Feuille de TD 7 - Fonctions exponentielles

Une équation différentielle du premier ordre est une équation de la forme

$$y'(x) = f(x, y(x))$$
 pour $x \in I$

avec f une fonction de deux variables réelles et I un intervalle dans \mathbb{R} .

L'inconnue dans cette équation est la fonction dérivable y dont les dérivées vérifient en tout point $x \in I$ l'équation précédente. Sous des hypothèses très larges sur la fonction f, le théorème de Cauchy-Lipschitz permet de caractériser l'existence et l'unicité des fonctions y solutions d'une telle équation.

Un cas très particulier de ce type d'équations est le cas des équations linéaires homogènes du premier ordre. Cela signifie simplement que la fonction f est de la forme f(x, y(x)) = a(x)y(x) avec a une fonction continue en x.

On s'intéresse dans cet exercice aux solutions de l'équation y'(x) = ay(x) lorsque a est une constante réelle et x parcourt \mathbb{R} .

Un cas très particulier du théorème de Cauchy-Lipschitz permet d'affirmer qu'il existe au moins (en fait exactement) une fonction dérivable y définie sur \mathbb{R} qui est solution de l'équation y'(x) = ay(x) et telle que y(0) = c, où c est une valeur réelle arbitraire.

La fonction exponentielle (de base e) est précisément définie comme « la » solution de l'équation y' = y telle que y(0) = 1. Nous admettrons dans la suite l'existence de cette fonction, que l'on notera $\exp(x)$.

Remarque : Une définition alternative de la fonction exponentielle peut être donnée de la manière suivante : Pour tout nombre réel (ou complexe) x, on peut montrer que la suite $(s_n)_{n\in\mathbb{N}}$

de terme général $s_n = \sum_{k=0}^n \frac{x^k}{k!}$ converge. On définit alors $\exp(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$ comme la limite de cette

suite. On peut montrer dans ce cas que $\exp(0) = 1$ et que la fonction $x \mapsto \exp(x)$ est dérivable et solution de y' = y. Cela fournit un procédé concret de construction de la fonction exponentielle.

Propriétés de base de la fonction exponentielle.

- 1. Soient f une fonction dérivable sur \mathbb{R} , a un nombre réel, et g la fonction définie par g(x) = f(ax). Montrer que g est dérivable et que g'(x) = af'(ax).
- 2. On considère la fonction h définie sur \mathbb{R} par $h(x) = \exp(x) \times \exp(-x)$.
 - (a) Montrer que h est dérivable, calculer sa dérivée, et montrer que h est une fonction constante.
 - (b) En déduire que pour tout $x \in \mathbb{R}$, on a $\exp(x) \neq 0$ et $\exp(-x) = \frac{1}{\exp(x)}$.
 - (c) Montrer que la fonction exponentielle est une fonction strictement positive et strictement croissante sur \mathbb{R} .

Unicité de la fonction exponentielle.

- 3. On veut montrer l'unicité de la fonction exponentielle. Supposons que f est une fonction dérivable sur \mathbb{R} qui est solution de l'équation y' = y et telle que f(0) = 1. On définit la fonction h sur \mathbb{R} par $h(x) = f(x) \times \exp(-x)$. Montrer que h est dérivable et constante et égale 1. En déduire que nécessairement, on a $f = \exp$
- 4. On veut montrer que pour tous nombres réels a et b on a $\exp(a+b) = \exp(a) \exp(b)$. On considère pour cela la fonction $u(x) = \exp(a+x) \exp(-a)$.
 - (a) Montrer que cette fonction est dérivable et solution de y' = y.
 - (b) Calculer u(0) et en déduire le résultat.

Calcul des limites en $+\infty$ et $-\infty$.

- 5. (a) Montrer que le nombre $e = \exp(1)$ vérifie e > 1.
 - (b) Montrer que la suite e^n tend vers $+\infty$ lorsque n tend vers $+\infty$.
 - (c) En déduire que la fonction exp n'est pas bornée, puis que $\lim_{+\infty} \exp(x) = +\infty$.
 - (d) Montrer que $\lim_{-\infty} \exp(x) = 0^+$.
 - (e) Dresser le tableau de variations de la fonction exp.

Fonction réciproque.

