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Abstract. Let G′ ⊂ G be an inclusion of reductive groups whose
real points have a non-trivial discrete series. Combining ergodic
methods of Burger-Sarnak and the author with a positivity argu-
ment due to Li and the classification of minimal K-types of discrete
series, due to Salamanca-Riba, we show that, if π is a cuspidal au-
tomorphic representation of G whose archimedean component is
a sufficiently general discrete series, then there is a cuspidal au-
tomorphic representation of G′, of (explicitly determined) discrete
series type at infinity, that pairs non-trivially with π. When G and
G′ are inner forms of U(n) and U(n−1), respectively, this result is
used to define rationality criteria for sufficiently general coherent
cohomological forms on G.

Introduction

For years I would meet Ilya Piatetski-Shapiro at conferences and
mathematical institutes, but we only spoke a few times, and our conver-
sations were generally brief and to the point. Shortly after I arrived at
the IAS in 1983 for the special year on automorphic forms – I later came
to suspect that Ilya was in part responsible for my having been invited
– he asked me to come to his office to tell him what I had been doing.
I explained that I had been working on defining arithmetic models of
automorphic vector bundles, to provide a general geometric framework
for Shimura’s characterization of arithmetic holomorphic automorphic
forms – forms rational over number fields. Ilya asked whether I had a
similar characterization of arithmetic non-holomorphic coherent coho-
mology classes. I replied that I had not thought about the question;
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he suggested that I work on the problem; and that was essentially the
end of the discussion.1

Non-holomorphic coherent cohomology of Shimura varieties is usu-
ally defined by automorphic representations whose archimedean com-
ponents are in the non-holomorphic discrete series. Since Takeyuki
Oda had also advised me to look at such automorphic representations,
I spent the next few years developing a theory that provides a geo-
metric framework for such cohomology classes, and in many cases I
was able to find a characterization of the classes that are rational over
number fields. But this characterization, developed in [H90], is based
on studying the cup products of the classes in question with holomor-
phic arithmetic forms on Shimura subvarieties. These cup products are
compatible with the rational structure of canonical models of Shimura
varieties, and therefore the rationality of these cup products is a neces-
sary condition for arithmeticity of the class being tested. The method
of [H90] shows that it is often also a sufficient condition, but provides
no information in the typical case, where all such cup products vanish
for purely local reasons.

The present paper gives an optimal answer to Piatetski-Shapiro’s
question for coherent cohomology of Shimura varietes attached to uni-
tary groups, at least when the infinitesimal character is sufficiently
regular. As in [H90], the rationality criterion is based on restriction to
Shimura subvarieties and integrating against classes on the latter, but
this period integral in general is purely analytic and has nothing to do
with algebraic geometry. Nevertheless, the multiplicity one condition
implied by the Gross-Prasad conjecture [GGP] shows the existence of
canonical period invariants, called the Gross-Prasad periods in [H12],
that have the property that the proportionality of the period integral
to the corresponding Gross-Prasad period is a necessary and sufficient
condition for arithmeticity. When the infinitesimal character is suffi-
ciently regular, it can be shown that the period integrals do not all
vanish. Thus the criterion provides a foolproof way to reduce arith-
meticity on a Shimura variety attached to an inner form of U(n) to
that on an inner form of U(n− 1), and by induction we obtain a gen-
eral criterion.

The remarks of the preceding paragraph need to be qualified, how-
ever. The Gross-Prasad periods are defined in [H12], assuming a stronger
version of the local Gross-Prasad conjecture at archimedean places

1He did ask one more question: was I married? I was not, and I was surprised
to discover that he had advice for me on that matter as well.
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than is currently available. It has been proved in [SZ] that the mul-
tiplicity one conjecture of Gross-Prasad is true for U(n − 1)-invariant
linear forms on the smooth Frechet completions of moderate growth
of discrete series representations of U(n) × U(n − 1), where here for
m = n, n − 1, U(m) denotes any inner form of the compact unitary
group U(m). In order to define Gross-Prasad periods, one needs mul-
tiplicity one for invariant linear forms on the corresponding Harish-
Chandra modules; in other words, one needs to know the automatic
continuity of such invariant linear forms. This remains an open prob-
lem, at least when U(n− 1) is non-compact and the representation of
U(n) is not holomorphic, so in that sense the results of the present
paper are conditional.

The methods of this paper are in large part the same as those of my
article [HL] with J. S. Li. The main difference is that the earlier paper
only considered rationality criteria based on cohomological cup prod-
ucts. In particular, we make heavy use of Li’s idea to apply Flensted-
Jensen’s formula for the leading matrix coefficients of discrete series
representations to show weak inclusion of representations of U(n − 1)
in restrictions from U(n). We also use the method of Burger-Sarnak, or
the more elementary methods of §7 of [H90], to deduce non-vanishing
of global pairings from local weak inclusion.

We note that the proof of the full Gross-Prasad conjecture for uni-
tary groups over archimedean fields would allow us to derive the main
theorem without reference to the Flensted-Jensen formula. Indeed, the
full Gross-Prasad conjecture determines the discrete series representa-
tions of (an inner form of) U(n− 1) that are weakly contained in any
given discrete series representation π of (an inner form of) U(n). In
most cases, this weak containment has nothing to do with the leading
matrix coefficient of π. The paper is organized in a progression from
most general and conditional results – much of the argument is valid
for general Shimura varieties – to the most specific and unconditional.

