Complex reflection groups as Weyl groups

Michel Broué

Institut Henri–Poincaré

July 2007
FINITE COMPLEX REFLECTION GROUPS

Let K be a characteristic zero field. A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by pseudo–reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

A finite reflection group on \mathbb{R} is called a Coxeter group. A finite reflection group on \mathbb{Q} is called a Weyl group.
Let K be a characteristic zero field.
FINITE COMPLEX REFLECTION GROUPS

Let K be a characteristic zero field.

A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by pseudo–reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

A finite reflection group on \mathbb{R} is called a Coxeter group.

A finite reflection group on \mathbb{Q} is called a Weyl group.
Let K be a characteristic zero field.

A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by pseudo–reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

A finite reflection group on \mathbb{R} is called a Coxeter group.
Let K be a characteristic zero field.

A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by \textit{pseudo–reflections}, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on \mathbb{Q} is called a Weyl group.
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(de, e, r)$ (d, e and r integers),
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(de, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups G_4, G_5, \ldots, G_{37}.
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(de, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.
1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, \ldots, G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have

 \[
 G(d, 1, r) \simeq C_d \wr S_r \\
 G(e, e, 2) = D_{2e} \quad \text{(dihedral group of order } 2e) \\
 G(2, 2, r) = W(D_r).
 \]
FINITE REDUCTIVE GROUPS : POLYNOMIAL ORDER

G is a connected reductive algebraic group over \overline{F}_q, with Weyl group W, endowed with a Frobenius–like endomorphism F. The group $G := G^F$ is a finite reductive group.
FINITE REDUCTIVE GROUPS : POLYNOMIAL ORDER

G is a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W, endowed with a Frobenius–like endomorphism F. The group $G := G^F$ is a finite reductive group.

Example

$$G = \text{GL}_n(\overline{\mathbb{F}}_q), \ F : (a_{i,j}) \mapsto (a_{i,j}^q), \ G = \text{GL}_n(q)$$
FINITE REDUCTIVE GROUPS : POLYNOMIAL ORDER

\(G\) is a connected reductive algebraic group over \(\overline{\mathbb{F}}_q\), with Weyl group \(W\), endowed with a Frobenius–like endomorphism \(F\). The group \(G := G^F\) is a finite reductive group.

Example

\[
G = \text{GL}_n(\overline{\mathbb{F}}_q), \quad F : (a_{i,j}) \mapsto (a_{i,j}^q), \quad G = \text{GL}_n(q)
\]

Type of \(G\) — The type \(\mathcal{G} = (X, Y, R, R^\vee ; W\phi)\) of \(G\) consists of the root datum of \(G\) endowed with the outer automorphism \(W\phi\) defined by \(F\).
FINITE REDUCTIVE GROUPS : POLYNOMIAL ORDER

G is a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W, endowed with a Frobenius–like endomorphism F. The group $G := G^F$ is a finite reductive group.

Example

$G = GL_n(\overline{\mathbb{F}}_q)$, $F : (a_{i,j}) \mapsto (a_{i,j}^{q})$, $G = GL_n(q)$

Type of G — The type $G = (X, Y, R, R^\vee ; W\phi)$ of G consists of the root datum of G endowed with the outer automorphism $W\phi$ defined by F.

Example

$GL_n = (X = Y = \mathbb{Z}^n, R = R^\vee = A_n ; \phi = 1)$
Polynomial order — There is a polynomial in $\mathbb{Z}[x]$ such that $|G|(q) = |G|$.
Polynomial order — There is a polynomial in $\mathbb{Z}[x]$

$$|G|(x) = x^N \prod_{d} \Phi_d(x)^{a(d)}$$

such that $|G|(q) = |G|$.

Example

$$|GL_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} (x^d - 1) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$
Admissible subgroups — The tori of G are the subgroups of the shape T^F where T is an F–stable torus (i.e., isomorphic to some $\bar{F} \times \cdots \times \bar{F}$ in G).

The Levi subgroups of G are the subgroups of the shape L^F where L is a centralizer of an F–stable torus in G.

