Feuille de TD 5 - Applications linéaires

Questions du cours.

- (a) Donner la définition d'application linéaire entre deux espaces vectoriels.
- (b) Donner la définition de noyau et image d'une application linéaire.
- (c) Donner la définition de rang d'une application linéaire.
- (d) Énoncer le théorème du rang.
- (e) Définir la matrice associée à une application linéaire entre espaces vectoriels de dimension finie.
- (f) Soient E, F deux espaces linéaires avec dim E = n et dim F = m, et A une matrice $m \times n$. Définir l'application linéaire $f: E \to F$ induite par A par rapport à deux bases \mathcal{B} et \mathcal{C} de E et F respectivement.
- (g) Soient E un espace vectoriel de type fini, et F un espace vectoriel. Soit $\mathcal{B} = \{v_1, \dots, v_p\}$ une famille dans E, et $\{w_1,\ldots,w_p\}$ une famille dans F. Sous quelles conditions une application linéaire $f:E\to F$ est uniquement déterminée en imposant $f(v_i) = w_i$, pour $i = 1, \dots, p$? Justifier soigneusement.

Exercice 1. Parmi les applications suivantes $f: E \to F$ entre deux espaces vectoriels, déterminer les applications linéaires. Le cas échéant, fixer des bases de E et F, et déterminer la matrice associée par rapport aux bases choisies.

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $(x, y, z) \mapsto (2x + y, 2y)$, (b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (2x, 1 + y)$,

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (2x, 1 + y)$

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (y, x)$,

(d)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (x^2, y^2)$,

(e)
$$f: \mathbb{R} \to \mathbb{R}^2$$
, $x \mapsto (\cos x, \sin x)$

$$\begin{array}{lll} \text{(c)} \ f:\mathbb{R}^2\to\mathbb{R}^2, & (x,y)\mapsto (y,x), \\ \text{(e)} \ f:\mathbb{R}\to\mathbb{R}^2, & x\mapsto (\cos x,\sin x), \\ \text{(g)} \ f:\mathbb{R}^3\to\mathbb{R}^3, & (x,y,z)\mapsto (x+y-z,2x+3y,0), \\ \end{array}$$

(g)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x, y, z) \mapsto (x + y, 2x + 5z, 0)$

(h)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x, y, z) \mapsto (x - 3y, x + y, z + 2)$

Exercice 2. Décrire toutes les applications linéaires $f: \mathbb{R}^3 \to \mathbb{R}^2$ telles que f(1,0,0) = (1,0) et f(0,1,0) = (1,0)

Exercice 3. Soient $f: \mathbb{R}^2 \to \mathbb{R}^3$ donnée par $(x,y) \mapsto (x+y,x-y,2x+3y)$, et $g: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par $(x, y, z) \mapsto (x + y - z, 2y + z).$

- (a) Montrer que $f,\,g,\,g\circ f,\,f\circ g$ sont des applications linéaires.
- (b) Écrire les matrices associées à $f, g, g \circ f, f \circ g$ par rapport aux bases canoniques de $\mathbb{R}^2, \mathbb{R}^3$. Quel rapport y a-t-il entre ces matrices?

Exercice 4. Soit $f: \mathbb{R}^4 \mapsto \mathbb{R}^4$ l'application linéaire définie par :

$$f(x, y, z, t) = (x - y + z + 3t, -x + 3y + z - 3t, x - y + 2z + 4t, 2x + y - 3z - t)$$

f est-elle bijective? Si oui, expliciter f^{-1} et en donner la matrice associée.

Exercice 5. On considère un espace vectoriel réel E de dimension 3. Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Soit f l'application linéaire dont la matrice par rapport à la base \mathcal{B} est donnée par

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- (a) Déterminer le noyau et l'image de f. Calculer le rang de f.
- (b) Calculer la matrice de f^2 et montrer que $f^2 3f = 0$.

Exercice 6. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f l'endomorphisme déterminé par

$$f(e_1) = e_1 + 2e_2$$
; $f(e_2) = 2e_1 - e_2 - e_3$; $f(e_3) = -e_1 + e_2 + 3e_3$

- (a) Donner la matrice associée à f.
- (b) Déterminer l'image du vecteur u = (x, y, z). En déduire celle de (-1, 2, -3).
- (c) Déterminer Ker f et en donner une base. En déduire la dimension de Im f.
- (d) Déterminer $f^{-1}(3,-1,1)$ et $f^{-1}(1,0,1)$.
- (e) Donner une base de $\operatorname{Im} f$.
- (f) Donner un système d'équations caractérisant $\operatorname{Im} f$.