I thank Dipendra Prasad for asking the question answered in this
paper and Jeff Adams for directing me to the article [SR] of Salamanca-
Riba. I also thank the editors of this volume for inviting me to con-
tribute.

1. Restrictions of discrete series representations and
global consequences

Let G be a connected reductive algebraic group over Q, G′ ⊂ G a
reductive subgroup. Let ZG and ZG′ denote their respective centers,
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AG and AG′ the maximal R-split tori in ZG and ZG′ . We assume in
what follows that AG is of finite index in AG′ . By a discrete series
representation of G(R) we will mean an irreducible Hilbert space rep-
resentation π of G(R) such that, for some character ξ of G(R), π⊗ ξ is
trivial on an open subgroup A0 ⊂ AG(R), and such that π ⊗ ξ defines
a square-integrable representation of G(R)/A0.

Suppose π and π′ are discrete series representations of G(R) and
G′(R), respectively, and assume that their central characters coincide
on an open subgroup A0 ⊂ AG(R).

Hypothesis 1.1. The representation π′ is weakly contained in the re-
striction of π to G′(R); in other words, there is a non-trivial Hilbert
space pairing

π ⊗ π′,∨ → C
invariant under G′(R)/A0.

Suppose π occurs in the L2-automorphic spectrum of G; in other
words, there is an equivariant homomorphism λ : π → C∞(Γ\G(R)),
for some congruence subgroup Γ ⊂ G(Q), such that, for some character
ξ of G(R) trivial on Γ and for an open subgroup A0 ⊂ AG(R) as above
λ(π)⊗ ξ ⊂ L2(Γ ·A0\G(R)). Theorem 1.1(a) of [BS] then asserts that
π′ is weakly contained in the L2 automorphic spectrum of G′: in other
words

Theorem 1.2. (Burger-Sarnak) Assume the pair (π, π′) satisfies hy-
pothesis 1.1. For an appropriate character ξ′ of G′(R), π′ ⊗ ξ′ is the
limit, in the Fell topology of unitary representations of G′(R)/A0, of L2

automorphic representations of Γ′ ·A0\G′(R) as Γ′ varies over congru-
ence subgroups of G′(R).

If α is a Hecke character of ZG, we let L2
cusp,α(G(Q)\G(A)) denote

the space of complex-valued functions f on G(Q)\G(A) with central
character α such that, for an appropriate Hecke character ξ of G(A),
f · ξ is trivial on an open subgroup A0 ⊂ AG(R) and defines a square
integrable function on G(Q) · A0\G(A). By a cuspidal automorphic
representation of G we will mean alternatively an irreducible Hilbert
space component of L2

cusp,α(G(Q)\G(A)) for some α or the correspond-
ing (Lie(G)C, K∞)×G(Af ))-module, for some maximal compact sub-
group K∞ ⊂ G(R). The first part of the following corollary follows by
standard arguments. The second part is then obvious, and the third
part is a consequence of the well-known fact that integrable discrete se-
ries representations are isolated in the Fell topology (or of the Poincaré
series argument in [H90], §7). Note that π and π′ now denote global
automorphic representations.
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Corollary 1.3. Let π be a cuspidal automorphic representation of G
whose archimedean component π∞ is a discrete series representation of
G(R). Let π′∞ by a discrete series representation of G′(R), and assume
the pair (π∞, π

′
∞) satisfies hypothesis 1.1.

(a) For an appropriate Hecke character ξ′ of G′(A), π′∞⊗ ξ′∞ is the
limit, in the Fell topology of unitary representations of G′(R)/A0,
of archimedean components of L2 automorphic representations
of G′(A)/A0.

(b) In particular, if π′∞ is isolated in the automorphic spectrum of
G′, then there is an L2-automorphic representation σ of G′ with
archimedean component π′,∨∞ and automorphic forms f ∈ π and
f ′ ∈ π′ such that∫

G′(Q)·A0\G′(A)

f(g′)f ′(g′)dg′ 6= 0.

(c) If π′∞ belongs to the integrable discrete series, then there exists
σ as in (b).

2. Restrictions of minimal types

In what follows, G is a connected reductive group over Q such that
G(R) has a discrete series. Our goal in this section is to state a simple
algebraic condition on π as in the statement of Hypothesis 1.1 that
guarantees that the condition of the hypothesis is verified. We are
not striving for maximum generality, and the condition is certainly
unnecessarily strong.

Choose maximal compact connected subgroups K∗∞ ⊂ G(R) and
K ′,∗∞ ⊂ G′(R), with K ′,∗∞ ⊂ K∗∞. Define K∞ = K∗∞ · ZG(R), K ′∞ =
K ′,∗∞ · ZG′(R). Let π be a discrete series representation of G(R). It
has a minimal, or Blattner K∞-type τ , an irreducible representation τ
of K∞ with the property that τ occurs in π with multiplicity 1, and
is minimal in the sense that its highest weight is shortest among all
K∞-types occurring in π.

In the next section we recall the formula for the highest weight of τ
in terms of the Harish-Chandra parameter of π. On the other hand,
given an irreducible representation τ of K∞, the article [SR] provides a
necessary and sufficient criterion for τ to be the minimal K∞-type of a
discrete series representation (and more generally, of a cohomologically
induced representation of the form Aq(λ)). Choose a maximal torus
H ⊂ K∞. Since G(R) has discrete series, H is also a maximal torus of
G. We use lower case gothic letters to denote (complexified real) Lie
algebras; thus k = Lie(K∞)C, h = Lie(H(C)), and so on. Denote by
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∆(k, t) (resp. ∆(g, t))the set of roots of t in k (resp. g) and let (•, •) be
the pairing on t∗ induced by any non-degenerate G(R)-invariant pairing
on g.

