TD 5 - Groupes d'homotopie

Notions du cours.

- Chemins, chemins homotopes (à extrémités fixées), lacets.
- Opérations sur les chemins, sur les homotopies (concaténation, inversion de l'orientation).
- Espaces simplement connexes.
- Groupe fondamental.
- Groupe fondamental du cercle, degré d'une application sur \mathbb{S}^1 .
- Applications : théorèmes de d'Alambert-Gauss, du point fixe de Brouwer, de Borsuk-Ulam.

Définition. Si X, Y sont deux espaces topologiques localement compacts, la topologie compacte-ouverte sur $C^0(X, Y)$ est la topologie engendrée par les ensembles

$$\mathcal{N}_{K,U} = \{ f \in \mathcal{C}^0(X,Y) \mid f(K) \subseteq U \},\$$

avec K qui varie parmi les compacts de X et U parmi les ouverts de Y.

Si Y est un espace métrique, on peut montrer que la topologie compacte-ouverte est la topologie de la convergence uniforme sur les compacts de X.

Groupe fondamental

Exercice 1. Donner un exemple d'application continue injective (resp. surjective, resp. bijective), $f: X \to Y$, n'induisant pas un homomorphisme injectif (resp. surjectif, resp. bijectif) entre les groupes fondamentaux.

Exercice 2. Montrer que le groupe fondamental $\pi_1(G,e)$ d'un groupe topologique G est toujours abélien. Indication : on pourra utiliser la multiplication de deux chemins α et β définie par la loi de G, i.e. $(\alpha \cdot \beta)(t) = \alpha(t)\beta(t)$.

Exercice 3. Soit X un espace topologique connexe par arcs et x, y deux points de X. Considérons deux chemins de X, γ_1, γ_2 de x à y, et les isomorphismes $\Phi_{\gamma_i} : \pi_1(X, x) \to \pi_1(X, y)$ définis par

$$\Phi_{\gamma_j}([\alpha]) = [\overline{\gamma_j} * \alpha * \gamma_j].$$

Montrer que $\Phi_{\gamma_1} = \Phi_{\gamma_2}$ si, et seulement si, la classe $[\gamma_2 * \overline{\gamma_1}]$ commute avec tous les éléments de $\pi_1(X, x)$. En déduire une condition nécessaire et suffisante pour que l'isomorphisme $\Phi_{\gamma} : \pi_1(X, x) \to \pi_1(X, y)$ ne dépende pas du choix du chemin γ .

Exercice 4. Soit $GL(n, \mathbb{R})$ le groupe des matrices réelles $n \times n$ inversibles et O(n) le groupe orthogonal. Notons $g: GL(n, \mathbb{R}) \to O(n)$ le procédé d'orthonormalisation de Gram-Schmidt.

- (a) Montrer que g est une application continue et définit une équivalence d'homotopie.
- (b) Déterminer les composantes connexes de O(2) et leur groupe fondamental. En déduire $\pi_1(GL(2,\mathbb{R}),id)$.

Exercice 5. Si X est un espace topologique, l'espace des configurations de m points dans X est le sous-espace F(X,m) du produit X^m , constitué des couples (x_1,\ldots,x_m) tels que $x_i\neq x_j$ pour tout $i\neq j$.

(a) Montrer que $F(\mathbb{S}^1,2)$ est homéomorphe à $\mathbb{S}^1 \times \mathbb{R}$. Calculer $\pi_1(F(\mathbb{S}^1,2))$ et en expliciter des générateurs.

Soit maintenant $X = \mathbb{R}^n$, et considerons \mathbb{S}^{n-1} comme le sous-espace de $F(\mathbb{R}^n, 2)$ constitué des points (0, y) pour $y \in \mathbb{S}^{n-1}$.

(b) Montrer que \mathbb{S}^{n-1} est un rétracte par déformation de $F(\mathbb{R}^n,2)$. En déduire $\pi_1(F(\mathbb{R}^n,2))$.

