Complex reflection groups and associated braid groups

Michel Broué

Institut Henri–Poincaré

September 2008
Let \(K \) be a characteristic zero field and let \(V \) be an \(r \)-dimensional \(K \)-vector space. Let \(S \) be the symmetric algebra of \(V \).

Each choice of a basis \((v_1, v_2, \ldots, v_r)\) of \(V \) determines an identification of \(S \) with a polynomial algebra

\[S \cong K[v_1, v_2, \ldots, v_r]. \]

Let \(G \) be a finite subgroup of \(\text{GL}(V) \). The group \(G \) acts on the algebra \(S \), and we let \(R := S^G \) denote the subalgebra of \(G \)-fixed polynomials.
Let K be a characteristic zero field and let V be an r–dimensional K–vector space. Let S be the symmetric algebra of V.

Michel Broué

Reflection groups and their braids
Let K be a characteristic zero field and let V be an r–dimensional K–vector space. Let S be the symmetric algebra of V. Each choice of a basis (v_1, v_2, \ldots, v_r) of V determines an identification of S with a polynomial algebra

$$S \simeq K[v_1, v_2, \ldots, v_r].$$
Let K be a characteristic zero field and let V be an r–dimensional K–vector space. Let S be the symmetric algebra of V. Each choice of a basis (v_1, v_2, \ldots, v_r) of V determines an identification of S with a polynomial algebra

$$S \simeq K[v_1, v_2, \ldots, v_r].$$

Let G be a finite subgroup of $\text{GL}(V)$. The group G acts on the algebra S, and we let $R := S^G$ denote the subalgebra of G–fixed polynomials.
In general R is NOT a polynomial algebra,
In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$P := K[u_1, u_2, \ldots, u_r] \quad \text{with} \quad \deg u_i = d_i$$
In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$P := K[u_1, u_2, \ldots, u_r] \text{ with } \deg u_i = d_i$$

such that
In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$P := K[u_1, u_2, \ldots, u_r] \quad \text{with} \quad \deg u_i = d_i$$

such that

$$S = K[v_1, v_2, \ldots, v_r]$$

$$R = S^G$$

$$P = K[u_1, u_2, \ldots, u_r]$$

free of rank $m|G|$
In general R is NOT a polynomial algebra, but there exists a graded polynomial algebra

$$P := K[u_1, u_2, \ldots, u_r] \quad \text{with} \quad \deg u_i = d_i$$

such that

$$S = K[v_1, v_2, \ldots, v_r]$$

free of rank $m|G|$ \quad not free unless...

$$R = S^G \quad \text{not a polynomial algebra unless...}$$

free of rank m

$$P = K[u_1, u_2, \ldots, u_r]$$
Moreover,

As a PG–module, we have $S \cong (PG)^m$.

Example. Consider $G = \{ (1 0, 0 1), (-1 0, 0 -1) \} \subset GL_2(K)$.

Denote by (x, y) the canonical basis of $V = K^2$.

Then $S = K[x, y]$ not free

$R = S_G = K[x^2, y^2] \oplus K[x^2, y^2]xy$ free of rank 2

$P = K[x^2, y^2]$ free of rank 4

Michel Broué
Reflection groups and their braids
Moreover,

\[m | G | = d_1 d_2 \cdots d_r \]

As a PG–module, we have

\[S \cong (PG)^m. \]

Example. Consider \(G = \{ (1 \ 0) \ 0 \ 1), (\ -1 \ 0) \ 0 \ -1 \} \subset GL_2(K). \) Denote by \((x, y)\) the canonical basis of \(V = K^2. \) Then

\[S = K[x, y] \]

not free

\[\uparrow \]

\[R = S_G = K[x^2, y^2] \oplus K[x^2, y^2] \]

free of rank 2

\[\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \]

\[P = K[x^2, y^2] \]

free of rank 4
Moreover,

1. \(m|G| = d_1d_2\cdots d_r \)
2. As a \(PG \)-module, we have \(S \cong (PG)^m \).
Moreover,

1. \(m|G| = d_1d_2 \cdots d_r \)
2. As a \(PG \)-module, we have \(S \simeq (PG)^m \).

Example.
Moreover,

1. \(m|G| = d_1 d_2 \cdots d_r \)
2. As a \(PG \)-module, we have \(S \cong (PG)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset GL_2(K) \).
Moreover,

1. \(m|G| = d_1 d_2 \cdots d_r \)

2. As a \(PG \)-module, we have \(S \simeq (PG)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K) \).

Denote by \((x, y)\) the canonical basis of \(V = K^2 \).
Moreover,

1. \(m|G| = d_1 d_2 \cdots d_r \)
2. As a \(PG\)-module, we have \(S \cong (PG)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K) \).

Denote by \((x, y)\) the canonical basis of \(V = K^2 \). Then
Moreover,

1. \(m | G | = d_1 d_2 \cdots d_r \)
2. As a \(PG \)-module, we have \(S \cong (PG)^m \).

Example.

Consider \(G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subset \text{GL}_2(K) \).

Denote by \((x, y)\) the canonical basis of \(V = K^2 \). Then

\[
S = K[x, y] \\
\text{not free}
\]

\[
R = S^G = K[x^2, y^2] \oplus K[x^2, y^2]xy
\]

\[
P = K[x^2, y^2] \\
\text{free of rank 2}
\]
Unless...

A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by:

$$
\begin{pmatrix}
\zeta & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{pmatrix}
$$

A finite reflection group on \mathbb{R} is called a Coxeter group.

A finite reflection group on \mathbb{Q} is called a Weyl group.

Michel Broué
Reflection groups and their braids
A finite reflection group on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$
A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on \mathbb{Q} is called a Weyl group.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$.

The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independent elements.
3. S is a free R–module.

In other words, unless $m = 1$, i.e., $R = P$.

Michel Broué
Reflection groups and their braids
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independent elements.
3. S is a free R–module.

In other words, unless $m = 1$, i.e., $R = P$.

Michel Broué
Reflection groups and their braids
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $\text{GL}(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
3. S is a free R–module.
Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of $GL(V)$ (V an r–dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, \ldots, v_r]$. The following assertions are equivalent.

1. G is generated by reflections.
2. The ring $R := S^G$ of G–fixed polynomials is a polynomial ring $K[u_1, u_2, \ldots, u_r]$ in r homogeneous algebraically independant elements.
3. S is a free R–module.

In other words, unless... $m = 1$, i.e., $R = P$.
\[S = K[v_1, v_2, \ldots, v_r] \]

\[R = S^G \]

\[P = K[u_1, u_2, \ldots, u_r] \]

becomes

\[\text{free of rank } m|G| \]

\[\text{free of rank } m \]
\[S = K[v_1, v_2, \ldots, v_r] \]

\[R = S^G \]

\[P = K[u_1, u_2, \ldots, u_r] \]

becomes

\[S = K[v_1, v_2, \ldots, v_r] \]

\[R = S^G = P = K[u_1, u_2, \ldots, u_r] \]
Examples

For $G = S$, one may choose

\[
\begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 \vdots \\
 u_r &= v_1 v_2 \cdots v_r
\end{align*}
\]

For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have $S = K[x]$ and $R = K[x^d]$.
Examples

- For $G = \mathfrak{S}_r$, one may choose

$$
\begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 & \vdots \\
 u_r &= v_1 v_2 \cdots v_r
\end{align*}
$$

For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have $S = K[x]$ and $R = K[x_d]$.
Examples

- For $G = \mathfrak{S}_r$, one may choose

\[
\begin{align*}
 u_1 &= v_1 + \cdots + v_r \\
 u_2 &= v_1 v_2 + v_1 v_3 + \cdots + v_{r-1} v_r \\
 \vdots & \vdots \\
 u_r &= v_1 v_2 \cdots v_r
\end{align*}
\]

- For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have

$$S = K[x] \quad \text{and} \quad R = K[x^d].$$
Classification

The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd. There is one infinite series $G(d,e,r)$ (d,e and r integers),...and 34 exceptional groups $G_{4}, G_{5}, ..., G_{37}$.

The group $G(d,e,r)$ (d,e and r integers) consists of all $r \times r$ monomial matrices with entries in μ^{d} such that the product of entries belongs to μ^{d}.

We have $G(d,1,r) \cong S_{r}$

$G(2,2,r) = W(D_r)$

$G_{23} = H_{3}$

$G_{28} = F_4$

$G_{30} = H_4$

$G_{35}, 36, 37 = E_6, 7, 8$.

Michel Broué

Reflection groups and their braids
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups
The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.

- There is one infinite series $G(de, e, r)$ (d, e and r integers),
- ...and 34 exceptional groups G_4, G_5, ..., G_{37}.
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_{d}.
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have
Classification

1 The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(d, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_{37}.

2 The group $G(d, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3 We have

$$G(d, 1, r) \cong C_d \wr \mathfrak{S}_r$$
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(d e, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, \ldots, G_{37}.

2. The group $G(d e, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in $\mu_{d e}$ such that the product of entries belongs to μ_d.

