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It is a fact and no myth at all that one small puzzling proof by David Hilbert
in 1888 became the paradigm of modern axiomatic mathematics. Hilbert knew
it was that important. He wrote a series of papers on applications and as we
now know vastly underestimated them: a preliminary series of three went into
the Göttinger Nachrichten and a longer polished version went to the maximally
prestigious Mathematische Annalen. He consciously made it his emblem as he
became “the Director General” of 20th century mathematics in the very practical
image offered by his friend Hermann Minkowski (1973, p. 130). With time the
affair grew into an origin myth, a titanomachy where new gods defeat the old,
and specifically Hilbert defeats one Professor Paul Gordan of Erlangen. Gordan
was the “King of Invariants” for reams of calculations on “Gordan’s problem,” the
problem he made central to the then-thriving subject of invariant theory in algebra,
namely to find finite complete systems of invariants for forms as explained below.
Without actually finding these systems, Hilbert proved in a few pages what many
people doubted and Gordan had not proved in 20 years: they exist.

In the myth Gordan denounced Hilbert’s proof and his anathema rebounded
against himself when he said:

This is not Mathematics, it is Theology!
The quote first appeared a quarter century after the event, as an unexplained
side comment in a eulogy to Gordan by his long-time Erlangen colleague Max
Noether (1914, p. 18). Noether was a reliable witness speaking to an audience
that knew Gordan well but he says little about what Gordan meant. A series of
Göttingen mathematicians took it up in succeeding decades.

The Hilbert 60th birthday issue of Die Naturwissenschaften highlights Hilbert’s
invariant theorem and Gordan’s response to it but never mentions theology. See
especially Hilbert’s first biographer Blumenthal (1922) and the algebraist Toeplitz
(1922). One year later Hilbert kicked off the quote’s Göttingen career with a harshly
negative interpretation as part of the foundations controversy in (1923, p. 161).
Klein (1926, p. 330), who could be fanciful at times, lightly embellished Noether’s
version. Blumenthal (1935, p. 394) read Gordan and Hilbert as actually agreeing
about a certain shortcoming of the 1888 theorem. Weyl (1944, p. 622) returned to
Hilbert’s negative evaluation but tried to give it more plausible grounds. When the
famous mathematics commentator and popularizer Eric Temple Bell—the all time
leader in mathematical narrative—wrote on The Development of Mathematics he
emphasized that “only main trends of the past six thousand years are considered,
and these are presented only through typical major episodes in each.” To this end
he gave Gordan’s quote in two different places in the first edition and added a
parody of it at the end of the second.1 Textbooks still tell the story to build
excitement around this proof supposedly “denounced at the time” when Hilbert

1(Bell, 1945, pp. vii, 227, 429, 561).
1
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created it (Reid, 1995, p. 49). But the quote is just as exciting read in the opposite
way. Gerhard Kowalewski, who studied at Königsberg while Hilbert taught there
shortly after finding his proof, said:

Whenever such a powerful discovery is made one feels that a ray
of light from a higher world penetrates our earthly darkness. That
must be what Gordan meant by his saying. Hilbert was blessed
throughout his life with such great illuminations, more than any
other mathematician.2

It is an unusually extended, explicit, and pointed use of narrative in mathematics.
It is narrative at its barest bones: protagonist Hilbert wins against antagonist Gor-
dan’s strongest blow—except on Kowalewski’s reading where protagonist Hilbert
wins Gordan’s strongest praise. It most often functions with no serious explanation
of what either Hilbert or Gordan did or even who Gordan was, and is among the
best known and most widely repeated stories in mathematics. Gordan is almost
completely unknown today for anything else. It functions as a story. It registers
the pure excitement of Hilbert’s proof. That excitement survives historical scrutiny,
and even becomes more profound, but it could never have spread so far burdened
with the particulars of Hilbert’s proof let alone of Gordan’s contribution. No de-
tailed version could so well build esprit de corps among Hilbert’s heirs, which is the
manifest intention of every author I have found giving the quote. Hilbert, his biog-
rapher Blumenbach, and his protege Weyl disagree over what actually happened.
They agree among themselves, and with the quite different reading by Kowalewski,
and with the surprisingly subtle Bell, on the narrative force: Hilbert far outdid the
older mathematician with this astonishing proof.

Every other aspect of the story was described quite otherwise at the time. Hilbert
in 1888 said he found his proof “with the stimulating help of” this very Professor
Gordan (Hilbert and Klein, 1985, p. 39). Gordan consistently supported Hilbert
and the proof strategy and made no objection to its initial publication even though
that first version was not entirely correct. The hitch came when Hilbert sent it
to the Mathematische Annalen. Gordan felt it was not ready for the journal of
record. He wanted a clearer argument and he wanted Hilbert to develop it further.
Hilbert soon did develop it just the way Gordan wanted. To that end he proved his
famous Nullstellensatz, a central case of the Noether normalization theorem, and
other theorems which all became basic to 20th century algebraic geometry.3 But
not before he got his 1888 idea into the Annalen!