- 6. (a) Montrer qu'il existe une unique fonction, notée ln: $]0, +\infty[\to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$ on ait $(\ln \circ \exp)(x) = x$ et pour tout t > 0, on ait $(\exp \circ \ln)(t) = t$.
 - (b) Montrer que la fonction ln est continue et strictement croissante.
 - (c) Montrer que la fonction ln est dérivable sur $]0, +\infty[$ et calculer sa dérivée.
 - (d) Calculer ln(1) et ln(e).
 - (e) Montrer que pour tous s > 0 et t > 0, on a $\ln(st) = \ln(s) + \ln(t)$.
 - (f) En déduire que pour tout t > 0, on a $\ln\left(\frac{1}{t}\right) = -\ln(t)$.
 - (g) Calculer $\lim_{0+} \ln(t)$ et $\lim_{t\to\infty} \ln(t)$.
 - (h) Dresser le tableau de variation de la fonction ln.

Fonctions puissance.

- 7. On définit, pour tout nombre réel α , la fonction $f_{\alpha} : \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}$ par $f_{\alpha}(x) = \exp(\alpha \ln(x))$.
 - (a) Montrer que pour tout α la fonction f_{α} est une fonction dérivable sur \mathbb{R}_{+}^{*} et calculer sa dérivée.
 - (b) Déterminer le tableau de variations de f_{α} en fonction du signe de α .
 - (c) Montrer que si $\alpha \neq 0$, la fonction f_{α} est bijective et calculer sa bijection réciproque.
 - (d) Montrer que si $\alpha = n$ est un entier positif ou nul, la fonction f_n peut se prolonger par continuité à \mathbb{R} tout entier.
 - (e) Montrer que si $\alpha = \frac{p}{q}$ est un nombre rationnel, on a, pour tout x > 0, $f_{\alpha}(x) = \sqrt[q]{x^p}$.
 - (f) Montrer que si x est fixé, on a $\lim_{\alpha \to \alpha_0} f_{\alpha}(x) = f_{\alpha_0}(x)$. On notera dorénavant $f_{\alpha}(x) = x^{\alpha}$.

Croissances comparées.

- 8. Soient $\alpha > 0$ et $\beta \in \mathbb{R}$. On souhaite comprendre le comportement de $g_{\alpha,\beta}(x) = \frac{\exp(\alpha x)}{x^{\beta}}$ au voisinage de $+\infty$.
 - (a) Montrer que si $\beta \leq 0$, alors $\lim_{+\infty} g_{\alpha,\beta}(x) = +\infty$.

On supposera désormais que $\beta > 0$, et on s'intéresse à la fonction $g(x) = g_{-1,-1}(x) = x \exp(-x)$.

- (b) Calculer g'(x) et montrer que si x > 1, alors g'(x) < 0.
- (c) En déduire que sur $]1,+\infty[$, g est décroissante et strictement positive.
- (d) Montrer que g admet une limite finie ℓ en $+\infty$.
- (e) Montrer que $\lim_{x\to +\infty} \frac{g(2x)}{g(x)} = 0$ et en déduire que $\ell = 0$.
- (f) En déduire que $\lim_{x\to +\infty} g_{1,1}(x) = +\infty$.
- (g) En posant $t = \alpha x^{\beta}$, exprimer $g_{\alpha,\beta}(x)$ en fonction de $g_{1,1}(t)$.
- (h) En déduire que $\lim_{x \to +\infty} g_{\alpha,\beta}(x) = +\infty$.
- 9. En posant $u = \ln(x)$, déterminer la limite en $+\infty$ de $\frac{x^{\alpha}}{(\ln(x))^{\beta}}$ pour $\alpha > 0$ et $\beta \in \mathbb{R}$.
- 10. A l'aide d'un changement de variable, montrer que pour $\alpha > 0$ et $\beta \in \mathbb{R}$, on a $\lim_{x \to 0^+} x^{\alpha} (\ln(x))^{\beta} = 0$.

Equations différentielles linéaires homogènes du premier ordre à coefficients constants.

11. Montrer que l'ensemble des solutions sur $\mathbb R$ de l'équation différentielle y'(x)=ay(x) est l'ensemble

$$S_{\alpha} = \{x \mapsto \lambda \exp(\alpha x) | \lambda \in \mathbb{R} \}.$$