3. We have

 \[
 G(d, 1, r) \simeq C_d \wr S_r \\
 G(e, e, 2) = D_{2e} \quad \text{(dihedral group of order $2e$)}
 \]
Classification

1. The finite reflection groups on \mathbb{C} have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series $G(de, e, r)$ (d, e and r integers),
 - ...and 34 exceptional groups G_4, G_5, ..., G_37.

2. The group $G(de, e, r)$ (d, e and r integers) consists of all $r \times r$ monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.

3. We have

 \[G(d, 1, r) \simeq C_d \ltimes \mathfrak{S}_r \]
 \[G(e, e, 2) = D_{2e} \quad \text{(dihedral group of order } 2e) \]
 \[G(2, 2, r) = W(D_r) \]
 \[G_{23} = H_3, \quad G_{28} = F_4, \quad G_{30} = H_4 \]
 \[G_{35,36,37} = E_{6,7,8}. \]
Let G be a finite subgroup of $\text{GL}(V)$.
A reflection s is associated with

$H := \ker(s - 1)$, $L := \text{im}(s - 1)$, a reflecting pair (H, L).

Properties:

$H \oplus L = V$, H determines L, and L determines H.
Hence, in terms of normalizers,

The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Michel Broué

Reflection groups and their braids
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a **reflecting hyperplane** $H := \ker(s - 1)$,
- a **reflecting line** $L := \text{im}(s - 1)$,
- a **reflecting pair** (H, L).

The **fixator** G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.
Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with
- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:
- $H \oplus L = V$,
Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
- H determines L, and L determines H.
Reflecting hyperplanes, lines, pairs

Let G be a finite subgroup of $\text{GL}(V)$.

A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
- H determines L, and L determines H, hence, in terms of normalizers,

Let G be a finite subgroup of $\text{GL}(V)$. A reflection s is associated with

- a reflecting hyperplane $H := \ker(s - 1)$,
- a reflecting line $L := \text{im}(s - 1)$,
- a reflecting pair (H, L).

Properties:

- $H \oplus L = V$,
- H determines L, and L determines H, hence, in terms of normalizers,

- The fixator G_H (pointwise stabilizer) of H is a cyclic group consisting of reflections with reflecting hyperplane H and reflecting line L.

Notation

\[A := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \} \]

For \(H \in A \), \(e_H := |G_H| \)

\(s_H \) is the generator of \(G_H \) whose nontrivial eigenvalue is \(e^{2 \pi i / e_H} \), called a distinguished reflection.

For a line \(L \) in \(V \), the ideal \(q := SL \) of \(S \) is a height one prime ideal.

In other words, the hypersurface of \(V \) defined by \(q \) is a codimension one irreducible variety.

Now the extension \(S_R = S \downarrow G \uparrow \) (corresponding to the covering \(V \downarrow V / G \)) is ramified at \(q = SL \) if and only if \(L \) is a reflecting line.
Notation

\[A := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \} \]
Notation

- \(\mathcal{A} := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \} \)
- For \(H \in \mathcal{A} \), \(e_H := |G_H| \)
\textbf{Notation}

- $\mathcal{A} := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi / e_H}$,
Notation

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.
Notation

- $\mathcal{A} := \{ H \mid H \text{ reflecting hyperplane of some reflection in } G \}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal.
Notation

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.
Notation

- $\mathcal{A} := \{ H \mid H$ reflecting hyperplane of some reflection in $G \}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$,
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := S_L$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.

Now the extension

\[
R = S^G
\]
Notation

- $\mathcal{A} := \{H \mid H \text{ reflecting hyperplane of some reflection in } G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2\pi i/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.

Now the extension $R = S^G$ (corresponding to the covering $V \rightarrow V/G$).
Notation

- $\mathcal{A} := \{ H \mid H$ reflecting hyperplane of some reflection in $G\}$
- For $H \in \mathcal{A}$, $e_H := |G_H|$
- s_H is the generator of G_H whose nontrivial eigenvalue is $e^{2i\pi/e_H}$, called a distinguished reflection.

For L a line in V, the ideal $q := SL$ of S is a height one prime ideal. In other words, the hypersurface of V defined by q is a codimension one irreducible variety.

Now the extension $R = S^G$ is ramified at $q = SL$ if and only if L is a reflecting line.
Thus there are G-equivariant bijections $A \leftrightarrow \{\text{reflecting lines}\} \leftrightarrow \{\text{ramified height one prime ideals of } S\}$.

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

1. The ramification locus of $V \rightarrow V/G$ is $\bigcup H \in A H$.

2. Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

3. The set $\text{Par}(G)$ of fixators ("parabolic subgroups" of G) is in (reverse–order) bijection with the set $I(A)$ of intersections of elements of A:

$$I(A) \sim \rightarrow \text{Par}(G), X \mapsto G X.$$
Thus there are G–equivariant bijections

$$\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}$$
Thus there are G–equivariant bijections

$$\mathcal{A} \leftrightarrow \{\text{reflecting lines}\} \leftrightarrow \{\text{ramified height one prime ideals of } S\}$$

Ramification and parabolic subgroups
Thus there are G-equivariant bijections

$\mathcal{A} \leftrightarrow \{\text{reflecting lines}\} \leftrightarrow \{\text{ramified height one prime ideals of } S\}$

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.
Thus there are \(G \)-equivariant bijections

\[
\mathcal{A} \longleftrightarrow \{\text{reflecting lines}\} \longleftrightarrow \{\text{ramified height one prime ideals of } S\}
\]

Ramification and parabolic subgroups

Steinberg Theorem

Assume \(G \) generated by reflections.

1. The ramification locus of \(V \twoheadrightarrow V/G \) is \(\bigcup_{H \in \mathcal{A}} H \).
Thus there are G–equivariant bijections

\[\mathcal{A} \leftrightarrow \{ \text{reflecting lines} \} \leftrightarrow \{ \text{ramified height one prime ideals of } S \} \]

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

1. The ramification locus of $V \twoheadrightarrow V/G$ is $\bigcup_{H \in \mathcal{A}} H$.

2. Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.
Thus there are G–equivariant bijections

$$\mathcal{A} \leftrightarrow \{\text{reflecting lines}\} \leftrightarrow \{\text{ramified height one prime ideals of } S\}$$

Ramification and parabolic subgroups

Steinberg Theorem

Assume G generated by reflections.

1. The ramification locus of $V \longrightarrow V/G$ is $\bigcup_{H \in \mathcal{A}} H$.

2. Let X be a subset of V. Then the fixator of X in G is generated by the reflections which fix X.

3. The set $\text{Par}(G)$ of fixators ("parabolic subgroups" of G) is in (reverse–order) bijection with the set $\text{I}(\mathcal{A})$ of intersections of elements of \mathcal{A}:

$$\text{I}(\mathcal{A}) \sim \text{Par}(G) \quad , \quad X \mapsto G_X .$$
Braid groups

Let $V_{\text{reg}} := V - \bigcup_{H \in A} H$. Since the covering $V_{\text{reg}} \to V_{\text{reg}}/G$ is Galois, it induces a short exact sequence

$$1 \to \Pi_1(V_{\text{reg}}, x_0) \to \Pi_1(V_{\text{reg}}/G, x_0) \to B_G \to 1$$

(Pure braid group) (Braid group)
Braid groups

Set

\[V^{\text{reg}} := V - \bigcup_{H \in A} H. \]
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(V^{\text{reg}} \to V^{\text{reg}}/G \) is Galois, it induces a short exact sequence
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(V^{\text{reg}} \rightarrow V^{\text{reg}}/G \) is Galois, it induces a short exact sequence

\[
1 \longrightarrow \Pi_1(V^{\text{reg}}, \chi_0) \longrightarrow \Pi_1(V^{\text{reg}}/G, \chi_0) \longrightarrow G \longrightarrow 1
\]
Set

\[V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H. \]

Since the covering \(V^{\text{reg}} \rightarrow V^{\text{reg}}/G \) is Galois, it induces a short exact sequence

\[1 \rightarrow \Pi_1(V^{\text{reg}}, x_0) \rightarrow \Pi_1(V^{\text{reg}}/G, x_0) \rightarrow G \rightarrow 1 \]

\[\hspace{2cm} PG \hspace{2cm} BG \]
Set

$V^\text{reg} := V - \bigcup_{H \in \mathcal{A}} H.$

Since the covering $V^\text{reg} \to V^\text{reg}/G$ is Galois, it induces a short exact sequence

$$
1 \longrightarrow \Pi_1(V^\text{reg}, x_0) \longrightarrow \Pi_1(V^\text{reg}/G, x_0) \longrightarrow G \longrightarrow 1
$$

$\text{(Pure braid group)}$ (Braid group)

P_G B_G
Notation around H

Let $H \in A$, with associated line L. For $x \in V$, we set $x = x_L + x_H$ (with $x_L \in L$ and $x_H \in H$). Thus, we have $s_H(x) = e^{2\pi i / e_H} x_L + x_H$.

