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INTRODUCTION

Weyl groups are finite groups acting as reflection groups on rational vector spaces. It is well
known that these rational reflection groups appear as “skeletons” of many important mathe-
matical objects : algebraic groups, Hecke algebras, Artin–Tits braid groups, etc.

By extension of the base field, Weyl groups may be viewed as particular cases of finite complex
reflection groups, i.e., finite subgroups of some GLr(C) generated by (pseudo–)reflections. Such
groups have been characterized by Shephard–Todd and Chevalley as those finite subgroups of
GLr(C) whose ring of invariants in the corresponding symmetric algebra C[X1, X2, . . . , Xr] is
a regular graded ring (a polynomial algebra). The irreducible finite complex reflection groups
have been classified by Shephard–Todd.

It has been recently discovered that complex reflection groups play also a key role in the
structure as well as in the representation theory of finite reductive groups i.e., rational points
of algebraic connected reductive groups over a finite field – for a survey on that type of questions,
see for example [Bro]. Not only do complex reflection groups appear as “automizers” of peculiar
tori (the “cyclotomic Sylow subgroups”), but as much as Weyl groups, they give rise to braid
groups and generalized Hecke algebras which govern representation theory of finite reductive
groups.

In the meantime, it has been understood that many of the known properties of Weyl groups,
and more generally of Coxeter finite groups (reflection groups over R) can be generalized to
complex reflection groups – although in most cases new methods have to be found. The most
spectacular result in that direction, due to Bessis [Bes3], states that the complement of the
hyperplanes arrangement of a complex reflection group is K(π, 1). The oldest (but not least
important), due to Steinberg [St], states that the subgroup which fixes a subspace is still a
complex reflection group (a “parabolic subgroup”).

The purpose of this set of Notes is to give a somehow complete treatment of the founda-
tions and basic properties of complex reflection groups (characterization, Steinberg theorem,
Gutkin–Opdam matrices, Solomon theorem and applications, etc.) including the basic results
of Springer [Sp] and Springer–Lehrer [LeSp] on eigenspaces of elements of complex reflection
groups. On our way, we also introduce basic definitions and properties of the associated braid
groups, as well as a quick introduction to Bessis lifting of Springer theory to braid groups.
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CHAPTER 0

PRELIMINARIES

§1. Reflections and roots

Let k be a commutative field and let V be a finite dimensional k-vector space. We set
r := dimKV . We denote by V ∗ the dual of V .

The group GL(V ) acts on V × V ∗ : if r = (v, v∗) ∈ V × V ∗ and if g ∈ GL(V ), we set

g · r := (gv, v∗ · g−1) .

Let us state a list of remarks, elementary properties, definitions and notation.

Rank one endomorphisms.

An element r ∈ (V − 0) × (V ∗ − 0) defines an element r of rank 1 of End(V ) as follows.
Suppose r = (v, v∗). Then

r : x 7→ 〈v∗, x〉v .

We denote by tr(r) the trace of the endomorphism r. We denote by Hr its kernel and by Lr
its image. Thus, for r = (v, v∗), we have

tr(r) = 〈v∗, v〉 , Hr = ker v∗ , Lr = Kv .

We see that Lr ⊆ Hr if and only if tr(r) = 0.

1.1. Lemma.
(1) If we view End(V ) as acted on by GL(V ) through conjugation, the map r 7→ r is GL(V )-

equivariant : the rank one endomorphism attached to g · r is grg−1.
(2) Two elements r1 = (v1, v

∗
1) and r2 = (v2, v

∗
2) of V × V ∗ define the same rank one

endomorphism of V if and only if they are in the same orbit under k×, i.e., if there exists
λ ∈ k× such that v2 = λv1 and v∗2 = λ−1v∗1 .

Projections, Transvections, Reflections.

For r ∈ (V − 0)× (V ∗ − 0), we denote by sr the endomorphism of V defined by the formula
sr := 1− r , or, in other words, sr : x 7→ x− 〈v∗, x〉v .