Exercice 7. Soit $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ l'application linéaire définie par :

$$f(x, y, z) = (-12x - 15y - 3z, 8x + 10y + 2z, 8x + 10y + 2z).$$

- (a) Donner la matrice de f.
- (b) Donner un système d'équations caractérisants une base pour chacun des sous-espaces vectoriels $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- (c) Montrer que Ker $f \subset \text{Im } f$. Y a-t-il égalité?
- (d) Montrer que $f \circ f = 0$.

Exercice 8. Soit $E = \mathbb{R}^5$ et $F = \mathbb{R}^4$. On considère l'application linéaire f de E dans F donnée par la matrice

$$\begin{pmatrix}
1 & 2 & 0 & -1 & 5 \\
2 & 0 & 2 & 0 & 1 \\
1 & 1 & -1 & 3 & 2 \\
0 & 3 & -3 & 2 & 6
\end{pmatrix}$$

Déterminer le noyau et l'image de f. On en donnera une base et un système d'équations.

Exercice 9. On considère $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par :

$$f(x, y, z) = (-2x + 3y + z, -2x + y - z, 3x - 2y + z)$$

Montrer que Ker $f \oplus \text{Im } f = \mathbb{R}^3$.

Exercice 10. Montrer qu'il existe une et une seule application linéaire $f: \mathbb{R}^4 \to \mathbb{R}$ telle que

$$f(10,1,2,0) = 1$$
, $f(1,2,1,0) = 2$, $f(2,0,1,1) = 3$, $f(0,0,0,2) = 4$.

Calculer f(1, 1, 1, 1).

Exercice 11. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par f(v) = Av pour tout $v \in \mathbb{R}^3$, avec

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 3 \end{pmatrix}.$$

- (a) Calculer f(x, y, z). En déduire f(1, 2, -1).
- (b) Trouver des bases et des équations caractérisant Ker f et Im(f).
- (c) Pour quels vecteurs $w \in \mathbb{R}^3$ peut-on écrire $f^{-1}(w) = \{u + v \mid u \in \text{Ker } f\}$? Trouver un tel v quand w = (1, -3, 0).

Exercice 12. Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 donnée par

$$f(x,y,z) = (6x - 2y + 2z, 10x - 3y + 4z, -2x + y).$$

Soit \mathcal{B} la base canonique de \mathbb{R}^3 .

- (a) Écrire la matrice A de f dans la base \mathcal{B} .
- (b) Donner la dimension et une base de Ker f. Donner la dimension et une base de Im f.
- (c) Déterminer l'ensemble des vecteurs u tels que f(u) = u.

Exercice 13. Dans \mathbb{R}^3 , on considère les vecteurs $v_1 = (1, 1, 1), v_2 = (2, 0, -3), v_3 = (0, 2, 5).$

- (a) Montrer qu'il n'existe pas d'application linéaire f, de \mathbb{R}^3 dans \mathbb{R}^3 , telle que $f(v_j) = e_j$ (où j = 1, 2, 3 et les vecteurs e_j sont les vecteurs de la base canonique de \mathbb{R}^3).
- (b) Montrer qu'il existe une infinité d'applications linéaires f, de \mathbb{R}^3 dans \mathbb{R}^3 , telles que

$$f(v_1) = e_1, \quad f(v_2) = e_2, \quad f(v_3) = 2e_1 - e_2.$$

Suggestion : on observera qu'il y a une infinité de manières de compléter (v_1, v_2) de façon a obtenir une base de \mathbb{R}^3

Exercice 14. Soit (e_1,e_2,e_3) la base canonique de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 tel que

$$\begin{cases} f(e_1) = e_1 + 2e_2 \\ f(e_2) = e_1 + 6e_2 + 2e_3 \\ f(e_3) = e_1 - e_3 \end{cases}$$

Déterminer les sous-espaces vectoriels $\operatorname{Ker} f$ et $\operatorname{Im} f$.

Exercice 15. Soient E, F deux espaces vectoriels de la même dimension finie n. Montrer que pour tout isomorphisme $f: E \to F$ il existe une base \mathcal{B} de E et une base \mathcal{C} de F telles que la matrice associée à f par rapport à ces bases est l'identité.

Exercice 16. Soit E un \mathbb{R} -espace vectoriel et f un endomorphisme de E.

(a) Montrer l'équivalence suivante :

Im
$$f \subset \text{Ker } f$$
 si et seulement si $f \circ f = 0$.

(b) En déduire que, si $f \circ f = 0$, alors l'endomorphisme $I_E + f$ est inversible et donner son inverse.

Exercice 17. Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ une application linéaire telle que Im f = Ker f.