If $t \in \mathbb{R}$, we set $s_t H(x) = e^{2\pi i t / e_H} x_L + x_H$ defining a path s_H, x from x to $s_H(x)$.

We have $s_t e_H H(x) = e^{2\pi i t} x_L + x_H$ defining a loop π_H, x with origin x.

In other words, π_H, $x = s_t e_H H$, $x \in \mathbb{P}G$.
Notation around H

- Let $H \in \mathcal{A}$, with associated line L.

\[s_H(x) = e^{2i\pi/|H|}x_L + x_H \]

Thus, we have $s_{eH}(x) = e^{2i\pi/|H|}x_L + x_H$.

If $t \in \mathbb{R}$, we set:

\[s_{eH}(x) = e^{2i\pi t/|H|}x_L + x_H \]

Defining a path s_{eH}, x from x to $s_{eH}(x)$.

In other words, s_{eH}, $x \in \mathcal{P}_G$.

Michel Broué
Reflection groups and their braids
Notation around H

- Let $H \in A$, with associated line L. For $x \in V$, we set

$$x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H).$$
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

$$x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H).$$

Thus, we have

$$s_H(x) = e^{2i\pi/e_H} x_L + x_H.$$
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set
 \[x = x_L + x_H \quad (\text{with } x_L \in L \text{ and } x_H \in H). \]
 Thus, we have \[s_H(x) = e^{2i\pi/e_H}x_L + x_H. \]

- If $t \in \mathbb{R}$, we set:
 \[s^t_H(x) = e^{2i\pi t/e_H}x_L + x_H \quad \text{defining a path } s_{H,x} \text{ from } x \text{ to } s_H(x). \]
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set

 $$x = x_L + x_H \quad (\text{with } x_L \in L \text{ and } x_H \in H).$$

 Thus, we have

 $$s_H(x) = e^{2i\pi/e_H}x_L + x_H.$$

- If $t \in \mathbb{R}$, we set :

 $$s^t_H(x) = e^{2i\pi t/e_H}x_L + x_H \quad \text{defining a path } s_{H,x} \text{ from } x \text{ to } s_H(x)$$

 We have

 $$s^{te_H}_H(x) = e^{2\pi it}x_L + x_H \quad \text{defining a loop } \pi_{H,x} \text{ with origin } x$$
Notation around H

- Let $H \in \mathcal{A}$, with associated line L. For $x \in V$, we set
 \[x = x_L + x_H \quad \text{(with } x_L \in L \text{ and } x_H \in H). \]
 Thus, we have
 \[s_H(x) = e^{2i\pi/eH}x_L + x_H. \]

- If $t \in \mathbb{R}$, we set:
 \[s_H^t(x) = e^{2i\pi t/eH}x_L + x_H \quad \text{defining a path } s_{H,x} \text{ from } x \text{ to } s_H(x). \]
 We have
 \[s_{H}^{teH}(x) = e^{2\pi i t}x_L + x_H \quad \text{defining a loop } \pi_{H,x} \text{ with origin } x. \]
 In other words,
 \[\pi_{H,x} = s_{H,x}^{eH} \in P_G \]
Let γ be a path in V_{reg} from x_0 to x_H. We define:

$$\sigma_{H,\gamma} := s_H(\gamma - 1) \cdot s_H \cdot x_0 \cdot H \cdot x_H \cdot s_H(x_H) \cdot PP \cdot s_H(x_0)$$

Definition

We call braid reflections the elements $s_{H,\gamma} \in B$ defined by the paths $\sigma_{H,\gamma}$.

Michel Broué
Reflection groups and their braids
Let γ be a path in \mathcal{V}_{reg} from x_0 to x_H.

We define:

$$\sigma_{H,\gamma} := s_{H}(\gamma - 1) \cdot s_{H, x_H} \cdot s_{H}(x_H) \cdot s_{H}(x_0)$$

Definition:

We call braid reflections the elements $s_{H, \gamma} \in B$ defined by the paths $\sigma_{H, \gamma}$.
Let γ be a path in V_{reg} from x_0 to x_H. We define:

$$\sigma_{H,\gamma} := s_H(\gamma - 1) \cdot s_H, x \cdot \gamma$$

Definition

We call braid reflections the elements $s_H, \gamma \in B$ defined by the paths $\sigma_{H,\gamma}$.
Let \(\gamma \) be a path in \(V_{\text{reg}} \) from \(x_0 \) to \(x_H \).

We define:

\[
\sigma_{H, \gamma} := s_H(\gamma - 1) \cdot s_H, x \cdot \gamma \cdot x_0 \cdot H \cdot x_H \cdot \sigma_H(x_H) \cdot PP
\]

Definition

We call braid reflections the elements \(s_{H, \gamma} \in B \) defined by the paths \(\sigma_{H, \gamma} \).
Braid reflections

Let γ be a path in V_{reg} from x_0 to x_H.
We define:

$$\sigma_{H, \gamma} := s_{H}(\gamma - 1) \cdot s_{H}(x_H) \cdot s_{H}(x_0)$$

Definition
We call braid reflections the elements $\sigma_{H, \gamma} \in B$ defined by the paths $\sigma_{H, \gamma}$.
Let γ be a path in V_{reg} from x_0 to x_H.

We define:

$$\sigma_{H,\gamma} := s_H(\gamma - 1) \cdot s_H(x) \cdot \gamma \cdot s_H(x_0)$$

Definition

We call braid reflections the elements $s_H, \gamma \in B$ defined by the paths $\sigma_{H,\gamma}$.

Michel Broué
Reflection groups and their braids
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

We define:

$$\sigma_\gamma, \gamma := s_H(\gamma - 1) \cdot s_H, x \cdot \gamma$$

Definition

We call braid reflections the elements $s_H, \gamma \in B$ defined by the paths σ_γ, γ.
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

We define:

$$s_{H,x} \cdot \gamma$$

- $s_H(x_0)$
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

$$s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$$
Braid reflections

Let γ be a path in V_{reg} from x_0 to x_H.

We define:

$$\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$$
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.

We define: $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$
Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H.
We define: $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot s_{H,x} \cdot \gamma$

Definition

We call braid reflections the elements $s_{H,\gamma} \in B$ defined by the paths $\sigma_{H,\gamma}$.
The following properties are immediate.
The following properties are immediate.

- \(s_{H,\gamma} \) and \(s_{H,\gamma'} \) are conjugate in \(P \).
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s_{e_{H},\gamma}$ is a loop in V^{reg}:

\[
\begin{array}{c}
\bullet \quad \gamma \quad \cdot x_0
\end{array}
\]
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s^{e_H}_{H,\gamma}$ is a loop in V^{reg}:

The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.
- $s^e_{H,\gamma}$ is a loop in V^{reg}:

The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then

Theorem
The following properties are immediate.

- \(s_{H,\gamma} \) and \(s_{H,\gamma'} \) are conjugate in \(P \).
- \(s_{eH,\gamma}^{eH} \) is a loop in \(V^{\text{reg}} \):

The variety \(V \) (resp. \(V/G \)) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then

Theorem

1. The braid group \(B_G \) is generated by the braid reflections \((s_{H,\gamma})\) (for all \(H \) and all \(\gamma \)).
The following properties are immediate.

- $s_{H,\gamma}$ and $s_{H,\gamma'}$ are conjugate in P.

- $s_{eH,\gamma}^H$ is a loop in V^reg:

The variety V (resp. V/G) is simply connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are “generators of the monodromy” around the irreducible divisors. Then

Theorem

1. The braid group B_G is generated by the braid reflections $(s_{H,\gamma})$ (for all H and all γ).
2. The pure braid group P_G is generated by the elements $(s_{eH,\gamma}^H)$.
Linear characters of the reflection groups

For $H \in \mathcal{A}$,
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod \{ H' \mid (H' = gH) \} j_{H'}$ (depends only on the orbit of H under G)
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod_{\{H' | (H' =_{G} H)\}} j_{H'}$ (depends only on the orbit of H under G)

Proposition
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod \{ H' \mid (H' =_{G} H) \} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g)j_H$
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod_{\{H'|(H' =_G H)\}} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g) j_H$

2. $\det_H(s) = \begin{cases}
\det(s) & \text{if } H_s =_G H \\
1 & \text{if not}
\end{cases}$
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

- j_H denotes a nontrivial element of L,
- $j_H := \prod\{H'|(H' =_G H)\} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g) j_H$

2. $\det_H(s) = \begin{cases}
\det(s) & \text{if } H_s =_G H \\
1 & \text{if not} \end{cases}$

3. $\text{Hom}(G, \mathbb{C}^\times) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G$
Linear characters of the reflection groups

For $H \in \mathcal{A}$,

1. j_H denotes a nontrivial element of L,
2. $j_H := \prod \{ H' | (H' =_G H) \} j_{H'}$ (depends only on the orbit of H under G)

Proposition

1. The linear character $\det_H : G \to \mathbb{C}^\times$ is defined by $g(j_H) = \det_H(g)j_H$
2. $\det_H(s) = \begin{cases} \det(s) & \text{if } H_s =_G H \\ 1 & \text{if not} \end{cases}$
3. $\text{Hom}(G, \mathbb{C}^\times) \sim \left(\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times) \right)^G \sim \left(\prod_{H \in \mathcal{A}/G} \text{Hom}(G_H, \mathbb{C}^\times) \right)$
Linear characters of the braid groups

The discriminant at $H \in A$ (or rather A/G) is $\Delta_H := \frac{\delta_H}{\delta}$, hence defines a (continuous) map $\Delta_H : V_{\text{reg}} \to C \times V_{\text{reg}}/G$, hence defines a morphism $\Pi_1(\Delta_H) : \Pi_1(V_{\text{reg}}/G) \to \Pi_1(C \times V_{\text{reg}}/G)$. For $H \in A$, $L_H : B_G \to Z$ is a linear character.
Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^e$
• The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^e$

• $\Delta_H \in R = S^G$
The discriminant at \(H \in \mathcal{A} \) (or rather \(\mathcal{A}/G \)) is \(\Delta_H := j_H^{eH} \).

