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Abstract
We compute the genus-0 permutation-equivariant quantum K-theory of the singularity of
the quintic polynomial, parallel to Givental-Lee’s quantum K-theory of the quintic threefold.
We obtain a generating function which recovers the entire 25-dimensional space of solutions to
the g-difference equation satisfied by the permutation-equivariant K-theoretic /-function of the
quintic.

Introduction

The quintic threefold occupies a central place in Gromov—Witten (GW) theory since its very def-
inition [CDLOGP91]. Still, even if major mirror symmetry conjectures about it have been proven
[Giv96, LLY99], and the genus g = 1 and 2 have been successfully treated [Zin08, GJR17], the
full Gromov—Witten potential remains unknown. Several methods to compute GW invariants have
been found [MP06, CLLL22, ABPZ23], but it is still impossible to reach the conjectural formulae by
Huang-Klemm—Quackenbush for g < 51 [HKQ09]. Remarkably, we even lack conjectures beyond
g =>51.

In order to overcome this difficulty, following ideas of Witten [Wit93], an alternative approach
has been extensively developed in the last decades. In simple terms, instead of focusing on the hy-
persurface X within the complex projective space P*, we regard the associated affine cone yielding
a singularity at the origin of A°. The quantum theory of this singularity, referred to in physics
literature as the Landau-Ginzburg model, is the so-called FJRW cohomological field theory (Co-
hFT), constructed by Fan, Jarvis and Ruan in the analytic category [FJR13], and by Polischchuk
and Vaintrob in algebro-geometric terms [PV16]. As Witten explains, this new point of view arises
from a change of stability condition in geometric invariant theory for the action of a reductive
group G on a vector space enriched with a G-equivariant complex-valued function W. This is a
general setup referred to as the gauged linear sigma model (GLSM), which in principle recovers the
geometry of the quintic hypersurface in P* and that of the singularity in A® via a change of stability
condition. Therefore, it is natural to expect the so-called Landau-Ginzburg/Calabi-Yau (LG/CY)
correspondence between the FJRW invariants of the singularity (LG side) and the GW invariants of
the quintic (CY side). Interestingly, the two theories are radically different in their moduli spaces
and in the cohomology classes involved; therefore, they are expected to shed new light to each
other. This idea found confirmation in a series of results, among which we can mention a few
that will play a role in the development illustrated here. Chiodo, Ruan and Iritani [CR10, CIR14]



casted it within the framework of the LG/CY correspondence, compatibly with Orlov equivalence.
Fan—Jarvis—Ruan [FJR18] constructed a mathematical theory of the GLSM, and Chang-Li-Li-Liu
[CLLL22] provided an algorithm computing both GW and FJRW invariants.

The goal of this paper is to extend these methods to quantum K-theory, an analogue of GW
theory introduced by A. Givental and Y.-P. Lee [Lee04]. It turns out that on the singularity side the
relevant K-theoretic invariant are already defined: the definition of the virtual class in FJRW theory
factors through K-theory since its early definition. The first example was the theory of the A, _;
singularity which was identified to the theory of rth roots £ of the (log) canonical bundle; there,
Polishchuk—Vaintrob [PV01] and Chiodo [Chi06] provided a definition of the relevant intersection
numbers directly in K-theory. The FJRW algebraic construction of [PV16] is a generalisation of
these and, as argued by Guéré [Gué23, §3, “The K-theoretic FJRW theory”], it is essentially a
K-class. In genus 0, in the case of the quintic hypersurface, such a K-class boils down to the Euler
characteristics of the K-theoretic Euler class A_; of the vector bundle R'm,£%% where 7: C = M
is the universal (twisted) curve on the moduli space M of 5th roots £ of the (log) canonical bundle,
see (2). In this paper, we deal with a refinement of quantum K-theory introduced by Givental under
the name of permutation-equivariant quantum K-theory [Giva]: its invariants encode not only the
Euler characteristics, but rather the full S,-module structure of the virtual fundamental sheaf (see
Definition 1.12).

For these permutation-equivariant K-theoretic invariants we provide a full computation encoded
in a generating function Ié(JRW, which recovers the entire space of solutions of the ¢-difference
equation satisfied by the generating function I(I'}{W of the quantum K-theoretic invariants of the
quintic (see [Givc])
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This is an interesting improvement over the case of the quintic threefold, where the generating
function Igw only provides a 5-dimensional subspace of solutions of the degree-25 equation (1).
Here, 25-dimensions are spanned, and this is made possible by the fact that the FJRW invariants
are naturally defined over the 25-dimensional state space C[fi5]%; i.e., the K-theory of the inertia
stack of the target Bus. Furthermore, these functions match the basis of solutions already identified
by Yaoxiong Wen via an analytic continuation of I&, [Wen22].

A large scale picture beyond the case of the quintic incorporating permutation-equivariant quan-
tum K-theory, mirror symmetry and the LG/CY correspondence is still lacking, but it is also getting
more and more precise thanks to a number of recent papers over the past ten years. We refer to
the work of Konstantin Aleshkin and Melissa Liu [AL22, AL23] and references therein. There, the
authors used the above mentioned framework of GLSM in order to deduce I-functions satisfying
g-difference equations. Under some Calabi-Yau conditions they obtain wall crossing statements
[AL22, Thm. 4.3, Prop. 4.6] similar to the LG/CY correspondence. One can hope that this ap-
proach and the present paper can contribute to recast the permutation-equivariant K-theory in a
global mirror symmetry framework as it happens for Gromov-Witten theory in [CIR14].

Overview of the main results. We set up the theory for a CY hypersurface in P*~!. The K-
theoretic FJRW invariants of the polynomial X§j + - -+ X are defined via the moduli space ﬂfm
of r-spin curves, which parametrizes twisted curves together with an rth root £ of the log-canonical
bundle wiee. The universal curve 7 : 68,71 — Mg,n carries a universal rth root £, and we define the



virtual class as the K-theoretic Euler class of the higher direct image of £
Ay (R'm.L%7) € KO(My,,). (2)
The K-theoretic FJRW invariants are defined as the Euler characteristics of this K-theoretic class

(Bars- s andom = X (mg@ (A,lle*ﬁg)@') ,

or, in their permutation-equivariant version, as the S,-module H* ﬂgyn; (/\_1R17r*£)®r).

The computation of these invariants is parallel to Givental-Tonita’s computation of the genus-
0 quantum K-theory [GT11, Givb] via Lefschetz’s trace formula, which is an instance of the
Grothendieck—Riemann—Roch theorem for stacks [Kaw79, Toe99]. If g is a finite-order automor-
phism of a smooth proper stack X, and F is an equivariant coherent sheaf, then the trace of g on
the cohomology groups of F' is given by

try(H* (X, F)) :/Xg ch <m> td(T),

where X9 is the fixed-points stack, N is the normal bundle to the map X9 — X, Tr(F) is the
trace bundle, and td(7) is the Todd class of tangent sheaf. This formula is used to compute
all the K-FJRW invariants by recursion on the number of markings. Indeed, the integral above
takes place on the fixed-points stack of ﬂg’n, which is the disjoint union of r components of
dimension dim Mo,n = n—3, and other lower-dimensional boundary strata with the usual Deligne—
Mumford recursive structure. Such a recursive structure is the core of Givental’s formalism where
the invariants take the form of a generating function in a polarized symplectic space. Thus, the
full computation derives from inserting the top-dimensional classes ch(A_¢ R! (7, £L®7)) in Givental’s
formalism. These classes are usually referred to as the fake quantum K-theory, and come here in r
variants indexed by € € pu,.. Givental’s symplectic space is K = K° (IB;LT)(ql/T), and the generating
function J : Ky — K is defined by

J(t(qY7)) =1 HgM" T bale  ip He)

(t(q"") =1—q+t(q )+ZZ@¢ ® e (7 H(L1), - H(Ln)

a,§ n>2 1= ql/e(a)ﬁo’ 0O,n+1 .

The state space also carries a natural p,-action, and we obtain an analogue of Givental-Tonita’s
adelic characterization theorem [GT11].

Theorem A. Let f be a p,.-invariant element of KC. Then f lies in the image of the J function if
and only if

e f has poles only at ¢ = 0,00, and at the roots of unity;
e the expansion of f at ¢ =1 is a value of the fake J-function;

o for all & € o, such that & has order m, we have

Dg, (fla™)) € O, AT LIk



where T L% is the tangent space at the point ®of € L A is the operator of the fake
theory (Proposition 2.4), and Og, is defined by
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We deduce a simpler characterization of the J-function in terms of untwisted invariants.

Corollary. Let LI{“(JRW denote the image of the J-function, and let LE denote the range of the
untwisted J-function. Then the p,-invariant points of LlffJRW and LE coincide

(LI{‘(JRW)HT = A(Lﬁ(n)““

This formulation is quite useful because the untwisted invariants coincide with the permutation-
equivariant quantum K-theory of a point, explicitly computed by Givental [Giva]. In particular, we
deduce from it the following theorem.

Theorem B. The following function lies on L& gy

a+1 T
[To<ken (1 g v Hc)
Irw(,9) = (1—q) Z Z Z P gh) 2" Py @ eg.

fepn, a=0n>0 k=1

If r = 5, we decompose the I-function into 25 functions

Iyrw (2, 9) = Zmala,§(x7q)¢a+l ® eg.
a,§

We introduce the modification

jayi(zvqil)zeqq“flg 1( )Ia7€(1‘11/57q71)'

Then the functions fa,g(x, q~ 1) form a basis of solutions of the g-difference equation
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which is (1) after the change of variable » = Q1.