The closest link of Gordan to Hilbert epitomizes the serious narrative problem
here: Emmy Noether was Gordan’s sole doctoral student and along with Hermann
Weyl one of Hilbert’s two greatest heirs. She worked on Gordan’s problem for
years in Hilbert’s Göttingen with a framed picture of Gordan in her office. Sadly
for historians this profuse conversationalist and scanty writer left just one brief
purely technical footnote comparing the two men’s work (Noether, 1919, p. 140).
There are passionate accounts of her work by great mathematicians who knew
her: Hermann Weyl (1935), Paul Alexandroff (1981), and Bartel van der Waerden

2Immer, wenn man eine so gewaltige Entdeckung gemacht wird, hat man das Gefühl, daß ein
Lichtstrahl aus einer höheren Welt in unser irdisches Dunkel eindringt. Das wird wohl Gordan
mit seiner Äusserung gemeint haben. Hilbert war sein ganzes Leben hindurch mit so großen
erleuchtungen gesegnet, mehr als irgendein anderer Mathematiker. (Kowalewski, 1950, p. 25)

3See (Hilbert, 1993, pp. 136, 142) and Sturmfels’ introduction to that book.
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(1935). Historians have written terrific accounts of her life and parts of her work.4
But efforts to capture her mathematics as a whole all shatter on the same rock. She
went on farther than Hilbert using sharp abstraction to make as many things as
possible utterly trivial and clear a quick path to genuinely hard problems. It is all
too easy to split her work into banalities about the distributive law and crushingly
sophisticated applications to things like Galois representations in number theory.
This partition into the banal and the crushing makes mathematics (despite its
etymology) look unlearnable—as if you can only stare at it in wonder.

Theology has proved peculiarly apt for this obfuscation, as we explore in more
detail in section 5. To those who scorn Gordan it suggests angels dancing on pins.
Kowalewski dissolves it into an ineffable “ray of light.” Both evade the specifically
mathematical wonder of Hilbert’s proof and obscure Gordan’s real contribution
to Hilbert’s work as well as Hilbert’s profound originality. The real wonder of
the proof goes far beyond 1888 to pervade modern mathematics. To know the
depth of Emmy Noether and of modern algebra requires understanding Gordan
and Hilbert as collaborators and especially the merger of Gordan’s symbolic method
with Hilbert’s axiomatics in Noether’s work. I take it as much the same wonder as
Deligne conveys describing a characteristic Grothendieck proof as a long series of
trivial steps where “nothing seems to happen, and yet at the end a highly non-trivial
theorem is there” (Deligne, 1998, p. 12).

1. Gordan’s problem

Paul Gordan was a very funny man, a Professor when that was a rare honor,
and he traveled among the great mathematicians of Germany. They considered him
good company. More than that he was a great collaborator. With Alfred Clebsch he
created the Clebsch-Gordan coefficients used in spherical harmonics and especially
in quantum mechanics for the eigenstates of coupled systems. With Felix Klein he
did influential studies of algebraic equations. And he worked briefly with young
Hilbert. Max Noether wrote of the work with Clebsch:

Certainly Clebsch had the leading role overall but from 1864 on
Gordan was a restless driving force behind him in daily uninter-
rupted deep conversation. He found no obstacle insurmountable
and brought clarity in a socratic way.5

We need little of the mathematics since Hilbert’s method was precisely to ignore
most of the particulars. But before exploring the successive uses of the quote in
section 4 we need some.

Algebra then as now studied polynomials, for example the quadratic

P (x) = Ax2 + 2Bx + C

Nineteenth century algebraists preferred to make it homogeneous by adjoining a
second variable y to give every term the same total degree:

F (x, y) = Ax2 + 2Bxy + Cy2

4See Brewer and Smith (1981); Tollmien (1990); Corry (1996); Kosmann-Schwarzbach (2004);
Roquette (2005).

5Clebsch hatte zwar überall die führende Rolle, aber Gordan stand von 1864 an in täglicher un-
unterbrochener verstandnisvoller Aussprache hinter ihm als rastlos treibendes Element, dem keine
Schwierigkeit unüberwindlich schien und das in sokratischer Weise Klarheit schuf. . . . (Noether,
1914, pp. 7–8)
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A homogeneous polynomial is called a form. Thus F (x, y) is the quadratic form in
two variables. A form in one variable is just a constant multiple of a power of that
variable

Axn

The cubic form in two variables is

F3(x, y) = Ax3 + 3Bx2y + 3Cxy2 + Dy3

Any kind of work with the quadratic form will repeatedly refer to the quantity

∆F = B2 −AC

called the discriminant of F (x, y). One use is familiar from high school even if not
in this notation. To solve the equation

Ax2 + 2Bxy + Cy2 = 0

divide through by y2 to get

A(
x

y
)2 + 2B(

x

y
) + C = 0

and apply the quadratic formula to find

x

y
=

−B +
√

B2 −AC

A
or

−B −
√

B2 −AC

A

The solutions are all pairs 〈x, y〉 with either of these ratios x
y . The discriminant

∆F appears here, and obviously the two ratios coincide just when ∆F = 0.
By no coincidence, ∆F is a form in the coefficients A, B,C. Each term has total

degree two in these coefficients. But it has a much stronger property as well. We
may replace x and y by linear combinations of new variables x′, y′:

x = αx′ + βy′

y = γx′ + δy′

Here α,β, γ, δ are any constants and are called the substitution coefficients. Then
define a new form F ′(x′, y′) by:

F (x, y) = F (αx′ + βy′, γx′ + δy′) =

A′x′2 + 2B′x′y′ + C ′y′2 = F ′(x′, y′)

Straightforward calculation shows that each single coefficient of F ′(x′, y′) depends
on all three coefficients of F ′(x′, y′) by a somewhat lengthy equation:

A′ = α2A + 2αγB + γ2C

B′ = αβA + (αδ + βγ)B + γδC

C ′ = β2A + 2βδC + δ2C

But when you calculate the discriminant of ∆F ′ using these new coefficients the
complications largely cancel out to leave the multiple of ∆F by a simple expression
depending only on the substitution coefficients:

∆F ′ = (αδ − βγ)2 · ∆F
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This property became the definition of an invariant of a form: An invariant of
the two-variable form Fn(x, y) in any degree n is an expression IFn in the coefficients
of Fn such that whenever a linear substitution turns Fn into a corresponding F ′

n:

Fn(x, y) = Fn(αx′ + βy′, γx′ + δy′) = F ′
n(x′, y′)

then the invariant is multiplied by some power of that expression in the substitution
coefficients:

IF ′
n

= (αδ − βγ)m · IFn

The quadratic form

F (x, y) = Ax2 + 2Bxy + Cy2

has infinitely many invariants but all are powers of the discriminant. That is, for
any invariant I of this form, there is some natural number k such that

I = ∆k
F

In this sense the discriminant itself is a complete system of invariants for the qua-
dratic form.

The degree four form

F4(x, y) = Ax4 + 4Bx3y + 6Cx2y2 + 4Dxy3 + Ey4

also has infinitely many invariants, including:

iF4 = AE − 4BD + 3C2

jF4 = ACE + 2BCD − C3 −B2E −AD2

One page or so of straightforward calculation will verify that when a change of
variable as above turns F4(x, y) into F ′

4(x′, y′) then

iF ′
4

= (αδ − βγ)4 · iF4 and jF ′
4

= (αδ − βγ)6 · jF4

Long arcane calculations show that every invariant of F4(x, y) is a sum of products
of powers of these. That is, the invariants {iF4 , jF4} make a complete system for
the degree four form. For example the degree four discriminant ∆P4 takes several
lines to write in terms of the coefficients A . . . E but is neatly expressed as:

∆P4 = 4i3P4
− j2

P4

The matter grows rapidly more complicated in higher degrees. By fantastically
long and not at all routine calculations Gordan found a way to produce a finite
complete system of invariants for the homogenous form in two variables of any
degree. That is, for each n Gordan’s routine would yield a finite list of invariants
of Fn(x, y) such that every invariant of Fn(x, y) is a sum of products of powers of
these. Actually he found more, namely a finite complete system for the covariants
which include the invariants plus analogous expressions involving the variables x, y.

Gordan used and improved the symbolic method. Consider the quadratic form
F (x, y). The method creates symbols α0, α1 as if it is the square of a linear form:

(1) (α0x + α1y)2 = Ax2 + 2Bxy + Cy2

So the symbols α0, α1 are linked to the actual coefficients by:

(2) α2
0 = A α0α1 = B α2

1 = C
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This factorization simplifies the theory of invariants but on its face simplifies it far
too much as it seems to imply that every discriminant is 0:

∆F = B2 −AC = (α0α1)2 − α2
0α

2
1 = 0

The whole point of the method was to use elementary algebra like

(α0α1)2 = α2
0α

2
1

There was no question of rejecting that equation. But Gordan and others blocked
the unwanted equation by calling those terms purely symbolic, with no actual mean-
ing, and refusing to put them in equations with actual coefficients. These terms
have α to total degree four. In the symbolic method, a term in α has actual mean-
ing comparable to the actual coefficients A, B,C only if it has α to degree exactly
two. That is, calculations will use α in any degree but conclusions about the actual
coefficients A, B,C can only use the powers α2

0, α0α1, α2
1. And this worked.

By these means Gordan (1868) found a finite complete system of invariants for
every homogeneous form in two variables

Pn(x, y) = Anxn + An−1x
n−1y + An−2x

n−2y2 + · · · + A0y
n

More accurately, he gave a routine for finding such systems. His original routine
was completely infeasible for forms of degree above 6. Over a decade he improved
it so that even in degree 8 “if the system cannot actually be written out it can at
least be closely described” (Gordan, 1875, p. 1). The symbolic method applies to
any number of variables and Gordan tried to extend his finiteness theorem to any
number of variables. Apart from a few special cases he made no serious progress
until he met Hilbert (White, 1899).