\(\Delta_H \in R = S^G \) hence defines a (continuous) map \(\Delta_H : V_{reg} \rightarrow \mathbb{C}^\times \)

\[\begin{array}{c}
V_{reg} \\
\downarrow \\
V_{reg}/G \\
\end{array} \xrightarrow{\Delta_H} \mathbb{C}^\times \]
Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^{e_H}$
- $\Delta_H \in R = S^G$ hence defines a (continuous) map

$$\Delta_H : V^{\text{reg}} \to \mathbb{C}^\times$$

$$V^{\text{reg}} / G$$

hence defines a morphism
Linear characters of the braid groups

- The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^e$
- $\Delta_H \in R = S^G$ hence defines a (continuous) map
 $$\Delta_H : V_{\text{reg}} \to \mathbb{C}^\times$$
 $$V_{\text{reg}}/G$$

hence defines a morphism
 $$\Pi_1(\Delta_H) : \Pi_1(V_{\text{reg}}/G) \to \Pi_1(\mathbb{C}^\times) \quad i.e.,$$
The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^{eH}$.

$\Delta_H \in R = S^G$ hence defines a (continuous) map

$$\Delta_H : V^\text{reg} \to \mathbb{C}^\times$$

$$V^\text{reg}/G$$

hence defines a morphism

$$\Pi_1(\Delta_H) : \Pi_1(V^\text{reg}/G) \to \Pi_1(\mathbb{C}^\times) \quad \text{i.e.,} \quad \ell_H : B_G \to \mathbb{Z}$$
The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^e$

$\Delta_H \in R = S^G$ hence defines a (continuous) map

$$\Delta_H : V^{\text{reg}} \rightarrow \mathbb{C}^\times$$

hence defines a morphism

$$\Pi_1(\Delta_H) : \Pi_1(V^{\text{reg}}/G) \rightarrow \Pi_1(\mathbb{C}^\times) \quad \text{i.e.,} \quad \ell_H : B_G \rightarrow \mathbb{Z}$$

For $H \in \mathcal{A}$,
The discriminant at $H \in \mathcal{A}$ (or rather \mathcal{A}/G) is $\Delta_H := j_H^{e_H}$

$\Delta_H \in R = S^G$ hence defines a (continuous) map

$$\Delta_H : V^{\text{reg}} \to \mathbb{C}^\times$$

$$V^{\text{reg}}/G$$

hence defines a morphism

$$\Pi_1(\Delta_H) : \Pi_1(V^{\text{reg}}/G) \to \Pi_1(\mathbb{C}^\times) \quad \text{i.e.,} \quad \ell_H : B_G \to \mathbb{Z}$$

For $H \in \mathcal{A}$,

$$G_H \cong \mathbb{Z}/e_H\mathbb{Z}$$
Linear characters of the braid groups

- The discriminant at \(H \in \mathcal{A} \) (or rather \(\mathcal{A}/G \)) is \(\Delta_H := j_H^{e_H} \)
- \(\Delta_H \in R = S^G \) hence defines a (continuous) map
 \[
 \Delta_H : V_{\text{reg}} \longrightarrow \mathbb{C}^\times
 \]
 \[
 V_{\text{reg}}/G
 \]
 hence defines a morphism
 \[
 \Pi_1(\Delta_H) : \Pi_1(V_{\text{reg}}/G) \rightarrow \Pi_1(\mathbb{C}^\times) \quad \text{i.e.,} \quad \ell_H : B_G \longrightarrow \mathbb{Z}
 \]

- For \(H \in \mathcal{A} \),
 \[
 G_H \cong \mathbb{Z}/e_H\mathbb{Z}
 \]
 \[
 B_{G_H} \cong \mathbb{Z}
 \]
Proposition 1

\[\text{Hom}(G, C \times \cdot \cdot \cdot \cdot) \sim - \rightarrow \left(\prod_{H \in A} \text{Hom}(G H, C \times \cdot \cdot \cdot \cdot) \right) \]

\[\text{Hom}(B G, Z) \sim - \rightarrow \left(\prod_{H \in A} \text{Hom}(B G H, Z) \right) \]

\[\ell_H \text{ is a length:} \]

\[\ell_H(s_n H_1, \gamma_1 \cdot \cdot \cdot s_n H_k, \gamma_k) = \sum \left\{ i \mid (H_i = G H) \right\} n_i B G \]

Michel Broué

Reflection groups and their braids
Proposition
Proposition

1. $\text{Hom}(G, \mathbb{C}^\times) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G$
Proposition

\[\text{Hom}(G, \mathbb{C}^\times) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \]

\[\text{Hom}(B_G, \mathbb{Z}) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(B_{G_H}, \mathbb{Z}))^G \]
Proposition

1. \[\text{Hom}(G, \mathbb{C}^\times) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \]
 \[\text{Hom}(B_G, \mathbb{Z}) \xrightarrow{\sim} (\prod_{H \in \mathcal{A}} \text{Hom}(B_{G_H}, \mathbb{Z}))^G \]

2. \(\ell_H \) is a length:
1. \[\text{Hom}(G, \mathbb{C}^\times) \sim (\prod_{H \in A} \text{Hom}(G_H, \mathbb{C}^\times))^G \]

\[\text{Hom}(B_G, \mathbb{Z}) \sim (\prod_{H \in A} \text{Hom}(B_{G_H}, \mathbb{Z}))^G \]

2. \(\ell_H \) is a length:

\[
\ell_H(s_{H_1, \gamma_1}^{n_1} \cdot s_{H_2, \gamma_2}^{n_2} \cdots s_{H_k, \gamma_k}^{n_k}) = \sum_{\{i \mid (H_i = G_H)\}} n_i
\]
Proposition

\[\text{Hom}(G, \mathbb{C}^\times) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(G_H, \mathbb{C}^\times))^G \]

\[\text{Hom}(B_G, \mathbb{Z}) \sim (\prod_{H \in \mathcal{A}} \text{Hom}(B_{G_H}, \mathbb{Z}))^G \]

\[\ell_H \text{ is a length :} \]

\[\ell_H(s_{H_1, \gamma_1}^{n_1} \cdot s_{H_2, \gamma_2}^{n_2} \cdots s_{H_k, \gamma_k}^{n_k}) = \sum \{ n_i | (H_i = G_H) \} \]
Center of the braid groups

From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |\mathbb{Z}G|$ and $\zeta := e^{2i\pi/z}$.

Let $\pi \in \mathbb{P}G$ defined by $\pi : t \mapsto e^{2i\pi t}x_0$

Let $\zeta \in \mathbb{B}G$ defined by $\zeta : t \mapsto e^{2i\pi t/z}x_0$

Theorem 1

$$\mathbb{Z}P_G = \langle \pi \rangle$$ and $$\mathbb{Z}B_G = \langle \zeta \rangle$$

2. We have the short exact sequence

$$1 \rightarrow \mathbb{Z}P_G \rightarrow \mathbb{Z}B_G \rightarrow \mathbb{Z}G \rightarrow 1$$
From now on we assume that G is \textit{irreducible} on V.
From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.
From now on we assume that G is irreducible on V.
Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t} x_0$
From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t}x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z}x_0$
From now on we assume that G is irreducible on V. Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t} x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z} x_0$

Theorem
From now on we assume that G is irreducible on V.

Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t}x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z}x_0$

Theorem

1. $ZP_G = \langle \pi \rangle$ and $ZB_G = \langle \zeta \rangle$.
Center of the braid groups

From now on we assume that G is irreducible on V.

Hence the centre of G is cyclic. Set $z := |ZG|$ and $\zeta := e^{2i\pi/z}$.

- Let $\pi \in P_G$ defined by $\pi : t \mapsto e^{2i\pi t}x_0$
- Let $\zeta \in B_G$ defined by $\zeta : t \mapsto e^{2i\pi t/z}x_0$

Theorem

1. $ZP_G = \langle \pi \rangle$ and $ZB_G = \langle \zeta \rangle$.
2. We have the short exact sequence

$$1 \longrightarrow ZP_G \longrightarrow ZB_G \longrightarrow ZG \longrightarrow 1$$
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G.