Outline of the paper. In the first section, we recall the definition of the moduli space of r-spin
curves, and we define the permutation-equivariant K-theoretic FJRW invariants. In the second
section, we define and compute the fake invariants by using Chiodo-Zvonkine’s theorem [CZ09].
In the third section, we define and compute the spine CohFT, which is another building block
of the FJRW invariants, related to r-spin curves with symmetries. In the fourth section we use
Lefschetz’s formula to prove the adelic characterization theorem, which recursively determines the
FJRW invariants. In the last section we give an alternative description of the J-function in terms
of untwisted invariants, and we use it to find a point Ipjgw in the image of the J-function.
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Notations and conventions

All schemes and stacks are of finite type over C. The Chow rings are taken with rational or complex
coefficients



° ﬂgyn, Mvgn : moduli stack of r-spin curves, and moduli space of r-spin curves with trivialized
marked points,

. ﬂgi : moduli stack of rth roots of wﬁig,
e L : universal rth root of wieg,

e L; : tautological line bundles over Mgn ,
e 7X : inertia stack of X,

e a,b,v : multi-indices,

e BG : classifying stack of the group G,

e ¢ ramification index and cardinality of isotropy group,

feey + if f is a Laurent polynomial in g4, f(e) is the expansion of f at g/ =¢.

1 Defining the invariants

In this section we give the definition of the FJRW invariants in the permutation-equivariant case.
We first define a K-theoretic class A over the moduli space of r-spin curves. The symmetric group S,
acts by permuting the marked points, and the class A is S),-equivariant in a natural way. Thus, the
cohomology groups H*(A) form S,,-modules. To encode this representation in a way independent
of n, we follow Getzler-Kapranov [GK98] and Givental [Giva] and use Schur-Weyl duality. The
representation H*(A) of S, is encoded in a symmetric function in infinitely many variables, which
we take as a definition of the FJRW invariant. More generally, we give a definition of the FJRW
invariants with value in a chosen A-ring R.
This procedure allows us to define generating functions for the FJRW invariants.

1.1 Spin curves and the fundamental class

Definition 1.1. Let X be a Deligne-Mumford stack, and let £ be a line bundle over X. We say
that £ is faithful if, for any geometric point x of X, the induced representation Aut(x) — G, is
faithful.

If X is of finite type, £ is faithful if and only if the induced morphism X — BG,, is representable
(see [AVO1, 4.4.3.]).

Definition 1.2. Let n > 3 and r > 1 be integers. An r-spin curve with n marked points is the
data of (C, (X1,...,2,), L, ), where

e (C,(X1,...,%,)) is a balanced twisted curve in the sense of [ACV03],
e [ is a faithful line bundle over C,

e a: L% — Wi is an isomorphism.



The moduli stack of r-spin curves ﬂ;n is the stack classifying families of r-spin curves. There
is a universal curve 7 : ?g’n — ﬂ;m and a universal line bundle £,,, — é;n. The marked points
i C 5;’,1 are closed substacks of the universal curve.

We also define the stack Mgn classifying r-spin curves together with a section o; at each marked
point, namely, .

0 = 21 Xﬂ;n co X Y.

g
The forgetfull map p : M’Qn — ﬂ;n is a py-gerbe. The universal curve of /T/l“g,n is 5;n =
627n X7 Mg ., and we still denote by 7 : cr, — Mg . the projection. The stack Mg, is

g,n
equipped with with the tautological line bundles £; = o}w,, where w, is the dualizing line bundle.

1.1.1 Multiplicities

At each marked point x; of an r-spin curve C, the stabilizer is canonically isomorphic to p.,, for
some e;|r. The line bundle £, is a representation of y,, given by some element d; € Z,,, with
diNe; = 1. Werefer to a; := d; - € Z/rZ as the multiplicity of L at z;, and we denote by mult,, (£).

We associate to each r spin curve the multi-index of its multiplicities a = (ay,...,an) € (Z/rZ)".
The marked points with multiplicity 0 are called broad marked points.

Definition 1.3. Let a € (Z/rZ)" be a multi-index, and let M, , (resp. /\7;72) be the stack of
r-spin curves (C, £) such that the multiplicities of £ are given by a. Then M;g (resp. M;Q) is a

. =
connected component of M, , (resp. M;Q).

Over M;, the pullbacks o (wiog) are canonically trivial by the residue map. Thus, oL is an

r-th root of the trivial bundle, and defines a morphism Mvg — Bp,.. By taking the multiplicities
into account, we define the evaluation morphism

r—1
evi i M — IBp, = |_| Bu,,
a=0

by sending //\/lvag to the a;-th copy of Bp,.

1.1.2 Fundamental class

In order to define the fundamental class, we need R'w, L to be a vector bundle. This is the case,
for example, if H°(C, L) = 0 for each curve over Spec(C). However, when a spin curve has at least
2 broad points, it may happen that H°(C, £) is non-zero. To fix this, we twist £ by the divisor of
broad marked points before pushing forward to MSH

Lemma 1.4. Let E C 6; be the divisor of broad marked points, that is, E = |_|ai:O ;. Then we
have T.L,(—FE) =0, and R'm,L(—E) is a vector bundle over WO&.

Proof. See [CR10, lem 4.1.1.]. O



Remark 1.5. This twist has a mild impact on the Chern classes. Indeed, we have the exact

sequence
0= L(-E)—L—Lg—0.

For a broad marked point ¥;, we have p, (EIEi) = oL, which shows that ¢ (p* (E‘Zi)) =1 (in
A%). Thus we have ¢(Rm.L) = c¢(Rm.L(—F)), and ch (Rm.L) = ch (Rm.L(—E)) + m, where m is
the number of broad marked points.

Proposition 1.6. Let S, act on Mgn and ﬂan by permuting of the marked points. Then the
sheaf R'm,. L € Coh (ﬂgn) is naturally S, -equivariant, and so is its pullback to /\7671

Remark 1.7. Note that the different connected components of /\75” may be permuted by the
S,,-action.

Definition 1.8 (The fundamental class). The fundamental class is the S, -equivariant K-theoretic

class or L
A = (A1 (R'mL(-E)))7 € K3 (Mg,,)
More generally, we define

®

An(s) = Aoy (R'mL(—E)))®" € K2 (M) [s].

1.2 A symplectic space

Following Givental ([Giv04], [GT11]) we define an infinite-dimensional symplectic space K, referred
to as the loop space. This space has a natural polarization K = K @ K_, and is crucial to define
the relevant generating functions.

Definition 1.9. The state space of the FJRW theory is K° (ZBu,)c. Since ZBu, ~ U;;é B,
there is an isomorphism of vector spaces

K° (IB,Ur)(C ~C [Zr] ®c C [ﬁr] ,
and the product is given by
¢a & [d} ' ¢a’ & [d/} = 5a,a’¢a & [d + d/]

The state space is equipped with the orbifold pairing twisted by the fundamental class. Explic-
itly, let e¢ be the virtual representation

r—1

ce =3 €Uk € K°(Bu, ).

k=0

<

Then, the elements {¢, ® e¢lah € Z,,& € p,} form a basis of the state space, and the pairing is
given by
%5a1,a/5§’§/ if a 7£ 0,

<¢a & €¢, ¢a’ & €§’> = { (1—¢€s)" (4)

00,a’0¢,¢r otherwise.
Finally, the Adams operation of K-theory are the ring morphisms

U™ (ga ®ee) = > da®ec
¢m=¢



For each element a € Z,, let ¢(a) be the order of the subgroup generated by a in Z,. If £ has
multiplicity a at a marked point x;, then its automorphism group Aut(z;) is isomorphic to Z/¢(a)Z.
We decompose C[Z,] according to this order e :

=P, (5)

e|r
with Ve = @,(g)— C - ba-

Definition 1.10. The loop space of the FJRW theory is the space of rational functions

K =P Vilg?) @ Cla,]. (6)

e|r
The loop space K is equipped with the symplectic form

Q(f,9) = [Resg=o + Resg=oc] <f(Q)7g(q71)> %

We define a polarization of this symplectic vector space by setting

K+:@Ve[q%,q%] K- ={f €K|[f(0) # oo and f(cc) = 0}.

1.3 The invariants

Definition 1.11. Let ¢ be an element of K, and i € {1,...,n} We introduce the class ¢(L;) €
KY (Ng,n), which is defined on elementary tensors by

E@¢m—eviE® L]

For any t € K, the class A, (s)®@);—, t(L;) is naturally an S,,-equivariant class, and its cohomology
groups form an S,-module denoted by

[t(L1), ..., t(L,)], = H* <~0n,p ®® >

More generally, let n = ki + ... + ks be a partition of n, and let H C S,, be the subgroup
Sky X ... x Sk,. Let us denote z; ,, (1 € {1,...,s} and k € {1,...,ks}) the n marked points. Then,

for a sequence of inputs t(), ... t(*) € K, the cohomology groups
i (W05 @@ 1161
k=1 1=1

are H-modules, denoted by

[t(l)(ﬁm), (L) ,t<8>(cs,ks)]



In order to define a generating function for these S,-modules, we use the ring of symmetric
function ( [GK98], [Giva]). Each representation of (V,p) of S,, yields a degree n symmetric func-
tion f, (in infinitely many variables) in the following way. For each m > n, the group GL,,(C)
acts on V ®g, (C™)®". The symmetric function function f, is the function such that for all m,
f(z1,...,%m,0...) is the character of the GL,,-representation V ®g_(C™)®". The ring of sym-
metric function allows us to encode representations of S,, for various n is a single ring, and thus to
define generating functions.

More generally, let R be a A-ring over C. We assume that R is equipped with the .#-adic
topology for an ideal .# of R, such that

e R is Hausdorff,
e forallm >0, U™(#) C I™.

In that case, the completion R of R remains a A-ring. The main examples are the ring of symmetric
functions, and C[X], and .# is the ideal of functions with positive degree.

We extend the scalar to R in Definition 1.10, and complete the resulting ring with respect to
the .#-adic topology (see [CCIT09, Appendix B] for a detailed construction of the loop space). In
particular, K} is made of functions ¢ which, modulo any power of .#, are Laurent polynomials.

We now come to the definition of the FJRW invariants.