Example

The split maximal torus $T_1 = (F \times q^n)$ of order $(q^n - 1)^n$

The Coxeter maximal torus $T_c = GL_1(Fq^n)$ of order $q^n - 1$

Levi subgroups have shape $GL_{a_1}(q^{a_1}) \times \cdots \times GL_{a_s}(q^{a_s})$

Cauchy theorem — The (polynomial) order of an admissible subgroup divides the (polynomial) order of the group.
Admissible subgroups — The tori of G are the subgroups of the shape T^F where T is an F–stable torus (i.e., isomorphic to some $\bar{F} \times \cdots \times \bar{F}$ in G).

The Levi subgroups of G are the subgroups of the shape L^F where L is a centralizer of an F–stable torus in G.

Example

- The split maximal torus $T_1 = (\mathbb{F}_q^\times)^n$ of order $(q - 1)^n$
- The Coxeter maximal torus $T_c = \text{GL}_1(\mathbb{F}_q^n)$ of order $q^n - 1$
- Levi subgroups have shape $\text{GL}_{n_1}(q^{a_1}) \times \cdots \times \text{GL}_{n_s}(q^{a_s})$
Admissible subgroups — The tori of G are the subgroups of the shape T^F where T is an F–stable torus (i.e., isomorphic to some $\overline{F}^\times \times \cdots \times \overline{F}^\times$ in G).

The Levi subgroups of G are the subgroups of the shape L^F where L is a centralizer of an F–stable torus in G.

Example

The split maximal torus $T_1 = (\mathbb{F}_q^\times)^n$ of order $(q - 1)^n$

The Coxeter maximal torus $T_c = \text{GL}_1(\mathbb{F}_q^n)$ of order $q^n - 1$

Levi subgroups have shape $\text{GL}_{n_1}(q^{a_1}) \times \cdots \times \text{GL}_{n_s}(q^{a_s})$

Cauchy theorem — The (polynomial) order of an admissible subgroup divides the (polynomial) order of the group.
Levi subgroups and type — For

\[G = (X, Y, R, R^\vee ; W\phi) \]

a type, a Levi subtype of \(G \) is a type of the shape

\[L = (X, Y, R', R'^\vee ; W'w\phi) \]

where \(R' \) is a parabolic system of \(R \), with Weyl group \(W' \), and where \(w \in W \) is such that \(w\phi \) stabilizes \(R' \) and \(R'^\vee \).
Levi subgroups and type — For

\[\mathcal{G} = (X, Y, R, R^\vee; W\phi) \]

a type, a Levi subtype of \(\mathcal{G} \) is a type of the shape

\[\mathcal{L} = (X, Y, R', R'^\vee; W'w\phi) \]

where \(R' \) is a parabolic system of \(R \), with Weyl group \(W' \), and where \(w \in W \) is such that \(w\phi \) stabilizes \(R' \) and \(R'^\vee \).

There is a natural bijection between
Levi subgroups and type — For

\[G = (X, Y, R, R^\vee ; W \phi) \]

a type, a Levi subtype of \(G \) is a type of the shape

\[L = (X, Y, R', R'^\vee ; W' w \phi) \]

where \(R' \) is a parabolic system of \(R \), with Weyl group \(W' \), and where \(w \in W \) is such that \(w \phi \) stabilizes \(R' \) and \(R'^\vee \).

There is a natural bijection between

- the set of \(G \)-conjugacy classes of Levi subgroups of \(G \),
Levi subgroups and type — For

\[G = (X, Y, R, R^\lor; W \phi) \]

a type, a Levi subtype of \(G \) is a type of the shape

\[L = (X, Y, R', R'^\lor; W' w \phi) \]

where \(R' \) is a parabolic system of \(R \), with Weyl group \(W' \), and where \(w \in W \) is such that \(w \phi \) stabilizes \(R' \) and \(R'^\lor \).

There is a natural bijection between

- the set of \(G \)-conjugacy classes of Levi subgroups of \(G \),
 and
Levi subgroups and type — For

\[\mathcal{G} = (X, Y, R, R^\vee; W\phi) \]

a type, a Levi subtype of \(\mathcal{G} \) is a type of the shape

\[\mathcal{L} = (X, Y, R', R'^\vee; W'w\phi) \]

where \(R' \) is a parabolic system of \(R \), with Weyl group \(W' \), and where \(w \in W \) is such that \(w\phi \) stabilizes \(R' \) and \(R'^\vee \).