Example:

$$\pi = (st_1 t_2 \cdots t_{r-1})^2$$

Let w_0 be the longest element of G, and let g_0 be its lift in B_G.

$$\pi = g_2^r$$
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G.
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

\[s \rightarrow t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_{r-1} \]

\[2 \rightarrow 2 \rightarrow 2 \rightarrow \cdots \rightarrow 2 \]
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

\[\begin{array}{cccc} \circ & \circ & \circ & \cdots & \circ \\
 s & t_1 & t_2 & \cdots & t_{r-1} \\
 \end{array} \]

and a “section” (not a group morphism!) of the map $B_G \rightarrow G$ using reduced decompositions.
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

and a “section” (not a group morphism!) of the map $B_G \twoheadrightarrow G$ using reduced decompositions.

Let w_0 be the longest element of G, and let g_0 be its lift in B_G.

Michel Broué
Reflection groups and their braids
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

and a “section” (not a group morphism !) of the map $B_G \rightarrow G$ using reduced decompositions.

Let w_0 be the longest element of G, and let g_0 be its lift in B_G.

$$
\pi = g_0^2
$$
Case of Coxeter groups

The choice of a Coxeter generating set for G defines a presentation of B_G

Example:

\[
\begin{array}{cccc}
 s & t_1 & t_2 & t_{r-1} \\
\end{array}
\]

and a “section” (not a group morphism!) of the map $B_G \twoheadrightarrow G$ using reduced decompositions.

Let w_0 be the longest element of G, and let g_0 be its lift in B_G. Then

\[\pi = g_0^2\]

Example: \[\pi = (st_1t_2 \cdots t_{r-1})^{2r}\]
An Artin–like presentation is
\[\langle s \in S | \{ v_i = w_i \} \rangle \]
where

\(S \) is a finite set of distinguished braid reflections,
\(I \) is a finite set of relations which are multi–homogeneous.

Theorem (Bessis)

Let \(G \subset GL(V) \) be a complex reflection group. Let
\(d_1 \leq d_2 \leq \cdots \leq d_r \) be the family of its invariant degrees.

The following integers are equal (denoted by \(\Gamma_G \)):

1. The minimal number of reflections needed to generate \(G \)
2. The minimal number of braid reflections needed to generate \(B_G \)

\(\left\lceil \left(N + N_h \right) / d_r \right\rceil \)

Either \(\Gamma_G = r \) or \(\Gamma_G = r + 1 \), and the group \(B_G \) has an Artin–like presentation by \(\Gamma_G \) braid reflections.

Michel Broué
Reflection groups and their braids
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I}\rangle$$

where

Theorem (Bessis)

Let $G \subset GL(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

The following integers are equal (denoted by Γ_G):

1. The minimal number of reflections needed to generate G
2. The minimal number of braid reflections needed to generate B_G

$$\left\lceil \frac{(N + N_h)}{d_r} \right\rceil$$

Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.

Michel Broué
Reflection groups and their braids
Artin–like presentations

An Artin–like presentation is

\[\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle \]

where

- \(S \) is a finite set of distinguished braid reflections,
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,
Artin–like presentations

An Artin–like presentation is

\[\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle \]

where

- **S** is a finite set of distinguished braid reflections,
- **I** is a finite set of relations which are multi–homogeneous, i.e., such that (for each \(i \)) \(v_i \) and \(w_i \) are positive words in elements of **S**
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_i \in I \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

$$\text{(denoted by } \Gamma_G \text{)}$$

The minimal number of reflections needed to generate G is equal to the minimal number of braid reflections needed to generate B_G.

$$\left\lceil \frac{(N + N_h)}{d_r} \right\rceil$$

Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.
Artin–like presentations

An Artin–like presentation is

\[\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle \]

where

- \(S \) is a finite set of distinguished braid reflections,
- \(I \) is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let \(G \subset \text{GL}(V) \) be a complex reflection group. Let \(d_1 \leq d_2 \leq \cdots \leq d_r \) be the family of its invariant degrees.

1. The following integers are equal

\[\Gamma_G \]

Either \(\Gamma_G = r \) or \(\Gamma_G = r + 1 \), and the group \(B_G \) has an Artin–like presentation by \(\Gamma_G \) braid reflections.
Artin–like presentations

An Artin–like presentation is

\[\langle s \in S \mid \{ v_i = w_i \}_{i \in I} \rangle \]

where

- \(S \) is a finite set of distinguished braid reflections,
- \(I \) is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let \(G \subset GL(V) \) be a complex reflection group. Let \(d_1 \leq d_2 \leq \cdots \leq d_r \) be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate \(G \)
Artin–like presentations

An Artin–like presentation is

\[\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle \]

where

- \(S \) is a finite set of distinguished braid reflections,
- \(I \) is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let \(G \subset \text{GL}(V) \) be a complex reflection group. Let \(d_1 \leq d_2 \leq \cdots \leq d_r \) be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate \(G \)
 - The minimal number of braid reflections needed to generate \(B_G \)
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I}\rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal:
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil (N + N_h)/d_r \rceil$
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal (denoted by Γ_G):
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil (N + N_h)/d_r \rceil$ ($N := \text{number of reflections}, N_h := \text{number of hyperplanes}$)
Artin–like presentations

An Artin–like presentation is

$$\langle s \in S \mid \{v_i = w_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi–homogeneous,

Theorem (Bessis)

Let $G \subset \text{GL}(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

1. The following integers are equal (denoted by Γ_G):
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\lceil (N + N_h)/d_r \rceil$

2. Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.
The braid diagrams

Let D be a diagram like $s \circ a \circ b \circ c$. D represents the relations $stustu \cdots$.

Factors $= tustus \cdots$.

Factors $= ustust \cdots$.

We denote by D_{br} and call braid diagram the diagram $s \circ n \circ t \circ u$ which represents the relations $stustu \cdots$.

Factors $= tustus \cdots$.

Factors $= ustust \cdots$.

Note that $G_7: s \circ 2 \circ n \circ 3 \circ t \circ 3 \circ u = G_{11}: s \circ 2 \circ n \circ 3 \circ t \circ 4 \circ u = G_{19}: s \circ 2 \circ n \circ 3 \circ t \circ 5 \circ u$ have the same braid diagram.
The braid diagrams

Let \mathcal{D} be a diagram like

\[
\begin{array}{c}
 s \\
 a \\
 e \\
 b \\
 t \\
 c \\
 u \\
\end{array}
\]

We denote by \mathcal{D}_{br} and call braid diagram the diagram \mathcal{D} which represents the relations $stustutu\cdots$.

Note that G_7: $s^2n^3t^3u$, G_{11}: $s^2n^3t^4u$, G_{19}: $s^2n^3t^5u$ have the same braid diagram.

Michel Broué
Reflection groups and their braids
Let \mathcal{D} be a diagram like $s \overset{a}{\circlearrowright} e \overset{b}{\circlearrowleft} t \overset{c}{\circlearrowright} u$. \mathcal{D} represents the relations $stustu\ldots = tustus\ldots = ustust\ldots$.
The braid diagrams

Let D be a diagram like $s\circ a \circ e \circ b \circ t \circ c \circ u$. D represents the relations $s \, t \, u \, s \, t \, u \cdots = t \, u \, s \, t \, u \cdots = u \, s \, t \, u \, s \cdots$ and $s^a = t^b = u^c = 1$.
The braid diagrams

Let D be a diagram like $s \quad e \quad D$ represents the relations

\[stustu \cdots = tustus \cdots = ustust \cdots \]

and $s^a = t^b = u^c = 1$

We denote by D_{br} and call *braid diagram* the diagram $s \quad e \quad u$
The braid diagrams

Let \mathcal{D} be a diagram like $s \quad e \quad t \quad b \quad a \quad c \quad u$. \mathcal{D} represents the relations

$\underbrace{stustu \cdots} = \underbrace{tustus \cdots} = \underbrace{ustust \cdots}$

e factors e factors e factors

and $s^a = t^b = u^c = 1$

We denote by \mathcal{D}_{br} and call braid diagram the diagram $s \quad e \quad t \quad u$ which represents the relations

$\underbrace{stustu \cdots} = \underbrace{tustus \cdots} = \underbrace{ustust \cdots}$

e factors e factors e factors
The braid diagrams

Let D be a diagram like $s \ a \ \cdot \ e \ \cdot \ b \ \cdot \ t \ \cdot \ c \ \cdot \ u$ D represents the relations

\[
\underbrace{sstu \cdots} = \underbrace{tustu \cdots} = \underbrace{ustust \cdots} \quad \text{e factors} \quad \text{e factors} \quad \text{e factors}
\]

and $s^a = t^b = u^c = 1$

We denote by D_{br} and call braid diagram the diagram $s \ e \ u$ which represents the relations

\[
\underbrace{sstu \cdots} = \underbrace{tustu \cdots} = \underbrace{ustust \cdots} \quad \text{e factors} \quad \text{e factors} \quad \text{e factors}
\]

Note that

$G_7 : s \ 2 \ 3 \ t \ 3 \ u$ $G_{11} : s \ 2 \ 3 \ t \ 4 \ u$ $G_{19} : s \ 2 \ 3 \ t \ 5 \ u$
The braid diagrams

Let D be a diagram like

$$\begin{array}{c}
\text{Diagram D represents the relations} \\
\text{e factors} = \text{e factors} = \text{e factors}
\end{array}$$

and

$$\begin{array}{c}
s^a = t^b = u^c = 1
\end{array}$$

We denote by D_{br} and call braid diagram the diagram

which represents the relations

$$\begin{array}{c}
\text{e factors} = \text{e factors} = \text{e factors}
\end{array}$$

Note that

$$\begin{array}{c}
G_7 : s \circled{3} t \\
G_{11} : s \circled{3} t \\
G_{19} : s \circled{3} t
\end{array}$$

have same braid diagram.
For each irreducible complex irreducible group G, there is a diagram D, whose set of nodes $N(D)$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in N(D)$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in N(D)}$, together with the braid relations of D_{br}, is a presentation of B_G.