Definition 1.12. We keep the notations of Definition 1.11. For any elements vq,...,vs € R, we
define

H
<t(1)(£1’1) ®V1,...,t(8)(£57k5) ®V5> =

3

ﬁ Z try, {t(l)(ﬁ1,1)7 e ,t(s)(ﬁs,ks)}n H H \I’T(Vi)lj(h)7 ®)

i heH i=1j=1
where [;(h) is the number of cycles of length j in h.

Remark 1.13. In the case where H = S,,, and R is the ring of symmetric functions, (8) yields the
usual symmetric function associated to the S,-module [t(L1),. .., t(L,)].

Remark 1.14 (Vanishing). With the same notations as in the previous definition, let us choose
t) = gi/?@ ¢, @ [d] (with d € @i, ~ Z,). Then, the invariant vanishes unless dd; = j mod ¢;

Indeed, consider the forgetful map p : //\/lvan — ﬂgm. The line bundle £] ® ev}[d] carries the
K., representation ¢ — ¢ —J¢ddi where K., is the group of 2-automorphisms of the section o;. Then,
p«(Llevi[d]) = 0 if this representation is non-trivial.

Proposition 1.15 (poly-linearity). For t,t' € K4, and v,v' € R, we have

v+t v,  tevtt o)=Y (@ tent v, e (9)
k+l=n

We use this formula to extend Definition 1.12 to inputs t € K.

Proof. See [Giva] example 5. O
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Assumption 1.16. From now on we will assume that the input t belongs to FK . This ensures
that the following formal series are well-defined.

Definition 1.17. The genus-0 permutation-equivariant potential is the formal function Fy, defined
over ZK 1 by

Fot) =3 (t(L1), ..., L))o, (10)

n>0
We also consider the mixed potential

Folety= 3 %(x(ﬁl),...,x(ﬁk),t(ﬁkﬂ),...,t(£n+k)>§:1lc+n. (1)

n+k>3

We now introduce the J-function, which will be defined as the derivative of the mixed potential
with respect to the first variable.

Definition 1.18. The J-function is the formal function £ — K defined by

STI,

,t(ﬁl),...,t(ﬁn)> , (12)

0,n+1

¢a®e§

J(t)=(1- ®[0]+¢t 7a R
()= (1-q)¢ ++Z 70" € <1—q°<a>£0

aGZ
€Ly

with ¢% = ¢_q.

2 The fake theories

This section is devoted to the definition and computation of the so-called fake theories, which can
be seen as building block for the K-theoretic invariants. Using the theory of twisted invariants
developed by Coates, Givental, and Tonita in [Giv04],[CGO7],[Tonl4], and a theorem by Chiodo
and Zvonkine [CZ09], we are able to fully compute these fake theories.

2.1 The fake invariants

Definition 2.1. Let A¢, B, and C be invertible multiplicative classes, and let Z denote the singular
locus in the universal curve égm — Mg,n. Define the following classes

Acn(a) = rAc(Rr,Lo(—E)) € H* (ﬁ;)

Bow =B (. (wiot — 1))

C())n = C (71'*02) .
The fake invariants are defined by

Ag.n(a@)BonCon [11-, ch(LF) if & = &Vi,

0 otherwise.

fake
<¢a1®6£1£1f17""¢an®efn£ﬁn>0n {fM

11



Remark 2.2. Notice a slight abuse of notation in the definition above. Indeed, the tautological
line bundles £; do not live on /\/lgm, but rather on Mg ,,. Thus, in the definition above, ch(L;)

should be interpreted as e%i, where 1; is the usual ¥-class pulled back from ﬂo,n.
For the rest of this section, we choose
B(L) =td~*(L)
C(L) =td™ (L)
With this definition, the fake invariants become
fake

<¢a1 ® el b, ® egcﬁn> - Ag (@) [T eh(£F)ed(T),
=1

0,n MS

where T is the tangent space.

2.2 Fake J-functions

Following the work of Givental [Giv04] and Tonita [Tonl4] we organize these invariants in a suitable
generating function called the J-function.

Definition 2.3. Let Kk¢ be the vector space

K = Ve ® Cli,] @ Clg"/* =1, (¢ = 1)], (14)
[4
equipped with the symplectic form
aKe — T T A dql/r
Qe (£, 9) = rRes,p ey ((a™/"), 9la))" S, (15)
q

where the inner product (..)” is defined over C[Z,] ® C[fi,] by

A 5a,7b§£.,§ ifa 7é 0,
(Pa ®eg, o @ ec)” = {5071)557(,45_1(0) otherwise.

The dual of the element ¢, ® eg is ¢* ® ee = ¢_, ® e¢. We equip this symplectic space with the
polarization

Ko = B Ve © Cl, g — 11,
Kk = (P Ve @ Cla Il — 1))

The potential of the fake theory is the formal function defined on ICff}ke by

ake 1 fake
FRRt) =D — (HLr),- - H(Ln))gy (16)
n>3
The fake J-function is the shifted graph of the differential of F inside ACfake

® eg Do @ €
a)yn! \1—qt/ea Ly’

fake

t(ﬁl),...,t(£n)> . (17)

0,n+1

J)=1—q+t+ > d:z
n>2

aezT
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2.3 Lagrangian cones

The image of the J-function is a Lagrangian cone in % which can be explicitly computed, as
we now explain. The collection of classes A¢ ,(a) form the genus-0 part of a CohFT over the state
space C[Z,] ® C[fi,]. Its associated Lagrangian cone LA (see [Giv04]) lies in the symplectic space
(HA, QA) given by

HA=V]z,27") OA(f(2),9(2)) = Resao (f(—2), g(2))™* dz

For A¢ = 1, the resulting cone is called the untwisted cone L™, and can be explicitly computed
from the cohomological J-function of a point.

Proposition 2.4 (Chiodo-Zvonkine [CZ09]). Let we(z) = > 5 wqez? € C[z] be power series,
and let A¢ be the multiplicative classes -

A¢(E) = exp de’g chg(E) | . (18)
a>0

Let A be the operator acting on H* such that for all 0 < a < r — 1 we have

A (pat1 ® ee) = exp Zu) Mzd o) (19)
a+1 f y d’E (d+ 1)| (l+1'
Then we have
AL™ =LA, (20)

Remark 2.5. The shift in the definition of A happens because of the twist by the divisor of broad
marked points L(—F).

Finally, it is a consequence of [Ton14] that the cones L'k and L4 coincide.
Proposition 2.6 ([Tonld]). Let ch be the morphism
ch : KCfake 5 A
qj/r¢a = ejz/rd)a-

Then we have
Lfeke = ch =t (LAY (21)

Since ch is an isomorphism, we identify Lf2k® and LA, and write L = LA, We now apply

these results to the classes
.

A¢(E) = ch ()\_nglE)_ .
Proposition 2.7. For A¢ as above, we have

Skfkkd

and

S]f qqk_1 ¢a®e§ ifa#ov

exp Zk21 & qk,;l Po ®e¢  otherwise.




2.4 An extension of the fake theory

In order to deal with permutations of the marked points in the next section, we need to generalize
slightly the previous definition to include rmth roots of w%gﬁ”, and rmth roots of unity. Indeed, an

r-spin curve with an automorphism of order m naturally yields an rm-root of wie on the quotient
curve (see Section 4.5). The moduli space of rmth roots of wlo;n is Mg"; ™ and has a forgetful

—rm,m —_—
map €: M, — Mon. The universal curve Co,n carries the universal rmth root L.

Definition 2.8. For multiplicative classes A¢ = exp (3" wae chy), € € p,,,, and a € (Z/rmZ)",
we define

Ae n(a) = rme,Ae (RmLo(—E)) , (22)

where L, is the universal rmth root of Wigg with multiplicity a. These classes form a genus-0
CohFT over the state space W = C[Z;,,| ® C[,.,,,]. We write W as the direct sum

C(z/rmZ] = P W,

elrm
where W, is spanned by the basis elements ¢, such that the order of @ in Z/rZ is e.
For the remaining part of this article, we fix
Ae(B) = ch (A_yeE) "

for € € w,.,,,. By [CZ07], the associated Lagrangian cone of this CohFT is equal to AL"", with

kgkk;d a+1
d P
Aldat1 @ e¢) = exp k>1kd+1 1<rm> Pat1 @ e¢
k(a+1)
(sO)F ¢
— ; for 0 <a <rm—1
exp Tkzx PR Dat1 D e or0<a<rm

We extend the fake invariants to C[Z,,] ® C[,,,] by setting

fake o Aen(@)BnCo TT0, ch(LF) if ¢, = evi,
(or ® e L, by Do, L) = {fM en(@)BoCo TT, ch(L)) 3

)

0 otherwise.

The associated Lagrangian cone Lk lies in the symplectic space
Icrm = (C [Zrm] (29 (C [ﬂrm] [[q - la (q - 1)_1] )

By [Ton14], the polarization of K., is given by

(Krm), =P W. 2 C[a,] [[1 _ ql/e]]
(Krm)_ EBW ® C s, [(1 _ ql/c)1:| |

14



where ¢(a) denotes the order of @ in Z,. With this choice of polarization, we have
Lfake — AL

We still denote Lk the Lagrangian cone associated to the fake invariants. This notation is justified
by the following proposition.

Proposition 2.9. Let ®g be the inclusion morphism

(I)O : K:fake — ICrm
G @ g = Prg D €.
3 3

Then ®q is an isomorphism of polarized symplectic spaces onto its image, and we have ®o(L?5¢) C
Lfake'

3 The spine CohFT

This section is devoted to the definition and computation of the spine CohFT. This CohFT is
designed to reproduce the moduli space of heads (see 4.8), and recover the spine contribution of
Section 4. Given an 7-spin curve (C, L) with an automorphism g € Aut(C) of order m and an
isomorphism ¢ : g*£ — £ (compatible with the spin structure) there is a line bundle £ on the
quotient curve D = C/g constructed by descent. The line bundle is canonically an rmth root of
wlog on D. Thus, D is equipped with this rmth root £, and the mth root T' of the trivial bundle
corresponding to the Z,,-cover C' — D. We take this situation as a definition, and we consider the

moduli space
——Trm,m

——Trm “ ;M0
MO (BZm;Qa b) MO a ﬂ(),n MO,Q :

Objects of this stack are twisted curves with an rmth root £ of wipg: and an mth root T of the

trivial line bundle. The universal curve carries two line bundles: £ and T. For a collection of

multiplicative classes Ay, ..., An_1, we construct the spine CohFT with the classes
AP (g b) H J(Rm LT € H (My" (BZm;a,b)).

