divisor π−1
5 (p) with p a generic point in L. The last equalities hold

since H is a fiber of a ruled surface, and hence has null self-intersection, and L is
a line in P2.

(6th blow-up). In this case we blow-up a smooth curve C ⊂ E
(5)
5 .

We have π∗6(E
(5)
i ) = E

(6)
i for i = 0, 1, 2, 3, 4, and π∗4(E

(5)
5 ) = E

(6)
5 + E

(6)
6 . Then

we have

E
(6)
0 :

(
−2

)
E

(6)
1 :

(
−1 −3

−1

)
E

(6)
2 :

 0 0 −2
0 −2

0



E
(6)
3 :


1 1 1 −1

1 1 −1
1 −1

0

 E
(6)
4 :


0 0 0 0 0

0 0 0 0
0 0 0

1 −2
4



E
(6)
5 :


0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 1 −2
−2 1

4

 E
(6)
6 :



0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 1 −1

0 0 0
−3 2

−1


.

As before, the computations are made with the same techniques as in the proof
of Lemma 4.3.14, using Proposition 1.2.24 for π6, Proposition 1.2.25 for π4 ◦π5 ◦π6
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(see Remark 1.2.26). We also use Proposition 1.2.27 and Proposition 1.2.2 to prove

E
(6)
3 · E

(6)
3 · E

(6)
6 = E

(6)
3

∣∣∣
E

(6)
6

· E(6)
3

∣∣∣
E

(6)
6

= H ·H = 0,

E
(6)
5 · E

(6)
6 · E

(6)
6 = E

(6)
6

∣∣∣
E

(6)
5

· E(6)
6

∣∣∣
E

(6)
5

= C · C = 2,

where H is the divisor π−1
6 (p) with p a generic point in C. For the last equalities,

the first one follows again because H is a fiber of a ruled surface, while C · C = 2
since C = L−c, see Proposition 4.3.2(6th blow-up) and Proposition 1.4.26.

(Gluing). After the identification, we have that E
(6)
0 and E

(6)
6 glue together, while

the other divisors are not affected. Then first of all

Ei · Ej · Ek = E
(6)
i · E

(6)
j · E

(6)
k

for every i, j, k = 1, . . . , 5.
For other intersection numbers, we can look at the situation in the universal

covering X̃. If we consider a triple (Ei, Ej, Ek) with k = 1, . . . , 5, then applying
Proposition 1.2.27, we get

Ei · Ej · Ek = Ei|Ek · Ej|Ek .

It follows that these intersection numbers depend only on the geometry in a neigh-
borhood of Ek, and hence

E0 · Ej · Ek =
(
E

(6)
0 + E

(6)
6

)
· E(6)

j · E
(6)
k ,

E0 · E0 · Ek =
(
E

(6)
0 + E

(6)
6

)
·
(
E

(6)
0 + E

(6)
6

)
· E(6)

k ,

for every j and for k = 1, . . . 5.
The last intersection number E0 · E0 · E0 is obtained in the following way. To

obtain E0, we start from E
(6)
6 , whose self-intersection number is E

(6)
6 ·E

(6)
6 ·E

(6)
6 =

−1 and we blow-up three points one over another, always in the strict transform
of E

(6)
6 , obtaining the divisor E

(9)
6 in the universal covering X̃ of X. Since the

projection ω : X̃ → X gives a biholomorphism between a neighborhood of E
(9)
6

and a neighborhood of E0, we get that their self-intersections are equal. Then
thanks to Lemma 4.3.14, we have that

E0 · E0 · E0 = E
(9)
6 · E

(9)
6 · E

(9)
6 = E

(6)
6 · E

(6)
6 · E

(6)
6 − 3 = −1− 3 = −4.
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4.3.4 Canonical bundle and Kodaira dimension

In this subsection we shall compute the canonical bundle of X, and show that the
Kodaira dimension kod (X) of X is equal to −∞.

Proposition 4.3.16. Let Xj be the manifolds, and E
(j)
i the divisors described in

Definition 4.2.4.
We have

(i) KX0 = KP3 = −4E
(0)
0 .

(ii) KX1 = −4E
(1)
0 − 2E

(1)
1 .

(iii) KX2 = −4E
(2)
0 − 2E

(2)
1 − 4E

(2)
2 .

(iv) KX3 = −4E
(3)
0 − 2E

(3)
1 − 4E

(3)
2 − 8E

(3)
3 .

(v) KX4 = −4E
(4)
0 − 2E

(4)
1 − 4E

(4)
2 − 8E

(4)
3 − 6E

(4)
4 .

(vi) KX5 = −4E
(5)
0 − 2E

(5)
1 − 4E

(5)
2 − 8E

(5)
3 − 6E

(5)
4 − 5E

(5)
5 .

(vii) KX6 = −4E
(6)
0 − 2E

(6)
1 − 4E

(6)
2 − 8E

(6)
3 − 6E

(6)
4 − 5E

(6)
5 − 4E

(6)
6 .

Proof. The first statement is given by Example 1.2.18.(i). All the others are ob-
tained step-by-step using Proposition 1.2.19.

Proposition 4.3.17. Let X be the Kato variety and E0, . . . , E5 the divisors de-
scribed in Definition 4.2.6. Then the canonical bundle of X is

KX = −4E0 − 2E1 − 4E2 − 8E3 − 6E4 − 5E5.

Proof. Let us denote by X̃ the universal covering of X, by ω : X̃ → X the canonical
projection, and g̃ : X̃ → X̃ the automorphism of the universal covering, and Ai as
defined in Subsection 4.2.3. For canonical bundles, we have

KX̃ = ω∗KX ,

as line bundles.
Let us denote by Ẽi for i = 1, . . . , 5 the divisors in X̃ given by E

(6)
i in A0, by

Ẽ0 the divisor in X̃ given by gluing E
(6)
0 ∈ A0 and E

(6)
6 ∈ A−1, and Ẽi+6k = g◦k(Ei)

for i = 0, . . . , 5 and k ∈ Z.
With the same techniques as in Proposition 4.3.16, we find that the canonical

bundle of X̃ is given by

KX̃ =
∑
i∈Z

aiẼi,
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with

a6k = −4, a6k+1 = −2, a6k+2 = −4, a6k+3 = −8, a6k+4 = −6, a6k+5 = −5,

for every k ∈ Z.

In particular KX̃ =
[
Ẽ
]

for a suitable divisor Ẽ that is invariant for the action

of g∗.
It follows that

KX =
[
g∗Ẽ

]
,

and we are done.

Lemma 4.3.18. Let X be a compact complex manifold, and E a line bundle over
X. If −E is effective and non-trivial, then h0

(
X,O (E)) = 0, i.e., E has no

non-null holomorphic sections.

Proof. By absurd, let us suppose that E admits a non-trivial global section s+.
Since −E is effective, it admits a non-trivial global section s−. We can then
consider s = s+ ⊗ s− as a non-trivial global section of E − E = 0, i.e., s 6≡ 0 is a
holomorphic function s : X → C. Being X compact, then s is a constant function,
e.g., s ≡ 1. If we consider a local chart U , then if s± is given by s±(x) = (x, h±(x)),
then we have that

1 = s(x) = h+(x) · h−(x).