The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\circ s d e \circ t d$, corresponding to the presentation $s d = t d = 1$ and $ststs \cdots \in \circ e$ factors $= tstst \cdots \in \circ e$ factors.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D},

Theorem

For each $s \in N(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set

\[\{s\} \cup \{\text{braid relations of } \mathcal{D}\} \]

is a presentation of B_G.

The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\ast \ast$, corresponding to the presentation $s_d t_d = 1$ and $s_t s_t s_t \cdots = t_t s_t s_t \cdots$ factors $= t_t s_t s_t \cdots$ factors.
For each irreducible complex irreducible group G, there is a diagram D, whose set of nodes $\mathcal{N}(D)$ is identified with a set of distinguished reflections in G,
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

\[\text{Theorem}\]

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in \mathcal{B}_G$ above s such that the set $\{s\} \cup \{s \in \mathcal{N}(\mathcal{D})\}$, together with the braid relations of \mathcal{D}, is a presentation of \mathcal{B}_G.

The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type \mathcal{D}, corresponding to the presentation $s = t = 1$ and $ststs \cdots$ factors $= tstst \cdots$ factors.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\xymatrix{d & e \ar[r] & d \ar@{-}[r]^s & t}$.
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type \mathcal{D}, corresponding to the presentation...
For each irreducible complex irreducible group G, there is a diagram \mathcal{D}, whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\begin{array}{cccc} & d & & e & d \\ s & & & & t \end{array}$, corresponding to the presentation

$$s^d = t^d = 1$$
For each irreducible complex irreducible group G, there is a diagram D, whose set of nodes $\mathcal{N}(D)$ is identified with a set of distinguished reflections in G, such that

Theorem

For each $s \in \mathcal{N}(D)$, there exists a braid reflection $s \in B_G$ above s such that the set $\{s\}_{s \in \mathcal{N}(D)}$, together with the braid relations of D_{br}, is a presentation of B_G.

- The groups G_n for $n = 4, 5, 8, 16, 20$, as well as the dihedral groups, have diagrams of type $\circ d \xrightarrow{s} e \xleftarrow{t} \circ d$, corresponding to the presentation

\[
s^d = t^d = 1 \quad \text{and} \quad \overbrace{sts \cdots}^{e \text{ factors}} = \overbrace{tstst \cdots}^{e \text{ factors}}
\]
The group G_{18} has diagram $\circlearrowright s \circlearrowright t \circlearrowright$ corresponding to the presentation $s^5 = t^3 = 1$ and $stst = tsts$.

The group G_{31} has diagram $\circlearrowright v_2 \bigcirclearrowright s_2 \circlearrowright t_2 \bigcirclearrowright w_2 \bigcirclearrowright u_2 \bigcirclearrowleft$ corresponding to the presentation $s_2^2 = t_2^2 = u_2^2 = v_2^2 = w_2^2 = 1$, $uv = vu$, $sw = ws$, $vw = wv$, $sut = utst = tsu$, $svs = vsv$, $tvt = vtv$, $twt = wtw$, $uwu = uwu$.

Michel Broué
Reflection groups and their braids
The group G_{18} has diagram $\begin{array}{cc} 5 & 3 \\ s & t \end{array}$ corresponding to the presentation $s^5 = t^3 = 1$ and $stst = tsts$.

Michel Broué

Reflection groups and their braids
The group G_{18} has diagram corresponding to the presentation

$$s^5 = t^3 = 1 \text{ and } stst = tsts.$$

The group G_{31} has diagram
• The group G_{18} has diagram corresponding to the presentation

$$s^5 = t^3 = 1 \text{ and } stst = tsts.$$

• The group G_{31} has diagram corresponding to the presentation
• The group G_{18} has diagram \[\begin{array}{c} 5 \\ s \\ \hline \end{array} \begin{array}{c} 3 \\ t \\ \hline \end{array} \] corresponding to the presentation

\[s^5 = t^3 = 1 \text{ and } stst = tsts. \]

• The group G_{31} has diagram \[\begin{array}{c} 2 \\ \hline \end{array} \begin{array}{c} 2 \\ s \\ \hline \end{array} \begin{array}{c} 2 \\ u \\ \hline \end{array} \begin{array}{c} 2 \\ t \\ \hline \end{array} \begin{array}{c} 2 \\ v \\ \hline \end{array} \begin{array}{c} 2 \\ w \\ \hline \end{array} \] corresponding to the presentation

\[s^2 = t^2 = u^2 = v^2 = w^2 = 1, \]
• The group G_{18} has diagram \(\begin{array}{c}
\begin{array}{c}
\text{5} \\
\text{s}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\text{3} \\
\text{t}
\end{array}
\end{array} \end{array} \) corresponding to the presentation

\[s^5 = t^3 = 1 \text{ and } stst = tsts. \]

• The group G_{31} has diagram \(\begin{array}{c}
\begin{array}{c}
\text{2} \\
\text{v}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\text{2} \\
\text{t}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\text{2} \\
\text{w}
\end{array}
\end{array} \end{array} \) corresponding to the presentation

\[s^2 = t^2 = u^2 = v^2 = w^2 = 1, \]

\[uv = vu, \quad sw = ws, \quad vw = wv, \quad sut = uts = tsu, \]
The group G_{18} has diagram $\begin{array}{c} 5 \\ s \\ \hline \end{array} \begin{array}{c} 3 \\ t \\ \hline \end{array}$ corresponding to the presentation

$$s^5 = t^3 = 1 \text{ and } stst = tsts .$$

The group G_{31} has diagram $\begin{array}{c} 2 \\ s \\ \hline \end{array} \begin{array}{c} 2 \\ t \\ \hline \end{array} \begin{array}{c} 2 \\ w \\ \hline \end{array}$ corresponding to the presentation

$$s^2 = t^2 = u^2 = v^2 = w^2 = 1 ,$$

$$uv = vu , sw = ws , vw = wv , \quad sut = uts = tsu ,$$

$$svs = vsv , tvt = vtv , twt = wtw , wuw = uwu .$$
The space V_{reg} is a $K(\pi, 1)$. Springer's theory of regular elements in complex reflection groups lifts to braid groups.

Let $\zeta_d := e^{2i\pi/d}$. The ζ_d–regular elements in G are the images of the d–th roots of π. All d–th roots of π are conjugate in B_G.

Let g be a d–th root of π, with image g in G. Then $C_{B_G}(g)$ is the braid group of $C_G(g)$. Michel Broué

Reflection groups and their braids
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V_{reg} is a $K(\pi, 1)$.

Springer's theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let $\zeta_d := e^{2i\pi/d}$. The ζ_d–regular elements in G are the images of the d–th roots of π.

All d–th roots of π are conjugate in B_G.

Let g be a d–th root of π, with image g in G. Then $C_{B_G}(g)$ is the braid group of $C_G(g)$.

Michel Broué

Reflection groups and their braids
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

$\zeta_d = e^{2i\pi/d}$. All d-th roots of π are conjugate in B_G. Let g be a d-th root of π, with image g in G. Then $\text{C}_B G(g)$ is the braid group of $\text{C}_G(g)$.

Michel Broué
Reflection groups and their braids
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

• Springer’s theory of regular elements in complex reflections groups lifts to braid groups
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

• Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let $\zeta_d := e^{2i\pi/d}$.
More on the work of Bessis

• Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

• Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let $\zeta_d := e^{2i\pi/d}$.

1. The ζ_d–regular elements in G are the images of the d-th roots of π.
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V^reg is a $K(\pi, 1)$.

- Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let $\zeta_d := e^{2i\pi/d}$.

1. The ζ_d–regular elements in G are the images of the d-th roots of π.
2. All d-th roots of π are conjugate in B_G.
More on the work of Bessis

- Solution of an old conjecture

Theorem

The space V^{reg} is a $K(\pi, 1)$.