3.1 Stable maps to BZ,, and roots of the trivial bundle

Recall that for a multi-index v € (Zy,)", the space Mg ,(BZy,,7) parametrizes stable maps to
BZy, with holonomy 7. This stack admits an other description in terms of m-th roots of the trivial
bundle. For a curve D, such a map is given by a Zpy cover p : C — D, with holonomy v. Let

o be the canonical generator of Z,,, and { = e*w . At a marked point & € p~!(z;) the stabilizer
is Gy = Z/¢;Z, where ¢; is the ramification index. We identify G, with Z/e¢;,Z via the generator
o; = o™/% . We write v = afi, where k; and ¢; are co-prime. The action of Z,, induces a character
Xz of G, via its action on the tangent space at x. This character is given by the holonomy data

Xl‘(o-l) = Cyi?i7

15



where v; is the inverse of k; in Z,,. The algebra p,.O¢ is a locally free sheaf of rank m with a
Zy-action, and admits a decomposition into isotypical factor

m—1
p*OC = @ T]a
7=0

where T} is the subsheaf of sections s such that o*s = (’s.

Lemma 3.1. There is a canonical morphism TE™ — Op, which is an isomorphism. The multi-
plicity of T1 at x; (i.e. the representation p,, — G, given by L, ) is —v; € Ze,.

Thus, we obtain an isomorphism

m,0

M (BZL, ) =~ ﬂg,é J

where b is given by b; = fyi%. The description of M ,,(BZy,) in terms of roots of the trivial
bundle is more convenient in the next section.

3.2 The spine CohFT
Let a € (Z/rmZ)" and b € (Z/mZ)" be multi-indices. Define the space My (BZy,a,b) as

- rm,m

Mo (BZu:a,0) = Myl ™ xzq, . My (0).

Objects of this stack are given by a curve D, together with an rmth root £ of w%’m, and an mth root
T of the trivial line bundle. For the invariants to match with the Lefschtez’s formula, we impose
that the stabilizer of a node has order lem (m ord(ma),ord(b)), where @ € Z,., is the multiplicity
of £, and b € Z,, is the multiplicity of 7. The universal curve carries two universal line bundles
L4, and Tp. Let Ay, ..., A,—1 be invertible multiplicative classes, with A; = exp(zd>0 w’ chg),
and let F be the divisor of broad points in the universal curve F = |_|a _o Ti- The projections to

Mo, of the classes
AP (a,5)0, = rm? [ A (Rr.La(-E) 1)), (24)
G€Lm -
form the genus-0 part of a cohomological field theory with state space C[Zp,] ® H*(ZBZ,,C), and
basis {¢, @ [b]|a € Zyp,b € Zy, }.

Proposition 3.2. Let LPI"® be the Lagrangian cone associated to the CohFT above. Then we have
that
Lspine — QLW

where L"" is the Lagrangian cone for A; =1, and O is the operator given by

e a b
0 bus = T] o | L wd gy B (42 )
|
i = (d+1)! rmom
Proof. This is a straightforward generalization of [CZ07], theorem 1.2.2.. O
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We now apply the previous result to the classes encountered in Lefschetz’s formula. Let s be a
formal variable, and A¢ ; be the classes

Acj(B)=ch (A o) o (25)

—s€e m

Then we have

w—z()“

Definition 3.3. Set
AP (g, b) = rm? [ ] Ae; (RW*E(—E) QT} ) ,
J
Bon = td ™" (muwpgs — H tdew ( T ( — Wige ®T’“)) :
C()’n = td(—TF*Oz),
with ¢ = exp(2%T) and

1
1 —Cexp(—c1 (L))’

The state space of the spine invariants is C[Z;y,] ® C [thy,,] ® C[Zy], and the spine invariants
are defined by

td¢(L) =

spine

(6 @@ BILE, .., 0, @ec@balLh) " = /m(BZ AT @ BonBiCo (26)

Proposition 3.4. The B twist change the dilaton shift to 1 — ¢™. In the 0 sector, the C twist
changes to polarization to

) mk/e(a)
’Cs_plne,() — Span {M/e(a))kd)a X e¢ X [O“k’ S N} . (27)

For vy € Z),, the polarization in the vy sector is given by

spine,—v qk/c(a)m
JCePHE o :Span{(l_ql/e(a)m)kgba®€§®[l/o]|k EN}, (28)
where ¢ denotes the order of a mod r.
Proof. See [GT11, Section 7]. O

Thus, the J-function of the spine invariants is defined by

spine

,t(£1),...,t(£n)> . (29)

0,n+1

P @ e @ [—K]

. 1
Jspme(t):1_qm+t+zfrne(a)n'¢a®e£®[k]< 1 qiﬁ
. —_ me 0

17



Proposition 3.5. The image of the J-function is given by
Lspine — OLw.

In the context of expanding the J-function at &, = exp —rm, the state space has two sector of
particular interest : b =0and b = vy = ﬁ mod m, the last case correspondmg to an automorphism
g such that tr(L£o) = &. The restrictions of O to these two subspaces are denoted Oy and O,

respectively, and are given by

(8672””> fkkd a
O - a = —_— B (7> a
0" ¢a ® ec = exp rkzd:j kd+r1) - Gm Pa ® €¢

mk k
= exp Zrm (s€)™" (k) 24Byi1 <%) Pa @ eg

mk(d+ 1)!
Smk’ mk 67‘1’;”:::2
= exp (rz ]f N — Do ® eg¢
k
Smkgmk q% )
:exp(T‘Z L m Pa @ e¢ if a # 0,
k

Smké-mk qak

DO~¢0®€§GXP(T2 k qk’m_1>¢0®6§
k

Let By(z) denote the Bernoulli polynomial restricted to ]0;1], and expanded Z-periodically. For
a ¢ MLy, let us write a = a+ rl, with 1 < a <r — 1. Then we have

2inkj

skeke=m " (kz)? = a  vJ
DEO'¢a®e£:eXp : k(d+1)! d+1 <+m> ¢a®€5
k,d,j
sheheg k) 5 (a ]
R P s T () | oo
FeZV)

skek rik erik ;
p [ 3 S T ()’ BM(T;J) ba ® ce

Py k(d+1)! m
lcgkg rjk rik qk“;;;?
= exp rz 2 PR Pa R e
¥ 1
k ek erilk o
RS qm
=exp|r — Pa @ €¢
( zk: Booghmg _1>
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Similarly, for a = rl we have

m—1 k ek e—rkj .
5€§0 dp [+
—>= B — -
Hd 1)!2 d+1( Or1 ® e

g G ) (]
= exp TZ Hd+1)! By (m) bri @ e¢

DEO O @ €¢ = €Xp

Skgkfgk(l*]’) qkj/m

= exp ’I"ZZ 2 qikfl ¢Tl®€§

Skgkggkl qk/m
k go—rqu/m _ 1

= exp rl @ e

k>1

The spine invariants enjoy a natural symmetry, arising from the cyclic permutation of the line
bundles £ ® T; and from our choice of Ag¢ ;.

Lemma 3.6. We have

AZpinC(Q; b) = ASPiE;,r (a+rb,b). (30)

e m

In particular, if T is an element of Kfﬁke, C € Wy, and o' € Ly, then the following correlator
does not depend on k € Zyy,

m—1 spine
<¢a+rk (29 6€£g+rk ® [—VO], Z ¢a’+rk/ X 6@507(1,7”6/ [ [1/0], \I/m(q)o(T))7 ey \I/m(q)()(T))> .
k'=0 0,n+2
(31)
3.3 Comparison with the fake theory
We show that the O-sector of the spine cone LSP"® contains W™ (L2ke).
Lemma 3.7. The untwisted cone L™ C KP"® s stable by the transformation q — ¢™.
Proof. The cohomological cone of a point is
.
== U (2 e
TeC

which is obviously invariant by the transformation z — mz. The result follows for the untwisted
cone. O

Lemma 3.8. Let ®¢ : Kfake — [CPIne pe the morphism ¢, @ e — dma @ e¢ @ [0]. Then, U™ o &g
18 a morphism of polarized symplectic spaces.

Proof. This follows from Definition 3.3. O
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Proposition 3.9. In " we have that
U (AP L") = U™ (DgAL™) C O L. (32)
In particular for any element t of leka, we have
JIPR(UDG) = WD J ().

Proof. The first assertion comes from a direct computation, together with Lemma 3.7. The second
assertion is deduced form the first one, together with the change in dilaton shift from 1 — ¢ to
1 —¢™, and Lemma 3.8. O

Corollary 3.10. Let J()(t) be the image in K™ of J(t), and let T = [J(l)]+ — 1+ q, where ]+

denotes the projection on lefke. Then,

Jspine (T"PT) = P (Jfake(T)) = ‘Ifm‘boj(l)(t)-

4 Adelic characterization

In this section, we use Lefschetz’s fixed point formula to compute the J-function in terms of the
fake and spine theories (see Section 3.2 for the definition of the spine CohFT). We first recall
the Lefschetz formula for equivariant sheaves, and deduce a natural p,.-action on the loop space
making the J-function equivariant. This action plays a critical role on taking care of the ghost
automorphisms of twisted curves. Then, we use Lefschetz’s formula to compute the expansion
of the J-function at each root of unity. The results are expressed in the adelic characterization
theorem, which charaterizes values of the J-function in terms of their expansions at each root of
unity.

