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Introduction

Let F be a totally real field, K/F a totally imaginary quadratic extension,
d = [F : Q], c ∈ Gal(K/F ) the non-trivial Galois automorphism. Let n be a
positive integer and G = Gn be the algebraic group RK/QGL(n)K. The purpose
of this article is to prove the existence of a compatible family of n-dimensional λ-
adic representations ρλ,Π of the Galois group ΓK = Gal(K̄/K) attached to certain
cuspidal automorphic representations Π of G. Here is the precise statement (see
Theorem 3.2.3):

Theorem. Fix a prime p and a pair of embeddings

ι = (ιp : Q → Qp, ι∞ : Q → C)

Let Π be a cuspidal automorphic representation of GL(n,K) that is cohomological
and conjugate self-dual in the sense of Hypotheses 1.1 below. Then there exists a
semisimple continuous Galois representation

ρι,Π : ΓK → GL(n, Q̄p)

associated to Π in the following sense:

(a) For all finite primes v of K of residue characteristic prime to p,

(ρι,Π |Γv
)F−ss ≺ L(Πv ⊗ | • |

1−n
2

v ),

where Γv is a decomposition group at v, L is the local Langlands correspon-
dence, the superscript F−ss denotes Frobenius semisimplification, and the
relation ≺ is the partial ordering on the associated Weil-Deligne represen-
tations defined in [Ch] §3.1;

(b) For all finite primes v of K of residue characteristic p, ρι,Π |Γv
is de

Rham (in Fontaine’s sense), and its Hodge-Tate numbers have multiplic-
ity at most one (i.e., ρι,Π is Hodge-Tate regular) and are determined by the
archimedean component Π∞ of Π in accordance with an explicit recipe.

(c) Let v be a finite prime of K dividing p. Suppose Πv has a non-zero vector
fixed by a maximal compact subgroup of GL(n,Kv). Then ρv := ρι,Π |Γv

is crystalline, and if ϕ denotes the smallest linear power of the crystalline
Frobenius of Dcrys(ρv) then

det(T − ϕ | Dcris(ρv)) = det(T −L(Πv ⊗ | • |
1−n
2

v )(Frobv)).
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2 CONSTRUCTION OF AUTOMORPHIC GALOIS REPRESENTATIONS, II

We also show that ρι,Π is semistable, in Fontaine’s sense, at places v of character-
istic p where Πv has a non-zero Iwahori-fixed vector, and attach λ-adic representa-
tions of ΓF = Gal(F̄ /F ) to cuspidal automorphic representations of RF/QGL(n)F
satisfying analogous hypotheses. In the remainder of this introduction we write
ρλ,Π rather than ρι,Π, to emphasize that we are constructing compatible families
in Serre’s sense. Occasionally the varying rational prime will be denoted ℓ rather
than p in the main text.

The first version of the main theorem of this article was proved by Clozel in
[C2], using the results of [K2]. The theorem of Clozel and Kottwitz required Π
to belong to the discrete series at one or more non-archimedean places; more pre-
cise versions of this theorem were proved in [HT] and [TY], under the same local
hypothesis. These results were based on a version of stable base change relating
automorphic representations of G to automorphic representations of certain twisted
unitary groups over F .

It was long understood that the local hypothesis of [C2,HT] could be removed
once a sufficiently general stable trace formula was available for more general uni-
tary groups. For n ≤ 3 this program was carried out by Blasius and Rogawski,
using the stable trace formula developed by Rogawski in [R]. For n = 3 the Galois
representations are constructed in general in [BR1] in the cohomology of Shimura
varieties (Picard modular surfaces) attached to quotients of the unit ball in C2,
or alternatively to unitary groups over F of signature (1, 2) at one real place and
definite elsewhere. The Galois representations for n = 2 are constructed in [BR2]
in the cohomology of the same Shimura varieties, using endoscopic transfer from
U(2)×U(1) to U(3). The proof of these results in [BR2] revealed that not every Π
can be treated in this way. For example, when the degree d of F is even and Π is
obtained by base change from an everywhere unramified Hilbert modular newform
f for F of parallel weight (2, . . . , 2), any endoscopic transfer of the corresponding
representation of U(2)×U(1) to U(3) gives rise to a 1-dimensional Galois represen-
tation (corresponding to the U(1) factor). The missing Galois representations were
constructed by Wiles [W] (for λ dividing primes at which Π is ordinary), using Hida
families, and in general by Taylor [T], using pseudorepresentations and congruences
between old and new Hilbert modular forms.

Unlike the representations constructed in [BR2], it is not known that those in-
troduced in [W] and [T] are motivic in the sense of Grothendieck. It is expected,
for example, that a Hilbert modular newform f whose Hecke eigenvalues are in Q

is attached to an elliptic curve over F . This is known when d is odd or when the
associated automorphic representation is supercuspidal or Steinberg at some finite
place, but when d is even and f is everywhere unramified, it is not known how to
construct the hypothetical elliptic curve. The question was raised for d = 2 nearly
thirty years ago in [O] and remains open to this day.