Exercice 6. On rappelle que le centre d'un groupe G est l'ensemble des éléments de G qui commutent avec tous les autres éléments :

$$Z(G) = \{g \in G, gh = hg, \forall h \in G\}.$$

Soit X un espace topologique. On considère $F: X \times I \to X$ une homotopie telle que $\forall x \in X, F(x,0) = F(x,1) = x$. Pour $x_0 \in X$, on considère le lacet $\gamma_{x_0}: I \to X$ qui à t associe $F(x_0,t)$. Montrer que $[\gamma_{x_0}] \in Z(\pi_1(X,x_0))$.

Exercice 7. Montrer que pour un espace topologique X les trois conditions suivantes sont équivalentes :

- (i) Toute application continue $\mathbb{S}^1 \to X$ est homotope à une application constante.
- (ii) Toute application continue $\mathbb{S}^1 \to X$ s'étend à une application continue $\mathbb{B}^2 \to X$.
- (iii) $\pi_1(X, x_0) = 0$ pour tout $x_0 \in X$.

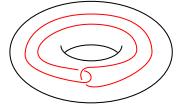
En déduire que X est simplement connexe si et seulement si toutes applications continues $\mathbb{S}^1 \to X$ sont homotopiquement équivalentes.

Exercice 8. Soit X un espace topologique connexe par arcs, et A, B deux ouverts tels que $X = A \cup B$.

- (a) Montrer que si A et B sont simplement connexes, et $A \cap B$ est connexe par arcs et non-vide, alors $A \cup B$ est simplement connexe.
- (b) Est-ce que la même conclusion vaut si A et B ne sont pas ouverts dans X?

Exercice 9. Montrer qu'il n'existe pas de rétraction $r: X \to A$ dans les cas suivants :

- (a) $X = \mathbb{R}^3$ et A est n'importe quel sous-espace homéomorphe à \mathbb{S}^1 .
- (b) $X = \mathbb{S}^1 \times \mathbb{B}^2$ et A est son bord $\mathbb{S}^1 \times \mathbb{S}^1$.
- (c) $X=\mathbb{S}^1\times\mathbb{B}^2$ et A est le cercle montré en figure.



- (d) $X = \mathbb{B}^2 \vee \mathbb{B}^2$, où le bouquet est fait sur deux points du bord, et A est son bord $\mathbb{S}^1 \vee \mathbb{S}^1$.
- (e) X est un disque $\overline{\mathbb{D}}$ où on identifie 1 et -1, et A est son bord (l'image de $\partial \mathbb{D}$ par rapport à la projection naturelle sur X).
- (f) X la bande de the Möbius et A son bord.

Degré d'un application sur \mathbb{S}^1 .

Exercice 10. On identifie ici \mathbb{S}^1 à $\partial \mathbb{D}$ l'ensemble des complexes de module 1.

- (a) Montrer que $\deg(f \circ g) = \deg f \cdot \deg g$. En déduire que $\deg(\overline{f}) = -\deg(f)$.
- (b) Montrer que deg(fg) = deg(f) + deg(g).
- (c) Donner le degré de l'application $f: \mathbb{S}^1 \to \mathbb{S}^1$ définie par $f(z) = \begin{cases} z^2 & \text{si } \operatorname{Im}(z) \ge 0, \\ z^{-2} & \text{si } \operatorname{Im}(z) \le 0 \end{cases}$.
- (d) Soit $P \in \mathbb{C}[z]$ un polynome de degré n, qui n'a pas de racine sur \mathbb{S}^1 . Calculer le degré de l'application $f: \mathbb{S}^1 \to \mathbb{S}^1$ donnée par $f(z) = \frac{P(z)}{|P(z)|}$.

Exercice 11. Montrer que toute application continue de \mathbb{S}^1 dans \mathbb{S}^1 qui n'a pas de point fixe est homotope à l'identité. En déduire que toute application de degré différent de 1 a un point fixe.

Conséquences de $\pi_1(\mathbb{S}^1) \cong \mathbb{Z}$.

Exercice 12 (Théorème de Perron-Frobenius en dimension 3). Soit $K = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_i \geq 0, x_1 + x_2 + x_3 = 1\}$, et $f: K \to K$ une fonction continue.

- (a) Montrer que f admet un point fixe x.
- (b) En déduire que pour tout $A = (a_{i,j}) \in \operatorname{Mat}(3 \times 3, \mathbb{R})$ telle que $a_{i,j} \geq 0$ pour tout i, j, il existe $\lambda \geq 0$ et un vecteur $x = (x_i) \in \mathbb{R}^3$ non nul et tel que $x_i \geq 0$ et $Ax = \lambda x$.