4.1 Lefschetz formula and the p,-action

Let X be a proper smooth Deligne-Mumford stack over C, let h be an automorphism of X of finite
order, and let F' be an equivariant coherent sheaf. Then Lefschetz’s formula reads

TTh(F)

ch () Td(Txn), (33)

try, (H* (va)) :/ Trg )\_1./\/‘\/

X

where X" is the fixed-points stack, and A is the normal bundle to the morphism X" — X. Finally,
Try,(F) is obtained by decomposing Fjxn into isotypical factors F' = P, F*, and multiplying each
factor by A
Trp(F) =Y AF* € K°(X)® C. (34)
A
The first consequence of this formula is that the potential F, and the J-function are equivariant
with respect to some action of p, on K. Indeed, for all h € S,,, objects of the fixed-points stack
(/K/lvanﬂ)h are given by the data (C, L, (¢:)"q, g, &, (0:)), where

o (C,L,(0;),) is an object of ]\/757%1 over S,

e g is an automorphism of C' such that g(x;) = x4,
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e ¢:g*L — L is an isomorphism compatible with the spin structure,
® 1); 1 O O; = Op(;) 1S a 2-isomorphism.

We let p, act on (Man +1)" by changing the 2-isomorphisms 7o, . ..,7,. Explicitly, if ¢ is an
element of p,., an object ((C, L, (04)1g, 9, ®, (1:)7y) is sent to

¢ (CL L, (00)i0, 9, 6 ()ig) = (C, £, (0310, 9, 6,C 7 0 1), (35)

where ¢; denotes the cardinality of the stabilizer at the ith marked point.
This action has a natural analogue on the state space.

Definition 4.1. The p,-action on K is defined by
C . (qj/r¢a ® e{) = quj/r(ba ® €¢ga (36)
Proposition 4.2. The genus-0 potential is p,.-invariant, and the J-function is w,.-equivariant :

¢-J(t) = J(C-1). (37)

Proof. Let us begin with the statement about the potential. Recall (remark 1.14) that the invariants
associated to t = ¢7/"¢,[l] vanish unless Id = j mod ¢, where d = a8,

On the other hand, we compute that

C : (qj/e(a)(ba & [l]) = < : qj/c(a)qsa by Z fle§
€,
= C%qj/e(a)ﬂsa ® Z C*alCalglegga

fepm,

C—alqj/c(a)¢a ® [l]

Jr
(a)

= <’~’
Let us denote ¢/ = (/¢ € .. Then we have

¢ (qj/e(a)¢a ® [l]) _ g’jg’—dlqj/°(“)¢a ® [1].

Thus, the subspace of invariant elements in Ky is exactly the vector space spanned by elements of
the form ¢7/¢( ¢, @ [I], with j = d(a)l mod e(a). Thus, the result follows from the poly-linearity
of the invariants.

Now, let us discuss the case of the J-function. It is enough to show that J(t)_ is p,-invariant.
To do so, we show that the classes appearing in Lefschetz’s formula are p,-equivariant with respect
to the p, action on (M)~

First, the class ch (Tr(A,)) is obviously invariant, since it is defined on the space ﬂgﬁn. Next,
the class ch (Tr(ev}(eg))) has value 1 if tr(ofL;) = & and 0 elsewhere. Composing 7; with
¢7r/¢ € p, multiplies the trace by (7%, so we have ¢* (ch(Tr(ege—e;))) = ch(Tr(eviee)). Simi-

larly, we have ¢* b Tr (1=t ) = Finally, ¢* (ch (Tr (£; ® evieg—a,))) =
ch (Tr (¢ L; @ eg)).

1
1—&o¢m/¢q/¢ ch(Tr Lo)
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Summing up, we have shown that

Sh

N |
<¢w®6st_,_,t> <¢“®65C“g~t,...,c~t> . (38)

L—ql/e¢r/eLy’ 0,n+1 L—q'/eLy’ 0,n+1

Thus we have

T¢a®€ —a ¢a &K e
C-Jt)=1—qg+(-t+ Z e(a)§< <1 — Cr/e(a)qlie(a)go’t(ﬁl)’ .. ,t(ﬁn)>

e & —a a & -
=1—q+C-t+ Z ro e(ae)ff <1¢_ ql/ef(i)ﬁo ,C(LY), ey Ct(ﬂn)>

Sn

0O,n+1
Sn

0,n+1
= J(¢t)(g"")
O

Corollary 4.3. For allt € K4, the projection of [J(t)]_ of J(t) to K_ parallel to K4 is an invariant
vector.

4.2 Adelic characterization

Following [GT11] and [Givb], we apply Lefschetz’s formula to the J-function to find recursion
relations. More precisely, we compute the expansion of the J-function at each root of unity &y, and
show that it corresponds to the fake and spine theories.

Definition 4.4. Let & be a root of unity, let m be the order of £, and let K., be the symplectic
space defined in Section 2.4.
We define the following linear maps

CIDO:IC%IC,,m
¢a®e§’_>¢ma®e§
(bﬁo ZIC—>ICTm

m—1

P by @ ee — ggqj/r Z barrt @ Cegr o
1=0

We think of @ (resp. ®¢,) as an embedding of K in the 0 sector (resp. the kg sector) of the spine
Cohft.

Theorem 4.5 (Adelic characterization). Let f(q'/") be a ,.-invariant element of KC. Then f lies
s the image of the J-function if an only if

e The poles of f belong to p., U{0,00},
e the expansion f(1) at ¢'/" =1 belongs to the fake cone L%,

o For all § € po, such that & has order m, we have

Dg, (fla7)) € Og, A7 TLIM
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where T L% is the tangent space at the point ®of € L A is the operator of the fake
theory (Proposition 2.4), and Og, is defined by

skekerih g
koo &hghim —1

Dfo(¢a+7'l ® 65) = exp TZ Patri X eg ifa € {1,. o= 1}

k>1

Skfkfglk qﬁ
ey (dr1 @ e) =exp 1) k —rkok/m _ | P @ ec.
k>1 S

Remark 4.6. We showed in Section 4.1 that the J function is p,-equivariant, and that for all

t € K4, we have
@] =[],

where ¢t = %de . § -t is the projection of ¢ on the subspace of invariant elements. Thus, the
theorem above characterizes all possible values of the J-function.

The rest of this section is devoted to the proof of Theorem 4.5. We first show that these 3
conditions are necessary. The first item is obviously necessary, and the other two follow from
Lefschetz’s formula, which allows us to compute the expansion of J(t) at ¢'/" = 1, and ¢'/" = &.

Definition 4.7. Let {, € p., be a root of unity, and let n > 2 be an integer. The symmetric group
Sp acts on Mg .1 by permuting the last n marked points. We define M, 1(£o) as the substack of

Lnes, (/K/lv67n+1)h made of the curves such that tr(Ly) = g/°° (where ¢ is the order of mult,, (L)
in Z/rZ).

The polar part at ¢/" = fal is precisely the contribution of M (&) to Lefschetz’s formula.

4.3 Expansion at ¢'/" =1
The expansion at ¢'/” = 1 of the J-function has the form
Jauyt)=1—q+t+ > Cont(£)(g) + Cont(1)(g), (39)
So#1

where Cont(§y) denotes the contribution of M(&p). The function Ji;y is an element of the space
Kfake (see Definition 2.3). By definition, the only pole of Cont(&) is at ¢'/" = &', Thus, in

formula 39, the term 1 — g+t + 3, ; Cont(£1)(g) lies in Ktake ' while the term Cont(1)(g) lies in
ke,

Definition 4.8. Let C' be an object of M,,(1). The head of C is the largest connected subcurve
Chead guch that

= C«head7
o Chead g g stable, and g|cheaa = id.

The moduli stack of heads /\/l}j\?’ild is the stack parametrizing r-spin curves (C, L, ;) with n+ N +1
marked points (and section), together with automorphisms 7; of o; fori = N +1,... N +n+1,
and an isomorphism ¢ : £ — £ compatible with the spin structure.
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Remark 4.9. The head of a curve C' € M,,(1)(S) is always non-empty. Indeed, since tr(Ly) = 1,
the restriction of g to the irreducible component containing xg is the identity.

Notice that on each connected component of M"¢2d ¢ is the multiplication by some r-th root
of unity £. Thus, the stack of heads has a natural decomposition

MR =[] M) (40)
E€Ur
Definition 4.10. An arm, is an object of the stack

M = || M(&). (41)
§o#l

An arm C such that mult,,(£) = 0 is called a broad arm. We further decompose the moduli stack
of arms by taking into consideration the g-action on oL :

M¥(()(S) :=={(C, L, g) € M*™(S)|tr(ogL) = o} - (42)

Let C be an object of M,,(1). Then, C is the union of the head and N other curves C1,...,Cy,
attached to the head at the nodes p1,...,p,. Let D; be the divisor of Mgn defined by the node p;,
and let AV; be its normal bundle. We still denote N; its pullback to S. By definition of the head,
the action of g on N; is non trivial. Thus, the curves C;, (together with the restriction of g) are
arms, that is, objects of |_|607£1 M(&).