When Laumon and Ngô proved the fundamental lemma for unitary groups it be-
came clear that the Blasius-Rogawski method could be applied for general n. This
was carried out in the setting of the book project ([L.IV.1], [CHL.IV.2], [CHL.IV.3])
and independently by Shin in [S]. Shin’s results are more precise – in particular,
he treats primes of bad reduction, generalizing the methods of [HT] and [TY],
and appear to be the most complete possible in the setting of Shimura varieties.
The results of [S] are completely general when n is odd; for even n the obstruc-
tion discovered by Blasius and Rogawski generalizes, and endoscopic transfer from
U(n)× U(1) to U(n+ 1) only yields n-dimensional Galois representations when Π
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is what Shin calls “slightly regular” (also called “Shin-regular”).

As for n = 2, the missing Galois representations for general even n can be con-
structed by p-adic approximation. This is the purpose of the present paper. We
generalize the method of [W] rather than that of [T]. The theory of eigenvarieties
developed in [BC] and [Ch] (generalizing the construction of Coleman and Mazur
for elliptic modular forms) makes the ordinary hypothesis of [W] superfluous. The
stable trace formula methods of [L.IV.1] provide a descent from Π to automorphic
representations of a totally definite unitary group G0, and thus Π gives rise to a
point x = x(Π) on an appropriate eigenvariety. For almost all λ, the Galois repre-
sentation ρλ,Π is obtained by specializing the families of Galois representations (or
pseudo-representations) constructed in [BC] and [Ch] to x(Π). These families are
in turn obtained as λ-adic interpolations of the representations attached in [S] to
slightly regular Π. (The article [CHL.IV.3] uses a more restrictive regularity con-
dition but also suffices for the construction of families of pseudo-representations.)

Eigenvarieties only detect automorphic representations of finite slope; for a given
Π this excludes a finite set of λ. The remaining ρλ,Π are constructed by a general-
ization of a patching argument first introduced in [BRa] and generalized in [HT].
The patching argument we use is due to Sorensen [So] (an improvement of a less
precise version considered by one of the authors of the present paper) and allows
us to use solvable base change to reduce to the case of finite slope.

It turns out that slightly regular Π do not suffice for most applications to au-
tomorphy lifting theorems. In fact, the automorphic Galois representations most
useful for deformation theory are precisely those that cannot be realized motivically,
cf. for example [BGHT,BGGT1]. The results of the present paper were designed
for these applications. In particular we prove a weak version of compatibility of the
correspondence Π ↔ ρλ,Π with the local Langlands correspondence at primes not
dividing the residue characteristic p of λ. The weak version of local-global compat-
ibility proved as (a) in the theorem above actually enough for some applications,
e.g. for proving the non-vanishing of Selmer groups by Ribet’s method (see e.g.
[BC]). Complete local-global compatibility at primes not dividing p, generalizing
the results of [TY], has since been proved by Caraiani [Ca] by generalizing the
Rapoport-Zink spectral sequence for vanishing cycles.

We actually give two different proofs that ρλ,Π is de Rham with the expected
Hodge-Tate numbers at primes dividing p, and crystalline at places at which Π
is unramified. One relies on the study of certain Shimura varieties attached to
unitary groups of signature U(2, n− 2); the second, which leads to more complete
results, relies on an application of p-adic families with partial Hodge-Tate weight
fixed found in [Ch]. For primes dividing p, a (nearly) complete compatibility result
is proved in [BGGT2].

This is a revised version of the articles “Construction of automorphic Galois
representations I, II” by Michael Harris and of an earlier version of the present
article.3 The original intention was to publish this article in the second volume of
the projected series of books entitled “Stabilization of the trace formula, Shimura
varieties, and arithmetic applications.” The first volume has now appeared, and we
have used some of the chapters as references. In the meantime, the preliminary
version of the present article has been cited by a number of authors, notably for

3previously posted at http://www.institut.math.jussieu.fr/projets/fa/bp0.html and
http://fa.institut.math.jussieu.fr/node/45, respectively.
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the applications already mentioned to automorphy lifting theorems. It therefore
seemed appropriate to provide a reliable source for the cited results.

The proofs follow an outline first presented by one of the authors at the eigenva-
riety semester at Harvard in 2006. We thank the organizers of that semester, and
especially Barry Mazur, for providing the opportunity to do so. We are grateful
to the participants in the Paris automorphic forms book project, especially Lau-
rent Clozel, Jean-Pierre Labesse, and Claus Sorensen for their collaboration and
for making their results available. We thank Joel Belläıche, Don Blasius, Sug Woo
Shin, Peter Scholze, and Richard Taylor for helpful discussions.

1. Construction of Galois representations

under simplifying hypotheses

Notation is as in the introduction. Let g = Lie(G(R)), K∞ ⊂ G(R) the product
of a maximal compact subgroup with the center ZG(R). We consider cuspidal
automorphic representations Π of G satisfying the following two hypotheses:

General Hypotheses 1.1. Writing Π = Π∞ ⊗ Πf , where Π∞ is an admissible
(g, K∞)-module, we have

(i) (Regularity) There is a finite-dimensional irreducible representation W (Π)
of G(R) such that

H∗(g, K∞; Π∞ ⊗W (Π)) 6= 0.