Exercice 13 (Théorème de Borsuk-Ulam). Le théorème de Borsuk-Ulam dit que pour toute $f: \mathbb{S}^n \to \mathbb{R}^n$ il existe $x \in \mathbb{S}^n$ tel que f(x) = f(-x).

- (a) Montrer le théorème de Borsuk-Ulam pour n = 1.
- (b) Montrer le théorème de Borsuk-Ulam pour n=2. (Indication : procéder par l'absurde, et considérer $g: \mathbb{S}^2 \to \mathbb{S}^1$ donnée par $g(x) = \frac{f(x) f(-x)}{\|f(x) f(-x)\|}$.)

Exercice 14. Est-ce que le théorème de Borsuk-Ulam vaut sur le tore? Autrement dit, est-ce que pour toute application continue $f: \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R}^2$ il existe $(x,y) \in \mathbb{S}^1 \times \mathbb{S}^1$ tels que f(x,y) = f(-x,-y)?

Exercice 15. Soient A_1 , A_2 , A_3 trois ensembles compacts dans \mathbb{R}^3 . En utilisant le théorème de Borsuk-Ulam, montrer qu'il existe un plan P dans \mathbb{R}^3 qui divide simultanément chaque A_j en deux parties de la même taille.

Groupes d'homotopie d'ordre supérieur.

Exercice 16 (Groupe d'homotopie d'ordre n, cubes). Soit X un espace topologique, et $x_0 \in X$ un point base. Considérons l'espace $F_n(X, x_0)$ des fonctions continues $f: (I^n, \partial I^n) \to (X, x_0)$ (c'est-à-dire, $f: I^n \to X$ et $f(\partial I^n) = x_0$), avec I = [0, 1] et $n \ge 1$.

(a) Montrer que la relation d'homotopie relative à ∂I^n (qu'on note \sim) est une relation d'équivalence dans $F_n(X, x_0)$.

On définit $\pi_n(X, x_0)$ comme l'ensemble de classes d'équivalence de $F_n(X, x_0)$ par rapport à \sim . Si $f \in F_n(X, x_0)$, on dénote par [f] sa classe d'équivalence dans $\pi_n(X, x_0)$.

Sur $F_n(X,x_0)$ on considère la concaténation par rapport à la j-ième coordonnée :

- (b) Montrer que $*_j$ induit une opération sur $\pi_n(X, x_0)$, donnée par $[f] *_j [g] = [f *_j g]$.
- (c) Montrer que pour tout j = 1, ..., n, on a $[f] *_j [g] = [f] *_1 [g]$ pour tout $[f], [g] \in \pi_n(X, x_0)$.

On dénote cette opération plus simplement comme *.

- (d) Montrer que $(\pi_n(X, x_0), *)$ est un groupe (dit groupe d'homotopie d'ordre n).
- (e) Montrer que le groupe d'homotopie d'ordre n est abélien pour $n \geq 2$.
- (f) Montrer que si X est connexe par arcs, alors $\pi_n(X, x_0) \cong \pi_n(X, x_0')$ pour tout $x_0, x_0' \in X$.

Exercice 17 (Groupe d'homotopie d'ordre n, sphères). On dénote par \mathbb{S}^n la n-sphère, avec un point base $s_0 \in \mathbb{S}^n$. Soit X un espace topologique, et $x_0 \in X$. Considérons l'espace $\tilde{F}_n(X,x_0)$ l'espace des fonctions continues $f: (\mathbb{S}^n, s_0) \to (X, x_0)$, c'est à dire, $f: \mathbb{S}^n \to X$ et $f(s_0) = x_0$. Soit $\Psi: I^n \to \mathbb{S}^n$ une application continue qui induit un homéomorphisme $\Phi: I^n/\partial I^n \to \mathbb{S}^n$. Soit $s_0 = \Phi([\partial I^n])$.