Arms
efg[) (1'1 (1'2 (xN ZL']\;+1 xl\;+n Head

Figure 1: Decomposition into head and arms

Proposition 4.11. The decomposition into head and arms yields a morphism of stacks

|| MEE) zpp, M) X7y, - XzBu, MT(E) = M(1), (43)
17\1[22% N times
n+N>2

where the morphisms are

ev; : Mﬁ{,‘iiﬁ — IBu, vy : M*™ > TBpu,
(C,L) = (L}g,, multy, (L)) (C, L) = (Ly,, —mult,, (£))

Taking the union over all £ € p, yields an isomorphism.
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Proof. Let (Chd Cy, ..., Cy,£re*d £ £IV)) be an object of MPe2d(¢),, x X1Bup, M*™(€)X1B4,
.. XzBu, M*™(€) over a connected base scheme S. Let 2, ...z n4n be the marked points of Chead
and let y; be the first marked point of C;. Each x;, y; is the trivial u  -gerbe over S (with ¢; the
order of mult,, (£)1°*d), so we have a canonical isomorphism z; ~ y;. We define C to be the gluing
of the curves along this isomorphism (it exists by [AGVO08], prop.A.1.1). Moreover, we also have
canonical isomorphisms Cﬁad ~ C‘(;z, so the line bundles glue and yield a line bundle £ over C. We

also have isomorphisms (£44)®" ~ (wiog)|onesa and LD — (wiog)|c; which glue. This is a conse-
quence of the fact that the restriction of wi,4 to a node or a marked point is canonically trivial, and
that E‘h;iad and ,C‘(;)l are isomorphic as maps to Bp,. Finally, the linearizing maps ¢"*d ¢; glue
into a global isomorphism g*£ — £ because they coincide at each node. O

Proposition 4.12. Let Y be a connected component of M(1) such that the head of the universal
curve carries n+ 1 marked points and N arms. Let 1 € u,. be the rth root of unity corresponding
to the morphism ¢ : £0ead — ghead i e tr(oiL) = &. Let m be the number broad arms, Ahe*d pe
the virtual class on MP?d and A; be the virtual class on each copy of the moduli space of arms.
Then over Y, the virtual class factorizes as follows

N
ch (Tr(A)) = choTr (Ahead) X Hch (Tr(A;)) ﬁ
i1

Moreover, we have
-

ch (TI' (Ahead)) — ch ()\_nglﬂ'*Ehead(*E))

In other words, the head contribution corresponds to the fake theory.

(45)

Proof. Let z1,...,zx be the nodes connecting the head to the arms, and let C¥ = Ch**d | | C;
be the partial normalization of the curve at these points. Let p : C¥ — C be the projection,
LY = p,.p*L, and let EY be the divisor of broad marked points on C¥. We write E¥ = Fjeaq |_|f\;1 E;,
where Fcaq, F; are the divisors of broad marked points in C?*d and C; respectively. The divisors
E, and p*(F) may differ because new broad points may arise from the normalization. There is an

exact sequence
N

O%L%ﬁ”%@ﬁmao. (46)

i=1
The pushforward 7.L),, is non-zero only if mult,,(£) = 0. Remember that m.L(—FE) = 0 so we
have the long exact sequence

0= m LY (~E) - P mLyy, —+ R'mL(~E) = R'm.L"(~E) = 0 (47)

21:0

Similarly, we have a short exact sequence 0 — p.p*L(—FE,) = LY(—E) — D, _o Ef‘ij — 0. We get

A_o(Rm L(~E)) = A_y(Rm.L")(—E)) ) Ao (Rm.L}5,) !
¢e; =0

= A_o(Rm.L"(~E,)) Q) A_s(Rm.L)s,)

2»;20
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= ()\_sleﬁhead(—Ehead))_l ® (A_sleﬁ(i)(—Ei))il ®(1 — 8puLiz,)-

K3 tiIO

Since all the sequences above are exact sequences of equivariant sheaves, we may take the trace
bundle and the Chern character to get the first statement

1
choTr(A) = (cho Tr(A_ Rm. L))" = choTr (A_,Ahead choTr (A —_—
(4) = (choTx( ) ( JQeher () & 7
The second statement follows immediately from the assumption that ¢ is given by £1. O
Proposition 4.13. For allt € K, we have
Joy(t) € Lfeke. (48)
Proof. We use the decomposition into head and arms to express the terms in Lefschetz’s formula as
an integral on the moduli space of heads. Recall that the expansion of the J-function at ¢*/" = 1 is
Ji(t)=1- q+t—|—ZCOnt(C) + Cont(1). (49)
¢#1
Let ¢ denote N
t=t+>» Cont(¢)=[/i(t)], —1+q. (50)
¢#1
Then we have ¢ € K¢, and Proposition 4.12 implies that J; (t) = Jike(%). O

4.4 Expansion at other roots of unity

Let & € p, and let m(&p) (or simply m when & is fixed) be the order of &. Because of the p, -
invariance, we assume that m > 1. The polar part of J at ¢*/" = & ! comes from the contribution
of M(&) to the Lefschetz formula. Since m # 1 the automorphism ¢ acts non-trivially on the
connected component of xy, namely, g acts on this component by a rotation of order m. This
action allows us to decompose the curve into a spine, some legs, and a tail. A decomposition of
M, (&) as a union of products follows, and Lefschetz’s formula factorizes as a product of classes
called the spine/leg/tail contributions. This allows us to recognize the expansion Jg, as a tangent
vector to the Lagrangian cone of the spine CohFT.

Definition 4.14. Let C be an object of M(&p) over a connected scheme. The spine of C is the
largest connected subcurve C%P"¢ C C, such that

ez € Cspine,
e (CPire ig g-stable, and its nodes are balanced with respect to g,

L4 ging'spine = id'
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Lemma 4.15. The marked points of CSP"® qre either fized by g, or have an orbit of cardinality
m. More precisely, the spine of a curve is isomorphic to a balanced chain of (orbifold) P*s with
standard Z,, action, with m-tuples of curves or marked points attached. Ouver the spine curve, the
automorphism g has exactly 2 smooth fized points denoted by x¢ and x.

Proof. Over the irreducible component containing the first marked point, the Riemann-Hurwitz
formula implies that g has exactly 2 ramification points, with maximal ramification index. If the
second ramification point is a node, then we apply the same argument to the irreducible component
attached to it. O

The marked points of the spine consist of one of the following
e m tuples of permuted marked points,

e m tuples of nodes,

e the fixed points xp and Z .

Definition 4.16. Let C be a curve in M, (&). If z is a node of C, the connected component
attached to CP'"® at . is the tail of C. The complement of the spine and the tail is a union of
legs. A leg is a m~tuple of spin curves, cyclically permuted by g.

Thus the curve C' decomposes as the union of

e a spine with mN 4+ 2 marked points,
e a (potentially empty) tail attached at z,, and
o N legs, i.e. N sets of m cyclically permuted spin curves.

We know show that the decomposition of curves into spine, legs and tail leads to a decomposition
of the fixed-points stack (M )" as a (union of) products of the corresponding moduli stacks.
Definition 4.17 (spines). The moduli space of spine curves Mf;‘i‘;e (€0, €0, Coo) s the stack param-
eterizing

e an r-spin curve (C, £) with mn + 2 marked points,

e a balanced automorphism g of order m fixing xg, and permuting the other marked points by
some permutation h whose conjugacy class is given by the partition (m,...,m,1,1),

e an isomorphism ¢ : g*£ — L compatible with the spin structure

e 2-isomorphisms 7 : goog — 09, and N)eo : GO T, — Tuo, Such that tr(Ly) = &p, tr(Leo) = 50_1,
tr(of L) = (o, tr(ci L) = (-

We will always assume that the marked points x1, ..., z, lie in different Z,,-orbits, and we use
the same notation for their image in the quotient curve D = C'/g. Notice that, on each connected
component of MSPR¢  the morphism ¢™ : (¢"™)*L — L is the multiplication by an 7-th root of
unity &.

The moduli space of spines is equipped with its virtual class

AP = (O (B £(-E))) T € K, (MP™(g0)) &1)

where FE is the divisor of broad marked points in the universal curve.
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Definition 4.18 (legs). The moduli space Mfil is the stack parameterizing
e an m-tuple of r-spin curves (C;, L)) indexed by Z,,,

e isomorphisms of spin curves (with section) g; : (Cj, £®) — (Cyy1, £8+D) such that the trace
of gm—10...,g0 on the first cotangent line of Cj is non-trivial.

Let & € p, be an 7th root of unity. We denote by M!8(¢) the substack where trym (o3 L) = £.
The moduli space of legs is equipped with its virtual class

Qr

At = (\_; (R'1.L(-E))) (52)

The moduli stack of legs admits a natural description in terms of arms.

arm arm

Lemma 4.19. Let v be the automorphism of (ME)™ permuting the different copies of M.
Then, the moduli stack of legs is the fized-point stack

le rm \m
MEy = (M) >7~ (53)
Definition 4.20 (tails). The moduli stack of tails is

M=, ¢ = || M(&,9). (54)
€070

The moduli space of tails is equipped with its virtual class
A% = (A (R'mL(—E)))™". (55)

On the stack of spines M®P1¢(&y, (), let & be the locally constant function corresponding to the
morphism
" (g™ L = L.

Lemma 4.21. We have the equality

m=€Tm,
where a = mult,, L.
Proof. Both sides of the equality correspond to the trace of ¢ on the line bundle o L. O
We introduce a tool to glue legs to spines.

Definition 4.22. The gluing stack G is defined by

G=(ZBp,)")",

where 7 is the automorphism permuting the different copies of ZBu,..

L (e)™yt, where

Objects of G over a connected scheme S are given by the data (a, (L;)%,
e a € Z, denotes a connected component of ZBu,.,

e [; is a line bundle on S,
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° ;: LZ@T — Og is an isomorphism,
e fi:L; — L;1; is an isomorphism compatible with «; (with L,, = Lg).

There are morphisms M®P¢ — G and M!®® — G given by the line bundles o} L at a Z,,-orbit
of marked points.

Proposition 4.23. There is a morphism of stacks

MEP(Ey (o, (o) N2 X MIB(E) X - MIB(E) Xz, M™ (&0, (o) = M(&),  (56)

N times

where & = (€™, and the morphisms are
o ev;: M¥®" G =1 ..., N,
® €V : Mileig+1 — G,
o ovo: M, - IBp,.