Let µ be the highest weight of an irreducible representation τ of K∞,
relative to a system of positive roots of t. Define

(2.1) µ′ = µ+
∑

α∈∆(k,t),(α,µ)>0

α.

The θ-stable parabolic defined by µ′ is the parabolic subalgebra q(µ′)
spanned by t and the root spaces gα for (α, µ′) ≥ 0. The following
observation is clear

Observation 2.2. For µ sufficiently regular, q(µ′) is a Borel subalgebra
of g.

Denote by u(µ′) the unipotent radical of q(µ′), and let 2ρ(u(µ′) de-
note the sum of the roots of t occurring in u(µ′). The following propo-
sition is a special case of a result of Salamanca-Riba.

Proposition 2.3. (([SR], Proposition 4.1)) Define

∆(u(µ′), t) = {α ∈ ∆(g, t) | (α, µ′) > 0}.
Then τ is the lowest K∞-type of a discrete series representation π of
G(R) if and only if

(a) q(µ′) is a Borel subalgebra of g;
(b)

(µ′, α) ≥ (2ρ(u(µ′)), α)

for all α ∈ ∆(u(µ′), t)

In that case, the Harish-Chandra parameter of π is equal to µ′−2ρ(u(µ′)).

When q(µ′) is not a Borel subalgebra, Salamanca-Riba determines
the parameters λ for which τ is the lowest K∞-type of a module
Aq(µ′)(λ), under a condition analogous to (b). We let G′ ⊂ G be a
reductive subgroup as in the previous section, and we assume G′(R)
has a non-trivial discrete series. In the next few propositions, a char-
acter λ of t is “sufficiently regular” if |(λ, α)| > N(G) for all roots α,
where N(G) is a positive constant, depending only on G(R), that can
be made explicit.

Corollary 2.4. Let τ be an irreducible representation of K∞ with high-
est weight µ. For µ sufficiently regular, τ is the lowest K∞-type of a
discrete series representation π of G(R). Moreover, for µ sufficiently
regular, the restriction of τ to K ′∞ contains an irreducible representa-
tion τ ′ that is the lowest K ′∞-type of a discrete series representation π′

of G′(R).
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Proof. The set of subsets of ∆(g, t) is finite, so the term 2ρ(u(µ′)) that
appears in (b) of [SR] belongs to a bounded subset of the vector space
Hom(t,R). This implies the first part of the Corollary, and the second
part follows by applying the first part to G′, bearing in mind that
the highest weight of τ is an extreme weight of a constituent of its
restriction to K ′∞. �

Proposition 2.5. Let π be an irreducible discrete series representa-
tion of G(R) with Harish-Chandra parameter λπ. Suppose λπ is suf-
ficiently regular. Then there is a discrete series representation π′ of
G′(R) weakly contained in the restriction of π to G′(R). Moreover
(possibly under a more stringent regularity condition) we can assume
π′ to be in the integrable discrete series.

Proof. The proof is based on the argument of Li used in [L90, HL]. Let
π′ be the discrete series representation of G′(R) mentioned in the state-
ment of 2.4, and let τ ′ be its minimal K ′∞-type. Let ψπ be the matrix
coefficient of π occurring in its minimal K-type τ , defined by formula
(1.2.6) of [HL]. Proposition 1.2.3 of [HL], based on the calculations in
§4 of [L90], asserts that π′ is weakly contained in the restriction of π
provided three conditions are satisfied. First, the restriction of ψπ to
G′ has to be in L2+ε(H); the argument, valid for any tempered rep-
resentation of G, is reviewed in the course of the proof of Proposition
2.3.4 of [HL]. Next, ψπ has to satisfy the Flensted-Jensen formula of
[FJ]; but this is true for all discrete series representations. The final
condition is that τ ′ be contained in the restriction to K ′∞ of τ ; this is
our initial hypothesis.

The final claim follows from the characterization of integrable dis-
crete series by Hecht and Schmid [HS]: any discrete series with suffi-
ciently regular Harish-Chandra parameter is integrable.

�

We return to the global situation: G ⊃ G′ are connected reductive
groups over Q, and both G(R) and G′(R) are assumed to have discrete
series. Combining 2.5 with 1.3, we draw the following global conclusion.

Proposition 2.6. Let π be a cuspidal automorphic representation of
G(A), with archimedean component π∞. Suppose the Harish-Chandra
parameter of π∞ is sufficiently regular. Then there is an integrable dis-
crete series representation π′∞ of G′(R), a cuspidal automorphic rep-
resentation π′ of G′ with archimedean component π′∞ and automorphic
forms f ∈ π and f ′ ∈ π′ such that∫

G′(Q)·A0\G′(A)

f(g′)f ′(g′)dg′ 6= 0.
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Moreover, f and f ′ can be taken in the minimal K- (resp. K ′-) types
of the archimedean components of their respective representations.

Proof. We are changing notation: the representation π′ here is σ∨ in
1.3, and we have π′∞ pairing with rather than weakly contained in π∞.
Since 1.3 only claims that σ is an L2-automorphic representation, we
need to show that in fact π′ is cuspidal. If not, then π′ is a resid-
ual square-integrable representation. But since π′∞ is tempered, this
contradicts Wallach’s theorem [Wa] that residual representations are
non-tempered at all places. �

If we assume that automorphic representations with discrete series
components at infinity are isolated in the automorphic spectrum, then
we can relax the regularity condition in the last proposition, using the
Burger-Sarnak theorem.