There is a natural bijection between

- the set of \(G \)–conjugacy classes of Levi subgroups of \(G \),
 and
- the set of \(W \)–conjugacy classes of Levi subtypes of \(\mathcal{G} \).
For $\Phi(x)$ a cyclotomic polynomial, a $\Phi(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi(x)$. Hence such a group is a torus.

Sylow theorem —

1. Maximal $\Phi(x)$–subgroups ("Sylow $\Phi(x)$–subgroups") of G have as (polynomial) order the contribution of $\Phi(x)$ to the (polynomial) order of G.

2. Sylow $\Phi(x)$–subgroups are all conjugate by G (i.e., their types are transitively permuted by the Weyl group W).

3. The (polynomial) index of the normalizer in G of a Sylow $\Phi(x)$–subgroup is congruent to 1 modulo $\Phi(x)$.

Michel Broué (Institut Henri–Poincaré)

Complex reflection groups as Weyl groups

July 2007 8 / 12
FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For $\Phi(x)$ a cyclotomic polynomial, a $\Phi(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi(x)$. Hence such a group is a torus.
For $\Phi(x)$ a cyclotomic polynomial, a $\Phi(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi(x)$. Hence such a group is a torus.

Sylow theorem —
FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For \(\Phi(x) \) a cyclotomic polynomial, a \(\Phi(x) \)-group is a finite reductive group whose (polynomial) order is a power of \(\Phi(x) \). Hence such a group is a torus.

Sylow theorem —

1. Maximal \(\Phi(x) \)-subgroups ("Sylow \(\Phi(x) \)-subgroups") of \(G \) have as (polynomial) order the contribution of \(\Phi(x) \) to the (polynomial) order of \(G \).
FINITE REDUCTIVE GROUPS: THE SYLOW THEOREMS

For $\Phi(x)$ a cyclotomic polynomial, a $\Phi(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi(x)$. Hence such a group is a torus.

Sylow theorem —

(1) Maximal $\Phi(x)$–subgroups (“Sylo\w\d \Phi(x)$–subgroups”) of G have as (polynomial) order the contribution of $\Phi(x)$ to the (polynomial) order of G.

(2) Sylo\w\d $\Phi(x)$–subgroups are all conjugate by G (i.e., their types are transitively permuted by the Weyl group W).
FINITE REDUCTIVE GROUPS : THE SYLOW THEOREMS

For \(\Phi(x) \) a cyclotomic polynomial, a \(\Phi(x) \)-group is a finite reductive group whose (polynomial) order is a power of \(\Phi(x) \). Hence such a group is a torus.

Sylow theorem —

1. Maximal \(\Phi(x) \)-subgroups ("Sylow \(\Phi(x) \)-subgroups") of \(G \) have as (polynomial) order the contribution of \(\Phi(x) \) to the (polynomial) order of \(G \).

2. Sylow \(\Phi(x) \)-subgroups are all conjugate by \(G \) (i.e., their types are transitively permuted by the Weyl group \(W \)).

3. The (polynomial) index of the normalizer in \(G \) of a Sylow \(\Phi(x) \)-subgroup is congruent to 1 modulo \(\Phi(x) \).
The centralizers of $\Phi_d(x)$--subgroups are called the d--split Levi subgroups.
The centralizers of $\Phi_d(x)$–subgroups are called the d–split Levi subgroups.

The minimal d–split Levi subgroups are the centralizers of Sylow $\Phi_d(x)$–subgroups. They are all conjugate under G.
The centralizers of $\Phi_d(x)$–subgroups are called the d–split Levi subgroups.

The minimal d–split Levi subgroups are the centralizers of Sylow $\Phi_d(x)$–subgroups. They are all conjugate under G.

Example
The centralizers of $\Phi_d(x)$–subgroups are called the d–split Levi subgroups.

The minimal d–split Levi subgroups are the centralizers of Sylow $\Phi_d(x)$–subgroups. They are all conjugate under G.

Example

For each d ($1 \leq d \leq n$), $\text{GL}_n(q)$ contains a subtorus of order $\Phi_d(x)^{\left\lceil \frac{n}{d} \right\rceil}$.
The centralizers of $\Phi_d(x)$–subgroups are called the d–split Levi subgroups.

