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Abstract. We introduce a general framework to unify several
variants of twisted topological K-theory. We focus on the role of
finite dimensional real simple algebras with a product-preserving
involution, showing that Grothendieck-Witt groups provide inter-
esting examples of twisted K-theory. These groups are linked with
the classification of algebraic vector bundles on real algebraic va-
rieties.

In our recent paper [13], we compare the Witt group of an algebraic
variety over R with a purely topological invariant we called WR(X),
associated to a space X with involution. In our comparison, X is the
underlying space of complex points of the algebraic variety, and the
involution is induced by complex conjugation. We are able to compute
WR(X) by comparing it to classical equivariant topological K-theory
[19], Atiyah’s Real K-theory KR(X) [1], and other familiar invariants.
The Witt group of skew-symmetric forms is approximated in a sim-

ilar way in [13], using another topological invariant. Surprisingly, the
computation of this invariant is more subtle, as it is linked with equi-
variant twisted K-theory (in the sense of [5] and [2]).
This paper gives a more systematic study of this equivariant twisted

K-theory, a variant we think is of independent interest. Our emphasis
will be on examples linked with finite dimensional simple R-algebras
and Grothendieck-Witt groups.
The first section of this paper develops the basic notions of equi-

variant twisted K-theory in a geometric way, adapting many classical
arguments of topological K-theory to vector bundles which are mod-
ules over an algebra bundle. We don’t claim too much originality here.
Much of the recent theory has already been developed in an ad hoc way
(see for instance [3], [9], [4] or the 2014 thesis of El-käıoum Moutuou
[14]).
In the second section, we study specific examples linked with Real

vector bundles. We follow Atiyah’s viewpoint [1], replacing C with
R-algebras with involutions. The most important examples for us are
“balanced” algebras, such as Clifford algebras, for which we can provide
a simpler description of the theory.
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In the last section we link twisted K-theory to the Grothendieck-
Witt groups of symmetric and skew-symmetric bilinear forms on Real
A-bundles. In particular, we show that the Grothendieck-Witt group of
skew-symmetric bilinear forms is isomorphic to a “twisted KR-group”
associated to the quaternion algebra H. This group is different from
the group of symplectic bundles defined by J.Dupont [6] in another
context.

We are particularly grateful to Jonathan Rosenberg, who made im-
portant comments on the first version of this paper.

1. G–A bundles

In this section we present a variant of (G-equivariant) twisted K-
theory associated to an algebra bundle A on a G-space X. We begin
with a quick review of the non-equivariant theory.
Let A be a fixed Banach R-algebra with unit and X a paracom-

pact space. We suppose given a locally trivial bundle A of Banach
R-algebras on X, with fibers isomorphic (non-canonically) to A; the
structure group of continuous algebra automorphisms has the compact-
open topology (also called the strong topology).
By an A-bundle we mean a locally trivial bundle E of (left) A-

modules on X such that A×XE → E is continuous, and each fiber Ex

is a finitely generated projective Ax-module. Morphisms E → F are
bundle maps whose fibers are module maps. The A-bundles form an
additive category and we write KA(X) for the Grothendieck group of
A-bundles on X. When A is a trivial algebra bundle, an A-bundle is
just a (classical) A-bundle, and we write KA(X) for KA(X).
The simplest non-trivial examples arise when A is an algebra bundle

with fiber A = Mn(C) and X is a finite CW complex. In this case, the
Morita equivalence classes of possible A are classified by their class in
the topological Brauer group ofX, which by a theorem of Serre ([7, 1.7])
is the torsion subgroup of H3(X;Z). Historically, these groups KA(X)
were the first examples of twisted K-theory (see [5], [12]). The theory
has since developed to include the class in H3(X;Z) as part of the data
(see [16]), with the awareness that the generalization to modules over
a bundle of Banach algebras gives rise to interesting applications in
physics, as mentioned for example in [20].
Now let G be a compact Lie group acting onX. As usual, we say that

G acts on a bundle E if G acts on E compatibly with the structure map
E → X, in the sense that multiplication by g ∈ G sends Ex to Egx. If
A is a bundle of Banach algebras with fiber A, we say that G acts on A
if G acts on the underlying bundle of A by algebra isomorphisms, i.e.,
if multiplication by any g ∈ G is an algebra isomorphism Ax → Agx

for each x ∈ X. The notion of a G–A bundle is somewhat related to
Fell’s Banach ∗-algebraic bundles over G [8].
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Definition 1.1. Let E be an A-bundle whose fiber is a finitely gener-
ated projective A-module. We say that E is a G–A bundle on X if G
acts on E (and A) so that

g(a · e) = g(a) · g(e), ∀g ∈ G, x ∈ X, a ∈ Ax, e ∈ Ex.