Proposition 4.24. Let Y be a connected component of M*P"¢ andl et | (resp. t) be the number
of broad legs (resp. tails) over Y.. Then, the virtual class factorizes as

1
(1 _ Smé‘)rl(l _ SCoo)Tt

Proof. Similar to the proof of Proposition 4.12. O

ch (TrA) = ch <Tr(ASPine) QR TrA® @ Tr Ata“> (57)

We now detail detail the contribution to Lefschetz’s formula coming from the different terms in
the product.

4.5 Spine contribution

We now explicitly compute the term Tr(ASP™¢) appearing in Proposition 4.24. A spine curve C' is
an r-spin curve together with a Z,,-symmetry. Quotienting by Z,,, we get a curve D, equipped
with an rmth root of wi%;”. This allows us to relate the spine contribution to the spine CohFT of
Section 3.2.

Let C be an object of M®P¢ and let p : C — D = C/Z,,, be the quotient map, where the
generator of Z,, acts by the automorphism g. The algebra p.O¢ has a decomposition p,O¢c =
@;’:01 T7, where T is the line bundle of functions f such that ¢* f = e2@/™ f.

Lemma 4.25. Let us write & = e%, and let vy be the inverse of kg in Zy,. T has non trivial
multiplicities only at the two ramification points xg and x~, and

o mult,, (T) = vy € Zn,

o mult, (T) = —vy € Zp,.

Ihe couple (L, ¢) is not always an equivariant sheaf. However, if we define (E by gg = (&5, then

(L, $) is a Z,-equivariant line bundle (see Lemma 4.21). Let £ be the line bundle over D obtained
by descent. The morphism a : L% — wje, induces an isomorphism

a: L%~ Wing- (58)
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Proposition 4.26. The data (D,L,T) above defines a morphism
f : M;Trf;;e(a07al7 oo 7a00) — Mrm’m(a(); may, ..., Man, C_LOO) X/V(o,n Mm}o(ya 07 ey 07 71/)7

where M"™™™ “is the moduli space of rm-th roots of wii,, and G is determined by the degree
condition
mn—ao—doo—Zmai =0 mod rm.

This morphism is bijective on closed points, and has degree . Moreover, under this morphism
we have

m—1
Rm.L = f* @D Rr(LoT), (59)
j=0
and the trace of g is given by
m—1 ) )
Tr, (Rm.L) = @D ¢éte " R (L® TY). (60)
7=0

In particular, the spine contribution coincides with a value of the spine CohFT (see Section 3.2)

cho Tr(AP) = AP (a,b),

with a = (ag,mas,...,ax) and b = (10,0,...,0,—1p).

4.6 Leg contribution

We compute the trace bundle Tr(A!*®), following Givental’s computation in [Giv17]. More precisely,
we want to compute the following generating function, which we call the leg contribution :

ch (Tr (A'#)) ch (Tr (Q;-, t(£L:)))
gn'/ifil ch ( ;";01(1—ql/eﬁ()yk)»chTr()\,lJ\/'V)

td(T), (61)

where N is the normal bundle to the morphism Mfil - ( 6)n+1)m, Ly, are the cotangent

lines at the first marked point of each component of the universal curve, and e is the order of the
stabilizer of the first marked point.
Let (Cp,...,Cpm_1) be an object of M!®8(¢). The pushforward R'm, L is the direct sum

R'm.L= P E; (62)
€L,
where E; = R'r, (L(=FE))|c,- We begin with a general lemma.

Lemma 4.27. Let X be a smooth stack over C, let £ = GaiEZm E; be a Zy,-graded vector bundle
over X, and let g; : E; — E;y1 be isomorphisms such that g = gm—10¢gm-290...0g9 € Aut(Ey) has
finite order. Then we have

m¥™ (Try OF/™Eg)  if m|k

k _ g
T, WP (E) = { 0 otherwise. (63)
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Proof. If g = id, then this is the situation in [Giv17]. Let us recall the argument. There is an
isomorphism of Z,,-bundles E ~ Ey ® Ox|[Z,], and we compute that U*(Ox[Z,]) = O% is m|k,
and ¥*(Ox|[Z,]) = 0 otherwise.

If g # id, we can decompose each E; into the sum of eigenspaces for g. These eigenspaces are
preserved by the g;, so we may assume that g = Aid for some A € C*. Then we have

k [mAR TR (Ey)if mk,
Trg, (PH(E)) = { 0 otherwise. (64)
O
Corollary 4.28. We extend the Adams operations to K°(X)[s] by setting
U (s) = s,
Then, with the same notations as in the previous lemma, we have
Tr(A_sE) = 0™ (Tr (A_sEy)) . (65)
Proof. Recall that A\_4(E) = exp (— Zk21 Skq’:(E)) Thus, using Lemma 4.27 we get
kT \If’C E;
Tr()\_sE)exp< ZS r (@ )>
km,\I/mT \I’k E
:eXP( Z - ( 0)>
k
O

Proposition 4.29 ([Giv17] lemma p.5). Let X be a proper smooth Deligne-Mumford stack over C,
and let m: X — Spec(C) be the projection. Let E,T be vector bundles over X, and let E;, T; be the
pullbacks E; = pi E, and T; = p;T, where p; : X™ — X 1is the i-th projection. Let ¢ : X™ — X™ be
the cyclic permutation of factors. We choose finite order isomorphisms g; : E — E and f; : T — T,
which induce isomorphisms g; : $*E; — E;y1 and f; 1 ¢*T; = T;11. We equip Eq = @Z’;Bl E; and
Te =@, ! T; with the induced Z,, equivariant structure. Finally, letg: E — E (resp. f:T = T)

be the composition g = gy—10---0go (resp. f = fm—10---0 fo).
Then we have

E. m (= YR o ;
tr H* (Xm; (xpk ())@T,) . (H (X Tty “m ﬂfT)) i mlk, (66)
k 0 otherwise.

Proof. Use Lefschetz’s formula to compute the left hand-side, and Adams—Riemann—Roch for the
right hand-side, combined with Lemma 4.27. O

We apply the previous results to the space M8 ~ ((M»™)™)? (see Lemma 4.19). Let pr
denote the projection to the first factor.
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Corollary 4.30. We have
tr (H*(A'°8)) = O™ (H*(Tr(A™™)) € C[s]. (67)

More generally, the leg contribution is given by

v ([T ®)], ),

where [-]4 denotes the projection to ICi_ake, parallel to KCfke.

4.7 Conclusion

We now explain how the previous results imply that Jg, is a tangent vector to the cone Lspine of
the spine CohFT. The spine CohFT (defined in the Section 3.2) encodes the spine contribution.
Its state space is K°(IBp,.,,,)c @c H*(IBZy,, C), with pairing given by the product of the orbifold
pairing on each factor. The factorization of the virtual class means that we can view the leg and
tail contributions as “inputs of the spine CohFT”.

Let us decompose H*(ZBZy,, C) = @ ¢, C-[d]. We refer to the subspaces K°(IBp,.,)c @ [d]
as sectors of the state space. We define two embeddings ®¢, ®¢, of K into IC,p,, corresponding to
the sectors 0 and —vp = —k—lo mod m respectively (recall that & = exp(%)).

Proposition 4.31. The image of J(t)(¢*/™™) by ®¢, is a tangent vector to the spine cone :
Dg, (J()(g"/™)) € TLP. (68)
The tangency point is JP¢(T), with
T =9"do(J)(t))-

Lemma 4.32. Let C be an object of M, (&0,Co, (o), and let a € Z be the multi-index of

mn—+2
multiplicities of L at each Z,-orbit of marked points. Then we have
(oo = Gobgr =" (69)
ko

24w
rm

Proof. First, let us assume that & = e is a primitive rmth root of unity, and let v be the
inverse of kg modulo rm. We may also assume that (£, ¢) is a Z,,-equivariant bundle, and that C
is smooth, that is, C' is isomorphic to a stacky P!. Let L be the bundle over D = C/Z,, obtained
by descent, and let ag, ao, a; be its multiplicities at the marked points.

Let p: U — C be the Z,-cover ramified over xy and x,. Then, there exists a lift g of g such
that

e g has order rm, and its trace on the tangent space at xy and = is & and §; ! respectively,
e p*L is Z.m-equivariant, and descends to £ on the quotient U/Zrm =~ D.

Then ¢y and (., are the trace of g on p*L at xg and z, respectively. Thus, we have that

2imag
CO_D = e

v 2imace
C = e rm
00
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Finally, we use the fact that ag + G, = ZZ ma; — mn to obtain

(o = aoo
o COfm > a;—mn
The proof is similar for a general &. O

Proof of Proposition 4.31. Let Jt be the tail contribution, namely

rg® @ e¢ ch (Tr (A*™! @ ev(da ® ec) @ (L))
ag 1;2 a)n! /Mta”(&o) (1= gt/me(@ Tr(Ly)) ch (Tr(A_1NV)) s (70)

e,

where A is the normal bundle to the morphism M“’“ll — M}n 41, and T is the tangent bundle.

Then we have
ot(a™) = [J0a" M) -

We claim that
rm o* ® 65 ® ] Do ® e ® [1/0] spine
Dg, (JO(@/™) =g, () + > D T T 00)
a€Lym n>1 0,n+2
€M,
(71)

with 7' = o™ (<I>0 ([J(l)(t)]+)>, and e(a) is the order of @ in Z,. This claim follows from the
factorization of the virtual class and Lemma 3.6. Thus, ®,, (J(t)) is a tangent vector to LP™¢ at
U (Do (1)) O

Let 7"° denote the tangent space to LP™¢ at W™ ®(J;(t)) intersected with the —vq sector.
Then we have

T =0, TL™, (72)

where the second tangent space is computed at [y W™m®(J;(t)) = A~ ®q(J1(t)) (see Corol-
lary 3.10), and L"™ is the untwisted cone in Cpp,.

Proposition 4.33. We have
e, J (1)(q"/7™) € DhA™ Ty gy ) L

Proof. This is a consequence of Proposition 3.9. O

4.8 Reconstruction

So far, we proved that the values of the J-function satisfy the 3 conditions in Theorem 4.5. We now
explain how these properties allow to reconstruct the J-function. We follow the proof of [GT11,
prop. 4]. Recall that the ground A-ring R is supposed to carry a Hausdorff .#-adic topology such
that O™ () C ™.