It follows that s+ (resp. s−) is a holomorphic and everywhere non-zero section
of E (resp., −E), that hence is the trivial line bundle, in contradiction with our
assumptions.

Corollary 4.3.19. Let X be the Kato variety constructed in Subsection 4.2.3.
Then kod (X) = −∞.

Proof. Thanks to Proposition 4.3.17, −KX , and hence −mKX for every m ∈ N∗, is
an effective and non-trivial line bundle. Then thanks to Lemma 4.3.18, Pm(X) = 0
for every m ∈ N∗, and we are done.

Remark 4.3.20. The Kodaira dimension is a birational invariant (see [IS96, pp.
131–133]), and hence every birationally equivalent model of X has the same Ko-
daira dimension kod () = −∞.

4.3.5 Canonical and normal bundles

Now we want to compute normal and canonical bundles for all the divisors we
constructed before.

First of all, we shall underline the algebraic properties of all divisors, that shall
be useful in the whole chapter.
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Proposition 4.3.21. Let us use the same notations as in Definition 4.3.1. Then
we have the following properties.

(i) All effective divisors in P2 are positive multiples of D
(0)
0 , whose self-intersection

is D
(0)
0 ·D

(0)
0 = 1 Moreover its canonical bundle is given by

KP2 = −3D
(0)
0 .

(ii) All effective divisors in P2
1 are a positive linear combination of D

(1)
0 and D

(1)
1 .

The intersection numbers are given by the matrix(
0 1
−1

)
.

Moreover its canonical bundle is given by

KP21 = −3D
(1)
0 − 2D

(1)
1 .

(iii) All effective divisors in P2
2 are a positive linear combination of D

(2)
0 ,D

(2)
1 and

D
(2)
2 . The intersection numbers are given by the matrix −1 0 1

−2 1
−1

 .

Moreover its canonical bundle is given by

KP22 = −3D
(2)
0 − 2D

(2)
1 − 4D

(2)
2 .

(iv) All effective divisors in P2
3a are a positive linear combination of D

(3a)
i for

i = 0, . . . , 3. The intersection numbers are given by the matrix
−1 0 1 0

−3 0 1
−2 1

−1

 .

Moreover its canonical bundle is given by

KP23a = −3D
(3a)
0 − 2D

(3a)
1 − 4D

(3a)
2 − 5D

(3a)
3 .
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(v) All effective divisors in P2
3b are a positive linear combination of D

(3b)
i for

i = 0, . . . , 3. The intersection numbers are given by the matrix
−2 0 0 1

−2 1 0
−2 1

−1

 .

Moreover its canonical bundle is given by

KP23b = −3D
(3b)
0 − 2D

(3b)
1 − 4D

(3b)
2 − 6D

(3b)
3 .

(vi) For every n ∈ N, all effective divisors in Fn are a positive linear combination
of L∞ and H. The intersection numbers are given by the matrix(

−n 1
0

)
.

Moreover its canonical bundle is given by

KFn = −2[L∞]− (2 + n)[H].

(vii) If n ≥ 1, all effective divisors in (Fn)3a are a positive linear combination of

L∞, H(3a) and D
(3a)
i for i = 1, 2, 3. The intersection numbers are given by

the matrix 
−n 1 0 0 0

−2 0 1 0
−3 0 1

−2 1
−1

 .

Moreover its canonical bundle is given by

K(Fn)3a =− 2[L∞]− (2 + n)
[
H(3a)

]
− (1 + n)

[
D

(3a)
1

]
− (2 + 2n)

[
D

(3a)
2

]
− (2 + 3n)

[
D

(3a)
3

]
.

Proof. All the computations on intersection numbers are made by using Corollary
1.2.28, and Proposition 1.4.26 for ruled surfaces.

All the computations on canonical bundles are made by using Proposition
1.2.19, Example 1.2.18 and Proposition 1.4.28 for ruled surfaces.

All the considerations on effective divisors are trivial, but for the last one.
Indeed, the point in H that we blow-up to obtain (Fn)1 in Definition 4.3.1 belongs
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to Lc for a suitable c ∈ C. Then, we only have to check that the strict transform
L

(1)
c of Lc can be obtained by a positive combination of L∞, H(1) and D

(1)
1 . But

we have
L(1)
c +D

(1)
1 = Lc = L∞ + nH = L∞ + nH(1) + nD

(1)
1 ,

hence L
(1)
c = L∞ + nH(1) + (n− 1)D

(1)
1 , and we are done since n ≥ 1.

Since the point in (Fn)1 we blow-up to get (Fn)2 does not belong to L
(1)
c , we

are done.

Proposition 4.3.22. Let X be the Kato variety and E0, . . . , E5 the divisors de-
scribed in Definition 4.2.6. Moreover, let us use notations as in Definition 4.3.1.
Then for the normal bundles NEi we have

NE1 = −
[
D

(2)
0

]
− 2
[
D

(2)
1

]
− 4
[
D

(2)
2

]
,

NE2 = −
[
D

(1)
0

]
− 2
[
D

(1)
1

]
,

NE3 = −
[
D

(3b)
0

]
− 2
[
D

(3b)
1

]
− 3
[
D

(3b)
2

]
− 4
[
D

(3b)
3

]
,

NE4 = −2
[
D

(0)
0

]
= O(−2),

NE5 = −2[L∞]− 3[H],

NE0 = −[L∞]−
[
H(3a)

]
− 2
[
D

(3a)
1

]
− 4
[
D

(3a)
2

]
− 7
[
D

(3a)
3

]
.

Proof. We proceed step-by-step, as usual, computing all normal bundles for E
(j)
i

for every 0 ≤ i ≤ j ≤ 6, and we shall finally deal with the gluing. We shall heavily
use the Adjunction Formulae given by Propositions 1.2.20 and 1.2.21, and we shall
use the results in Proposition 4.3.16 and Proposition 4.3.21.

We start from E
(0)
0 . Using Propositions 1.2.21 and 1.2.20, we get

K
E

(0)
0

=
(
KX0 ⊗

[
E

(0)
0

])∣∣∣
E

(0)
0

= −3
[
E

(0)
0

]∣∣∣
E

(0)
0

= −3N
E

(0)
0

| |

KP2 = −3
[
D

(0)
0

]
,

and hence N
E

(0)
0

=
[
D

(0)
0

]
= O(1).

(1st blow-up). Thanks to Proposition 4.3.21.(i), we get

K
E

(1)
1

=
(
KX1 ⊗

[
E

(1)
1

])∣∣∣
E

(1)
1

= −4
[
E

(1)
0

]∣∣∣
E

(1)
1

−N
E

(1)
1

| |

KP2 = −3
[
D

(0)
0

]
.
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In this case,
[
E

(1)
0

]∣∣∣
E

(1)
1

=
[
D

(0)
0

]
(see Proposition 1.2.2), and hence N

E
(1)
1

=

−
[
D

(0)
0

]
= O (−1).

In particular, we got the following statement.

Lemma 4.3.23. Let π : X̃ → X the blow-up of a 3-manifold X along a point p, and
E ∼= P2 its exceptional divisor. Then the normal bundle of E in X̃ is

NE = −
[
D

(0)
0

]
= O (−1).