We write KA
G (X) for the Grothendieck group of the additive category

of G–A bundles. When G acts on A and A is the trivial algebra bundle
X × A, we will write KA

G(X) for KA
G (X).

The group KA
G (X) is contravariantly functorial in the variables G

and X. It is also covariant in A (and contravariant for finite flat maps
A → A′).

The groups KA
G (X) are an equivariant version of twisted K-theory

[12] [4]. The prototype of this construction is when A is an algebra
bundle with fiber Mn(C) and G acts trivially on C. In this case, Atiyah
and Segal [2, §6] have shown that G-algebra bundles are classified up
to Morita equivalence by their class in the equivariant Brauer group
BrG(X), which is the torsion subgroup of H3(EG×G X,Z).

Examples 1.2. Suppose that A is a trivial bundle with fiber A.
a) When G acts trivially on A, a G–A bundle is just an A-linear G-

bundle. If A is a finite simple algebra, KA
G (X) is the usual equivariant

K-group KOG(X), KUG(X) or KSpG(X), depending on A.
b) When A is the trivial bundle with fiber C, and G is the cyclic

group Gal(C/R), a G–A bundle is the same thing as a Real vector
bundle in the sense of Atiyah [1], and our KC

G(X) is Atiyah’s KR(X).
c) When A is the trivial bundle with fiber H, and G is a finite

subgroup of H× acting by inner automorphisms on H, the notion of
G–A bundle seems new. We call these Real quaternionic bundles; see
Examples 2.12 and 2.16. We will see in Theorem 3.5 and Example
3.7 that this case is related to the Grothendieck-Witt group of skew-
symmetric bilinear forms on vector bundles over X.
d) (Morita invariance). If G acts on A then G acts slotwise on

Mn(A), and the Morita equivalence of A-bundles and Mn(A)-bundles
extends to an equivalence between the categories of G–A bundles and
G–Mn(A) bundles. Thus KA

G (X) ∼= KMn(A)
G (X).

e) Suppose that G acts on A, and acts trivially on X, so that G acts
on the trivial algebra bundle A. In this case, we consider the twisted
group ring A ! G; if G is finite, it is the left A-module A × G with
multiplication g ·a = g(a) · g; for G compact Lie, it can be taken to be
L1(G,A), the L1 functions G → A with twisted convolution product.
(If A is a C∗-algebra, it is sometimes useful to take the C∗-completion
of L1(G,A).) In any of these cases, we can form the trivial algebra
bundle A!G with fiber A!G, and a G–A bundle on X is the same
as an A!G-linear bundle. Indeed, a left A!G-module E is the same
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as a left A-module, with an action of G, satisifying the intertwining
relation of Definition 1.1.

Many properties of ordinary vector bundles remain valid for G–A
bundles. For example, the kernel of a surjection E

s
−→E ′′ of G–A bun-

dles is the subbundle whose fiber at x is the kernel of Ex → E ′′
x .

Lemma 1.3. Let E
s

−→E ′′ be a surjection of G–A bundles. Then the
kernel E ′ of this map is a G–A bundle, and

0 → E ′ → E
s

−→E ′′ → 0

is a split exact sequence.

Proof. Clearly, E ′ is a G–A subbundle of E. To split the short exact
sequence, choose an arbitrary A-bundle splitting E ′′ → E; this may be
done locally on X and the splittings may be combined using a partition
of unity, as in the classical setting. Using a Haar measure on G, we
can average this splitting to get an G-equivariant A-module splitting t.
Since t◦s is idempotent with kernel E ′, the sequence is split exact. !

When X is a point and G acts trivially on A, a G–A module is just
a finite A[G]-module. If A = C then, as in Example 1.2(a), KC

G(X) is
the character ring R(G) of G. This shows that a G–A bundle need not
be a summand of a fixed reference bundle X × An.
We will show that every bundle is a summand of a different kind of

“trivial” bundle. In our setting we define a “trivial” G–A bundle to
be a bundle of the type A ⊗M , where M is a finite dimensional real
G-module and G acts diagonally. The following theorem is borrowed
from Segal’s paper on equivariant K-theory ([19, p. 134]).

Theorem 1.4. Let E be a G–A bundle on a compact space X. Then
there exists a G–A bundle F such that E ⊕ F is isomorphic to A⊗M
for some finite dimensional G-module M.

Proof. Let Γ = Γ(E) be the topological space of continuous sections
of E; it is naturally a G-module. Let Γ′ denote the union of its finite
dimensional G-invariant subspaces. By a variant of the Peter-Weyl
theorem, Γ′ is a dense invariant subspace of Γ. Now, for each point x
of X, we choose a finite set sxi of global sections such that the (sxi )(x)
generate Ex as an Ax-module. Since Γ′ is dense, we may choose the
sxi in Γ′. By continuity, there is an open neighbourhood Ux of x such
that the (si)(y) generate Ey as an Ay-module for any y ∈ Ux. Since X
is compact, we only need the sxi for finitely many x; they all lie in a
fixed finite dimensional G-invariant subspace M of Γ. Thus there is a
surjection A⊗M → E. We conclude thanks to Lemma 1.3. !