The minimal d–split Levi subgroups are the centralizers of Sylow $\Phi_d(x)$–subgroups. They are all conjugate under G.

Example

For each d ($1 \leq d \leq n$), $\text{GL}_n(q)$ contains a subtorus of order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$.

Assume $n = md + r$ with $r < d$. Then a minimal d–split Levi subgroup has shape $\text{GL}_1(q^d)^m \times \text{GL}_r(q)$.
GENERIC AND ORDINARY SYLOW SUBGROUPS

Let ℓ be a prime number which does not divide $|W|$. If ℓ divides $|G|=G(q)$, there is a unique integer d such that ℓ divides $\Phi_d(q)$. Then the Sylow ℓ–subgroups of G are nothing but the Sylow ℓ–subgroups S_ℓ of $S=F(Sa)$, where S is a Sylow $\Phi_d(x)$–subgroup of G. We have $N_G(S_\ell)=N_G(S)$ and $C_G(S_\ell)=C_G(S)$.

Michel Broué (Institut Henri–Poincaré)

Complex reflection groups as Weyl groups

July 2007 10 / 12
GENERIC AND ORDINARY SYLOW SUBGROUPS

Let ℓ be a prime number which does not divide $|W|$.
GENERIC AND ORDINARY SYLOW SUBGROUPS

Let ℓ be a prime number which does not divide $|W|$.

If ℓ divides $|G| = \mathcal{G}(q)$, there is a unique integer d such that ℓ divides $\Phi_d(q)$.

We have $N_G(S_\ell) = N_G(S)$ and $C_G(S_\ell) = C_G(S)$.
Let ℓ be a prime number which does not divide $|W|$.

- If ℓ divides $|G| = G(q)$, there is a unique integer d such that ℓ divides $\Phi_d(q)$.

- Then the Sylow ℓ–subgroups of G are nothing but the Sylow ℓ–subgroups S_ℓ of $S = S^F$ (S a Sylow $\Phi_d(x)$–subgroup of G).
GENERIC AND ORDINARY SYLOW SUBGROUPS

Let ℓ be a prime number which does not divide $|W|$.

- If ℓ divides $|G| = \mathbb{G}(q)$, there is a unique integer d such that ℓ divides $\Phi_d(q)$.

- Then the Sylow ℓ–subgroups of G are nothing but the Sylow ℓ–subgroups S_ℓ of $S = S^F$ (S a Sylow $\Phi_d(x)$–subgroup of G).

- We have $N_G(S_\ell) = N_G(S)$ and $C_G(S_\ell) = C_G(S)$.
Let L (or L', or L'') be a minimal d–split Levi subgroup, the centralizer of a Sylow $\Phi_d(x)$–subgroup S.

(1) We have $N_G(L)/L \cong N_G(S)/C_G(S) \cong N_W(L)/W'$ (where W' is the Weyl group of L).

Denote that group by $W_G(L)$.

(2) For ζ a primitive d–th root of the unity, we have $|W_G(L)| = G(\zeta)/L(\zeta)$.

Example

For $n = mr + d$ ($d < r$), we have $W_G(L) \cong C_d \wr S_r$.
Let L (or L, or \mathbb{L}) be a minimal d–split Levi subgroup, the centralizer of a Sylow $\Phi_d(x)$–subgroup S.

(1) We have $N_{G}(L)/L \cong N_{G}(S)/C_{G}(S) \cong N_{W}(L)/W'$ (where W' is the Weyl group of L). Denote that group by $W_{G}(L)$.

(2) For a primitive d–th root of the unity ζ, we have $|W_{G}(L)| = G(\zeta)/L(\zeta)$.

Example

For $n = mr + d$ ($d < r$), we have $W_{G}(L) \cong C_{d} \rtimes S_{r}$.
CYCLOTONOMIC WEYL GROUPS AND SPRINGER THEOREM

Let L (or L, or \mathbb{L}) be a minimal d–split Levi subgroup, the centralizer of a Sylow $\Phi_d(x)$–subgroup S.