(ii) (Polarization) The contragredient Π∨ of Π satisfies

Π∨ ∼
−→Π ◦ c.

We next make the following temporary hypotheses:

Special Hypotheses 1.2.

(1.2.1) K/F is unramified at all finite places (in particular d > 1).
(1.2.2) Πv is spherical (unramified) at all non-split non-archimedean places v of K.
(1.2.3) The degree d = [F : Q] is even.

The irreducible representation W (Π) factors over the set Σ of real embeddings
of F

W (Π) = ⊗σ∈ΣWσ,

whereWσ is an irreducible representation ofGL(n,K⊗F,σC)
∼
−→GL(n,C)×GL(n,C).

The highest weight of Wσ is denoted µ(σ). It can be identified in the usual way
with a pair of non-increasing n-tuples of non-negative integers (µ(σ̃), µ(σ̃c)), one
for each extension σ̃ of σ to an embedding of K, where we write

µ(σ̃) = (µ1(σ̃) ≥ µ2(σ̃) ≥ . . . µn(σ̃)).

Moreover, the polarization condition implies that one of the n-tuples diagrams is
dual to the other, in other words that

µi(σ̃
c) = −µn−i+1(σ̃).



AUTOMORPHIC GALOIS REPRESENTATIONS 5

Special Hypothesis 1.3. For at least one σ ∈ Σ, the highest weight µ(σ) is
sufficiently far from the walls; in practice, it suffices to assume µ(σ) is regular, i.e.
µi(σ̃) 6= µj(σ̃) if i 6= j.

LetK be a p-adic field, WDK its Weil-Deligne group. Let A(n,K) denote the set
of equivalence classes of irreducible admissible representations of GL(n,K), and let
G(n,K) denote the set of equivalence classes of n-dimensional Frobenius semisimple
representations of WDK . We denote by

L : A(n,K) → G(n,K)

the local Langlands correspondence, normalized to coincide with local class field
theory when n = 1 in such a way that a uniformizer of K× is sent to a geometric
Frobenius.

The following result has now been proved in several stages (articles [L.IV.1],
[CHL.IV.2], [CHL.IV.3] of Book 1, and especially [S], of which an expository ac-
count will appear in Book 2). When v is a finite place of K we let Γv denote a
decomposition group at v.

Theorem 1.4. (i) Suppose n is odd and Π satisfies Hypotheses (1.1) and (1.2).
Then there is a number field E(Π) and a compatible system ρλ,Π : ΓK → GL(n,E(Π)λ)
of semi-simple λ-adic representations, where λ runs through the finite places of
E(Π), such that

(a) For all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ),

(ρλ,Π |Γv
)F−ss ∼

−→L(Πv ⊗ | • |
1−n
2

v ).

Here the superscript F−ss denotes Frobenius semisimplification.
(b) For all finite primes v of K dividing NE(Π)/Q(λ), ρλ,Π |Γv

is de Rham,
and its Hodge-Tate numbers have multiplicity at most one (i.e., ρλ,Π is
Hodge-Tate regular) and are determined by Π∞, or equivalently by W (Π),
in accordance with the recipe given in (1.5) below.

(c) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a non-
zero vector fixed by a maximal compact subgroup of GL(n,Kv). Then ρv :=
ρλ,Π |Γv

is crystalline, and if ϕ denotes the smallest linear power of the
crystalline Frobenius of Dcrys(ρv) then

det(T − ϕ | Dcris(ρv)) = det(T −L(Πv ⊗ | • |
1−n
2

v )(Frobv)).

(d) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a non-
zero vector fixed by an Iwahori subgroup of GL(n,Kv). Then ρλ,Π |Γv

is
semistable.

(ii) If n is even, the same conclusions hold as in (i), provided Π in addition
satisfies Special Hypothesis 1.3.

When Π satisfies the additional hypothesis that Πv0
is square-integrable for some

finite place v0, then this theorem is mostly proved in [HT], extending an earlier
theorem due to Clozel and Kottwitz [C,K2] obtaining (a) at most places where
Π is unramified. The theorem is completed in [TY]. What we here call ρλ,Π is
the representation denoted Rℓ(Π

∨) in [HT]. The compatibility (a) with the local
Langlands correspondence is due in general to Shin [S]. A weaker version of Theorem
1.4 with local compatibility at almost all finite places is deduced in [CHL.IV.3] from
the results of [L.IV.1] and [CHL.IV.3], using the methods of [K1].
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1.5 Hodge-Tate numbers of automorphic Galois representations.

Fix a prime λ of the coefficient field E(Π), say of residue characteristic p. The au-
tomorphic Galois representation ρλ,Π of Theorem 1.4 is obtained in the cohomology

of a geometric p-adic local system W̃p(Π) on a proper Shimura variety, obtained in
a standard way from the finite-dimensional representation W (Π) introduced above.
It is therefore of geometric type, in the sense of Fontaine and Mazur: each ρλ,Π
is unramified outside a finite set of places of K, and at every place dividing the
residue characteristic of λ, the representation ρλ,Π is de Rham. The latter fact is a
consequence of the comparison theorems of p-adic Hodge theory.