The usual argument shows that KA
G is a homotopy functor. Let I be

the unit interval; if X is a G-space, we regard X × I as the G space
with g(x, t) = (g ·x, t). Given an algebra bundle A on X, we abusively
write A for the pullback of A along the projection p : X × I → I.



TWISTED K-THEORY AND GROTHENDIECK-WITT GROUPS 5

Theorem 1.5. If X is a compact space, the projection X × I
p

−→X
induces an isomorphism

p∗ : KA
G (X) ∼= KA

G (X × I).

Proof. The proof is analogous to the one in the classical case [10, I.7.1]:
if p = p(t) (t ∈ I) is a continuous family of projection operators on a
trivial bundle A ⊗M, it is enough to show that p(1) is isomorphic to
p(0). By compactness of X, each t ∈ I has a neighborhood U such that
for each u ∈ U the operator g = 1−p(t)−p(u)+2p(t)p(u) is invertible
and gp(u)g−1 = p(t). We conclude by using the compactness of I. !

We can use Theorem 1.4 in order to prove an analogue of the Serre-
Swan theorem in this framework. If B is a Banach algebra with a
continuous G action, we define the equivariant Grothendieck group
KG(B) to be the Grothendieck group of the category of finitely gener-
ated projective B-modules with a continuous G action. As in the case
of bundles, we assume that the actions of B and G are intertwined: we
have the relation

g(b · e) = g(b) · g(e).

Note that if G is finite then this definition is purely algebraic.
If E is a G–A bundle, and B = Γ(A) is the Banach algebra of

sections of the algebra bundle A, then Theorem 1.4 implies that the
space of sections Γ(E) is a finitely generated projective B-module with
a continuous G-action.

Theorem 1.6. If X is compact, the functor Γ defines an equivalence
between the category of G–A bundles on X and the category of finitely
generated projective B-modules with a continuous G action.

Proof. This is completely analogous to the usual proof of the Serre-
Swan theorem [10, I.6.18]. The most difficult step is to show that Γ is
essentially surjective; this is a direct consequence of Theorem 1.4. !

Theorem 1.7. Let G be a finite group and B = Γ(A). If X is compact,
Γ defines an equivalence between the category of G–A bundles on X and
the category of finitely generated projective modules over B !G. Thus

KA
G (X) ∼= K0(B !G).

Proof. It is easy to show via an averaging process that the category
of finitely generated projective B-modules with a continuous G-action
is equivalent to the category of finitely generated projective B ! G-
modules. !

When a compact Lie group G acts on a C∗-algebra B, Julg [9] showed
that the equivariant K-theory of B, KG(B), is canonically isomorphic
to K0(B!G), where B!G is the twisted group ring. Taking B = Γ(A)
yields a more general version of Theorem 1.7.



6 MAX KAROUBI AND CHARLES WEIBEL

Remark. When G is a finite group, A is a finite dimensional algebra
with a G-action and A = X × A is the trivial algebra bundle, then B
is C(X)⊗ A, C(X) being the ring of continuous functions on X.
In particular, if G acts trivially on A then the usual category of

A-linear G-bundles is equivalent to the category of finitely generated
projective (C(X)!G)⊗A-modules, which is equivalent to the category
of A-linear G-bundles; see Example 1.2(a).

Part (a) of the following purely algebraic theorem was originally
proven by G.K. Pedersen [15, Thm. 35], using the notion of exterior
equivalence of actions of a (locally compact) group on a C∗-algebra.

Theorem 1.8. Suppose that a discrete group G acts on a ring A by
inner automorphisms g(a) = x(g) a x(g)−1 via a represention G

x
−→A×.

Then
a) the twisted algebra A!G is isomorphic to A[G];
b) For every G-algebra C, (C ⊗ A)!G ∼= (C !G)⊗ A.
c) If G is a finite group and A is a finite dimensional Banach algebra,
KA

G(X) is the equivariant K-theory of A-bundles of Example 1.2(a). In
particular, KA

G(X) is independent of the representation x.

Proof. Fix g ∈ G and set x = x(g−1) = x(g)−1, y(g) = g · x. The
element y(g) of A!G commutes with every element of A:

y(g) · a = gx · a · x−1x = g (g−1ag)x = a y(g).

The A-module map A[G] → A!G sending g to y(g) is multiplicative:

y(g) ·y(h) = g ·x(g)−1y(h) = gy(h)x(g)−1 = g h ·x(h)−1x(g)−1 = y(gh).

Thus y defines a ring isomorphism A[G]
∼=−→A!G. This proves (a).