(1) We have $N_G(L)/L \simeq N_G(S)/C_G(S) \simeq N_W(\mathbb{L})/W'$ (where W' is the Weyl group of L).
Denote that group by $W_G(\mathbb{L})$.

Example
For $n = mr + d$ ($d < r$), we have $W_G(L) \simeq C_d \wr S_r$.

Michel Broué (Institut Henri–Poincaré)
Complex reflection groups as Weyl groups
July 2007 11 / 12
Let L (or \mathbf{L}, or \mathbb{L}) be a minimal d–split Levi subgroup, the centralizer of a Sylow $\Phi_d(x)$–subgroup S.

(1) We have $N_G(L)/L \simeq N_G(S)/C_G(S) \simeq N_W(\mathbb{L})/W'$ (where W' is the Weyl group of L).

Denote that group by $W_G(\mathbb{L})$.

(2) For ζ a primitive d-th root of the unity, we have

$$|W_G(\mathbb{L})| = G(\zeta)/L(\zeta).$$
CYCLOTOMIC WEYL GROUPS AND SPRINGER THEOREM

Let L (or L, or \mathbb{L}) be a minimal d–split Levi subgroup, the centralizer of a Sylow $\Phi_d(x)$–subgroup S.

(1) We have $N_G(L)/L \simeq N_G(S)/C_G(S) \simeq N_W(\mathbb{L})/W'$ (where W' is the Weyl group of L).

Denote that group by $W_G(\mathbb{L})$.

(2) For ζ a primitive d-th root of the unity, we have

$$|W_G(\mathbb{L})| = G(\zeta)/L(\zeta).$$

Example

For $n = mr + d$ ($d < r$), we have $W_G(\mathbb{L}) \simeq C_d \wr S_r$.

Michel Broué (Institut Henri–Poincaré)
The case $d = 1$ — The Sylow $\Phi_1(x)$–subgroups, as well as the minimal d–split subgroups, coincide with the split maximal tori.
The case $d = 1$ — The Sylow $\Phi(x)$–subgroups, as well as the minimal d–split subgroups, coincide with the split maximal tori. In case G is split (i.e., the automorphism ϕ induced by F is the identity), then the group $W_G(L)$ coincides with W.
The case $d = 1$ — The Sylow $\Phi_1(x)$–subgroups, as well as the minimal d–split subgroups, coincide with the split maximal tori. In case G is split (i.e., the automorphism ϕ induced by F is the identity), then the group $W_G(L)$ coincides with W.

Springer and Springer–Lehrer theorem — The group $W_G(L)$ is a complex reflection group (in its representation over the complex vector space $\mathbb{C} \otimes X((\mathbb{Z}L)_{\phi_d}))$.

Example

For $n = mr + d$ ($d < r$), we have $W_G(L) \cong \mathbb{C}^d \wr S_r$.
The case $d = 1$ — The Sylow $\Phi_1(x)$–subgroups, as well as the minimal d–split subgroups, coincide with the split maximal tori. In case G is split (i.e., the automorphism ϕ induced by F is the identity), then the group $W_G(L)$ coincides with W.

Springer and Springer–Lehrer theorem — The group $W_G(L)$ is a complex reflection group (in its representation over the complex vector space $\mathbb{C} \otimes X((\mathbb{Z}L)_{\Phi_d}))$.

Example

For $n = mr + d$ ($d < r$), we have $W_G(L) \simeq C_d \wr \mathfrak{S}_r$
The case $d = 1$ — The Sylow $\Phi_1(x)$–subgroups, as well as the minimal d–split subgroups, coincide with the split maximal tori. In case G is split (i.e., the automorphism ϕ induced by F is the identity), then the group $W_G(\mathbb{L})$ coincides with W.

Springer and Springer–Lehrer theorem — The group $W_G(\mathbb{L})$ is a complex reflection group (in its representation over the complex vector space $\mathbb{C} \otimes X(\mathbb{ZL})_\phi$).

Example

For $n = mr + d$ ($d < r$), we have $W_G(\mathbb{L}) \cong C_d \wr \mathfrak{S}_r$.

The group $W_G(\mathbb{L})$ is called the d–cyclotomic Weyl group. If G is split, the 1–cyclotomic Weyl group is nothing but the ordinary Weyl group W.