Gordan’s symbolic method has a common requirement with Noether’s later alge-
bra, namely that you must not ask about the concrete meaning of a calculation at
the wrong time. In manipulating Gordan’s bracket functions, or Noether’s crossed
product modules, if you try to keep track of what it all means in terms of actual
polynomials you will be absolutely lost in irrelevant complicated details. Only key
points of the calculation are put back into those terms. Gordan emphasizes that
one of his key symbolic operations, called Faltung, has no non-symbolic meaning at
all (Gordan, 1885–1887, vol. 2, p. 10).6

2. Hilbert’s theorem

Hilbert addressed invariant theory in his (1885) Inaugural dissertation, and
his (1887) shows he meant to revolutionize the field by several new methods that
play no part in the 1888 proof but would reappear to some extent in Hilbert’s
(1891–92; 1893) response to Gordan’s criticism.7 By that time Hilbert’s results
plus further ones by Gordan would solve Gordan’s problem. They would give a
routine producing a finite complete system of covariants for a form of any degree in
any number of variables—though it is apparently still true that no one has actually
worked through it even for the ternary quartic that Emmy Noether would take as

6Different symbolic expressions of a single polynomial can give different results by Faltung.
Every symbolic term can be gotten by Faltung of terms that express the 0 polynomial.

7These are notably differential methods related to the Lie-Klein theory of continuous groups
which later served Hilbert as a framework for invariant theory; and irrational invariants closely
tied to his discovery and use of the Nullstellensatz.
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her dissertation topic.8 In 1888 Hilbert found a far simpler and much more general
result.

On Klein’s advice Hilbert had visited Gordan, and wrote to Klein:
With the stimulating help of Professor Gordan, meanwhile, an in-
finite series of brain-waves has occurred to me. In particular we
believe I have a masterful, short, and to-the-point proof of the
finiteness of complete systems for homogeneous polynomials in two
variables. (Hilbert and Klein, 1985, p. 39)

Hilbert quickly extended his proof to any finite number of variables. It rested on
the uncannily simple :

Theorem I: For any infinite series

φ1, φ2, φ3 . . .

of forms in n variables x1, x2, . . . , xn, there is some number m such
that every polynomial in the series can be put in the form

φ = α1φ1 + α2φ2 + · · · + αmφm

with α1, α2, . . . ,αm suitable forms in the same variables. (Hilbert,
1888–1889, p. 450)

This was incredible. We are familiar with finiteness results all over mathematics
but in 1888 this was not easy for anyone to understand including Hilbert. How can
the first m terms determine all the rest of an arbitrary infinite series? Of course that
puts it backwards. The theorem says each series taken as a whole determines an m.
Even so, it remains amazing that every, arbitrary, infinite series is compounded out
of some finite part of itself. Plus it was intuitively clear, and is provable today using
the concept of recursive algorithm, that you cannot expect to find these bounds m
in general.9

We know the theorem was hard for Hilbert to understand because, even after
Gordan pressed him on it in Leipzig, he published an elaborate incorrect proof. He
used a double induction between Theorem I and a companion:

Theorem II: For any r infinite series

φ1, φ2, φ3 . . .

ψ1, ψ2, ψ3 . . .

. . .

ρ1, ρ2, ρ3 . . .

of forms in n variables x1, x2, . . . , xn, there is some number m such
that for each index k there is a solution to the system of equations

φk = α1φ1 + α2φ2 + αmφm

ψk = α1ψ1 + α2ψ2 + αmψm

8Kung and Rota (1984, p. 30). Noether calculated one set of 20 covariants and one of 331 such
that Faltung of them would produce a complete system. That would be a finite calculation but
she gave no estimate of how it would be. Experience suggests it would be humanly impossible.

9For each Turing machine take the series with Fn = x2 if the machine does not halt by step
n on input 0, and Fn = x if it does. If it never halts on input 0 then m = 1 suffices since every
F = F1 = x2. Otherwise m must be at least the step on which it halts so that Fm = x. To find
m is solve the halting problem.
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. . .

ρk = α1ρ1 + α2ρ2 + αmρm

with α1, α2, . . . ,αm suitable forms in the same variables.
By free use of “one sees easily” and “appropriate” Hilbert gives a false derivation
of Theorem II for n variables from Theorem I for the same number. The editors
note that Theorem II is not even true as stated, but requires “certain dependencies
among the degrees of φk, ψk, . . . ρk” which Hilbert nowhere gives. Then he proves
Theorem I for n+1 variables from Theorem II for n. The editors note that the latter
proof can assume that for each k the degrees of φk, ψk, . . . ρk are each one less than
the one before, which is also sufficient to prove Theorem I (Hilbert, 1888–1889,
p. 451). This works but a different fix discussed in section 2.1 probably reflects
Hilbert’s thought. It is not a technically hard argument by standards of the time
but the result was so unlooked for and the method so swift and elegant that it was
very hard to follow—or even for Hilbert to get right.

Hilbert knew it was hard to follow, so that in lectures and in Hilbert (1888–1889)
he gave first a simple proof for the case of one variable. A form in one variable is
just a monomial and you only need to find the form of lowest degree in the series.
Then he proved the case of two variables by an argument roughly parallel to the
case of inhomogeneous polynomials in one variable familiar today. He noted that
such a proof for three variables meets difficulties which “would only increase” in
more variables (Hilbert, 1993, p. 128). Only then did he give a general induction,
which was still nothing like as nicely organized as the Hilbert Basis theorem has
been since Emmy Noether. Gordan (1893, p. 132) was the first to call it “Hilbert’s
theorem.”