Again, using Proposition 4.3.21.(ii), we get

K
E

(1)
0

=
(
KX1 ⊗

[
E

(1)
0

])∣∣∣
E

(1)
0

= −3N
E

(1)
0
− 2

[
E

(1)
1

]∣∣∣
E

(1)
0

| |

KP21 = −3
[
D

(1)
0

]
− 2
[
D

(1)
1

]
.

In this case,
[
E

(1)
1

]∣∣∣
E

(1)
0

=
[
D

(1)
1

]
, and hence N

E
(1)
0

=
[
D

(1)
0

]
.

(2nd blow-up). First of all, thanks to Lemma 4.3.23, we get N
E

(2)
2

= −
[
D

(0)
0

]
=

O(−1).
Using Proposition 4.3.21.(ii), we get

K
E

(2)
1

=
(
KX2 ⊗

[
E

(2)
1

])∣∣∣
E

(2)
1

= −4
[
E

(2)
0

]∣∣∣
E

(2)
1

−N
E

(2)
1
− 4

[
E

(2)
2

]∣∣∣
E

(2)
1

| |

KP21 = −3
[
D

(1)
0

]
− 2
[
D

(1)
1

]
.

In this case,
[
E

(2)
0

]∣∣∣
E

(2)
1

=
[
D

(0)
0

]
and

[
E

(2)
2

]∣∣∣
E

(2)
1

=
[
D

(1)
1

]
, and hence N

E
(2)
1

=

−
[
D

(1)
0

]
− 2
[
D

(1)
1

]
.

In particular, we got the following statement.

Lemma 4.3.24. Let π = π1 ◦ π2 : X̃ → X the modification of a 3-manifold X given
by blowing-up a point p1 ∈ X, and getting an exceptional divisor E1, and then
another point p2 ∈ E1, getting an exceptional divisor E2. Let Ẽ1

∼= P2
1 be the strict

transform of E1 through π2. Then the normal bundle of Ẽ1 in X̃ is

NẼ1
= −

[
D

(1)
0

]
− 2
[
D

(1)
1

]
.
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Using Proposition 4.3.21.(ii), we get

K
E

(2)
0

=
(
KX2 ⊗

[
E

(2)
0

])∣∣∣
E

(2)
0

= −3N
E

(2)
0
− 2

[
E

(2)
1

]∣∣∣
E

(2)
0

− 4
[
E

(2)
2

]∣∣∣
E

(2)
0

| |

KP22 = −3
[
D

(2)
0

]
− 2
[
D

(2)
1

]
− 4
[
D

(2)
2

]
.

In this case,
[
E

(2)
i

]∣∣∣
E

(2)
0

=
[
D

(2)
i

]
for i = 1, 2, and hence N

E
(2)
0

=
[
D

(2)
0

]
.

(3rd blow-up). First of all, thanks to Lemmas 4.3.23 and 4.3.24 respectively, we

get N
E

(3)
3

= −
[
D

(0)
0

]
= O(−1) and N

E
(3)
2

= −
[
D

(1)
0

]
− 2
[
D

(1)
1

]
.

Using Proposition 4.3.21.(iii), we get

K
E

(3)
1

=
(
KX3 ⊗

[
E

(3)
1

])∣∣∣
E

(3)
1

= −4
[
E

(3)
0

]∣∣∣
E

(3)
1

−N
E

(3)
1
− 4

[
E

(3)
2

]∣∣∣
E

(3)
1

− 8
[
E

(3)
3

]∣∣∣
E

(3)
1

| |

KP22 = −3
[
D

(2)
0

]
− 2
[
D

(2)
1

]
− 4
[
D

(2)
2

]
.

In this case,
[
E

(3)
0

]∣∣∣
E

(3)
1

=
[
D

(2)
0

]
, and

[
E

(3)
i

]∣∣∣
E

(3)
1

=
[
D

(2)
i−1

]
for i = 2, 3, and hence

N
E

(3)
1

= −
[
D

(2)
0

]
− 2
[
D

(2)
1

]
− 4
[
D

(2)
2

]
.

Using Proposition 4.3.21.(iv), we get

K
E

(3)
0

=
(
KX3 ⊗

[
E

(3)
0

])∣∣∣
E

(3)
0

= −3N
E

(3)
0
− 2

[
E

(3)
1

]∣∣∣
E

(3)
0

− 4
[
E

(3)
2

]∣∣∣
E

(3)
0

− 8
[
E

(3)
3

]∣∣∣
E

(3)
0

| |

KP23a = −3
[
D

(3a)
0

]
− 2
[
D

(3a)
1

]
− 4
[
D

(3a)
2

]
− 5
[
D

(3a)
3

]
.

In this case
[
E

(3)
i

]∣∣∣
E

(3)
0

=
[
D

(3a)
i

]
for i = 1, 2, 3, and hence N

E
(3)
0

=
[
D

(3a)
0

]
−[

D
(3a)
3

]
.

(4th blow-up). Thanks to Lemmas 4.3.23 and 4.3.24 respectively, we get N
E

(4)
4

=

−
[
D

(0)
0

]
= O(−1) and N

E
(4)
3

= −
[
D

(1)
0

]
− 2
[
D

(1)
1

]
.

For the other bundles, since we are blowing-up a point that does not belong to
E

(3)
i for i = 0, 1, 2, then N

E
(4)
i

= N
E

(3)
i

again for i = 0, 1, 2.

(5th blow-up). We are blowing up a line L ⊂ E
(4)
4 this time, so we have to

make some computations on this line before computing normal bundles for all the
divisors.
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Since L ∼= P1 is a line in E
(4)
4 , then N

L⊂E(4)
4

= [p] = O(1).

We could prove this also by using Propositions 1.2.20 and 1.2.21 (Adjunction
formulae):

K
L⊂E(4)

4
=
(
K
E

(4)
4
⊗ [L]

)∣∣∣
L

= −3
[
D

(0)
0

]∣∣∣
L

+N
L⊂E(4)

4
= −2N

L⊂E(4)
4

| |
KP1 = −2[p],

and again N
L⊂E(4)

4
= [p] = O (1).

Moreover, we have

N
E

(4)
4 ⊂X4

∣∣∣
L

= −
[
D

(0)
0

]∣∣∣
L

= −[p] = O (−1).

Since we have

NL⊂X4 = N
L⊂E(4)

4
⊕ N

E
(4)
4 ⊂X4

∣∣∣
L

= O(1)⊕O(−1),

we get (see Definition 1.4.23 and Corollary 1.4.25) that E
(5)
5
∼= F1,−1

∼= F2, and

E
(5)
4

∣∣∣
E

(5)
5

= L∞.

Now we can compute canonical and normal bundles for E
(5)
5 . Using also Propo-

sition 4.3.21.(vi), we get

K
E

(5)
5

=
(
KX5 ⊗

[
E

(5)
5

])∣∣∣
E

(5)
5

= −4
[
E

(5)
0

]∣∣∣
E

(5)
5

− 2
[
E

(5)
1

]∣∣∣
E

(5)
5

− 4
[
E

(5)
2

]∣∣∣
E

(5)
5

− 8
[
E

(5)
3

]∣∣∣
E

(5)
5

− 6
[
E

(5)
4

]∣∣∣
E

(5)
5

− 4N
E

(5)
5

| |
KF2 = −2[L∞]− 4[H].