3. Coherent cohomology of unitary group Shimura
varieties

Preliminary notation. Let F+ be a totally real field, F a totally
imaginary quadratic extension of F+. The quadratic Hecke character
of F+ attached to the extension F is denoted εF . Let W be an n-
dimensional F -vector space, endowed with a non-degenerate hermitian
form < •, • >W , relative to the extension F/F+. We let Σ+, resp. ΣF ,
denote the set of complex embeddings of F+, resp. F , and choose a CM
type Σ ⊂ ΣF , i.e. a subset which upon restriction to F+ is identified
with Σ+. Complex conjugation in Gal(F/F+) is denoted c.

The hermitian pairing 〈•, •〉W defines an involution c̃ on the algebra
End(W ) via

(0.1) 〈a(v), v′〉W = 〈v, ac̃(v′)〉W ,

and this involution extends to End(W ⊗Q R) for any Q-algebra R.
We define the algebraic group U(W ) = U(W, 〈•, •〉W ) (resp GU(W ) =
GU(W, 〈•, •〉W )) over F+ (resp. Q) such that, for any F+-algebra R
(resp. Q-algebra S)

U(W )(R) = {g ∈ GL(W ⊗F+ R) | g · c̃(g) = 1};

GU(W )(S) = {g ∈ GL(W ⊗R) | g · c̃(g) = ν(g) for some ν(g) ∈ R×};
The quadratic Hecke character of A×F+ corresponding to the exten-

sion F/F+ is denoted

ηF/F+ : A×F+/F
+,×NF/F+A×F

∼−→± 1.
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If W is a 1-dimensional hermitian or skew-hermitian space then we
write U(W ) = U(1). The F+-rational points of U(1) are given by the
group of elements x ∈ F× with NF/F+(x) = 1.

Representations of groups over archimedean local fields are assumed
to be admissible smooth Fréchet representations of moderate growth,
in the sense of Casselman and Wallach (cf. [C]), and linear forms on
such representations are assumed to be continuous with respect to the
Fréchet topology. The relation between such linear forms and linear
forms on the corresponding Harish-Chandra modules is discussed in
the appropriate place. The Harish-Chandra (Lie(G), K∞)-module at-
tached to a smooth Fréchet representation Π of the group G (and a
choice of K∞) is denoted Π(0). Similarly, if Π is a representation of
an adelic group G(A) of the form Π∞ ⊗ Πf , where Πf is an admissi-
ble representation of G(Af ) and Π∞ is an admissible smooth Fréchet
representation (of moderate growth) of the archimedean part of G(A),

then we write Π(0) = Π
(0)
∞ ⊗ Πf .

3.1. Multiplicity one and Gross-Prasad periods. Let W be an n-
dimensional hermitian space as above, and write W as the orthogonal
direct sum W = W ′ ⊕W0 over F , where dimW ′ = n − 1. Let G =
GU(W ) as above, and let G′ = GU(W ′) × GU(W0) ∩ G; it is the
subgroup of (g′, g0) ∈ GU(W ′) × GU(W0) with ν(g′) = ν(g0). In this
section we apply the results of §2 to the inclusion G′ ⊂ G. The new
feature in this special case is that when π⊗π′ is a cuspidal automorphic
representation of G×G′, the space of global pairings π⊗ π′ → C is of
dimension at most 1.

Let X and X ′ be G(R) and G′(R)-homogeneous hermitian symmetric
domains, respectively, so that (G′, X ′) ↪→ (G,X) is a morphism of
Shimura data. We choose maximal connected compact (mod center)
subgroups K ⊂ G(R) and K ′ ⊂ G′(R) ∩ K as in §2. Then K =
StabG(R)(x) for some x ∈ X ′ ⊂ X, and we assume x to be a CM point
(the fixed point in X ′ of a Q-rational torus). We are thus able to
apply the theory of [H12]. Suppose π and π′ are cuspidal automorphic
representations of G and G′ respectively. As in §4.3 of [H12], there are
number fields E(π) and E(π′) (depending on x) over which π(0) and

π′,(0) have rational structures, denoted π
(0)
E(π) and π

′,(0)
E(π′).

As in [H12], we let H ⊂ G and H ′ ⊂ G′ denote the unitary sub-
groups, h′ = Lie(H ′). We define

L0(π, π′) = Hom(h′,K′)×H′(Af )(π
(0) ⊗ π′,(0),C).

We assume the automatic continuity hypothesis (Conjecture 4.3.1 of
[H12]): every element of L0(π, π′) has a natural continuous extension
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to the admissible smooth Fréchet representations of moderate growth
associated to π and π′. It then follows from [SZ] that L0(π, π′) is a
space of dimension at most 1 (cf. [H12], Corollary 4.3.2). We also
consider the variant

Lmot0 (π, π′) = Lmot0 (π, π′) = Hom(h′,K′)×H′(Af )(π
mot⊗π′,mot, E(π)⊗E(π′)⊗C)

where πmot = π
(0)
E(π) ⊗Q C, π′,mot = π

′,(0)
E(π′ ⊗Q C. Corollary 4.3.8 of [H12]

asserts that Lmot0 (π, π′) is either 0 or a free E(π) ⊗ E(π′) ⊗ C-module
of rank 1 (there is a misprint in loc. cit.), and it follows as in the
beginning of §4.4 that

Proposition 3.1. Assume Lmot0 (π, π′) 6= 0. Then the free rank 1
E(π) ⊗ E(π′) ⊗ C-module Lmot0 (π, π′) has a generator Imot(π, π′) such
that

Imot(π, π′)(π
(0)
E(π) ⊗ π

′,(0)
E(π′)) = E(π)⊗ E(π′).