For (b), the map (C ! G) ⊗ A → (C ⊗ A) ! G sending cg ⊗ a to
(c⊗a)y(g) is an isomorphism, because y(g)c = g(c)y(g) in (C⊗A)!G.
When G is finite and dim(A) < ∞, Theorem 1.7 and part (b) imply

that KA
G(X) = K0((C(X)!G)⊗A). That is, every G–A bundle (with

A trivial) has the form E ⊗A A[G] for an A-bundle E, and KA
G(X) is

isomorphic to the usual equivariant K-theory of A-bundles on X. !

Remark. Theorem 1.8 is also true for some topological groups G, pro-
vided we use completed cross products and completed tensor products
(both properly interpreted). For instance, this is the case for G a com-
pact Lie group and A a C∗-algebra. as shown by P. Julg [9].

Example 1.9. Suppose that A is a finite dimensional simple R-algebra
and that G acts as the identity on the center of A; This is the case for
example if the center is R. By the Noether-Skolem theorem, every auto-
morphism on A is inner, i.e., conjugation by an element x. If the action
lifts to a representation G → A×, as in Theorem 1.8, then KA

G(X) is
either KOG(X), KUG(X) or KSpG(X), depending on whether A is a
matrix ring over R, C or H.
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Remark. The assumption that x(g)x(h) = x(gh) is needed in Theorem
1.8. For instance, when G = {1, τ} is acting trivially on X, with
A = H and x(τ) = i, we show in Example 2.16 below that KH

G(X) is
isomorphic to KU(X) and not KSp(X).

2. Real A-bundles

We now restrict to the case when G is the cyclic group {1, τ} of
order 2, that A is a Banach R-algebra, and A is an algebra bundle
on X with fiber A. If there is an involution τ on A which restricts to
algebra isomorphisms Ax

&
−→Ax̄, we call A a Real algebra bundle. (This

is a special case of G acting on A in the sense of the previous section.)
We use the term “Real A-bundle” for a G–A bundle when G =

{1, τ}. Here is a paraphrase of Definition 1.1 in this setting.

Definition 2.1. Suppose that X is a space with involution τ , and A
is a Real algebra bundle on X. By a Real A-bundle on X we mean an
A-bundle E together with an involution τ : E → E which sends Ex to
Ex̄ and which is twisted A-linear in the sense that τ(a · e) = aτ(e) for
e ∈ Ex and a ∈ Ax, with a = τ(a). A morphism φ : E → F of Real
A-bundles is a morphism of the underlying A-bundles commuting with
the involution (φτ = τφ).
Real A-bundles form an additive category under Whitney direct sum

of bundles, and we write KRA(X) for its Grothendieck group. This
group is contravariant in X and covariant in A: given A → A′, the
functor E ,→ A′⊗AE defines a map KRA(X) → KRA′

(X). Forgetting
the involution yields a functor KRA(X) → KA(X).

Example 2.2. If A is equipped with an algebra involution a ,→ ā, and
A is the trivial algebra bundle X×A with τ(x, a) = (x̄, ā), we call A a
trivial Real algebra bundle, and use the term Real A-bundle for a Real
A-bundle. Unless stated otherwise, every algebra bundle in the rest of
this section will be a trivial Real algebra bundle.
For example, when the involution on A is trivial, a Real A-bundle

on X is just an A-linear G-bundle, where G = {1, τ}. As pointed out
in Example 1.2(a), KRA(X) is KOG(X), KUG(X) or KSpG(X) when
A is a matrix algebra over R, C or H, respectively.
When A = C and the involution is complex conjugation, a Real A-

bundle is a Real vector bundle in Atiyah’s sense [1]. As pointed out in
Example 1.2(b), KRA(X) is Atiyah’s KR(X). This example motivates
our choice to adopt Atiyah’s notation KR from [1].

Variant 2.3. Suppose that A0 is a Banach algebra and A = A0[G]
(with a+ bτ = a − bτ). If G acts trivially on X, the category of Real
A-bundles is equivalent to the category of A0-bundles, so KRA(X) ∼=
KA0

(X).
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Lemma 2.4. Fix A and X as above. There is a faithful functor E from
the category of finitely generated projective left A ! G-modules to the
category of Real A-bundles whose underlying A-bundle is trivial.

Proof. Suppose that M is a finitely generated projective left A ! G-
module. Then M is a finitely generated projective left A-module, en-
dowed with an involution τ · m = m such that a.m = a · m. Then
E(M) = X×M is trivial as an A-bundle, and the involution τ(x,m) =
(x̄, m̄) makes it a Real A-bundle. As E(M) is natural in M , E is a
functor. !

Remark. Set B ∼= C(X) ⊗ A, where C(X) is the ring of continuous
functions on X. By Theorem 1.7, the category of Real A-bundles on X
is equivalent to the category of finitely generated projective modules
over B !G. In particular, KRA(X) ∼= K0(B !G).