Then we have
[
E

(5)
i

]∣∣∣
E

(5)
5

= 0 for i = 0, 1, 2,
[
E

(5)
3

]∣∣∣
E

(5)
5

= [H] and
[
E

(5)
4

]∣∣∣
E

(5)
5

=

[L∞]; hence N
E

(5)
5

= −[L∞]− [H].

Using Proposition 4.3.21.(i), we get

K
E

(5)
4

=
(
KX5 ⊗

[
E

(5)
4

])∣∣∣
E

(5)
4

= −4
[
E

(5)
0

]∣∣∣
E

(5)
4

− 2
[
E

(5)
1

]∣∣∣
E

(5)
4

− 4
[
E

(5)
2

]∣∣∣
E

(5)
4

− 8
[
E

(5)
3

]∣∣∣
E

(5)
4

− 5N
E

(5)
4
− 5

[
E

(5)
5

]∣∣∣
E

(5)
4

| |

KP2 = −3
[
D

(0)
0

]
,
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Then we have
[
E

(5)
i

]∣∣∣
E

(5)
4

= 0 for i = 0, 1, 2,
[
E

(5)
i

]∣∣∣
E

(5)
4

=
[
D

(0)
0

]
for i = 3, 5, and

hence N
E

(5)
4

= −2
[
D

(0)
0

]
= O(−2).

Using Proposition 4.3.21.(iii), we get

K
E

(5)
3

=
(
KX5 ⊗

[
E

(5)
3

])∣∣∣
E

(5)
3

= −4
[
E

(5)
0

]∣∣∣
E

(5)
3

− 2
[
E

(5)
1

]∣∣∣
E

(5)
3

− 4
[
E

(5)
2

]∣∣∣
E

(5)
3

− 7N
E

(5)
3
− 6

[
E

(5)
4

]∣∣∣
E

(5)
3

− 5
[
E

(5)
5

]∣∣∣
E

(5)
3

| |

KP22 = −3
[
D

(2)
0

]
− 2
[
D

(2)
1

]
− 4
[
D

(2)
2

]
.

Then we have
[
E

(5)
i

]∣∣∣
E

(5)
3

=
[
D

(0)
0

]
=
[
D

(2)
0 +D

(2)
1 + 2D

(2)
2

]
for i = 0, 1, 2, while[

E
(5)
4

]∣∣∣
E

(5)
3

=
[
D

(2)
1

]
and

[
E

(5)
5

]∣∣∣
E

(5)
3

=
[
D

(2)
2

]
; hence N

E
(5)
3

= −
[
D

(2)
0

]
− 2
[
D

(2)
1

]
−

3
[
D

(2)
2

]
.

As in the previous step, the fifth blow-up does not change the normal bundles
of the first three divisors, and hence N

E
(5)
i

= N
E

(4)
i

again for i = 0, 1, 2.

(6th blow-up). We are blowing-up the curve C = L−c ⊂ E
(5)
5
∼= F2 (see also

Proposition 4.3.2(6th blow-up)). The curve C does not intersect L∞, and intersect
transversely H in one point.

Using Propositions 1.2.20 and 1.2.21 (Adjunction formulae) we get

K
C⊂E(5)

5
=
(
K
E

(5)
5
⊗ [C]

)∣∣∣
C

= −4[H]|C − 2[L∞]|C +N
C⊂E(5)

5
= −4[p] +N

C⊂E(5)
5

| |
KP1 = −2[p],

and hence N
C⊂E(5)

5
= 2[p] = O(2) (this result follows also from Proposition 1.4.26).

Moreover, we have

N
E

(5)
5 ⊂X5

∣∣∣
C

= −[L∞ +H]|C = −[p] = O(−1).

Again we have

NC⊂X5 = N
C⊂E(5)

5
⊕ N

E
(5)
5 ⊂X5

∣∣∣
C

= O(2)⊕O(−1),

so (see again Definition 1.4.23 and Corollary 1.4.25) we have that E
(6)
6
∼= F2,−1

∼= F3

and E
(6)
5

∣∣∣
E

(6)
6

= L∞.
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Now we can compute all canonical and normal bundles. This blow-up does
not modify the divisors E

(5)
i for i = 0, 1, 2, 4, and so neither the normal bundles

associated to them.
From Proposition 4.3.21.(vi) we get

K
E

(6)
6

=
(
KX6 ⊗

[
E

(6)
6

])∣∣∣
E

(6)
6

= −4
[
E

(6)
0

]∣∣∣
E

(6)
6

− 2
[
E

(6)
1

]∣∣∣
E

(6)
6

− 4
[
E

(6)
2

]∣∣∣
E

(6)
6

− 8
[
E

(6)
3

]∣∣∣
E

(6)
6

− 6
[
E

(6)
4

]∣∣∣
E

(6)
6

− 5
[
E

(6)
5

]∣∣∣
E

(6)
6

− 3N
E

(6)
6

| |
KF3 = −2[L∞]− 5[H].

Then we have
[
E

(6)
i

]∣∣∣
E

(6)
6

= 0 for i = 0, 1, 2, 4,
[
E

(6)
3

]∣∣∣
E

(6)
6

= [H] and
[
E

(6)
5

]∣∣∣
E

(6)
6

=

[L∞]; hence N
E

(6)
6

= −[L∞]− [H].

Again also thanks to Proposition 4.3.21.(vi) we get

K
E

(6)
5

=
(
KX6 ⊗

[
E

(6)
5

])∣∣∣
E

(6)
5

= −4
[
E

(6)
0

]∣∣∣
E

(6)
5

− 2
[
E

(6)
1

]∣∣∣
E

(6)
5

− 4
[
E

(6)
2

]∣∣∣
E

(6)
5

− 8
[
E

(6)
3

]∣∣∣
E

(6)
5

− 6
[
E

(6)
4

]∣∣∣
E

(6)
5

− 4N
E

(6)
5
− 4

[
E

(6)
6

]∣∣∣
E

(6)
5

| |
KF2 = −2[L∞]− 4[H].

Then we have
[
E

(6)
i

]∣∣∣
E

(6)
5

= 0 for i = 0, 1, 2,
[
E

(6)
3

]∣∣∣
E

(6)
5

= [H],
[
E

(6)
4

]∣∣∣
E

(6)
5

= [L∞]

and
[
E

(6)
6

]∣∣∣
E

(6)
5

= [C = L−c] = [L∞ + 2H], thanks to Proposition 1.4.26. Hence

N
E

(6)
5

= −2[L∞]− 3[H].

Finally, thanks to Proposition 4.3.21.(v), we get

K
E

(6)
3

=
(
KX6 ⊗

[
E

(6)
3

])∣∣∣
E

(6)
3

= −4
[
E

(6)
0

]∣∣∣
E

(6)
3

− 2
[
E

(6)
1

]∣∣∣
E

(6)
3

− 4
[
E

(6)
2

]∣∣∣
E

(6)
3

− 7N
E

(6)
3

− 6
[
E

(6)
4

]∣∣∣
E

(6)
3

− 5
[
E

(6)
5

]∣∣∣
E

(6)
3

− 4
[
E

(6)
6

]∣∣∣
E

(6)
3

| |

KP23b = −3
[
D

(3b)
0

]
− 2
[
D

(3b)
1

]
− 4
[
D

(3b)
2

]
− 6
[
D

(3b)
3

]
.