This result ignores everything about covariants except that they are forms, and
does not itself show a form has a finite complete set of covariants. It immediately
shows every form P has a finite set of covariants

i1, . . . , im

such that every covariant i is a sum

i = a1i1 + · · · + amim

with a1, . . . , am suitable forms in the same variables which need not be covariants.
But a well-known averaging process proved the ak can be replaced by covariants.
These in turn are sums of multiples of the ik. The degrees drop each time, so
by induction i equals some polynomial combination of i1, . . . , im. In other words
{i1, . . . , im} is a finite complete set of covariants for P .

Three journal pages outdo Gordan’s twenty year career (Hilbert, 1888–1889,
pp. 450–52).10 More precisely Hilbert does not claim to find the finite complete
systems. As Noether (1914, p. 18) notes, the symbolic method continued to dom-
inate efforts to find actual systems for decades. But Hilbert isolated finiteness per
se as the key problem and he swept that problem away.

10Not to mention that another quick argument shows that all syzygies, that is all linear equa-
tions among i1, . . . , im, are sums of a finite number of them. Weyl (1944) argues persuasively
that Hilbert found this result before the finiteness of covariants, and (Meyer, 1892, p. 149) says
Hilbert was the first to find it.
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2.1. Complicated caveats. Hilbert’s Theorem I corresponds to today’s Hilbert
basis theorem with three caveats. First, the modern theorem does not apply di-
rectly to homogeneous polynomials.11 But this may actually explain the mistake
in (Hilbert, 1888–1889, p. 451). Probably Hilbert convinced himself of his Theorems
I and II by neglecting degrees—in effect dropping the requirement of homogeneity,
leaving a simpler but still astounding result—and just assuming the degrees would
work out. He can fairly say “one sees easily” how “appropriate” choices complete
the intertwined proofs of the Theorems for that case. Again, though, as the editors
of the Annalen say, Theorem II is false as stated. The degrees do not work out
unless the degrees of φk, ψk, . . . ρk are suitably related.

Even if we drop the homogeneity requirement, it remains that Hilbert states
Theorem I only for polynomial rings. Conventions of the time implied these were
polynomials with real or complex coefficients although many good mathematicians
(certainly including Hilbert) knew they could be more general than that (they could
lie in any algebraic number field, say, or complex function field). The Hilbert basis
theorem today is stated for any ring finitely generated over any Noetherian ring.

The third caveat bears directly on constructive proof versus pure existence proof,
and thus on all of the Göttingen re-constructions of Gordan’s response to Hilbert.
Hilbert stated his Theorems I and II for infinite series of forms, rather than for
arbitrary sets of them. He knew that this restriction to countable sets created a
problem for his applications to uncountable sets of (real or complex) forms. He
took the trouble to make the applications countable by noting in somewhat vague
terms that the set of all (real or complex) forms in a fixed list a0, . . . , an of variables
is countably generated:

They clearly form a countable set, if we first select only the linearly
independent ones. (Hilbert, 1993, p. 131)

Yet he knew as early as (1890, p. 203) that his Theorems hold for arbitrary sets
of forms. He preferred to use series of forms for two reasons. First, at this time he
considered series more concrete than arbitrary sets because he thought every actual
series is

ordered in some way, according to some given rule (Hilbert, 1993,
p. 126)

Second he believed, what we do not today, that he could avoid using proof by
contradiction by restricting to the countable case.

He was explicit that his proof of Theorem I for uncountable sets used contra-
diction (Hilbert, 1890, p. 203f.). It assumes there is some set of polynomials with
no finite set generating it, derives a contradiction, and concludes that every set of
polynomials must have a finite generating set. It is not constructive, in that it does
not construct actual solutions. Today we say the countable case is not constructive
either, even when the series of forms is given by a computable rule, as shown in
footnote 2. But Hilbert did not see that.

Hilbert and Gordan both routinely gave instructions such as, given an infinite
series of forms, “find the form of lowest degree.” They felt this would be easy to
do in practice in typical cases. Yet it requires an infinite search with no finite test
to tell when it is done (except in special cases where some other information is

11Homogeneous polynomials do not form rings or modules since the sum of two homogeneous
polynomials is not homogenous unless the summands have the same degree.
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available). This is precisely the obstacle to finding a solution m in the footnote 2
case. Hilbert did not see any appeal to contradiction in his proof for a series of
forms, although he knew the proof fell short of finding actual solutions. We return
to this point below in the next section.

3. Gordan and the development of Hilbert’s invariant theorem

Gordan refereed Hilbert’s fuller version of the invariant theorem for the Mathe-
matische Annalen:

Sadly I must say I am very unsatisfied with it. The claims are
indeed quite important and correct, so my criticism does not point
at them. Rather it relates to the proof of the fundamental theorem
which does not measure up to the most modest demands one makes
of a mathematical proof. It is not enough that the author make
the matter clear to himself. One demands that he build a proof
following secure rules. . . . Hilbert disdains to lay out his thoughts
by formal rules; he thinks it is enough if no one can contradict his
proof, and then all is in order. He teaches no one anything that
way. I can only learn what is made as clear to me as one times
one is one. I told him in Leipzig that his reasoning did not tell me
anything. He maintained that the importance and correctness of
his theorems was enough. It may be so for the initial discovery, but
not for a detailed article in the Annalen. (Hilbert and Klein, 1985,
p. 65).