The Real A-bundle E(A!G) is X×(A!G), endowed with the invo-
lution τ(x, a+ bτ) = (x̄, ā+ b̄τ). Given a morphism φ : E(A!G) → E
of Real A-bundles, e(x) = φ(x, 1) is a section of E. We immediately
obtain:

Corollary 2.5. Given a Real A-bundle E, a section e of the underlying
bundle uniquely determines a morphism φ : E(A!G) → E of Real A-
bundles, by the formula (x, a+ bτ) ,→ (x, aex + bēx̄).

The universal property in Corollary 2.5 justifies the terminology that
Real A-bundles can be free.

Definition 2.6. We say that a Real A-bundle is free if it is a direct
sum of copies of E(A!G), i.e., E(F ) for a free A!G-module F .

Lemma 2.7. If X is compact, any Real A-bundle E is a direct sum-
mand of a free Real A-bundle.

Proof. By Theorem 1.4, E is a summand of a Real bundle of the form
X × (A⊗ R[G]n) = E(A!G)n. !

Example 2.8. The ring A!G has two orthogonal idempotents, e+ =
(1 + τ)/2 and e− = (1 − τ)/2. Both Ae+ and Ae− are left ideals of
A ! G, and A ! G = Ae+ ⊕ Ae−. Thus both Real A-bundles E(Ae+)
and E(Ae−) have X × A as their underlying A-bundle, and

E(A!G) = E(Ae+)⊕ E(Ae−).

The bundle E(Ae+) has the usual involution τ(x, a) = (x̄, ā), while the
bundle E(Ae−) has the involution τ(x, a) = (x̄,−ā).
We will write Aσ for the left A ! G-module Ae−, i.e., the left A-

module A with the involution τ(a) = −ā. Alternatively, Aσ is the Real
A-module A⊗ Rσ, where Rσ is the sign representation of G.

In the rest of this section, we identify KRA(X) in some special cases.
Recall that the cyclic group G = {1, τ} acts on a Banach algebra A.
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Finite simple algebras

We will be primarily interested in Real A-bundles when A is a finite
dimensional simple R-algebra. Studying Real A-bundles for any finite
dimensional semisimple R-algebra A does not yield more generality.
Since any finite dimensional semisimple R-algebra with involution A
is a product of simple algebras with involution Ai and algebras Aj[G],
every Real A-bundle is canonically a product of Real Ai-bundles and
Real Aj[G]-bundles. We leave the details to the reader.

Lemma 2.9. If A is a central simple C-algebra, and the involution is
trivial on C, then KRA(X) ∼= KUG(X).

Proof. By Noether-Skolem, ā = xax−1 for some x ∈ A× with x2 ∈ C.
Let c ∈ C be a square root of x2; then ā = (x/c)a(x/c)−1 and (x/c)2 =
1. The result now follows from Theorem 1.8(b). !

Example 2.10. Let A be the algebra M2(R) with the involution de-
fined by conjugation by the diagonal matrix j = (1,−1). That is, A is
the Clifford algebra C1,1 with i =

(

0
1
−1
0

)

satisfying i2 = −1 and ī = −i,
while k =

(

0
1
1
0

)

satisfyies k2 = +1 and k̄ = −k. Since j2 = 1, Theorem
1.8(b) yields KRA(X) ∼= KOG(X).

Lemma 2.11. If A is a finite simple R-algebra, A!G is a semisimple
R-algebra.

Proof. If V is a minimal left ideal of A, τ(V ) is either V or disjoint from
V by Schur’s Lemma. In the latter case, consider the A ! G-modules
M = V ⊕ τ(V ); either it is simple or has the form W ⊕ W ′ where
W = τ(W ) and W ′ = τ(W ′). Since A is a direct sum of minimal left
ideals, this shows that A is a direct sum of simple left A!G-modules,
and hence that A!G is semisimple. !

Examples 2.12. If A = C and the involution is complex conjugation
(resp., trivial) then A!G is M2(R) (resp., C× C).
If A = H and the involution is conjugation by i, then A!G isM2(C).

In this case, we call a Real H-bundle a Real quaternionic bundle on X;
these came up in [13]. We will show in Example 2.16 below that if G
acts trivially on X then the group KRA(X) is KU(X).

Balanced algebras

Another family of examples comes from the observation that every
R-algebra A with an algebra involution τ is a Z/2-graded algebra, with
A0 = Aτ and A1 = {a ∈ A : τ(a) = −a}).

Definition 2.13. We will say that an algebra involution is balanced
(or that A is balanced) if there is a unit u in A with ū = −u. This
implies that there is a left A0-module isomorphism A0

∼= A1, a ,→ au.
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Remark. If A is simple, and there is a left A0-module isomorphism
A0

∼= A1 sending 1 to u, then u must be a unit of A. Indeed, for each
b ∈ A0 there is a unique a ∈ A0 such that au = ub. It follows that
uA1 = uA0u = A1u and hence that Au is a 2-sided ideal of A. Since A
is a simple algebra, we must have Au = A and hence u is a unit of A.