Then we have
[
E

(6)
i

]∣∣∣
E

(6)
3

=
[
D

(0)
0

]
=
[
D

(3b)
0 +D

(3b)
1 + 2D

(3b)
2 + 3D

(3b)
3

]
for i =

0, 1, 2,
[
E

(6)
i

]∣∣∣
E

(6)
3

=
[
D

(3b)
i−3

]
for i = 4, 5, 6; hence N

E
(6)
3

= −
[
D

(3b)
0

]
− 2
[
D

(3b)
1

]
−

3
[
D

(3b)
2

]
− 4
[
D

(3b)
3

]
.
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(Gluing). The gluing does not change the normal bundles for the divisors E
(6)
i

for i = 1, . . . , 5, so we just have to compute NE0 .

As we saw in Subsection 4.3.3, E0 is obtained from E
(6)
6 by blowing-up three

points one over another. So we can continue blowing up, and making computations
as before. Let then X9 and E

(9)
i for i = 0, . . . , 9 be defined as in Definition 4.2.9;

we get

KX9 = −4E
(9)
0 −2E

(9)
1 −4E

(9)
2 −8E

(9)
3 −6E

(9)
4 −5E

(9)
5 −4E

(9)
6 −2E

(9)
7 −4E

(9)
8 −8E

(9)
9 ,

using as usual Proposition 1.2.19, where as usual E
(9)
i denotes the strict transform

of E
(6)
i for i = 0, . . . , 6, and E

(9)
i for i = 7, 8, 9 are the new exceptional divisors

created by blowing up.

Using Proposition 4.3.21.(vii), we have

KE0 =
(
KX9 ⊗

[
E

(9)
6

])∣∣∣
E

(9)
6

= −4
[
E

(9)
0

]∣∣∣
E

(9)
6

− 2
[
E

(9)
1

]∣∣∣
E

(9)
6

− 4
[
E

(9)
2

]∣∣∣
E

(9)
6

− 8
[
E

(9)
3

]∣∣∣
E

(9)
6

− 6
[
E

(9)
4

]∣∣∣
E

(9)
6

− 5
[
E

(9)
5

]∣∣∣
E

(9)
6

− 3N
E

(9)
6

− 2
[
E

(9)
7

]∣∣∣
E

(9)
6

− 4
[
E

(9)
2

]∣∣∣
E

(9)
8

− 8
[
E

(9)
3

]∣∣∣
E

(9)
9

| |

K(F3)3a = −2[L∞]− 5
[
H(3a)

]
− 4
[
D

(3a)
1

]
− 8
[
D

(3a)
2

]
− 11

[
D

(3a)
3

]
.

Now we have that
[
E

(9)
i

]∣∣∣
E

(9)
6

= 0 for i = 0, 1, 2, 4, while
[
E

(9)
3

]∣∣∣
E

(9)
6

= [H] =[
H(3a) +D

(3a)
1 + 2D

(3a)
2 + 3D

(3a)
3

]
,
[
E

(9)
5

]∣∣∣
E

(9)
6

= [L∞], and
[
E

(9)
6+i

]∣∣∣
E

(9)
6

=
[
D

(3a)
i

]
for i = 1, 2, 3. Making all these substitutions, we get NE0 = −[C ′] −

[
H(3a)

]
−

2
[
D

(3a)
1

]
− 4
[
D

(3a)
2

]
− 7
[
D

(3a)
3

]
.

Remark 4.3.25. Corollary 1.2.29 gives a control on the computation of normal
bundles and intersection numbers. Let us show some examples.

(i) For E
(2)
1
∼= P2

1 we have N
E

(2)
1

= −
[
D

(1)
0

]
− 2
[
D

(1)
1

]
. Thanks to Proposition
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4.3.21.(ii), we have(
N
E

(2)
1

)2

=
(
−D(1)

0 − 2D
(1)
1

)2

=
(
D

(1)
0

)2

+ 4D
(1)
0 ·D

(1)
1 + 4

(
D

(1)
1

)2

= 1 · 0 + 4 · 1 + 4 · (−1)

= 0 =
(
E

(2)
1

)3

.

(ii) For E
(3)
1
∼= P2

2 we have N
E

(3)
1

= −
[
D

(2)
0

]
− 2
[
D

(2)
1

]
− 4
[
D

(2)
2

]
.

Thanks to Proposition 4.3.21.(iii), we have(
N
E

(3)
1

)2

=
(
D

(2)
0 − 2D

(2)
1 − 4D

(2)
2

)2

=
(
D

(2)
0

)2

+ 4
(
D

(2)
1

)2

+ 16
(
D

(2)
2

)2

+ 4D
(2)
0 ·D

(2)
1 + 8D

(2)
0 ·D

(2)
2 + 16D

(2)
1 ·D

(2)
2

= 1 · (−1) + 4 · (−2) + 16 · (−1) + 4 · 0 + 8 · 1 + 16 · 1

= −1 =
(
E

(3)
1

)3

.

(iii) For E
(6)
5
∼= F2 we have N

E
(6)
5

= −3[H]− 2[L∞].

Thanks to Proposition 4.3.21.(vi), we have(
N
E

(6)
5

)2

= (−3H − 2L∞)2

= 9H2 + 12H · L∞ + 4 (L∞)2

= 9 · 0 + 12 · (1) + 4 · (−2)

= 4 =
(
E

(6)
5

)3

.

(iv) Let us make computations for E0
∼= (F3)3a in X. Here we shall show that we

can make the computation also with respect to other bases of Pic(E0) than
the one given by Proposition 4.3.21.(vii). We have

NE0 = −[L∞]−
[
H(3a)

]
− 2
[
D

(3a)
1

]
− 4
[
D

(3a)
2

]
− 7
[
D

(3a)
3

]
= −[L∞]− [H]−

[
D

(1)
1

]
−
[
D

(2)
2

]
−
[
D

(3a)
3

]
,
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and E0 ·E0 ·E0 = −4. One can easily compute the intersection matrix for the
divisors in E0 in the basis {L∞, H,D(1)

1 , D
(2)
2 , D

(3a)
3 } using Corollary 1.2.28,

and obtaining 
−3 1 0 0 0

0 0 0 0
−1 0 0

−1 0
−1

 .

Hence

(NE0)
2 =

(
−L∞ −H −D(1)

1 −D
(2)
2 −D

(3a)
3

)2

= (L∞)2 + 2L∞ ·H +
(
D

(1)
1

)2 (
D

(2)
2

)2 (
D

(3a)
3

)2

= −3 + 2− 1− 1− 1 = −4 = (E0)3 .

4.4 Dynamical properties

4.4.1 Contraction to a point

In this subsection we shall give an answer to Question 4.1.12.(i) for our example,
proving that there does not exist the contraction of E = E0 ∪ . . . ∪ E5 to a point.
In dimension 3, a criterion such as Theorem 4.1.14 is missing, but we can replace
it with stronger results in general dimension.