The relevant Shimura varieties, say Sh(G), are associated to certain unitary
similitude groups G = GU(V1), in the notation of [CHL.IV.2], relative to the CM
extension K/F . They have canonical models as (pro)-varieties over K, and for any
open compact U ⊂ G(Af ) we have a variety of finite type ShU (G). The group G is
quasi-split at each finite place of F , and the unitary subgroup U(V1) is of signature
(1, n− 1) at the archimedean prime v0 of F and is compact at the (non-empty) set
of other archimedean places of F . Assume that v is a finite place of F which splits
in K, and that the compact open sugroup Uv = U ∩ U(V1)(A

f ) is maximal (resp.
an Iwahori subgroup). Then ShUv

(G) has good (resp. semistable) reduction by [Z,
LR, HT] (resp. [TY]).4

For the same reasons, ρλ,Π is semistable at a prime v dividing the residue char-
acteristic of λ such that Πv has Iwahori invariants, and when Πv is unramified,
it is even crystalline. The second part of Thm. 1.4 (c) follows in a standard
way from part (a) and theorems of Katz-Messing [KM] and Gillet-Messing [GM] :
see [BGGT1, p. 25] for more details.

In particular the Hodge-Tate numbers can be read off from the Hodge numbers of
the de Rham cohomology of the flat vector bundle W̃ (Π) associated to W (Π). The

comparison of W̃p(Π) and W̃ (Π), and therefore the determination of the Hodge-Tate
numbers from the highest weights µ(σ) of Wσ, presupposes a dictionary relating

complex and p-adic places of K. In [HT] this is given by an isomorphism ι : Q̄p
∼

−→C.
For what follows it suffices to identify the algebraic closure of Q in Q̄p with the field

of algebraic numbers in C. Then the p-adic embeddings of Q, and in particular of
K, are identified with the complex embeddings; if s is an embedding of K in Q̄p, we

write ι(s) for the corresponding complex embedding. Let s(K) denote the closure
of s(K) in Q̄p.

Let s be an embedding of K in Q̄p, and let DdR,s denote Fontaine’s functor from

E(Π)λ-representations of Γs = Gal(Q̄p/s(K)) to filtered E(Π)λ ⊗Qp
s(K)-modules:

DdR,s(R) = (R ⊗Qp
BdR)

Γs .

The Hodge-Tate numbers ofR (with respect to s) are the j such that grjDdR,s(R) 6=

(0); the corresponding graded pieces are free of rank 1 over E(Π)λ ⊗Qp
s(K). Then

4If v is unramified over Q, the statement that the relevant Shimura variety at finite level has

good reduction at v is in [K3]; Kottwitz attributes the result to Zink [Z] and Langlands-Rapoport

[LR]. There’s no question that the method of proof of Satz 6.2 of [LR] suffices for the proof, but
the authors refer to the proof as a “Skizze”; Zink states his theorem under local hypotheses that

are superfluous for the proof of good reduction. When v is not assumed unramified over Q, the
proof of good reduction is in [HT], again under a superfluous local hypothesis. Similarly, [TY]

makes the assumption that G is the unitary similitude group attached to a division algebra over

K, which is again unnecessary to prove semistable reduction. Zink also proves that the reduction
is proper, again under unnecessarily restrictive hypotheses.
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in the situation of Theorem 1.4, the Hodge-Tate numbers of ρλ,Π with respect to s
are the j of the form

(1.6) j = µi(ι(s)) + n− i, i = 1, . . . , n.

This is to be compared to part 4 of Theorem VII.1.9 of [HT]; the replacement of
ι(s) by ι(s)c corresponds to our replacement of Π by Π∨ in the definition of ρλ,Π.

5

Suppose n is even but Π does not satisfy Hypothesis 1.3. Part (a) of the following
theorem is proved (but not stated) by Clozel in [C3] and is stated as well as proved
as part of a much more general theorem by Scholze and Shin [SS]:

Theorem 1.7. Suppose Π satisfies Hypotheses (1.1) and (1.2). Then there is a

number field E(Π) and a compatible system ρλ,Π : ΓK → GL(n(n−1)
2

, E(Π)λ) of
semi-simple λ-adic representations, where λ runs through the finite places of E(Π),
such that

(a) For almost all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ)
at which Πv is unramified, ρλ,Π is an unramified representation, and

ρλ,Π |ssΓv

∼
−→∧2 L(Πv)(1− n).

(b) For all finite primes v of K dividing NE(Π)/Q(λ), ρλ,Π |Γv
is de Rham.

(c) Let v be a finite prime of K, unramified over Q and dividing NE(Π)/Q(λ).
Suppose Πv has a non-zero vector fixed by a maximal compact subgroup of
GL(n,Kv). Then ρλ,Π |Γv

is crystalline.

This theorem is equally valid for odd and even n, but is a consequence of Theorem
1.4 when n is odd.