The prototype of a balanced involution is the canonical involution
(induced by −1 on V ) on the Clifford algebra A = Cp,q of a quadratic
form on V of rank p+ q ≥ 2 and signature q − p. As in Example 2.10,
A0 may not be simple.

Example 2.14. A cannot be balanced if dim(A) is odd, and may
not be balanced if dim(A) is even. For example, the algebra A =
M4(R), with the involution defined by conjugation with the diagonal
matrix (1, 1, 1,−1), is not balanced: A0 = M3(R) × R and A1 is the
6-dimensional subspace spanned by {e4j, ej4 : j < 4}. By Theorem 1.8,
KRA(X) ∼= KOG(X).

When A is balanced, the map a ,→ au defines an isomorphism

A
∼=−→Aσ of Real A-modules, where Aσ is defined in Example 2.8.

Theorem 2.15. Let A be a Banach algebra with a balanced involution.
If X is compact, any Real A-bundle E on X is a direct summand of a
Real A-bundle of the form X × An, with involution (x, a) = (x̄, ā).
The Grothendieck group KRA(X) is isomorphic to K0(Λ), where Λ

is the ring of continuous functions f : X → A satisfying f(x̄) = f(x).
Finally, if the involution on X is trivial, KRA(X) is the usual

Grothendieck group KA0(X) of A0-bundles on X.

Proof. By Lemma 2.7, any Real A-bundle is a summand of a free Real
A-bundle; by Lemma 2.4 and Example 2.8, free Real A-bundles have

the form X × (A × Aσ)n. Using the isomorphism A
∼=−→Aσ of Real A-

modules, it follows from Theorem 1.4 that every Real A-bundle is a
summand of a trivial Real A-bundle X × Am.
The assertion about Λ comes from Theorem 1.7. If the involution is

trivial on X, Λ is the ring of continuous functions X → A0. !

Example 2.16 (Real quaternionic bundles). Theorem 2.15 applies to
Real quaternion bundles (see Example 2.12). Indeed, conjugation by i
is a balanced involution of A = H (j̄ = −j and k̄ = −k).
If X has a trivial involution, then Theorem 2.15 shows that the

category of Real quaternionic bundles is equivalent to the category of
complex vector bundles on X. In particular, KRH(X) ∼= KU(X).
On the other hand, if X is Y ×{±1} with (y, ε) = (y,−ε), the group

KRH(X) is isomorphic to the symplectic K-theory KSp(Y ).

Remark. In [6], J. Dupont defined “symplectic bundles” which, in spite
of the name, are not related to our constructions. His groupsKsp−n(X)
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are just KR4−n(X). For instance, when X has a trivial involu-
tion, our group KRH(X) is KU(X) but Dupont’s group is KR4(X) =
KO4(X) = Ksp(X).

Example 2.17. Every Clifford algebra Cp,q is canonically Z/2-graded,
and the associated involution is balanced. Thus Theorem 2.15 applies
when Cp,q is a simple algebra. For example, consider the Clifford al-
gebra C0,2 ∼= M2(R); its fixed subalgebra is C. As in Example 2.16,
if X has a trivial involution, then KRA(X) ∼= KU(X). However, if
X = Y × {±1} then KRA(X) is isomorphic to KO(Y ).

3. Grothendieck-Witt groups

Suppose that an R-algebra A is a ∗-algebra (i.e., ∗ :A
∼=−→Aop is an

algebra isomorphism such that a∗∗ = a for all a ∈ A), and that τ
is an algebra involution of A commuting with ∗. If A is an algebra
bundle on X with fibers A, and E is a Real A-bundle, then the dual
E∗ = HomA(E,A) is also a Real A-bundle; if f ∈ E∗

x then af ∈ E∗
x is

defined by e ,→ f(e)a∗, and (τf)(e) = τ(f(e)).

Definition 3.1. An ε-symmetric form (ε = ±1) on a Real A-bundle

E is an isomorphism ψ : E
∼=−→E∗ of Real A-bundles such that the

bilinear form B(x, y) = ψ(x)y satisfies B(y, x) = εB(x, y)∗. Note that
B(x, ay) = aB(x, y) but B(ax, y) = B(x, y)a∗.
The Grothendieck-Witt group εGRA(X) is defined to be the Grothen-

dieck group of the category of ε-symmetric forms (E,ψ).

The groupsGRA(X)=+1GRA(X), and to a lesser extent −1GRA(X),
are the focus of our recent paper [13].