Hilbert saw the report and complained sharply to Klein. Klein accepted the paper
which became Hilbert (1890) and also wrote back:

Gordan has spent 8 days here. . . . I have to tell you his thinking
about your work is quite different from what might appear from the
letter reported to me. His overall judgment is so entirely favorable
that you could not wish for better. Granted he recommends more
organized presentation with short paragraphs following one another
so that each within itself brings some smaller problem to a full
conclusion. (Hilbert and Klein, 1985, p. 66)

Gordan complains that instead of giving a proof Hilbert only feels no one can
contradict him—and indeed Gordan does not want to contradict him since Gordan
too believes the result is true. Is this an obscure way of complaining that Hilbert
used proof by contradiction? I don’t think so. Gordan and most of his contem-
poraries were far too quick with their reasoning to notice the difference between a
statement and its double negation. Without that distinction you cannot sharply
distinguish proof by contradiction from direct proof. And published proofs at the
time are often unclear on that very distinction. As noted in section 2.1, Hilbert
was clear about it in principle but was not reliable at identifying proofs by con-
tradiction in fact. Neither Gordan nor Hilbert was at all troubled by instructions
like: search through an infinite series for the term of lowest degree. That looked
easy enough to do in most practical situations—although it is actually the problem
which footnote 2 proves unsolvable.
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Apparently Gordan meant just what he said: the proof was not clear to him.
When he published his own version he added that Hilbert’s ideas offered more help
with calculating specific systems than Hilbert had bothered to use:

The proof Hilbert has given is entirely correct in substance; yet
I feel a gap in his explication as he is satisfied to prove the exis-
tence of [solutions] without discussing their properties. To repair
this gap I give a somewhat different proof with the explicit remark
that I would not have succeeded at finding it had not Hilbert shown
the value for invariant theory of certain ideas which Dedekind, Kro-
necker, and Weber developed for use in other parts of algebra. (Gor-
dan, 1893, pp.132–3)

Klein wrote reasonably to Hilbert “So Gordan makes peace with the new develop-
ment. This was no small thing for him, and for that reason he deserves a lot of
credit” (Hilbert and Klein, 1985, p. 86).

Hilbert also made great progress on actually finding the systems of invariants
in Hilbert (1893). He created the basics of modern algebraic geometry in order to
do this, most famously his Nullstellensatz (Hilbert, 1993, Sturmfels’ Introduction).
A few years later Hilbert would say that knowing how many basic invariants a
form has is not enough “as it is even more important to know about the in- and
covariants themselves,” but that need not mean knowing what they are in detail,
since the sheer uninteresting complexity makes “actually calculating the invariants
. . . pointless” for higher degree polynomials (Hilbert, 1993, pp. 61 and 134).

That was a sharp difference from Gordan. While Gordan knew better than any-
one that calculations above degree 6 were hopelessly impractical he would never
call them pointless. He worked to make Hilbert’s insights extend the feasible range
and (as Max Noether said) his key contribution was explicit ways of ordering poly-
nomials for the calculations. In effect he created the Groebner bases now basic
to computational algebra (Eisenbud, 1995, p. 367). These bases together with
Hilbert’s (1893) methods made the invariant theorem entirely constructive. Even
with computers, though, no one has yet made it feasible for degrees more than one
or two higher than Gordan handled (Sturmfels, 1993).

4. The mythic quote

The mythic quote first appeared in print 25 years later in a eulogy to Gordan by
his close friend Max Noether, who emphasized Gordan’s sense of humor, and who
is a reliable witness:

Gordan—at first rather rejecting of this conceptual argument: “This
is not Mathematics, it is Theology!’—twice gave closer treatment
to Hilbert’s finiteness theorem which is the basis of the proof. He
used various criteria to order the given forms F so that they clearly
produce a finite module. First he did this in a complicated way
specific to invariants, and then in a simple general way. (Noether,
1914, p. 18)12

Noether’s use of the word “conceptual” places the remark in a context familiar in
Göttingen at the time. Göttingen mathematicians credited Dirichlet and Riemann

12“Rather rejecting” translates the German “gegenüber mehr ablehnend.”
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with a new conceptual working style. Minkowski took it as the starting point of
modern mathematics:

The modern age of mathematics dates from the other Dirichlet
principle, namely to overcome problems by a maximum of insightful
thought and a minimum of blind calculation.13

But Noether gives no more explanation of what Gordan meant.
Hilbert was the first to link the Gordan quote to foundations. As he was just

beginning to formulate his own proof theoretic program to justify transfinite math-
ematics Hilbert wrote:

P. Gordan had a certain unclear feeling of the transfinite methods
in my first invariant proof [i.e. of the finiteness of complete systems]
which he expressed by calling the proof “theological.” He altered
the presentation of my proof by bringing in his symbolic method
and thought he thereby stripped off its “theological” character. In
truth the transfinite reasoning was only hidden behind the formal-
ism. (Hilbert, 1923, p. 161)

But in plain, published fact Gordan did not use the symbolic method in his work on
Hilbert’s proof.14 And Gordan never spoke for finitism. He apparently considered
the matter in practical terms, the way most people did at the time, as it was
put in a textbook a few years later: Hilbert’s 1888 method “gives practically no
information as to the actual determination of the finite system whose existence it
establishes” (Grace and Young, 1903, p. 169). But theology deals with the infinite
so Gordan’s words suited Hilbert’s reading.