Proof. Theorem 1.7 is the Galois counterpart of one of the theorems about stable
base change for unitary groups proved in [L.IV.1]. In [C3] the relevant reference
is the equality between the expressions (3.7) and (3.8); in [SS] part (a) of the
theorem is a special case of Theorem 10.2. Part (b) follows from the fundamental
comparison theorem between p-adic étale cohomology and de Rham cohomology
(Fontaine’s CDR, now proved by many people). Part (c) follows similarly from
Fontaine’s Ccris and the fact that, under the hypotheses, the representation ρλ,Π is
realized in the cohomology of a Shimura variety with good reduction at v [Z, LR].6

�

2. An application of eigenvarieties and

p-adic families of Galois representations

In this section we recall the main result of [Ch] (using Theorem 1.4 above).

Let K/F be a CM quadratic extension of a totally real field, satisfying Special
Hypotheses (1.2.1) and (1.2.3), and assume n even. These hypotheses imply by a
standard Galois cohomological argument (cf. [C2]) that

5In comparing the formulas here with those in [HT], the reader is warned that highest weights
of representations of GL(n) are indexed in [HT] by increasing n-tuples.

6As in note 1, [Z] proves good reduction under somewhat restrictive hypotheses at a prime un-

related to v, but the proof works without these hypotheses. The assumption that v be unramified
over Q is certainly unnecessary but the more general case has not been treated in the literature.
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Lemma 2.1. There exists a hermitian space V0/K relative to the extension K/F
such that the unitary group G0 = U(V0) satisfies

(i) For all finite places v, G0(Fv) is quasi-split and splits over an unramified
extension of Fv; in particular, G0(Fv) contains a hyperspecial maximal com-
pact subgroup.

(ii) For all real places v, G0(Fv) is compact.

Moreover, G0 is unique up to isomorphism.

By Labesse [L.IV.1], any Π satisfying Hypotheses (1.1) and (1.2) admits a strong
descent to the unitary group G0.

Fix ℓ a finite prime and consider the following hypothesis on a Π satisfying
Hypotheses (1.1).

Special Hypotheses 2.2. There is a place v0 of F dividing the rational prime ℓ
such that

(2.2.1) v0 splits in K,
(2.2.2) If v is a place of K dividing v0, Πv has nonzero Iwahori-invariants.

We fix a pair of embeddings ι = (ιℓ, ι∞) of Q into Qℓ and C. The following the-
orem is [Ch, Thm. 3.3 & 3.5]. If ρ = (s,N) and ρ′ = (s′, N ′) are two Weil-Deligne
representations, we refer to [Ch] §3.1 for the precise definition of the dominance
relation ρ ≺ ρ′. Let us simply say here that it implies that s ≃ s′ and that N is in
the Zariski-closure of the conjugacy class of N ′.

Theorem 2.3. Suppose Π satisfies Hypotheses (1.1), (1.2) and Special Hypotheses
(2.2) (but not necessarily (1.3)). Then there is a semisimple continuous Galois
representation ρι,Π : ΓK → GL(n,Qℓ) such that

(a′) For all finite primes v of K of residue characteristic prime to ℓ,

ρF−ss
ι,Π |Γv

≺ L(Πv ⊗ | • |
1−n
2

v ).

Moreover, the assertion about Hodge-Tate numbers in Theorem 1.4. (i) (b) holds,
as well as the whole of (b), (c) and (d) for all finite primes v of K above ℓ but not
dividing v0.

The main ingredient in the proof is the construction of certain ℓ-adic eigenvari-
eties of the unitary group G0. These eigenvarieties are chosen so as to interpolate
ℓ-adically all the automorphic representations π of G0 which are unramified at the
finite places v of F that are inert in K and such that:

- πv ≃ W∨
v for each archimedean prime v of F such that the ℓ-adic place of

F defined by ιℓι
−1
∞ (v) is not the given place v0; here we identify irreducible

representations of the compact Lie group U(n) with irreducible algebraic
representations of GL(n).

- for each finite prime v of F that splits in K, πv and Πv are in the same
Bernstein component and the monodromy operator of L(πv) is dominated
by the one of L(Πv) (see [BC, §6.5] for a more precise condition).

The inertial part in (a′), including the assertion about the monodromy operator, is
due to Belläıche-Chenevier [BC]. Moreover, parts (b), (c) and (d) rely on the work
of Berger and Colmez on families of ℓ-adic Galois representations of ℓ-adic fields
with constant Hodge-Tate weights [BCo].
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3. Removal of Special Hypotheses

3.1. Removal of Special Hypotheses 1.2.

Let I denote a set of cyclic extensions of a fixed number field E, each being of a
same prime degree d, and let S be a finite set of places of E. The set I is called S
general [So, Definitions 1 and 3] if, for any finite extension M of E, and any prime v
of E not in S, there is Ei ∈ I linearly disjoint from M such that v splits completely
in Ei. This notion is useful for patching Galois representations. Indeed, fix some
integer n ≥ 1, a prime ℓ, as well as a semisimple continuous representation

ρi : ΓEi
→ GL(n,Qℓ)

for each Ei ∈ I. Assume that for all i, j we have ρi|ΓEiEj
≃ ρj |ΓEiEj

and ρσi

i ≃ ρi,

where σi is a generator of Gal(Ei/E). Then the main result of [So], extending an
argument of Blasius-Rogawski when d = 2 and of the second author in general,
ensures that there exists a unique semisimple continuous representation ρ : ΓE →
GL(n,Qℓ) such that ρ|ΓEi

≃ ρi for each i.