- (a) Montrer que dim Im $f = \dim \operatorname{Ker} f = 2$.
- (b) Montrer que pour tout vecteur $v \in \mathbb{R}^4$ nous avons $(f \circ f)(v) = 0$.
- (c) Soit (u_1, u_2) une base de Ker f. Soit $u_3 \in \mathbb{R}^4$ un vecteur tel que $f(u_3) = u_1$ et soit $u_4 \in \mathbb{R}^4$ un vecteur tel que $f(u_4) = u_2$. Montrer que $\mathcal{B} = (u_1, u_2, u_3, u_4)$ est une base de \mathbb{R}^4 .
- (d) Donner la matrice de f par rapport à la base \mathcal{B} .
- (e) L'application f est-elle injective? surjective?

Exercice 18. Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par :

$$f(x, y, z, t) = (2x + y + 4z, x + y + 3z + t, 3x + 2y + 7z + t, x - y - z - 3t).$$

- (a) Trouver une base du sous-espace $\operatorname{Ker} f$; quelle est sa dimension?
- (b) Trouver une base et des équations du sous-espace Im f; quelle est sa dimension?
- (c) Soit E le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs (1,0,0,0) et (0,1,0,0). Montrer que l'on a $E \oplus \operatorname{Ker} f = \mathbb{R}^4$.
- (d) Soit $g: E \to \mathbb{R}^4$ l'application linéaire définie par g(x) = f(x) pour tout $x \in E$. Montrer que g est injective et que l'on a Im $g = \operatorname{Im} f$.

Exercice 19. Soit $E = \mathbb{R}^2$. Soit f un endomorphisme non nul de E. On suppose que $f^2 = f \circ f = 0$.

(a) Le noyau de f peut-il être réduit à {0}? Quelle peut-être la dimension de l'image de f?

- (b) Trouver un exemple d'une telle application linéaire.
- (c) Construire toutes les applications f non nulles vérifiant $f^2 = 0$.

Exercice 20. On considère l'endomorphisme f_a de \mathbb{R}^3 représenté, dans la base canonique de \mathbb{R}^3 , par la matrice

$$M_a = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$

- (a) Discuter selon le paramètre a, le rang de f_a .
- (b) Déterminer le noyau et l'image de f_a .

Exercice 21. Pour chaque réel t on considère l'application linéaire $f_t : \mathbb{R}^3 \to \mathbb{R}^3$, dont la matrice par rapport à la base canonique de \mathbb{R}^3 est :

$$\begin{pmatrix} 1 & 1 & t \\ 1 & 0 & t \\ t - 1 & t - 2 & 1 - t \end{pmatrix}$$

- (a) Pour quelle valeurs du paramètre réel t l'application f_t est-elle inversible?
- (b) Lorsque f_t est inversible, donner la matrice de f_t^{-1} par rapport à la base canonique de \mathbb{R}^3 .
- (c) Le vecteur (1, -2, 0) appartient-il à Im f_2 ?
- (d) Résoudre le système :

$$\begin{cases} x + y + 2z = 1 \\ x + 2z = -2 \\ x - z = 0 \end{cases}$$

Exercice 22. Pour chaque réel a on considère $f_a: \mathbb{R}^3 \mapsto \mathbb{R}^3$ l'application linéaire définie par :

$$f_a(x, y, z) = (x - y - 2z, -x + ay + z, 2x + y - 3z)$$

- (a) Donner la matrice M_a de l'application linéaire f_a
- (b) Pour quelle valeurs du paramètre réel a l'application f_a est-elle bijective?
- (c) Lorsque f_a est inversible, donner la matrice de f_a^{-1} .

Exercice 23. Pour tout paramètre $a \in \mathbb{R}$, soit $f_a : \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie par

$$f_a(x, y, z, t) = (x + y, (2 - a)x + (2 + a)y + (a - 1)t, a^2(-2x + 2y + z) - az).$$

- (a) Écrire la matrice M_a associée à f_a par rapport aux bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 .
- (b) Calculer le rang de f_a .
- (c) Pour quelles valeurs de a a-t-on f_a injective? surjective? bijective?
- (d) Donner une base de Ker f_a .
- (e) Donner une base de $\operatorname{Im} f_a$.
- (f) Trouver des systèmes d'équations caracterisants Ker f_a et Im f_a .

Exercice 24. Pour tous paramètres $a, b \in \mathbb{R}$, soit $f_{a,b} : \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par la matrice

$$\begin{pmatrix} a & 2 \\ 3 & b \\ b & 3 \end{pmatrix}.$$

- (a) Calculer le rang de $f_{a,b}$.
- (b) Pour quelles valeurs de a,b a-t-on $f_{a,b}$ injective? surjective? bijective?
- (c) Calculer $f_{2,3}^{-1}(2,3,3)$, $f_{a,0}^{-1}(0,-2,a)$, $f_{0,0}^{-1}(1,0,0)$.
- (d) Donner une base de Ker $f_{a,b}$.
- (e) Donner une base de Im $f_{a,b}$.
- (f) Trouver des systèmes d'équations caracterisants Ker $f_{a,b}$ et Im $f_{a,b}$.