Klein repeats Max Noether rather closely but adds color:
Gordan rejected [the proof] at the start: “This is not Mathemat-
ics, it is Theology!” Later he said “I have convinced myself that
even Theology has its advantages.” In fact he later later simplified
Hilbert’s basic theorem himself.15

Blumenthal (1935) tries to make Hilbert and Gordan agree:
The finiteness proof for invariant systems had a gap which Gordan’s
criticism especially stressed. “This is not Mathematics,” he said,
“this is Theology.” Hilbert himself put it this way: “[The theorem]
gives us absolutely [durchaus] no means of exhibiting such systems
of invariants by a finite number of steps which can be laid out at
the start of the calculation.”16

13von dem anderen DIRICHLETschen Prinzipe, mit einem Minimum an blinder Rechnung,
einem Maximum an sehenden Gedanken die Probleme zu zwingen, datiert die Neuzeit in der
Geschichte der Mathematik. (Minkowski, 1905, p. 163)

14Gordan (1893, 1899, 1900)
15Gordan war anfangs ablehnend: “Das ist nicht Mathematik, das ist Theologie.” Später sagte

er dann wohl: “Ich habe mich überzeugt, daß auch die Theologie ihre Vorzüge hat.” In der Tat
hat er den Beweis des Hilbertschen Grundtheorems selbst später sehr vereinfacht. (Klein, 1926,
pp. 330–31)

16Der Beweis für die Endlichkeit des Invariantensystems wies noch eine Lücke auf, die besonders
Gordans Kritik herausgefordert hatte. “Das ist keine Mathematik,” sagte er, “das ist Theologie.”
Hilbert drückt sich darüber selbst folgendermaßen aus: “(Er) gibt durchaus kein Mittel in die
Hand, ein solches System von Invarianten durch eine endliche Anzahl schon vor Beginn der Rech-
nung übersehbarer Prozesse aufzustellen. (Blumenthal, 1935, pp. 394–95) The Hilbert quote is
from (Hilbert, 1891–92, p. 12).
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Weyl (1944, p. 622) keeps Hilbert’s harsh evaluation but on new grounds. He
drops the transfinite as a theme since it just does not appear in any of Gordan’s
work. He turns to existential arguments, that is arguments to show something exists
without actually finding it, as Hilbert’s 1888 proof did for finite complete systems
of invariants:

When Hilbert published his proof, . . . Gordan the formalist, at that
time looked upon as the king of invariants, cried out: “This is not
mathematics, it is theology!” Hilbert remonstrated then, as he did
all his life, against the disparagement of existential arguments as
“theology,” but we see how, by digging deeper, he was able to meet
Gordan’s constructive demands.

Weyl used the term “formalist” in an already-outdated sense. By the time he wrote
this Brouwer had defined “formalism” as mathematics freely using classical formal
logic and the transfinite without regard for intuition (Brouwer, 1912). Weyl used
it here in the nineteenth century sense of mathematicians who seek formulas and
algorithms (Klein, 1894, p. 2). In fact Weyl’s account is anachronistic in several
ways. Gordan responded to Hilbert’s proof well before it was published. He was
the first person to hear about it, probably over beer with Hilbert. And Hilbert did
not remonstrate over existential arguments in his first published response to the
Gordan quote but rather over the infinite as we just saw (Hilbert, 1923, p. 161).
Hilbert had begun treating constructivism as an explicit issue by then (Sieg, 1999,
pp. 27ff.) but he did not associate it with Gordon on theology.

The serious anachronism though, which makes Weyl’s account unacceptable as
history, is to read 1920s constructivism into 1890s Gordan. Certainly “[Gordan] was
an algorithmiker” (Noether, 1914, p. 37). But there is no evidence that he rejected
other mathematics. And algorithm then did not mean what it does now. Meyer
(1892, p. 187) aptly calls Gordan’s method an algorismus meaning a framework
for formal calculation.17 It is not a specific calculational routine and so not an
“algorithm” in our sense today. Our sense today was established only after the
1930s. According to the Theseus Logic, Inc., website, “The term algorithm was
not, apparently, a commonly used mathematical term in America or Europe before
Markov, a Russian, introduced it. None of the other investigators, Herbrand and
Gödel, Post, Turing or Church used the term. The term however caught on very
quickly in the computing community.” Gordan liked setting up a good framework
for calculation. He was good at it. There is no evidence that he thought all
mathematics should be constructive.

On the other hand, when Kowalewski reads Gordan as calling Hilbert’s proof a
“ray of light from a higher world,” this has more to do with the kindly enthusiastic
Kowalewski than with Gordan (Kowalewski, 1950, p. 25).

5. The stakes in theology

Basically Gordan’s line on theology, sharply excerpted by Noether, supported so
many interpretations because it did not say at all what it meant. Gordan seems
to have been joking, and rather generously joking given what a blow the first
three pages of Hilbert (1888–1889) had to be to him. We have one other piece of

17Meyer (p. 100) says, what seems to be more or less true, that the Mathematischen Annalen
was founded to accommodate Clebsch, Gordan, and others on invariant theory.
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theology from him. Today we usually take modular functions to be defined on the
upper half complex plane. Klein took them as defined on the whole complex plane,
with terrible singularities all over the real axis: “the demons live there, as Gordan
says” (Klein, 1926, p. 47). Gordan was a funny man.