(This corrects another misprint in loc. cit..)
On the other hand, the integral (cf. [H12], (4.2.3))

(3.2) f ⊗ f ′ 7→
∫
H′(F )\H′(A)

f(h′)f ′(h′)dh′

defines elements of

L0(π
(0)
E(π) ⊗E(π),α C, π′,(0)

E(π′) ⊗E(π′),α C)

as α varies overHom(E(π)⊗E(π′),C), and thus an element Ican(π, π′) ∈
Lmot0 (π, π′) (mislabelled Imot in (4.4.1) of [H12]). The Gross-Prasad pe-
riod invariant is the constant

P (π, π′) ∈ (E(π)⊗ E(π′)⊗ C),

well-defined up to a factor in (E(π)⊗ E(π′))×, such that

Ican(π, π′) = P (π, π′) · Imot(π, π′).
Again, the definition of the Gross-Prasad period is conditional on the
automatic continuity hypothesis.

In loc. cit. a conjecture is assumed that implies that either P (π, π′) =
0 or P (π, π′) ∈ (E(π)⊗E(π′)⊗C)×. In order to avoid referring to this
conjecture – and to avoid creating new misprints – we henceforward

fix α ∈ Hom(E(π)⊗ E(π′),C) of E(π) · E(π′) and consider π
(0)
E(π) and

π
′,(0)
E(π′) as subspaces of the respective complex automorphic representa-

tions. Then we let Pα(π, π′) ∈ C be the projection of P (π, π′) on the
α-component; Pα(π, π′) = 0 if and only if

∫
H′(F )\H′(A)

f(h′)f ′(h′)dh′ = 0

for all f ∈ π, f ′ ∈ π′.
We reformulate 2.6 in terms of the Gross-Prasad periods.
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Proposition 3.3. Let π be a cuspidal automorphic representation of
G(A), with archimedean component π∞ in the discrete series. Suppose
the Harish-Chandra parameter of π∞ is sufficiently regular. Then there
is an integrable discrete series representation π′∞ of G′(R), a cuspidal
automorphic representation π′ of G′ with archimedean component π′∞
such that Ican(π, π′) 6= 0. Moreover, we can find f ∈ π and f ′ ∈ π′ in
the minimal K- (resp. K ′-) types of the archimedean components of
their respective representations such that Ican(π, π′)(f, f ′) 6= 0.

Corollary 3.4. Let π and π′ be as in the previous proposition and α
as in the discussion above. Then Pα(π, π′)−1 · Ican(π, π′) is a non-zero
α(E(π)⊗ E(π′))-bilinear pairing

π
(0)
E(π) ⊗ π

′,(0)
E(π′))→ α(E(π)⊗ E(π′))

that does not vanish on the tensor product of the minimal types at
infinity.

Let π
(0)

Q and π
′,(0)

Q be the Q-subspaces generated by π
(0)
E(π) and π

′,(0)
E(π′)

in the respective complex automorphic representations.

Theorem 3.5. Assume the automatic continuity hypothesis (Conjec-
ture 4.3.1 of [H12]) Let π be a cuspidal automorphic representation of
G(A), with archimedean component π∞ in the discrete series and min-
imal K-type τ . Suppose the Harish-Chandra parameter of π∞ is suffi-
ciently regular. Let f ∈ π be an automorphic form whose archimedean
component lies in τ ; in particular, f ∈ π(0). Let π′∞ be a discrete se-
ries representation of G′(R) that satisfies the conditions of 3.3. Then

f ∈ π(0)

Q if and only if, for every γ ∈ G(Af ), every automorphic repre-

sentation π′ of G′ of infinity type π′∞, and every f ′ ∈ π′Q,

(3.6) λγ,f ′(f) := Pα(π, π′)−1 · Ican(π, π′)(fγ, f ′) ∈ Q
where fγ(h) = f(hγ).

Proof. The proof is exactly analogous to that of Theorem 7.6 of [H90].
We temporarily adopt the notation of that proof: thus π contributes
to the coherent cohomology space H̄q([V ]) for some irreducible auto-
morphic vector bundle [V ] on the Shimura variety attached to G. The
space H̄q of [H90] is elsewhere called interior cohomology; in [H12] it
is denoted Hq

! . The regularity hypothesis implies that the πf -isotypic
component of H̄q([V ]) consists entirely of the classes of cusp forms (cf.
[H12], 3.3.2); in particular, hypothesis (d) of [H90] 7.6. Hypotheses (a)
and (c) hold for similar reasons: the point is that we can take t to be
a Cartan subalgebra of Lie(G′) as well as Lie(G), and the walls of a
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Weyl chamber for G′ form a subset of the walls of a Weyl chamber for
G, so if an infinitesimal character in t∗ is far from the walls for G it is
a fortiori far from the walls for G′. Condition (b) of [H90], 7.6, which
identifies Ican as a cup product in coherent cohomology, does not hold;

instead we have the condition that dimHom(h′,K′)(π
(0)
∞ ⊗ π′,(0)

∞ ,C) = 1,
which requires automatic continuity.