Remark. The definition of Grothendieck-Witt group in [17] includes
the relation that [(E,ϕ)] = [H(L)] whenever E has a Lagrangian, i.e.,
a subspace L with L = L⊥. By Lemma 1.3 and [17, Lemma 2.9], this
relation is redundant in our topological framework.

Here is a useful general principle.

Lemma 3.2. Given a symmetric form ψ with bilinear form B, and an
ε-symmetric form ϕ on E, θ = ψ−1ϕ is ε-self-adjoint for B, i.e.:

B(θx, y) = εB(x, θy).

Proof. We have B(θx, y)= ψ(ψ−1ϕx)y =ϕ(x)y, and similarly B(x, θy)
equals B(θy, x)∗ = [ϕ(y)x]∗ = εϕ(x)y. !

We can extend ∗ to A⊗C by setting (a⊗z)∗ = (a∗)⊗z̄, where z̄ is the
complex conjugate of z. There is a second anti-involution † on A⊗ C,
defined by (a ⊗ z)† = (a∗) ⊗ z. If E is a finitely generated projective
A ⊗ C-module, we write E∗ and E† for its dual HomA⊗C(E,A ⊗ C),
endowed with the respective anti-involutions ∗ and †. These left module
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structures define (a ⊗ z)f to be e ,→ f(e)(a∗ ⊗ z̄) for f ∈ E∗, and
e ,→ f(e)(a∗ ⊗ z) for f ∈ E†.
A Hermitian form on E is a map ψ : E → E∗ which is symmetric

for the anti-involution ∗. That is, its associated form 〈x, y〉=ψ(x)(y)
satisfies 〈y, x〉 = 〈x, y〉∗ and 〈(a⊗ z)x, y〉 = 〈x, y〉(a∗ ⊗ z̄).

Lemma 3.3. If ϕ is an ε-symmetric form on E for † and ψ is Her-
mitian then θ = ψ−1ϕ is C-antilinear, and 〈θx, y〉 = ε 〈x, θy〉, where
a⊗ z denotes a⊗ z̄.

Proof. The proof is similar to that of Lemma 3.2: 〈θx, y〉 = ϕ(x)y as
before, and

〈x, θy〉 = 〈θy, x〉∗ = [ϕ(y)x]∗ = ε[ϕ(x)y]†∗ = ε〈θx, y〉.

The fact that θ is C-antilinear follows from the C-linearity of ϕ and
the C-antilinearity of ψ. !

We first consider the following class of examples. Recall from [18]
that a C∗-algebra over R is a Banach ∗-algebra over R, ∗-isometrically
isomorphic to a norm-closed ∗-algebra of linear operators on a real
Hilbert space. We extend the C∗-structure of A (as an R-algebra) to
a C∗-structure of A⊗C (as a C-algebra) by setting (a⊗ z)∗ = (a∗)⊗ z̄.

Example 3.4. Suppose that A0 is a C∗-algebra over R. The complex
C∗-algebra A = A0 ⊗C is equipped with the involution τ coming from
complex conjugation. The structure map A → Aop is (a0⊗ z) ,→ a∗0⊗ z
(the † map defined before Lemma 3.3); as it commutes with τ , we can
consider the groups εGRA(X).
In this case we consider the two auxilliary R-algebras

A+ = A0 ⊗R M2(R) and A− = A0 ⊗R H.

That is, A+ is generated by A = A0 ⊗ C and an element j satisfying
j2 = 1 and ij = −ji, while A− is generated by A and an element j
satisfying j2 = −1 and ij = −ji. In both cases, j commutes with A.
The involution on A induces an involution on A± fixing A0 and j.
If A0 is an algebra bundle with fiber A0, we can define algebra bun-

dles A and A± in an obvious way.

Theorem 3.5. If A = A0 ⊗ C, with involution τ(a⊗ z) = a⊗ z̄, and
anti-involution (a⊗ z) ,→ a∗ ⊗ z, we have canonical isomorphisms

+1GRA(X) ∼= KRA+

(X) and −1GRA(X) ∼= KRA−

(X).

Proof. We give the proof for ε = +1; the proof for ε = −1 is similar.
Let E be a Real A-bundle provided with a symmetric bilinear form
ϕ. Choose a Hermitian metric ψ on E compatible with the involution.
(Hermitian metrics exist by [11, 2.7]; (ψ(x) + ψ(τx))/2 is compatible
with τ .) Then ϕ is associated to a self-adjoint invertible operator θ on
E by Lemma 3.2 and Lemma 3.3; by construction, θ commutes with
the involution and is complex conjugate linear.
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As it is self-adjoint, all eigenvalues of θ are real and positive. Chang-
ing the metric ψ up to homotopy, we may even assume that θ is uni-
tary. Since θ = θ∗ we have θ2 = 1. Setting j = iθ, we have j2 = 1 and
ij = −ji (as iθ = −θi). Thus E is a Real A+ bundle.
Conversely, given a Real A+ bundle E on X, choose a G-invariant

Hermitian metric ψ on E whose bilinear form satisfies 〈jx, y〉 = 〈x, jy〉.
Setting θ = ji, ϕ = ψθ is a symmetric bilinear form. By inspection,
the map between K-groups so obtained is inverse to the map defined
in the first paragraph. !