Let now K/F be any CM quadratic extension of a totally real field, and let Π
be a cuspidal automorphic representation of GL(n,K) satisfying Hypothesis 1.1.

Proposition 3.1.1. There is a finite set S of places of F and an S-general collec-
tion I of totally real quadratic extensions Fi/F such that, for each Fi ∈ I, letting
Ki = Fi · K, Πi the base change of Π to Ki, the triple (Fi,Ki,Πi) satisfies Special
Hypotheses 1.2. Moreover, we can assume that, for every v ∈ S and every Fi ∈ I,
either v splits in K/F or the unique extension of v to K, denoted ṽ, splits in Ki.

Proof. Let S be the set of primes v of F at which (1.2.1) or (1.2.2) fails: either
v ramifies in K/F , or v stays prime in K and the corresponding component Πṽ is
ramified. We take I to be the set of totally real quadratic extensions Fi/F with the

property that, for all v ∈ S, Fi,v
∼
−→Kṽ where Fi,v = Fi⊗F Fv. We also assume that

each Fi/F is ramified at at least one finite place not in S at which Π is unramified.
This last condition ensures that Πi is cuspidal. It is obvious that this set has the
properties claimed. �

Theorem 3.1.2. Let Π be a cuspidal automorphic representation of GL(n,K) sat-
isfying Hypothesis 1.1 and Special Hypothesis 1.3 if n is even. Then the conclusions
of Theorem 1.4 also hold for Π.

If n is even and satisfies Hypothesis 1.1, then the conclusions of Theorem 1.7
also hold for Π.

Proof. Observe that the collection {Ki} of quadratic extensions of K given by
Proposition 3.1.1 is S′-general, where S′ is the set of places of K above S. The
first part follows from Theorem 1.4 and the patching lemma of [So] recalled above
(see [HT] pp. 229-232 for more details). The second assertion is deduced from
Theorem 1.7 and [So] in the same way. �

3.2. Removal of Special Hypotheses 1.3.

Since Special Hypotheses 1.3 are only relevant to even n, we assume n to be
even. Moreover, the case n = 2 is already understood. Thus we assume n ≥ 4.
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Lemma 3.2.1. Let F be a totally real field, v a finite place of F , S a finite set
of places of F not containing v, M/F any finite extension. Let L/Fv be a cyclic
extension of prime degree d. There exists a totally real cyclic extension F ′/F of
degree d in which any place of S splits completely, linearly disjoint from M , such
that, for the unique place v′ of F ′ dividing v, the extension F ′

v′/Fv is isomorphic
to L/Fv.

Proof. Fix M as in the statement. By enlarging S if necessary, we may assume
that S contains the infinite places of F and that for any cyclic subextension C/F
of M/F , there is a place in S which is not split in C (Chebotarev). Any cyclic
extension of F in which every place of S splits completely is linearly disjoint from
M (this argument is taken from [CHT] Lemma 4.1.2). The lemma follows then from
the Grunwald-Wang theorem [AT]. Note that we are not in the so-called ”special
case” as d is prime. �

Fix some rational prime ℓ. Define the solvable index of a finite Galois extension
of ℓ-adic fields L/K as the integer m ≥ 0 such that there is a tower of extensions

L = Lm ⊃ Lm−1 ⊃ · · · ⊃ L0 = K

with each Li+1/Li cyclic of prime degree. For an integer m ≥ 0, consider the
following property of a cuspidal automorphic representation Π of G satisfying (1.1).

Property P(m). There is a prime v of F dividing ℓ and that splits as v = uu′

in K, as well as a Galois extension L/Fv of solvable index m, such that the base
change of Πu to L has a nonzero Iwahori fixed vector.

If Π satisfies P(m) and if v is as above we will say that Π satisfies P(m) at v.
It follows from the local Langlands correspondence, and indeed from the numerical
correspondance proved by Henniart, that for any Π, and any place v = uu′ of F
dividing ℓ that splits in K, there exists an integer m such that Π satisfies P(m) at v.
More precisely, letting (s,N) be the representation of the Weil-Deligne group of Fv

corresponding to Πu – s is a Frobenius semisimple representation of the Weil group
of Fv and N is a nilpotent endomorphism satisfying the usual commutation rules
– we choose L such that the restriction of s to the Weil group of L is unramified.

Corollary 3.2.2. Let m be an integer and let Π be a cuspidal automorphic repre-
sentation of G satisfying Hypotheses 1.1 and property P(m+1) at the place v. Let
d be the prime degree of a cyclic extension L1/Fv given by the property P(m+1).
Let M/F be any finite extension. Let w be a place of F different from v.

There is a totally real cyclic extension F ′/F of degree d in which w splits com-
pletely, linearly disjoint from M , and and with a unique place v′ above v, such that,
letting K′ = K ·F ′, the base change ΠK′ of Π to GL(n,K′) is cuspidal and satisfies
P (m) at the place of F ′ dividing v.