Now the rational structure π
(0)

Q is invariant under the action ofG(Af ),

so it is obvious that if f ∈ π(0)

Q then (3.6) is satisfied for all π′ and all

f ′ ∈ π′Q. So it suffices to show that the linear forms λγ,f ′ span the space

of linear forms on the (countable-dimensional) subspace τ ⊗ πf of π.
This is the content of Theorem 7.4 of [H90]; the condition 0 6= p(v) in
the statement of that theorem is implied by the assertion concerning
minimal types in 3.3.

�

Remark 3.7. Again, if we know a priori that π′∞ is isolated in the
automorphic spectrum of G′, then we can apply [BS] rather than the
arguments in [H90].

Remark 3.8. By using the more precise Gross-Prasad periods defined
in [H12], we can obtain a criterion for f to be rational over the field
E(π), and not just over Q. The condition is that Gal(Q/E(π)) acts on
the quantities λγ,f ′(f) by permuting every appearance of f , f ′, π, π′,
and α, including in the period invariant appearing on the right-hand
side of (3.6).

Theorem 3.5 characterizes Q-rational forms on G of (sufficiently reg-
ular) coherent cohomology type by their pairings with Q-rational forms
on G′ of coherent cohomology type, but of course one needs to be able
to characterize the latter. However, it was noted during the proof that
the regularity hypothesis for π∞ implied a regularity hypothesis for π′∞.
Indeed, it follows from the classical branching laws for the restriction
of a representation of (compact) U(m) to U(m − 1) that conditions
(a) and (b) of 2.3 for the minimal K-type τ imply the corresponding
conditions for at least one irreducible constituent τ ′ of its restriction to
K ′. Thus by induction on n we can assume that the Q-rational f ′ used
to define the λγ,f ′ have already been identified. This gives a complete
answer to the question of Piatetski-Shapiro mentioned in the introduc-
tion in the case of Shimura varieties attached to unitary groups, at
least under a regularity hypothesis. I don’t know whether or not the
regularity hypothesis can be relaxed.
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Remark 3.9. The rationality criterion of Theorem 3.5 makes specific
use of the representation π′∞ that can be proved to pair non-trivially
with π∞, thanks to the positivity property of the Flensted-Jensen min-
imal matrix coefficients. If we know independently that (the dual of)
π′∞ is weakly contained in π∞, then the analogue of Theorem 3.5 re-
mains valid. The pairings whose existence is predicted by [GGP] do not
restrict in most cases to non-trivial pairings of minimal types; neverthe-
less, the Gross-Prasad conjecture for real unitary groups implies that
each non-trivial pairing gives a new rationality criterion for coherent
cohomology.

4. Gross-Prasad periods as cup products

The novel feature of this article is the introduction of a rationality
criterion, valid for automorphic representations of sufficiently regular
discrete series type, that, unlike the criterion of [H90, HL], is not de-
rived from a cup product in coherent cohomology. In this final section
we characterize cup-product pairings among all pairings given by inte-
grals over H ′(A), and show that certain π∞ never admit cup product
pairings with coherent cohomology classes on the Shimura variety at-
tached to H ′. Thus the rationality criterion of the present paper is
substantially more general than that of [H90].

The cup-product pairings are of independent interest, since they can
be used to study period relations. This will be explained in forthcoming
work.

4.1. Parameters. In this section we let H denote the real Lie group

U(r, s), the unitary group of the standard hermitian form Ir,s =

(
Ir 0
0 −Is

)
.

The maximal compact subgroup K = U(r)× U(s), the subgroup that
respects the decomposition of Cr into positive-definite and negative-
definite subspaces as indicated by the form of Ir,s. For a maximal
torus T we take the group of diagonal matrices in H; this is also a
maximal torus of K. An irreducible finite-dimensional representation
(σ, V ) of H is determined by its highest weight aσ relative to T and the
upper-triangular Borel algebra b of h = Lie(H)C; aσ is written in the
usual way as a non-increasing n-tuple of integers (a1 ≥ a2 ≥ · · · ≥ an).

Let ρ = (n−1
2
, n−3

2
, . . . , 1−n

2
) be the half-sum of positive roots for

b. We let ρ̃ = ρ + n−1
2

(1, 1, . . . , 1) = (n − 1, n − 2, . . . , 1, 0). The
infinitesimal character of the representation (σ, V ) above is the element

λσ = aσ + ρ of t∗; the element λ̃σ = aσ + ρ̃ = (ai + n− i, i = 1, . . . , n)
will be called the Hodge parameter, for reasons that will soon be clear.
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We consider the L-packet Πσ = Πr,s
σ of discrete series representations

π of H such that H i(t, K; π⊗V ∨) 6= 0 for some i (necessarily i = rs =

dimH/K). Then Πσ contains

(
n
r

)
members, indexed by permutations

of the entries of λσ or λ̃σ, modulo (subsequent) permutations that
preserve the first r entries. Write

λσ = (λ1 > λ2 > · · · > λn); λ̃σ = (λ̃1 > λ̃2 > · · · > λ̃n)

It’s more convenient to index Πσ by (r, s)-shuffles of the λi, namely
(r, s)-tuples of the form λ = (a1 > · · · > ar; b1 > · · · > bs) which is a
permutation of the entries of λσ. If π ∈ Πσ corresponds to λ, then λ
is the Harish-Chandra parameter of π, and we write π = πλ. We also
define λ̃ = λ+ n−1

2
(1, 1, . . . , 1).