- Springer’s theory of regular elements in complex reflections groups lifts to braid groups

Theorem

Let $\zeta_d := e^{2i\pi/d}$.

1. The ζ_d–regular elements in G are the images of the d-th roots of π.
2. All d-th roots of π are conjugate in B_G.
3. Let g be a d-th root of π, with image g in G. Then $C_{B_G}(g)$ is the braid group of $C_G(g)$.
A monodromy representation

(after Knizhnik–Zamolodchikov, Cherednik, Dunkl, Opdam, Kohno, Broué-Malle-Rouquier)

For \(H \in A \), let \(\alpha_H \) be a linear form with kernel \(H \), and \(\omega_H := \frac{1}{2} i \pi d \alpha_H \alpha_H \).

Each family \((z_H)_H \in A \in \prod_{H \in A} \mathbb{C} G_H \) defines a \(G \)-invariant differential form on \(V_{reg} \) with values in \(\mathbb{C} G \), hence a linear differential equation \(df = \omega f \) for \(f : V_{reg} \to \mathbb{C} G \), i.e.,

\[
\forall v \in V, x \in V_{reg}, df(x)(v) = \frac{1}{2} i \pi \sum_{H \in A} \alpha_H(v) \alpha_H(x) z_H f(x)
\]
For $H \in \mathcal{A}$, let α_H be a linear form with kernel H,

$$
\omega_H := \frac{1}{2}i\pi \sum_{H \in \mathcal{A}} \alpha_H(v) \alpha_H(x) z_H f(x)
$$

defines a G-invariant differential form on V_{reg} with values in C^G. Hence a linear differential equation $df = \omega f$ for $f : V_{\text{reg}} \to C^G$, i.e.,

$$
\forall v \in V, x \in V_{\text{reg}}, df(x)(v) = \frac{1}{2}i\pi \sum_{H \in \mathcal{A}} \alpha_H(v) \alpha_H(x) z_H f(x)
$$
For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$
A monodromy representation

- For $H \in A$, let α_H be a linear form with kernel H, and

$$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

- Each family

$$(z_H)_{H \in A} \in \left(\prod_{H \in A} \mathbb{C} G_H \right)^G$$
A monodromy representation

- For $H \in A$, let α_H be a linear form with kernel H, and

 $$\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H}$$

- Each family

 $$\left(z_H\right)_{H \in A} \in \left(\prod_{H \in A} \mathbb{C}G_H \right)^G$$

 defines a G-invariant differential form on V^{reg} with values in $\mathbb{C}G$

 $$\omega := \sum_{H \in A} z_H \omega_H$$
A monodromy representation

- For $H \in A$, let α_H be a linear form with kernel H, and
 \[\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H} \]

- Each family
 \[(z_H)_{H \in A} \in \left(\prod_{H \in A} \mathbb{C} G_H \right)^G \]
 defines a G-invariant differential form on V^{reg} with values in $\mathbb{C} G$
 \[\omega := \sum_{H \in A} z_H \omega_H \]
 hence a linear differential equation $df = \omega f$ for $f : V^{\text{reg}} \to \mathbb{C} G$,

A monodromy representation

- For $H \in \mathcal{A}$, let α_H be a linear form with kernel H, and
 \[\omega_H := \frac{1}{2i\pi} \frac{d\alpha_H}{\alpha_H} \]

- Each family
 \[(z_H)_{H \in \mathcal{A}} \in \left(\prod_{H \in \mathcal{A}} \mathbb{C} G_H \right)^G \]
 defines a G-invariant differential form on V^{reg} with values in $\mathbb{C} G$

 \[\omega := \sum_{H \in \mathcal{A}} z_H \omega_H \]

- hence a linear differential equation $df = \omega f$ for $f : V^{\text{reg}} \to \mathbb{C} G$, i.e.,

 \[\forall v \in V, \ x \in V^{\text{reg}}, \quad df(x)(v) = \frac{1}{2i\pi} \sum_{H \in \mathcal{A}} \frac{\alpha_H(v)}{\alpha_H(x)} z_H f(x) \]
For $H \in A$,

\[
\begin{align*}
\{ & \\
\end{align*}
\]
For $H \in A$, \[
\begin{align*}
\bullet & \quad G_H^\vee \text{ is the group of characters of } G_H, \\
\end{align*}
\]
For $H \in \mathcal{A}$, \[\begin{cases} &\bullet \ G_H^\vee \text{ is the group of characters of } G_H, \\ &\bullet \text{ for } \theta \in G_H^\vee, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H \end{cases} \]
For $H \in \mathcal{A}$, \begin{align*}
\{ & \quad \bullet \ G_H^\vee \text{ is the group of characters of } G_H, \\
& \quad \bullet \ \text{for } \theta \in G_H^\vee, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H \end{align*}

We set \[q_H := \exp \left(-2i \pi / e_H \right) z_H \right) =: \sum_{\theta \in G_H^\vee} q_{H,\theta} e_{H,\theta} \]
For $H \in A$, \begin{equation*}
\begin{split}
\bullet & \ G_H^{\vee} \text{ is the group of characters of } G_H, \\
\bullet & \text{for } \theta \in G_H^{\vee}, \ e_{H, \theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{split}
\end{equation*}

We set \begin{equation*}
q_H := \exp \left(\left(-\frac{2i\pi}{e_H} \right) z_H \right) =: \sum_{\theta \in G_H^{\vee}} q_{H, \theta} e_{H, \theta}
\end{equation*}

Theorem
For $H \in \mathcal{A}$, \begin{align*}
\begin{cases}
\bullet \quad G_H^\vee & \text{is the group of characters of } G_H, \\
\bullet \quad \text{for } \theta \in G_H^\vee, \quad e_{H,\theta} & \text{is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{cases}
\end{align*}

We set $q_H := \exp \left(\frac{-2i\pi}{e_H} z_H \right) =: \sum_{\theta \in G_H^\vee} q_{H,\theta} e_{H,\theta}$.

Theorem

1. The form ω is integrable, hence defines a group morphism

$$
\rho : B_G \longrightarrow (\mathbb{C}G)^\times .
$$
For $H \in A$, let

\[
\begin{aligned}
&\bullet \; G^\vee_H \text{ is the group of characters of } G_H, \\
&\bullet \; \text{for } \theta \in G^\vee_H, \; e_{H, \theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{aligned}
\]

We set
\[
q_H := \exp \left(\left(-\frac{2i\pi}{e_H} \right) z_H \right) =: \sum_{\theta \in G^\vee_H} q_{H, \theta} e_{H, \theta}
\]

Theorem

1. The form ω is integrable, hence defines a group morphism

\[
\rho : B_G \longrightarrow (\mathbb{C}G)^\times.
\]

2. Whenever $s_{H, \gamma}$ is a braid reflection around H, there is $u_H \in (\mathbb{C}G)^\times$ such that

\[
\rho(s_{H, \gamma}) = u_H(q_H s_H) u_H^{-1}
\]
For $H \in \mathcal{A}$, \begin{align*}
\begin{array}{l}
\bullet \quad G_H^\vee \text{ is the group of characters of } G_H,
\bullet \quad \text{for } \theta \in G_H^\vee, \ e_{H,\theta} \text{ is the corresponding primitive idempotent in } \mathbb{C}G_H
\end{array}
\end{align*}

We set $q_H := \exp \left((-2i\pi/\epsilon_H)z_H \right) =: \sum_{\theta \in G_H^\vee} q_{H,\theta} e_{H,\theta}$

Theorem

1. The form ω is integrable, hence defines a group morphism

$$
\rho : B_G \longrightarrow (\mathbb{C}G)^\times .
$$

2. Whenever $s_{H,\gamma}$ is a braid reflection around H, there is $u_H \in (\mathbb{C}G)^\times$ such that

$$
\rho(s_{H,\gamma}) = u_H(q_H s_H) u_H^{-1}
$$

In particular, we have

$$
\prod_{\theta \in G_H^\vee} (\rho(s_{H,\gamma}) - q_{H,\theta} \theta(s_H)) = 0.
$$
Hecke algebras

Every complex reflection group G has an Artin-like presentation:

- $G_2: \langle s^2 \rangle$,
- $G_4: \langle s^3 \rangle$,

and a field of realization $Q^*_{G} := Q(\{ \text{tr} V(g) | g \in G \})$.