The myth has carried so well, though, because theology lends itself to mythifica-
tion. The most widely influential source of the story (incontestably so in English
prior to Constance Reid (1970)) was Eric Temple Bell (1945) who tells the story
three times with rising urgency and plays on all the associations of theology.18 First
he has Gordan “exclaim” in “protest” and the reason is:

A proof in theology, it may be recalled, usually demonstrates the
existence of some entity without exhibiting the entity or providing
any method for doing so in a finite number of humanly performable
operations. (Bell, 1945, pp. 227-8)

Then he has the “exasperated” Gordan “cry out” in “distress,” and calls Gordan
“prophetic,” because

Theologians are not noted for their tolerance of one another’s creed,
as was demonstrated once more in the half-century of mathematics
following Hilbert’s proof of his basis theorem [i.e. the theorem we
have followed–CM]. (Bell, 1945, pp. 429-30)

Finally, in the second edition, Bell contrasts finitists to intuitionists who admit
some infinity and on this ground he allies intuitionism to theology:

The strict finitist rejects the infinite as a pernicious futility inherited
from outmoded philosophies and confused theologies; he can get as
far as he likes without it.

. . . we may allow ourselves one of the few anecdotes in this book.
It echoes Gordan’s outraged cry when he read Hilbert’s finiteness
proof in the algebra of quantics. A devout intuitionist closed his
New Testament after reading The Gospel according to Saint John
for the first time in his life with the ecstatic whoop, “This is not
theology, it is mathematics!” (Bell, 1945, p. 561)

There is no identifiable referent for this story. Bell leans heavily on anekdota as
meaning not published. The intuitionist is not Kronecker with his God-created
integers since Bell has just cited Kronecker as a finitist critic of intuitionism. The
only plausible candidate is Brouwer but no one else links Brouwer to the Gospel
according to John. More likely it is a fictitious paradigmatic intuitionist.

The point is that precision is not the point. Theology is exciting. It is about
unseen existence. It is about the infinite. It has passionate, even ecstatic arguments.
I do not mean theology never aims at precision. I mean this appropriation of it
aims elsewhere—and has different aims in different versions.

Bell connects this bit of theology directly to another:
The two most aggressive factions of mathematical theologians—
in Gordan’s sense—of the 1930’s, the abstract-algebraist and the
topologist, found much to dispute. According to an expert ob-
server bulletining from the front in 1939, “In these days the angel

18Bell (1937) is famous for stereotyping, romantic inaccuracy, and its inspiring influence on
many young mathematicians. His (1945) would be a great contribution to the history of 20th
century mathematics if more people read it.
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of topology and the devil of abstract algebra fight for the soul of
each individual mathematical domain.” . . . May the better angel
win, if anything is to be won. (Bell, 1945, p. 430)

The expert is Hermann Weyl (1939, p. 500) and clearly his angel is Luitzen Brouwer
while his devil is Emmy Noether. It is a thrilling image and no one can deny the
expert mathematical passion Weyl put into it. But it is not history and in the long
run the very idea of a rivalry between algebra and topology could only hold up
mathematical understanding and progress.

Brouwer and Noether were friends and shared key students notably Paul Alexan-
droff (McLarty, 2006). That synergy led to group-theoretic algebraic topology and
all the modern cohomology theories. Solomon Lefschetz briefly disdained algebra
in his topology but then took it up and he commissioned the first joint paper by
Samuel Eilenberg and Saunders Mac Lane in the series that led to the creation of
category theory (Eilenberg and Mac Lane, 1942). Early 20th century topologists
and algebraists generally saw each other as allies creating the new mathematics—
except precisely for Hermann Weyl whose geometrical sense drew him to topology
and alienated him from algebra.

We come back to Emmy Noether. She was in the most obvious sense a joint heir
of Gordan and Hilbert. And she passionately sought to unify all mathematics in an
algebraic axiomatic way. Corry has shown how Hilbert’s axiomatics are never purely
formal, nor even aim to found new subjects but always “aim to better define and
understand existing mathematical and scientific theories” (1996, p. 162). He aimed
to organize classical subjects by paring each problem down to its stark essentials.
For that very reason his axioms always have reference. They refer to the classical
structures that motivate them. Gordan’s algebra, on the other hand, was in his own
terms “purely symbolic” so that “no meaning can be assigned to it (Es kann ihm
keine Bedeutung unterlegt werden” (Gordan, 1885–1887, vol. 2, p. 10). Noether’s
axiomatics combined the two.19 Her axioms create new subjects. They need not
have classical referents. They are generally taken to have no specific referent, and
sometimes understood to create new referents for themselves. But there is no use
grappling with those conceptual ontological issues until we can make it as clear as
one times one equals one how all of this is Mathematics.
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Hilbert, David (1890), ‘Über die Theorie der algebraischen Formen’, Mathematische
Annalen 36, 473–534.

Hilbert, David (1891–92), ‘Ueber die theorie der algebraischen invarianten’,
Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-
Augusts-Universität zu Göttingen pp. 1891 pp. 232–41, 1892 6–16 and 439–48.
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