Definition 4.4.1. Let X be a compact complex variety, and L→ X a line bundle
over X. Then L is weakly negative, or negative in the sense of Grauert if
there exists a continuous map ϕ : L→ [0,+∞) such that

• ϕ−1(0) = E, where E is the null section of L,

• φ|L\E is C2 and strictly plurisubharmonic.

Then the main theorem we shall need is the following criterion by Grauert.

Theorem 4.4.2 (Grauert’s contraibility criterion, [Gra62, Chapter 3, Satz 8]). Let
X be a compact complex manifold, and E ⊂ X a divisor in X. Then there exists a
contraction of E to a point if and only if the normal bundle NE is weakly negative.

In order to use the computations of Proposition 4.3.22, we shall need the fol-
lowing result.
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Theorem 4.4.3 ([Gra62, Chapter 3, Section 4, p.349]). Let X be a compact com-
plex (non-irreducible) variety X, and X1, . . . , Xk its irreducible components. Then
a line bundle L → X over X is weakly negative if and only if its restrictions
Li := L|Xi are weakly negative for all i = 1, . . . , k.

Weakly negative line bundles are strictly related to ample line bundles.

Theorem 4.4.4 ([Gra62, Chapter 3, Section 2, Hilfssatz 1] and [Laz04, Theorem
1.2.6 (Cartan-Serre-Grothendieck Theorem]). Let X be a compact complex projec-
tive variety. Then a line bundle L over X is weakly negative if and only if −L is
ample.

Finally, we shall need a numerical criterion for ampleness.

Theorem 4.4.5 ([Laz04, Theorem 1.2.23 (Nakai-Moishezon-Kleiman criterion)]).
Let L be a line bundle on a compact complex projective variety X. Then L is ample
if and only if

LdimV · V > 0 (4.7)

for every positive-dimensional irreducible subvariety V ⊆ X (including the irre-
ducible components of X.

Corollary 4.4.6. Let L be a line bundle on a compact complex projective irre-
ducible surface E, such that −L is effective. Let {Di}i=1,...,n be a set of generators
(by positive linear combinations) of effective divisors. Then L is weakly negative if
and only if

L ·Di < 0 (4.8)

for every i = 1, . . . , n.

Proof. Thanks to Theorem 4.4.4 L is weakly negative if and only if −L is ample,
and we can use Theorem 4.4.5(Nakai-Moishezon-Kleiman criterion). Since −L is
effective, we have −L =

∑n
i=1 aiDi, for suitable ai ∈ N, and if (4.8) is satisfied for

every i, then

(−L) · (−L) = −L ·
n∑
i=1

aiDi =
n∑
i=1

ai (−L ·Di) > 0,

so the condition (4.7) for V = E is automatically satisfied.

Theorem 4.4.7. Let X be the Kato variety and E0, . . . , E5 the divisors described
in Definition 4.2.6. Let us set E =

⋃5
i=0 Ei the union of the supports of all these

irreducible surfaces Ei for i = 0, . . . , 5. Then there does not exist a contraction of
E ⊂ X to a point.
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Proof. A contraction of E to a point exists if and only if we can find ri ∈ N∗ for
i = 0, . . . , 5 such that E := r0E0 + . . . + r5E5 admits a contraction to a point.
Thanks to Theorem 4.4.2(Grauert’s contraibility criterion), this happens if and
only if the normal bundle N of E ⊂ X is weakly negative. Thanks to Theorem
4.4.3, this happens if and only if the restriction Ni := N|Ei is weakly negative for
every i = 0, . . . , 5.

We want now to apply Corollary 4.4.6 to Ni for every i. First of all we shall
compute them with respect to the divisors described in Definition 4.3.1. For each
i = 0, . . . , 5, we have that

Ni = riNEi +
∑
j 6=i

rj [Ej]|Ei .

Then, thanks to Proposition 4.3.22, we get

N1 = (r0 − r1)
[
D

(2)
0

]
+ (r2 − 2r1)

[
D

(2)
1

]
+ (r3 − 4r1)

[
D

(2)
2

]
;

N2 = (r0 + r1 − r2)
[
D

(1)
0

]
+ (r3 − 2r2)

[
D

(1)
1

]
;

N3 = (r0 + r1 + r2 − r3)
[
D

(3b)
0

]
+ (r0 + r1 + r2 − 2r3 + r4)

[
D

(3b)
1

]
+ (2r0 + 2r1 + 2r2 − 3r3 + r5)

[
D

(3b)
2

]
+ (4r0 + 3r1 + 3r2 − 4r3)

[
D

(3b)
3

]
;

N4 = (r3 − 2r4 + r5)
[
D

(0)
0

]
;

N5 = (r0 + r4 − 2r5)[L∞] + (2r0 + r3 − 3r5)[H];

N0 = (−r0 + r5)[L∞] + (−r0 + r3)
[
H(3a)

]
+ (−2r0 + r1 + r3)

[
D

(3a)
1

]
+ (−4r0 + r2 + 2r3)

[
D

(3a)
1

]
+ (−7r0 + 4r3)

[
D

(3a)
3

]
.

Thanks to Proposition 4.3.21 we can now apply Corollary 4.4.6 to every Ni for
i = 0, . . . 5.

From N4 we get

N4 ·D(0)
0 = r3 − 2r4 + r5 < 0.

From N2 we get

N2 ·D(1)
0 = −2r2 + r3 < 0,

N2 ·D(1)
1 = r0 + r1 + r2 − r3 < 0.
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From N1 we get

N1 ·D(2)
0 = −r0 − 3r1 + r3 < 0,

N1 ·D(2)
1 = −2r2 + r3 < 0,

N1 ·D(2)
2 = r0 + r1 + r2 − r3 < 0,

but the last 2 inequalities had already been obtained.

From N5 we get

N5 · L∞ = r3 − 2r4 + r5 < 0,

N5 ·H = r0 + r4 − 2r5 < 0,

but the first inequality had already been obtained.

From N3 we get

N3 ·D(3b)
0 = 2r0 + r1 + r2 − 2r3 < 0,

N3 ·D(3b)
1 = r3 − 2r4 + r5 < 0,

N3 ·D(3b)
2 = r0 + r4 − 2r5 < 0,

N3 ·D(3b)
3 = −r0 + r5 < 0,

and we had already obtained the second and the third inequalities.

Finally from N0 we get

N0 · L∞ = 2r0 + r3 − 3r5 < 0,

N0 ·H(3a) = r0 − 2r3 + r5 < 0,

N0 ·D(3a)
1 = −r0 − 3r1 + r3 < 0,

N0 ·D(3a)
2 = −2r2 + r3 < 0,

N0 ·D(3a)
3 = r0 + r1 + r2 − r3 < 0,

where the last three inequalities had already been obtained.

Summarizing, we have to find r0, . . . , r5 > 0 such that all the following inequal-
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ities hold:

R1 :=− 3r1 + r3 − r0 < 0,

R2 :=− 2r2 + r3 < 0,

R3 :=r1 + r2 − 2r3 + 2r0 < 0,

R4 :=r3 − 2r4 + r5 < 0,

R5 :=r4 − 2r5 + r0 < 0,

R6 :=r5 − r0 < 0,

R7 :=r1 + r2 − r3 + r0 < 0,

R8 :=r3 − 3r5 + 2r0 < 0,

R9 :=− 2r3 + r5 + r0 < 0.