The associated generic Hecke algebra is defined from such a presentation:

- $H(G_2) := \langle S, T; STSTST = TSTSTS(s - q_0)(s - q_1) = 0 \rangle$,
- $H(G_4) := \langle S, T; STS = TST(s - q_0)(s - q_1)(s - q_2) = 0 \rangle$.
Every complex reflection group G has an Artin-like presentation:

$G_2 : \begin{array}{ccc}
& \ast & \\
\ast & \ast & \ast \\
& \ast & \\
\end{array}$,
$G_4 : \begin{array}{ccc}
& \ast & \\
\ast & \ast & \ast \\
& \ast & \\
\end{array}$
Every complex reflection group G has an Artin-like presentation:

\[G_2 : \begin{array}{c|c}
 2 & 2 \\
 s & t
\end{array}, \quad G_4 : \begin{array}{c|c}
 3 & 3 \\
 s & t
\end{array} \]

and a field of realization $\mathbb{Q}_G := \mathbb{Q}(\{\text{tr}_V(g) \mid (g \in G)\})$.
Hecke algebras

- Every complex reflection group G has an Artin-like presentation:

 $$
 G_2 : \, s \overset{2}{=} t \overset{2}{=} \, , \, \quad G_4 : \, s \overset{3}{=} t \overset{3}{=}
 $$

 and a field of realization $\mathbb{Q}_G := \mathbb{Q}(\{\text{tr}_V(g) \mid (g \in G)\})$.

- The associated generic Hecke algebra is defined from such a presentation:

 $$
 \mathcal{H}(G_2) := \langle S, T \rangle \left\{ \begin{array}{l}
 STSTST = TSTSTS \\
 (S - q_0)(S - q_1) = 0 \\
 (T - r_0)(T - r_1) = 0
 \end{array} \right.
 $$

 $$
 \mathcal{H}(G_4) := \langle S, T \rangle \left\{ \begin{array}{l}
 STS = TST \\
 (S - q_0)(S - q_1)(S - q_2) = 0
 \end{array} \right.
 $$
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

\[x_i \rightarrow 1, \quad y_j \rightarrow 1, \quad \ldots \]

The above specialisation defines a bijection $\text{Irr}(G) \sim \text{Irr}(\mathcal{H}(G))$, $\chi \rightarrow \chi_{\mathcal{H}(G)}$.

Michel Broué
Reflection groups and their braids
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm1}), (r_j^{\pm1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 if
 \[G = \circlearrowleft_{s}^{d} m \circlearrowleft_{t}^{e} \cdots, \]

 then for
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

$$\text{if } G = \underbrace{\begin{array}{c} \circ \circ \circ \cdots \circ \circ \circ \end{array}}_{d \text{ times}} \underbrace{\begin{array}{c} \underbrace{\begin{array}{c} \circ \circ \circ \cdots \circ \circ \circ \end{array}}_{m \text{ times}} \underbrace{\begin{array}{c} \circ \circ \circ \cdots \circ \circ \circ \end{array}}_{e \text{ times}} \cdots \underbrace{\begin{array}{c} \circ \circ \circ \cdots \circ \circ \circ \end{array}}_{t \text{ times}} \underbrace{\begin{array}{c} \circ \circ \circ \cdots \circ \circ \circ \end{array}}_{s \text{ times}} \cdots \underbrace{\begin{array}{c} \circ \circ \circ \cdots \circ \circ \circ \end{array}}_{1 \text{ times}}}_{e \text{ times}} \text{ then for }$$

$$\left(x_i^{[\mu(\mathbb{Q}G)]} = \zeta_d^{-i} q_i \right)_{i=0,1,\ldots,d-1} \text{, } \left(y_j^{[\mu(\mathbb{Q}G)]} = \zeta_e^{-j} r_j \right)_{j=0,1,\ldots,e-1}$$
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

$$
\begin{align*}
\text{if } G = \overline{s} \quad \overline{m} \quad \overline{e} \quad \cdots, \quad \text{then for} \\
(x_i^{\mu(\mathbb{Q}_G)}) = \zeta_d^{-i} q_i)_{i=0,1, \ldots, d-1}, \quad (y_j^{\mu(\mathbb{Q}_G)}) = \zeta_e^{-j} r_j)_{j=0,1, \ldots, e-1} \\
\text{the algebra } \mathbb{Q}_G((x_i), (y_j), \ldots)) \mathcal{H}(G) \text{ is split semisimple,}
\end{align*}
$$

Michel Broué
Reflection groups and their braids
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 If $G = \underbrace{d \circ m \circ e \circ \cdot \cdot \cdot}_{s \circ t}$, then for

 $$(x_i^{\mu(\mathbb{Q}_G)} = \zeta_d^{-i} q_i)_{i=0,1,\ldots,d-1}, \quad (y_j^{\mu(\mathbb{Q}_G)} = \zeta_e^{-j} r_j)_{j=0,1,\ldots,e-1}$$

 the algebra $\mathbb{Q}_G((x_i), (y_j), \ldots))\mathcal{H}(G)$ is split semisimple,

- Through the specialisation $x_i \mapsto 1$ $y_j \mapsto 1$, \ldots, that algebra becomes the group algebra of G over \mathbb{Q}_G.

Michel Broué
Reflection groups and their braids
Theorem (G. Malle and al.)

1. The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(q_i^{\pm 1}), (r_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

 \[
 \text{if } G = \begin{array}{c}
 \text{d} \\
 \text{s} \quad \text{m} \\
 \text{e} \quad \text{t}
 \end{array} \ldots, \quad \text{then for}
 \]

 \[
 (x_i^{\mu(\mathbb{Q}G)}) = \zeta_{d}^{-i} q_i \quad i=0,1,...,d-1, \quad (y_j^{\mu(\mathbb{Q}G)}) = \zeta_{e}^{-j} r_j \quad j=0,1,...,e-1
 \]

 the algebra $\mathbb{Q}_G((x_i), (y_j), \ldots)\mathcal{H}(G)$ is split semisimple,

• Through the specialisation $x_i \mapsto 1 \quad y_j \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_G.

• The above specialisation defines a bijection

 \[
 \text{Irr}(G) \rightarrow \text{Irr}(\mathcal{H}(G)) \quad \chi \mapsto \chi\mathcal{H}.
 \]
Theorem–Conjecture

There exists a unique linear form $t_q: H(W, q) \rightarrow \mathbb{Z}[q, q^{-1}]$ with the following properties.

- t_q is a symmetrizing form on the algebra $H(W, q)$.
- t_q specializes to the canonical linear form on the group algebra.
- For all $b \in B$, we have $t_q(b - 1) \lor = t_q(b \pi) t_q(\pi)$.

Michel Broué
Reflection groups and their braids
Theorem–Conjecture

1. There exists a unique linear form

$$t_q : \mathcal{H}(W, q) \rightarrow \mathbb{Z}[q, q^{-1}]$$

with the following properties.

Michel Broué
Reflection groups and their braids
Theorem–Conjecture

There exists a unique linear form

\[t_q : \mathcal{H}(W, q) \rightarrow \mathbb{Z}[q, q^{-1}] \]

with the following properties.

- \(t_q \) is a symmetrizing form on the algebra \(\mathcal{H}(W, q) \).
Theorem–Conjecture

1. There exists a unique linear form

\[t_q : \mathcal{H}(\mathcal{W}, q) \rightarrow \mathbb{Z}[q, q^{-1}] \]

with the following properties.

- \(t_q \) is a symmetrizing form on the algebra \(\mathcal{H}(\mathcal{W}, q) \).
- \(t_q \) specializes to the canonical linear form on the group algebra.
There exists a unique linear form

\[t_q : \mathcal{H}(W, q) \to \mathbb{Z}[q, q^{-1}] \]

with the following properties.

- \(t_q \) is a symmetrizing form on the algebra \(\mathcal{H}(W, q) \).
- \(t_q \) specializes to the canonical linear form on the group algebra.
- For all \(b \in B \), we have

\[t_q(b^{-1})^\vee = \frac{t_q(b\pi)}{t_q(\pi)}. \]
The form t_q satisfies the following conditions.

As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell H(b)$ in the indeterminates q_H, θ.

If W' is a parabolic subgroup of W, the restriction of t_q to a parabolic sub–algebra $H(W', W, q)$ is the corresponding specialization of $t_q(W')$.

The canonical forms t_q are hidden behind Lusztig's theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.
The form t_q satisfies the following conditions.
The form \(t_q \) satisfies the following conditions.

- As an element of \(\mathbb{Z}[q, q^{-1}] \), \(t_q(b) \) is multi–homogeneous with degree \(\ell_H(b) \) in the indeterminates \(q_{H,\theta} \).
The form t_q satisfies the following conditions.

- As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell_H(b)$ in the indeterminates q_H, θ.
- If W' is a parabolic subgroup of W, the restriction of t_q to a parabolic sub–algebra $\mathcal{H}(W', W, q)$ is the corresponding specialization of $t_q(W')$.

The canonical forms t_q are hidden behind Lusztig's theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.
The form t_q satisfies the following conditions.

- As an element of $\mathbb{Z}[q, q^{-1}]$, $t_q(b)$ is multi–homogeneous with degree $\ell_H(b)$ in the indeterminates $q_{H, \theta}$.
- If W' is a parabolic subgroup of W, the restriction of t_q to a parabolic sub–algebra $\mathcal{H}(W', W, q)$ is the corresponding specialization of $t_{q'}(W')$.

The canonical forms t_q are hidden behind Lusztig's theory of characters of finite reductive groups, their generic degrees and Fourier transform matrices.