Let ∆nc,+ be the set of positive non-compact roots – roots of the
form

αi,r+j : (c1, c2, . . . , cn) 7→ ci − cr+j, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

These are by definition the roots of T acting on p− ⊂ h, the Lie alge-

bra of matrices of the form

(
0r X
0 0s

)
, which is also isomorphic to the

antiholomorphic tangent space of the hermitian symmetric space H/K
at the fixed point of K. In other words, the choice of b, and therefore
ρ, is consistent with a specific choice of complex structure. The degree
q(λ) of λ is the number of pairs (i, j) such that ai > bj, or equivalently
to the cardinality of

∆nc,+(λ) = {α ∈ ∆nc,+ | 〈α, λ〉 > 0.

This is related to the usual notion of length by the formula q(λ) =
rs − `(w), where w is the permutation that takes λσ to λ. There are
two extreme elements of Πσ: the antiholomorphic representation, with
Harish-Chandra parameter λσ (and degree rs), and the holomorphic
representation, corresponding to the longest shuffle, equivalently to the
Harish-Chandra parameter (λs+1 > · · · > λn;λ1 > · · · > λs) (with
degree 0).

The integer q(λ) is the degree of coherent cohomology to which λ con-
tributes. More precisely, to any λ we associate its coherent parameter
Λ = λ−ρ, viewed as the highest weight of an irreducible representation
WΛ of K. Let q = p− ⊕ Lie(K). Then

(4.1) dimHq(λ)(q, K; πλ ⊗W∨
Λ ) = 1

and all other H i(q, K; πλ ⊗W ) vanish as W runs over irreducible rep-
resentations of K.
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The space in 4.1 is spanned by an element of (∧q(λ)(p−)∗⊗πλ⊗W∨
Λ )K ,

or equivalently by a homomorphism

(4.2) hλ ∈ HomK(∧q(λ)(p−)⊗WΛ, πλ).

The image of hλ is an irreducible K-type τλ, the minimal (or Blattner)
K-type, and its highest weight, also denoted τ , is the Blattner param-
eter of πλ (or of λ). The formula for τ is given in terms of the chamber
C(λ) for which λ is positive

(4.3) τ = Λ +
∑

α∈∆nc,+(λ)

α.

For each α ∈ ∆nc,+, choose a non-zero basis vector Xα in the corre-
sponding root space.

Lemma 4.4. The homomorphism hλ is non-zero on the vector

vλ = ∧α∈∆nc,+(λ)Xα ⊗ wΛ

where wΛ is a basis vector of the highest weight subspace of WΛ, and
h(vλ) generates the highest weight space of τ .

Proof. This is presumably well-known but I include the one-line proof:
if we take a positive root system for K compatible with the chamber
C(λ), then vλ, which is a weight vector for the weight 4.3, is an extreme
vector in this chamber in the tensor product ∧q(λ)(p−) ⊗ WΛ and in
particular has multiplicity one. Since the image of hτ contains a vector
of weight 4.3, it can’t vanish on vλ.

�

4.2. Rationality. Now we return to the notation of §3, with G =
GU(W ), G′ = G(U(W ′) × U(W0)). The elements of the CM type Σ
are denoted v, and for each v the space Wv = W ⊗F,v C is a complex
hermitian space with signature (rv, sv). We assume that W ′

v has signa-
ture (rv − 1, sv) for each v; although the discussion can be modified if
this is not the case, we can always choose W ′ with this property, and
it simplifies the discussion.

A discrete series representation π of G(R) restricts to a sum of dis-
crete series representations of H(R) =

∏
v U(rv, sv) :=

∏
vHv. In fact,

there is no ambiguity unless rv = sv for some v; each such place con-
tributes two summands, and we choose one of the two – which we still
call π – and replace Hv at such a point by its (real) identity compo-
nent H+

v . We thus obtain a Σ-tuple of Harish-Chandra parameters
(λv, v ∈ Σ). Let Kv = U(rv, 0) × U(0, sv) ⊂ U(rv, sv) be a maximal
compact subgroup, as above, and let K =

∏
vKv. As above, the sig-

nature determines a holomorphic structure on the the symmetric space
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X(G)+ = H(R)/K – the product over v of the spaces denoted p− above
is the space of anti-holomorphic tangent vectors at the fixed point of
K in the symmetric space – and therefore we can assign to each v a
reference parameter

λσ,v = (λ1,v > · · · > λn,v)

which is the infinitesimal character of an irreducible finite-dimensional
representation (σv, Vv) of Hv. This is a permutation of λv, which we
write as above

λv = (a1,v > · · · > arv ,v; b1,v > · · · > bsv ,v).

Let Λv = λv − ρv be the v-component of the coherent parameter of
π, Λ = (Λv, v ∈ Σ). It defines an automorphic vector bundle [WΛ] on
the Shimura variety Sh(G,X(G)), where X(G) is the (disconnected)
hermitian symmetric space attached to G(R) and X(G)+ ⊂ X(G) is
a fixed H(R)-invariant component (also invariant under the identity
component G(R)0 ⊂ G(R). As in the proof of 3.5, we follow [H90] and
denote by H̄∗([WΛ] the interior cohomology of [WΛ].