We can see that we can toss the 7-th and 8-th inequalities, since and R3 +
R4 + 2R5 + 3R6 = R7 and R4 + 2R5 = R8, while the last one is implied by
R3 +R6 = R9 + r1 + r2 < 0 being r1, r2 ∈ N∗.

Let us denote
Vi :=

⋂
j 6=i

{Rj = 0},

for i = 1, . . . , 6.
We shall consider as coordinates in R6 the sixtuple (r1, r2, r3, r4, r5, r0). Then

we get that Vi = Span{vi}, with

v1 =(−1, 1, 2, 2, 2, 2),

v2 =(0, 0, 1, 1, 1, 1),

v3 =(0, 1, 2, 2, 2, 2),

v4 =(1, 5, 10, 7, 7, 7),

v5 =(2, 10, 20, 17, 14, 14),

v6 =(1, 5, 10, 9, 8, 7).

Since for every i, by direct computation, we have that Ri(vi) > 0, we see that the
cone given by the inequalities is generated by {−v1, . . . ,−v6}. In particular there
are no r0, . . . , r6 strictly positive and satisfying all the inequalities. It follows that
N is not weakly negative, and that E cannot be contracted to a point.

Remark 4.4.8. This example shows that there does not hold an analogous of
Theorem 4.1.15 in dimension 3.

Question 4.1.12.(i) is equivalent to asking if the Alexandroff one-point compact-
ification of a fundamental domain V of the basin of attraction U for the base germ
f0 at 0 is a (possibly singular) complex variety. Hence Question 4.1.12.(i) can be
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thought as looking for a “minimal” compactification for V that is also a complex
variety. While this can be always achieved just adding a point in dimension 2, the
answer is not trivial in dimension 3.

4.4.2 Foliations

In this and the following subsections we shall give an answer to Question 4.1.12.(ii)
for our example. Here we shall deal with the existence of a foliation F on our Kato
variety X.

Corollary 4.4.9. Let f0 : (C3, 0)→ (C3, 0) be the germ

f0(x, y, t) =

(
t2(1 + yt), t3, t4

)
(1 + yt)2 + ct2 + xt3

. (4.4)

Then f0 is holomorphically conjugated to a germ of the form

f̃0(x) =
(
x4

1, f2(x), f3(x)
)

(4.9)

where x = (x1, x2, x3), for suitable f2, f3 : C3 → C such that x3
1 | f2 and x2

1 | f3, by
a conjugation Φ of the form

x = Φ(x, y, t) =
(
t
(
1 + φ(x, y, t)

)
, y, x

)
.

Proof. It follows from Theorem 3.3.1 in the case k = 1, see also Theorem 3.2.15.

Proposition 4.4.10. Let X be the Kato variety and E0, . . . , E5 the divisors de-
scribed in Definition 4.2.6. Let us set E =

⋃5
i=0Ei the union of the supports of

all these irreducible surfaces Ei for i = 0, . . . , 5. Then there exists a holomorphic
foliation F of codimension 1 on X, that contains E as a leaf, and it is singular at
singular points of E (i.e., in

⋃
i 6=j(Ei ∩ Ej)).

Proof. Thanks to Corollary 4.4.9, we can suppose that the base germ f0 = π ◦ σ
that defines X (see Subsection 4.2.3) is of the form (4.9). We can then consider
in those coordinates x = (x1, x2, x3) the 1-form ω = dx1. Since for the pull-back
we have f ∗0 (ω) = 4x3

1dx1 = 4x3
1ω, then ω defines a f0-invariant holomorphic (germ

of) foliation on (C3, 0), and hence a foliation F on X, since the f0-invariance
guarantees the holomorphic gluing of leaves while defining X from Aπε−,ε+ as in
Subsection 4.2.3. The foliation F is clearly non-singular outside E, and, taking all
components Ei of E as leaves, it can be extended to a foliation with singularities
only in the singular set of E.

Remark 4.4.11. Since birational maps are biholomorphisms outside a suitable
divisor, admitting a foliation is clearly a birational invariant.
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4.4.3 Curves and Surfaces

Before starting to study invariant curves and surfaces, we need a remark and a
definition.

Remark 4.4.12. Let us consider the blow-ups {πi}i∈N∗ we make to construct X∞
as in Definition 4.2.9. Let us denote by Yi ⊂ Xi the center of πi+1 : Xi+1 → Xi for
every i.

In general, some of the Yi can be submanifolds of dimension≥ 1 (in our example,
Y4+6j and Y5+6j have dimension 1 for every j), but Y0, and hence Y6j for every j ∈ N,
are always points.

In particular, even when we are not blowing-up points, we are interested into
the geometry in a neighborhood of a single point Pi ∈ Yi, given by the projection
of a Y6j for 6j ≥ i.

This remark holds not only for our example, but starting from any resolution
of a strict germ, in any dimensions.

Definition 4.4.13. LetX be the Kato variety associated to the germ f0 : (C3, 0)→
(C3, 0) given by equation (4.4), with respect to the resolution f0 = π ◦ σ given
in Subsection 4.2.2. Let us denote by Xk the manifolds and by πk the blow-
ups as in Definition 4.2.9. We shall denote by Yk−1 ⊂ Xk−1 the center of πk :
Xk → Xk−1. We shall denote by P6j the only point in Y6j for j ∈ N, and
Pi+6j := πi+1+6j ◦ . . . ◦ π6+6j(P6+6j) ∈ Yi+6j for i = 1, . . . , 5 and j ∈ N.

We shall now study the existence of invariant curves.

Lemma 4.4.14. Let f0 : (C3, 0)→ (C3, 0) be the germ given by equation (4.4), and
f0 = π ◦σ the resolution given in Subsection 4.2.2, such that (π, σ) is a Kato data.

Let πk : Xk → Xk−1, E
(k)
h be as in Definition 4.2.9, and Yk and Pk as in Definition

4.4.13. We shall finally denote by σj : Aj → Aj+1 the (germ of) biholomorphism
induced by σ in Aj (see Remark 4.2.8), and σ0 = σ.

Let C * E
(0)
0 be an irreducible curve in (C3, 0). Then the following conditions

are equivalent.

(i) C is invariant for f0.

(ii) σ(C) coincide with the strict transform C̃ := π−1(C \ {0}) of C through π.

(iii) For every k ∈ N, the strict transform Ck of S through π1 ◦ . . . ◦ πk intersects

E
(k)
k in Pk ∈ Yk, and C6h is invariant for f̃6h := π6h+1 ◦ . . . ◦ π6h+6 ◦ σh for

h ∈ N.
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Proof.(i ⇒ ii). From the hypothesis, we have that π ◦ σ(C) = C (being C outside

E
(0)
0 , the critical set of f0); since π is a biholomorphism outside E

(6)
6 , we get σ(C \

{0}) = π−1(C \ {0}), and taking the closure we get

σ(C) = σ(C \ {0}) = π−1(C \ {0}) = C̃.