- (a) Montrer que l'application $\Psi^*: \tilde{F}_n(X, x_0) \to F_n(X, x_0)$ définie par $\Psi^*f = f \circ \Psi$ est un homéomorphisme, où dans les deux espaces on considère la topologie compacte-ouverte.
- (b) Montrer que $\Psi^*f \sim \Psi^*g$ si et seulement si f et g son homotopiquement équivalent relativement à s_0 (relation notée encore par \sim).

On en déduit que $\pi_n(X, x_0) \cong \tilde{F}_n(X, x_0) / \sim$.

Soient $f, g \in \tilde{F}_n(X, x_0)$. On définit f * g comme suit. D'abord, on considère $S = (\mathbb{S}^n, s_0) \vee (\mathbb{S}^n, s_0)$ le bouquet de deux n-sphères sur s_0 , et $\Phi : (\mathbb{S}^n, s_0) \to (S, s_0)$ l'application continue obtenue en contractant un équateur qui contient s_0 sur le point base du bouquet. En suite, on considère l'application $h : (S, s_0) \to X$ définie comme f sur le premier (\mathbb{S}^n, s_0) , et g sur le deuxième (\mathbb{S}^n, s_0) . On définit f * g comme $h \circ \Phi$.

(c) Montrer que l'opération f * g passe au quotient et donne une opération [f] * [g] := [f * g], qui coïncide avec * défini dans l'exercice précédent sur $\pi_n(X, x_0)$.

Considerons maintenant G le groupe fondamental $G = \pi_1(F_{n-1}(X, x_0), x_0)$, où le dernier x_0 indique la fonction constante égale à x_0 définie sur \mathbb{S}^{n-1} .

- (d) Montrer que le groupe G est isomorphe à $\pi_n(X, x_0)$.
- (e) En déduire que si X est connexe par arcs, alors pour tout $x_0, x_0' \in X$ on a $\pi_n(X, x_0) \cong \pi_n(X, x_0')$.

Exercice 18 (Groupes d'homotopie relative). On considère le n-cube I^n , et $I^{n-1} \cong I^{n-1} \times \{0\}$ comme plongé dans I^n . Soit J^{n-1} l'adhérence de $\partial I^n \setminus I^{n-1}$. Soit X un espace topologique, A une partie de X et $x_0 \in A$ un point base. Soit $F_n(X, A, x_0)$ l'espace des fonctions continues $f: I^n \to X$ tels que $f(\partial I^n) \subseteq A$ et $f(J^{n-1}) = x_0$.

Sur $F_n(X, A, X_0)$ on considère la relation d'équivalence donnée par $f \sim g$ si et seulement s'il existe une homotopie $H: I^n \times I$ entre f et g, relative à J^{n-1} (c'est-à-dire, $H_t|_{J^{n-1}} = x_0$ pour tout t), et telle que $H_t(\partial I^n) \subseteq A$ pour tout t.

On dénote par $\pi_n(X, A, x_0)$ le quotient de $F_n(X, A, x_0)$ par \sim .

- (a) Montrer que l'opération $*=*_1$ définie par (1) définit une opération sur $F_n(X,A,x_0)$, qui passe au quotient $\pi_n(X,A,x_0)$.
- (b) Montrer que $(\pi_n(X, A, x_0), *)$ est un groupe pour $n \geq 2$, et qu'il est abélien pour $n \geq 3$.
- (c) C'est analogue au cas non rélatif, ici il y a un décalage de 1 car il faut travailler en tenant compte du comportement sur I^{n-1} .

On remarque que $\pi_n(X,A,x_0)$ peut être défini aussi comme classes d'homotopie de fonctions continues $f: (\mathbb{B}^n,\mathbb{S}^{n-1},s_0) \to (X,A,x_0)$, où s_0 est un point base dans $\mathbb{S}^{n-1} = \partial \mathbb{B}^n$ (le bord vu dans \mathbb{R}^n). L'homotopie est dans ce cas relative à s_0 , et telle que $H_t(\mathbb{S}^{n-1}) \subseteq A$ pour tout t.

(c) Montrer que la classe d'une application $f:(\mathbb{B}^n,\mathbb{S}^{n-1},s_0)\to (X,A,x_0)$ est nulle dans $\pi_n(X,A,x_0)$ si et seulement si f est homotopiquement équivalent relativement à \mathbb{S}^{n-1} à une application dont l'image est contenue dans A.