Let H ′ = U(W ′) × U(W0), K ′ =
∏

vK
′
v, K

′
v = Kv ∩ H ′(R) =

U(rv−1, 0)×U(1, 0)×U(0, sv); we drop the 0’s in what follows. Write
Λv = (α1,v ≥ · · · ≥ αrv ,v; β1,v ≥ · · · ≥ βsv ,v); this is a dominant integral
weight of a finite-dimensional representation WΛv of Kv. It follows
from the classical branching formula that the restriction of WΛv to K ′v
contains the representation with highest weight

Λ′v = (α1,v ≥ · · · ≥ αrv−1,v;αrv ,v; β1,v ≥ · · · ≥ βsv ,v)

where the semicolons separate the weights for U(rv) × U(1) × U(sv).
Let Λ′ = (Λ′v) be the corresponding highest weight for K ′, and let
λ′ = Λ′+ρ′, where ρ′ is by analogy the half-sum of the positive roots of
H ′ relative to T for the chamber containing the chosen positive chamber
for (H,T ). With the above notation, we have
(4.5)

λ′v = (a1,v −
1

2
> · · · > arv−1,v −−

1

2
;αrv ,v; b1,v +

1

2
> · · · > bsv ,v +

1

2
).

Hypothesis 4.6. The highest weight aσ,v = λσ,v − ρ of (σv, Vv) is a
regular character of T for each v. Equivalently, for each v, λi,v −
λi+1,v ≥ 2, i = 1, . . . , n− 1.

Lemma 4.7. Under Hypothesis 4.6, λ′ is regular for the root system of
(H ′, T ), and belongs to (n−2

2
+Z)n−1. It is therefore the Harish-Chandra

parameter for a unique discrete series representation πλ′ of H ′(R).
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This is clear from the form of 4.5: under the regularity hypothesis,
none of the ai,v − 1

2
can coincide with any of the bj,v + 1

2
.

We now consider the following hypothesis:

Hypothesis 4.8. For each v, the parameter arv ,v equals λn,v, the small-
est of the λi,v.

Of the
∏

v

(
n
rv

)
elements πλ ⊂ Πσ, the set of parameters satisfying

4.8 is

∏
v

(
n− 1
sv

)
(
n
sv

) =
∏
v

rv
n

of the total.
Let ∆′,nc,+ be the set of positive non-compact roots for (H ′, T ), de-

fined as in the previous section. We can view ∆′,nc,+ as the set of
αi,rv+j ∈ ∆nc,+ with 1 ≤ i ≤ rv − 1; 1 ≤ j ≤ sv for v ∈ Σ. Hypothesis
4.8 is equivalent to the hypothesis that

(4.9) ∆′,nc,+(λ′) = ∆nc,+(λ).

We defineX(G′)+ ⊂ X(G′), q′, and the Shimura variety Sh(G′, X(G′)),
as in the previous paragraph; we also define Λ′ = λ′ − ρ′, the rep-
resentation WΛ′ of K ′, and the automorphic vector bundle [WΛ′ ] on
Sh(G′, X(G′)). The inclusion of the Shimura data (G′, X(G′)) ⊂ (G,X(G))
defines an inclusion of Shimura varieties, and by functoriality a restric-
tion map of ∂̄-cohomology

(4.10) Hq(λ)(q, K; πλ ⊗W∨
Λ ) → Hq(λ)(q′, K ′; πλ′ ⊗W∨

Λ′).

It follows immediately from Lemma 4.4 and 4.9 that

Proposition 4.11. Assume Hypothesis 4.6.

(a) If λ satisfies Hypothesis 4.8, then the map (4.10) is an isomor-
phism of 1-dimensional spaces.

(b) If λ does not satisfy 4.8, then (4.10) is the zero map.

For global automorphic representations π and π′ whose archimedean
components satisfy Hypothesis 4.8, the canonical period integral Ican(π, π′)
can be identified with cup products in coherent cohomology, by the
formalism of [H90, HL]. The following theorem is an immediate conse-
quence of Lemma 7.5.5 of [H90] and the definitions:

Theorem 4.12. Suppose λ satisfies Hypotheses 4.6 and 4.8. Let π and
π′ be cuspidal automorphic representations of G and G′, respectively,
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with archimedean components πλ and π∨λ′. Then the Gross-Prasad pe-
riod invariants Pα(π, π′) are algebraic numbers.

This can be refined to give vector-valued Gross-Prasad invariants,
depending on complex embeddings of the coefficient fields, whose en-
tries belong to specific number fields. Combining Theorem 4.12 with
ergodic considerations, along the lines of 1.3, we obtain examples of
the rationality criteria provided by Theorem 7.6 and Corollary 7.7.1 of
[H90]; the point is that (a) of Proposition 4.11 implies hypothesis (b)
of Theorem 7.6 of loc. cit. Theorem 4.12 is also of interest in proving
period relations, and will be considered at length in a future paper.

On the other hand, (b) of Proposition 4.11, together with Theorem
3.5, gives explicit examples of rationality criteria that have nothing to
do with coherent cohomology. It is plausible that when π does not
satisfy 4.8 then there is no π′ pairing non-trivially with π for which
the Pα(π, π′) are algebraic. On the other hand, it is possible that π∨

satisfies 4.8 even though π does not. Since a rationality criterion for
π∨ easily gives rise to one for π (using cup products on H rather than
on H ′), it is natural to wonder whether for all π satisfying 4.6, either
π or π∨ also satisfies 4.8. This seems unlikely: in the notation of 4.8,
suppose arv ,v = λn,v for some but not all v. The above reasoning then
suggests that, except possibly for some degenerate cases, neither π nor
π∨ satisfies 4.8.
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