Corollary 3.6. The theory KRA+

(X) is canonically isomorphic to the
usual equivariant K-theory KA0

G (X), where G is acting trivially on A0

Therefore, we have an isomorphism

GRA+

(X) ∼= KA0

G (X).

Proof. For ε = +1, the involution on A+ = A0 ⊗R M2(R) is conjuga-
tion by the diagonal matrix j = (1,−1). Exactly as in Example 2.10,
Theorem 1.8 yields KRA+

(X) ∼= KA0

G (X). !

Despite the symmetry of Theorem 3.5, the theory for ε = −1 is quite
different for ε = +1. Indeed, the algebra A− is A0 ⊗R H, where G acts
trivially on A0 and by the quaternionic involution (i ,→ −i, j ,→ −j)
on H. That is, τ is conjugation by k = ij. Note that Theorem 1.8 does
not apply because k2 0= 1. Indeed, the group KRA−(X) is different
from KSpG(X) in general.

Example 3.7. The group GR(X) discussed in [13] is the special case
GRC(X), where G acts on A = C by conjugation and A0 = R. by
Corollary 3.6 we have GR(X) ∼= KOG(X).
On the other hand, the group −1GR(X) is isomorphic to KRH(X)

by Theorem 3.5, where τ is conjugation by i (as in Example 2.16). This
seems to be a new example of a twisted K-group.

Now suppose that A is a C∗-algebra over R, with a G-action com-
patible with the C∗-structure, so that we can define εGRA(X).

Theorem 3.8. If A is a C∗-algebra over R, and G acts compatibly
with ∗, we have canonical isomorphisms

εGRA(X) ∼= KRA′

(X),

where A′ is the algebra bundle A⊗R R[t]/(t2 = ε).

Note that A′ ∼= A×A if ε = +1, while A′ ∼= A⊗R C if ε = −1.

Proof. We indicate the modifications to the proof of Theorem 3.5.
Given (E,ϕ), we choose a Riemannian metric ψ (instead of a Hermit-
ian metric), compatible with the involution, and form the ε-self-adjoint
operator θ using Lemma 3.2. Changing the metric up to homotopy, we
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may assume that θ is orthogonal, so θ2 = εI. Thus E is a Real A[θ]-
bundle, where aθ = θa.
Conversely, given a Real A[θ]-bundle E, choose a G-invariant Rie-

mannian metric ψ on E whose bilinear form satisfies 〈θx, y〉 = 〈x, θy〉.
Then ϕ = ψθ is a symmetric form on E. This proves that GRA(X) ∼=
KRA[θ](X). !

Examples 3.9. (a) if A = Mn(R) and ∗ is matrix transpose, then the
involution can be conjugation by an orthogonal matrix x. If x2 = 1
then GRA(X) ∼= KRA

G(X) ∼= KOG(X) by Example 1.9.
(b) if A = Mn(C) and ∗ is conjugate transpose, then the involution

can be conjugation by a unitary matrix x. Here GRA(X) ∼= KUG(X).
(c) if A = Mn(H) and ∗ is matrix transpose composed with H ∼= Hop,

then the involution can be conjugation by a symplectic matrix x. In
this case, GRA(X) ∼= KSpG(X), again by Example 1.9.
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[11] M. Karoubi, Théorie de Quillen et homologie du groups orthogonal, Annals of
Math. 112 (1980), 207–257.

[12] M. Karoubi, Twisted K-theory–old and new, pp. 117–149 in K-theory and
noncommutative geometry, EMS Ser. Cong. Rep., Eur. Math. Soc., Zurich,
2008.

[13] M. Karoubi, M. Schlichting and C. Weibel, The Witt group of real algebraic
varieties, preprint, 2015. arXiv:1506.03862

[14] E. Moutuou, Equivariant KK-theory for generalized actions and Thom iso-
morphism in groupoid twisted K-theory, J. K-Theory 13 (2014), 83-113.

[15] G.K. Pedersen, Dynamical systems and crossed products, pp. 271–283 in Proc.
Sympos. Pure Math., 38, AMS, Providence, 1982.

[16] J. Rosenberg, Continuous-trace algebras from the bundle theoretic point of
view, J. Austral. Math. Soc. A 47 (1989), pp. 368-381.



TWISTED K-THEORY AND GROTHENDIECK-WITT GROUPS 15

[17] M. Schlichting, Hermitian K-theory of exact categories, J. K-theory 5 (2010),
105–165.
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