Proof. By enlarging M if necessary, we may assume that M contains any cyclic
extension E/F such that the base-change of Π to GL(n,E · K) is not cuspidal.
That there are only finitely many such extensions follows from Arthur-Clozel’s
base change. Apply the previous lemma to F , v, S = {w}, M and L = L1. �

Remark. It follows that the collection I of totally real cyclic extensions F ′/F of
degree d for which ΠK′ satisfies P(m) at v is {v}-general. The collection of cyclic
extensions KF ′/K with F ′ ∈ I is thus {u, u′}-general as well, where v = uu′ in K.
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Theorem 3.2.3. Fix a prime ℓ and embeddings ι = (ιℓ, ι∞) as above. Let Π be
a cuspidal automorphic representation of GL(n,K) satisfying General Hypotheses
(1.1). Then there exists a semisimple continuous Galois representation

ρι,Π : ΓK → GL(n, Q̄ℓ)

satisfying the following conditions:

(a′) For all finite primes v of K of residue characteristic prime to ℓ,

(ρι,Π |Γv
)F−ss ≺ L(Πv ⊗ | • |

1−n
2

v ),

where Γv is a decomposition group at v, L is the local Langlands correspon-
dence, and the relation ≺ is the partial ordering on the associated Weil-
Deligne representations defined in [Ch] §3.1;

(b) For all finite primes v of K dividing ℓ, ρλ,Π |Γv
is de Rham, and its Hodge-

Tate numbers have multiplicity at most one (i.e., ρλ,Π is Hodge-Tate reg-
ular) and are determined by Π∞, or equivalently by W (Π), in accordance
with the recipe given in (1.5) below.

(c) Let v be a finite prime of K dividing ℓ. Suppose Πv has a non-zero vector
fixed by a maximal compact subgroup of GL(n,Kv). Then ρv := ρλ,Π |Γv

is crystalline, and if ϕ denotes the smallest linear power of the crystalline
Frobenius of Dcrys(ρv) then

det(T − ϕ | Dcris(ρv)) = det(T −L(Πv ⊗ | • |
1−n
2

v )(Frobv)).

(d) Let v be a finite prime of K dividing ℓ. Suppose Πv has a non-zero vector
fixed by an Iwahori subgroup of GL(n,Kv). Then ρλ,Π |Γv

is semistable.

Proof. Arguing as in Theorem 3.1.2 we may assume that K/F satisfies Hypothesis
(1.2) and that furthermore each prime of F dividing ℓ splits in K. If F ′/F is
a totally real field, note that KF ′/F ′ still has these properties. The discussion
following the statement of property P(m) ensures moreover that for any place v
dividing ℓ there is some m ≥ 0 such that Π satisfies P(m) at v.

We first show by induction on the integer m ≥ 0 that for any (F,K,Π) with K/F
as above and satisfying P(m) at some place v above ℓ, there exists a (necessarily)
unique ρι,Π satisfying (a′), which moreover satisfies (b), (c) and (d) at each place
v′ dividing ℓ but not dividing v. When m = 0 this is exactly Theorem 2.3. Assume
now by induction that this property holds for the integer m ≥ 0 and assume that
Π satisfies P(m+1) at the place v of F . By the previous Remark and Chebotarev,
we may patch the ρι,ΠF ′K

along the {u, u′}-general collection {F ′K, F ′ ∈ I}, where
v = uu′ in K. Define ρι,Π as the resulting representation of ΓK. It is immediate
that it has the required properties, which concludes the induction.

The recipe for the Hodge-Tate numbers at the primes dividing ℓ follows from this
construction, as they can be read off after a finite base change, and the relevant
assertion in Theorem 2.3. In particular, ρι,Π is Hodge-Tate at any prime dividing ℓ.
Better, we have shown that given an ℓ-adic place v of F then (b), (c) and (d) hold
at each ℓ-adic place of K not dividing v. In particular, we are done if F has at least
two ℓ-adic places. But we can always reduce to this case by a suitable totally real



12 CONSTRUCTION OF AUTOMORPHIC GALOIS REPRESENTATIONS, II

quadratic base change F ′/F in which each ℓ-adic place of F splits. This concludes
the proof.

We now offer a second argument proving that ρι,Π is de Rham at each place
dividing ℓ which uses Theorem 1.7 (which has not been used so far) but less material
from the theory of ℓ-adic families of Galois representations of ℓ-adic fields. More
precisely, we do not assume the last assertion in Theorem 2.3 concerning (b), (c)
and (d) (hence on the aforementioned work of Berger and Colmez), but only the
one concerning the Hodge-Tate numbers (a consequence of Sen’s theory for families
of Galois representations). Part (b) of Theorem 1.7, together with condition (a)
and Chebotarev density, implies at least that ∧2ρι,Π is de Rham. Now since n ≥ 4,

the map from ∧2 : GL(n) → GL(n(n−1)
2

) is an isogeny. A theorem of Wintenberger

[Wi] asserts that if L is an ℓ-adic field and ρ : ΓL → GL(n, Q̄ℓ) is a Hodge-Tate
representation whose image under an isogeny is de Rham, then ρ is itself de Rham.
When ℓ is unramified in F , a similar argument shows that ρ is crystalline at v when
Πv has a non-zero vector fixed by a maximal compact subgroup of GL(n,Kv). �

Remark 3.2.4. As far as we know, the idea of the proof given here to get prop-
erties (b), (c) and (d), which relies on the last assertion in Theorem 2.3 (hence on
the use of an ℓ-adic eigenvariety with only partially moving weights to apply the
results of Berger-Colmez) is new. Christopher Skinner informed us that he also had
this idea to get part (c) of the result above.