(ii ⇒ iii). Let us suppose that (ii) holds; then Cn∩Yn 6= ∅ for n = 1, . . . , 6, otherwise

we would have σ(S) = S̃ = ∅. With the same argument made in every copy Ai
of A in X̃ (see Subsection 4.2.3), we get the first part of the statement (see also
Remark 4.4.12). Moreover

π1 ◦ π6h ◦ f̃6h(C6h \ P6h−1) = f0 ◦ π1 ◦ π6h(C6h \ P6h−1)

= f0(C \ {0}) = C \ {0} = π1 ◦ π6h(C6h \ P6h−1);

taking the closure, we get the statement.

(iii ⇒ i). Trivial.

Lemma 4.4.15. Let C be a curve and E a surface in (C3, 0), and π : X → (C3, 0)
a modification over the origin. Then for the intersection number, we have

C · E = C̃ · π∗E,

where C̃ denotes the strict transform of C through π.

Proof. Let E = {φ = 0}, and take a parametrization C = {γ(t)}, where γ(t) =

(γ1(t), γ2(t), γ3(t)) for suitable formal power series γi with i = 1, 2, 3. Then C̃ is
parametrized by a map γ̃(t) such that γ = π ◦ γ̃. Then directly from the definition
of multiplicity of intersection we get:

C · E = m(φ ◦ γ) = m(φ ◦ π ◦ γ̃) = C̃ · π∗E,

where m denotes the multiplicity (with respect with the only variable t).

Theorem 4.4.16. Let f0 : (C3, 0) → (C3, 0) be the germ given by equation (4.4),
and f0 = π ◦ σ the resolution given in Subsection 4.2.2, such that (π, σ) is a Kato

data. Then there are no invariant curves for f0 outside E
(0)
0 .

Proof. Let C be an invariant curve for f0 that does not belong to E
(0)
0 . Let us

consider the strict transforms Cn through π1 ◦ . . . ◦πn for every n ∈ N∗. Thanks to
Lemma 4.4.14 we have that Cn ∩E(n)

n = Pn ∈ Yn for every n ∈ N∗, with notations
as in Definition 4.4.13. Moreover, for n = 6h, Pn = Yn is a free point of E

(n)
n , i.e.,

it does not belong to any E
(n)
k with k < n.
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Thanks to Lemma 4.4.15, we get

C · E(0)
0 = C6h · (π1 ◦ . . . ◦ π6h)

∗E
(0)
0 = 4hC6h · E(6h)

6h ≥ 4h,

where the last equivalence follows from the fact that C6h meets the exceptional
divisors only in E

(6h)
6h and by direct computation.

Taking the limit for h→∞, we get a contradiction.

Corollary 4.4.17. Let X be the Kato variety associated to the germ f0 : (C3, 0)→
(C3, 0) given by equation (4.4), with respect to the resolution f0 = π ◦ σ given in
Subsection 4.2.2. Then the only curves in X lie in E = E0 ∪ . . . ∪E5 described in
Definition 4.2.6.

Proof. It follows from the correspondence between curves on X outside E and
invariant curves outside E

(0)
0 for f0, and Theorem 4.4.16.

Remark 4.4.18. Corollary 4.4.17 implies that there do not exist surfaces (besides
E0, . . . , E5) that contain curves (besides possibly the ones that arise from the in-
tersection with E0, . . . , E5). But there could still be surfaces such as for example
Inoue surfaces (see [Ino74]), with no curves inside.

Lemma 4.4.19. Let f0 : (C3, 0)→ (C3, 0) be the germ given by equation (4.4), and
f0 = π ◦σ the resolution given in Subsection 4.2.2, such that (π, σ) is a Kato data.

Let πk : Xk → Xk−1, E
(k)
h be as in Definition 4.2.9, and Yk and Pk as in Definition

4.4.13. We shall finally denote by σj : Aj → Aj+1 the (germ of) biholomorphism
induced by σ in Aj (see Remark 4.2.8), and σ0 = σ.

Let S 6= E
(0)
0 be an irreducible surface in (C3, 0). Then the following conditions

are equivalent.

(i) S is invariant for f0.

(ii) σ(S) is an (open) subset of the strict transform S̃ := π−1(S \ {0}) of S
through π.

(iii) For every k ∈ N, the strict transform Sk of S through π1 ◦ . . . ◦ πk contains

Pk, and S6h is invariant for f̃6h := π6h+1 ◦ . . . ◦ π6h+6 ◦ σh for h ∈ N.

Proof.(i ⇒ ii). From the hypothesis, we have that π ◦ σ(S) ⊆ S; since π is a

biholomorphism outside E
(6)
6 , we get σ(S \ E(0)

0 ) ⊆ π−1(S \ E(0)
0 ), and taking the

closure we get

σ(S) = σ(S \ E(0)
0 ) ⊆ π−1(S \ E(0)

0 ) = S̃.
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(ii ⇒ iii). Let us suppose that (ii) holds; then Sn 3 Pn for n = 1, . . . , 6, otherwise

we would have σ(S) = S̃ = ∅. With the same argument made in every copy Ai of

A in X̃ (see Subsection 4.2.3), we get the first part of the statement. Moreover

π1 ◦ π6h ◦ f̃6h(S6h \ E(6h)
6h ) = f0 ◦ π1 ◦ π6h(S6h \ E(6h)

6h )

= f0(S \ E(0)
0 ) ⊆ S \ E(0)

0 = π1 ◦ π6h(S6h \ E(6h)
6h );

taking the closure, we get the statement.

(iii ⇒ i). Trivial.

Remark 4.4.20. We would like to show that, in the same hypotheses of Theorem
4.4.16, the only invariant surface for f0 is E

(0)
0 . We could try to use Lemma 4.4.19

as we did with Lemma 4.4.14 for proving Theorem 4.4.16. One way to try to
get a contradiction is to mimick the proof given by Dloussky (see [Dlo84, Part II,
Proposition 1.10]) for an analogous of Theorem 4.4.16 for Kato surfaces. It relies
on the fact that, if we have an invariant curve C, while performing the blow-ups
πk we are also desingularizing C, and this step is missing for surfaces in 3-folds.

Remark 4.4.21. We have already noticed (see Remark 4.1.11) that X is a com-
pactification of a fundamental domain V of the basin of attraction U for f0 to 0,
obtained by “adding” 6 irreducible surfaces E0, . . . , E5.

But one could ask what we can say about a general 3-variety Y birationally
equivalent to X. In particular, we have to check what happens by performing blow-
ups and blow-downs with smooth centers (see for example the weak factorization
result in [Bon02]).

But for X, we know that there are not so many curves, so we can just blow-up
points in X or curves in E.

The result is that, up to modifications over points in V , a manifold Y obtained
by blowing-up X is still a compactification of V .

Moreover, we cannot blow-down too many surfaces, since the ones that maybe
exist outside E cannot be ruled surfaces (which have too many curves that lie
inside).

Since this property on curves can be transported by blow-ups and blow-downs,
we then get that a 3-variety Y that is birationally equivalent to X is still a com-
pactification of V (up to modifications over points in V ).
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[Éca81a] Jean Écalle. Les fonctions résurgentes. Tome I, volume 5 of Publica-
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