Let f be a p,-invariant element of K such that f =1—¢ mod .#. We write f = 1—q+t+ f_,
where 1 —g+t € K4, and f_ € K_. Notice that the last 2 conditions of Theorem 4.5 are stable by
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base change. In particular, if f is an element satisfying those conditions, then so does the image of
f modulo #™. We will show by recursion that for all n € N, f is a value of the J-function modulo
I

For n =1, we assumed that f =1 — ¢ mod ., which is a value of the J-function.

Now, suppose that f = J(t) mod .#™ for some n > 1, and let us show that f = J(t)
mod £t We just need to check that £ is the arm contribution modulo .#™*!, i.e., that we
have ¢ = [Jay(t)]+ — 1+ g —t. By definition the arm contribution is the sum of the polar parts
of J(t) at all the non-trivial roots of unity, so we need to show that for all {; € p.,, the po-
lar part of f at ¢'/7 = &' matches the polar part of J(t). Let us begin with the rth roots
of unity. First, notice that [f(1)]— mod .#"*! is determined by [f)]+ mod #™ by the formula
fay= Jfake([f(l)]+ —1+4¢q). The p, -invariance of f implies that the polar part at ¢'/" = ¢~ € .
is exactly & - [ f(l)] . Since J(t) is also p,.-invariant, its polar part at the rth roots of unity coincide
with that of f. Now, suppose that & is some root of unity such that the order of £ is m > 2. Then,
the polar part of f at ¢*/" = 551 is determined by [®¢, f]_ mod .#""! which only depends on

the tail contribution modulo .#", and on [f(;)]+ modulo .# L5141 because of the third condition
of the adelic characterization. Thus, the induction hypothesis allows us to conclude that the polar
parts of f and J(¢) coincide modulo .#"*! at any root of unity.

Finally, we conclude that f = J(t), which concludes the proof of Theorem 4.5.

5 I-function and difference equation

In this section, we use the adelic characterization to give a simpler description of the image of the
J-function using “untwisted” invariants. Then, we use this description to find a specific value of
the J-function, following the method given by Coates, Corti, Iritani and Tseng in [CCIT09] In this
section we choose R to be the A-ring C[X], with Adam’s operations ¥*(X) = X*.

5.1 FJRW invariants from untwisted invariants

Definition 5.1. Let n = k1 + -+ + ks be a partition of n, and let H C S, be the subgroup

H = Sy, x --- 8y, . For a sequence t() ... t(5) of elements of K, the cohomology groups
|:t(1)(£,1’1)7...,t(l)(ﬂl,kl);...,t(s)(ﬁs’ks)} ( On,®®t(k Ekz ) (73)
" k=1 1=1
is an H-module.
For any elements vy, ...,vs € R, we define
un,H
<t(1)(£171)®V1a---7t(s)(£s,ks)®ys>0 =
n
b [(0(£ ©) (£ } U ()™ (74
A 2 [ @) 11w i

The associated J-function is

un ¢a®e Sun
JEm(g) =1 +t+z ¢>a® 5<1_ql/e(f)&),t(£1),...,t(ﬁn)> :

n+1
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and the image of the J-function is the subvariety
LE c K.

Theorem 5.2 (Adelic characterization). Let f =1 —q+1t+ f_ be a p,.-invariant element of K.
Then, f belongs to LI{“(JRW if and only if

e the poles of f are at ¢ =0, ¢ = 0o, and the roots of unity,
L4 f(l) S Lan7

° @%) f(qﬁ) € T, where T is the tangent space to the untwisted cohomological cone at the point
JAHun (t)(l).

Proof. Follow the proof of the previous adelic characterization, replacing A with 1. O

Theorem 5.3. The invariant points of L coincide with the invariant points of ALK :
o
(LgJRw)”"’ = (ALuKn) ) (75)
where A is the operator of the fake theory.

Lemma 5.4. Let f be a point of IC, and & a root of unity such that & has order m. Then we have

€71 @g, ((AN) (@/™)) = D" @, fla"/™). (76)
Proof. This is a straightforward computation. O

Proof of Theorem 5.3. We check the criteria of the adelic characterization. First, a direct compu-
tation shows that A sends p,.-invariant points to p,.-invariant points. The first 2 items of the adelic
characterization are obviously satisfied, and the last one follows from Lemma 5.4. O

5.2 The I-function
Recall [Giva] that the J-function of a point is

Jor(x) =1—q+(1—q) anll_q) (77)

n>1

Thus, we have that

M= 75" (26 @ [0) = (1= )p1 @ 0] + (1 =) > s bns1 @ [0 (78)

n>1 Hk 1 )

We now follow the computation in [CCIT09],[CR10]. We define we(z) = ;5 w&dfi—? with

kskkd
’w&d:TZg A .

k>1
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Notice that exp(—we(z)) = (1 — &sq)" . We also define the functions Gy, ¢ by

y)xkzl—l

B,
Gyel2) = S wesior P
2 i

These functions satisfy two equations :
Gye(x,2) = Goglr +yz, 2),
Goe(z+ 2,2) = Goelx, 2) + we(z).
Let V be the vector field V = Z0,.

Proposition 5.5. The function exp (—Gl/r(zv,z)) 1" 4s a value of the untwisted permutation-
equivariant J-function JS"™.

Proof. We check the conditions of the adelic characterization. Noting that [0] = > ., ec, we
compute that

ghgk gk
kE gt —1

exp (—G1/r(2V,2)) 2" pni1 ® e =exp | — Z
k>1

" Png1 ® eg. (79)

This shows that exp (—Gl/r(zV,z)) I" is p,-invariant, and has poles at 0,00, and the roots of
unity.

By a theorem Coates—Corti—Iritani—-Tseng [CCIT09, thm. 4.6], the operator exp (fGl/T(zV, z))
preserves the cone L™, Thus, the second condition is also satisfied. The same argument also
applies to show that the third conditions holds. O

Theorem 5.6. The function

n 1 T
H0<k<[d/rj 1 - fq{7}+7+k z"
Ifyrw = (1-q) Z Z - ( ) Pnt1 ® eg

§€n, n>0 I
is a point of the the image L{{IRW of the J-function.

Proof. We compute Ifpw := Aexp (fGl/,.(zV,z)) I For n+1 ¢ rZ we have A¢gp11 ® eg =

exp (Goe(™H 2, 2)), so

1 1
A exp (—Gl/r,g(zv, z)) 2" Pry1 ® eg = exp (Go,g ({ n } z, z) —Goe (n + z, z)) " Pyl ® e

r T
[n/r]-1
1
= H exp <w5 ({n + }z + k:z)) " Ppt1 ® eg
k=0 "
ln/r]—1 ) -
= H (1 — sfq{?}+?+k) " Ppt1 ® eg.
k=0
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For n+ 1 € rZ, we have

Apo ® eg = exp (Goe(z, 2)) .

Thus we have

n+1

A exp (—Gl/,«,g(zv, z)) 2" Py ® eg = exp (Go,g (2,2) — Gog (

ln/r]-1
= H exp (—we (2 + k2)) 2" i1 ® e
k=0
ln/r]—1

- H (1—seq™*h)".

k=0

z, z)) " Ppt1 ® e

Finally, we take the limit s — 1 to get the result. O

Remark 5.7 (Dual class). We could also define FJRW invariants using the dual of the fundamental

class
AY =N (R'7. L(—E)®)V.

All the proofs adapt easily to this case, and we also obtain an I-function for these invariants
To<keajr) (1 - 5—1q—{%}—%—k)rmn
L =01—q) > Y — T b1 ® e (80)
Hk}:]( q )

£ep,. n>0

5.3 Difference equation

In this section we assume that r = 5, we describe the difference equation satisfied by the I-
function. We expand the I-function with respect to the basis ¢, ® e¢, and we write Irjrw (2, q) =

r—1
Ea:O Z§€#r l‘ala,g (377 q)¢a+1 &® €¢.

Proposition 5.8. The function Ia’g(x1/5,q’1) 18 a solution of the equation

4

H(l _ q7k+5xaz+a) _ zq14+4a+20x62(1 . 571(1&51“31)5

G(z) =0.

k=0

Proof. For 0 < a < 4,we have

a 1 5
Ho<k<[—5dr+“J 1 - fq{g}+g+k
Ia-,ﬁ(xl/57Q) = Z - - 5d-‘ga k ) xd (81)
d>0 k=1 (1—4%)

Moceea (1 - a*#+)"
0<k<d q d
— x

= Z 5d+a

d>0 k=1 (1- qk)

(82)
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Thus, it satisfies the equation

4
_ T a atl .
lH(l —q Rty (1t 3””)5] Le(x'?,q) =0.
k=0

Thus, I, ¢(z'/°,¢71) satisfies

4
— T a a— z -1 ety —
[H(l —q k+5x0,+ ) _ I’q15+4 14-20 81(1 o € 1q 5+ 6,;)5‘| Ia7§(xl/57q 1) =0 (83)

For X\ € C, the g-character ey x(x) is the function

oo

_ (14 zg * (1 +271¢7F)
ean(®) =] Q+q F N 12)(l+a AgF)

k=0

The g-character satisfies the difference equation ¢* e, »(z) = Aegx(2). Let us define I, ¢(x,q ') :=
€ it @ ag(@!Pg7h).
T

Proposition 5.9. Fora € {0,...,r — 1}, the function, fa’g(x,q’l) is a solution to the difference

equation
5

H(l _ q—k+5x8w) _ mq10+209c6,p(1 _ quI)S F(SC) =0 (84)
k=1

Moreover, the functions faé(:ﬂ,q’l) coincide with the 25 solutions Wy, obtained by Y. Wen in
[Wen22]
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