The following result (and its proof) is due to R. Taylor. If E ⊂ C is a number
field, and if ι is a pair of embeddings as above, we denote by Eι be the closure of
ιℓι

−1
∞ (E) inside Qℓ.

Proposition 3.2.5. Let Π be a cuspidal automorphic representation of G satisfying
Hypotheses 1.1. There is a number field E(Π) ⊂ C such that for each pair of
embeddings ι, the representation ρι,Π is defined over E(Π)ι.

The authors do not know however if it is always the case that each ρι,Π is defined
over the finite extension of Qℓ generated by its traces.

Proof. Let E0(Π) be the coefficient field of the cohomological representation Π
[C1, Proposition 3.1]. By property (a′), the characteristic polynomial χv of the
image under ρι,Π of a Frobenius at a finite place v of K belongs to E0(Π)[T ] and is
independent of ι (assuming that Πv is unramified and that ℓ is chosen prime to v).
By Chebotarev’s theorem the field of traces of ρι,Π is thus included is E0(Π)ι.

Let G be a group, L/K a field extension, and ρ : G → GLn(L) a semisimple
representation whose traces belong to K. Recall that if there is an element g ∈ G
such that the characteristic polynomial of ρ(g) has n distinct roots in K, then ρ is
defined over K. (A central simple algebra over K of dimension n2 with n mutually
orthogonal idempotents is isomorphic to the matrix algebra.) It is thus enough to
show that there exist two finite places v1, v2 of K of distinct residue characteristic
such that χv1

and χv2
each have n distinct roots in C : any number field E(Π)

containing E(Π)0 and those roots does the trick.

Fix some prime ℓ and a pair ι. Let H denote the Zariski closure of ρι,Π(ΓK) in

GLn(Qℓ). As ρι,Π is Hodge-Tate with distinct Hodge-Tate weights for any embed-

ding K → Qℓ (one would be enough), it follows from an argument of Serre that the
Qℓ-group H contains an element with n distinct eigenvalues [Se, §3]. We conclude
the proof by Chebotarev’s theorem. �
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4. Totally real fields

We now state a version of Theorem 1.4 for cohomological automorphic repre-
sentations of GL(n,AF ). General Hypotheses 1.1 are replaced by the following
hypothesis.

General Hypotheses 4.1. Let Π be a cuspidal automorphic representation of
GL(n,AF ) Writing Π = Π∞ ⊗ Πf , we assume

(i) (Regularity) There is a finite-dimensional irreducible representation W (Π)
of G(R) such that

H∗(g, K∞; Π∞ ⊗W (Π)) 6= 0.

(ii) (Polarization) There is a Hecke character

χ : A×
F /F

× → C×

with χv(−1) independent of the prime v | ∞ such that he contragredient Π∨

of Π satisfies
Π∨ ∼

−→Π⊗ χ.

Theorem 4.2. Let Π be a cuspidal automorphic representation of GL(n,AF ) sat-
isfying Hypotheses 4.1. Then there is a number field E(Π) and a compatible system
ρλ,Π : ΓF → GL(n,E(Π)λ) of λ-adic representations, where λ runs through the
finite places of E(Π), such that

(a′) For all finite primes v of F of residue characteristic prime to NE(Π)/Q(λ),

(ρι,Π |F−ss
Γv

≺ L(Πv ⊗ | • |
1−n
2

v ).

Here Γv denotes a decomposition group at v.
(b) For all finite primes v of F dividing NE(Π)/Q(λ), ρλ,Π |Γv

is de Rham,
and its Hodge-Tate numbers have multiplicity at most one (i.e., ρλ,Π is
Hodge-Tate regular) and are determined by Π∞, or equivalently by W (Π),
in accordance with the recipe given in (1.5).

(c) Let v be a finite prime of F dividing NE(Π)/Q(λ). Suppose Πv has a non-
zero vector fixed by a maximal compact subgroup of GL(n,Kv). Then ρv :=
ρλ,Π |Γv

is crystalline, and if ϕ denotes the smallest linear power of the
crystalline Frobenius of Dcrys(ρv) then

det(T − ϕ) = det(T − L(Πv ⊗ | • |
1−n
2

v )(Frobv)).

(d) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a non-
zero vector fixed by an Iwahori subgroup of GL(n,Kv). Then ρλ,Π |Γv

is
semistable.

Proof. The deduction of this result from Theorem 3.2.5 follows exactly the proof
of Proposition 4.3.1 of [CHT]. The claim regarding E(Π) follows as in Proposition
3.2.5. �

Remark 4.3. As in Theorem 2.3, the present methods only allow us to prove (a′)
in general and not the analogue of (a) as in Theorem 1.4. This has since been done
by Caraiani [Ca].
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