Note that, for g ∈ GL(V ), we have

sg·r = gsrg
−1 .
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1.2. Lemma.
(1) If tr(r) = 1, we have Hr⊕Lr = V , and the endomorphism sr is nothing but the projection

onto Hr parallel to Lr.
(2) If tr(r) = 0, we have Lr ⊆ Hr, r2 = 0, and the endomorphism sr is a transvection.

Definition.
A root of V is an element r of V × V ∗ such that tr(r) 6= 0, 1.
A reflection in V is an endomorphism of V of the shape sr where r is a root.

Reflections.

From now on, we assume that sr is a reflection. Let us set r = (v, v∗).
We set ζr := 1− tr(r). Then we have

Hr = ker(sr − 1) , Lr = ker(sr − ζr1) = im (sr − 1) , ζr = detsr and ζr 6= 0, 1 .

Note that the order of sr is the order of the element ζr in the group k×. More generally, for
(x, x∗) ∈ V × V ∗ and n ∈ N, we have

(1.3) snr · (x, x∗) =
(
x− 1− ζnr

1− ζr
〈x, v∗〉v , x∗ − 1− ζ−nr

1− ζr
〈v, x∗〉v∗

)
.

The following lemma shows that the inverse, the transpose, the contragredient of a reflection
are reflections. We omit the proof, which is straightforward.

1.4. Lemma.
(1) The conjugate of a reflection is a reflection, since gsrg−1 = sg·r .
(2) The inverse of a reflection is a reflection : s−1

r = sr′ where r′ := (v,−ζ−1
r v∗).

(3) The transpose of a reflection in V is a reflection in V ∗ : tsr = str , where tr := (v∗, v).
(4) The contragredient of a reflection is a reflection : ts−1

r = sr∨ where r∨ := (−ζ−1
r v∗, v).

The following lemma (whose proof is also straightforward) gives several ways to index the
set of reflections.

1.5. Lemma. The maps {
r 7→ sr

s 7→ (ker(s− 1), im (s− 1),det s)

define bijections between the following sets
• The set of orbits of k× on roots of V ,
• The set of reflections in V ,
• The set of triples (H,L, ζ), where H is an hyperplane in V and L is a one-dimensional

subspace of V such that H ⊕ L = V , and ζ is an element of k different from 0 and 1.
as well as with the analogous sets obtained by replacing V by V ∗.

A reflection is diagonalisable, hence so is its restriction to a stable subspace. The next lemma
follows.
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1.6. Lemma. Let V ′ be a subspace of V stable by a reflection sr. Then

• either V ′ is fixed by sr (i.e., V ′ ⊆ Hr),
• or V ′ contains Lr, and then V ′ = Lr ⊕ (Hr ∩ V ′).

Commuting reflections.

A root r = (v, v∗) is said to be an eigenroot of g ∈ GL(V ) if there exists λ ∈ K such that
g · r = λ · r = (λv, λ−1v∗).

1.7. Lemma. Let r1 and r2 be two roots in V . We have the following four sets of equivalent
assertions.

(i) sr1 · r2 = r2 ,
(ii) sr2 · r1 = r1 ,
(iii) Lr1 ⊆ Hr2 and Lr2 ⊆ Hr1 ,

in which case we say that r1 and r2 are orthogonal and we write r1 ⊥ r2.

(i) sr1 · r2 = ζr1r2 ,
(ii) sr2 · r1 = ζr2r1 ,
(iii) Lr1 = Lr2 and Hr1 = Hr2 .

in which case we say that r1 and r2 are parallel and we write r1||r2.

(i) sr1sr2 = sr2sr1 ,
(ii) r1 is en eigenroot of sr2 ,
(iii) r2 is en eigenroot of sr1 .
(iv) r1 and r2 are either orthogonal or parallel.

§2. Reflection groups

Let R be a set of reflections on V .
We denote by GR (or simply G) the subgroup of GL(V ) generated by the elements of R.
Notice first that ⋂

r∈R
Hr = V G , the set of elements fixed by G .

Definition. We say that R is complete if it is stable under GR-conjugation.

From now on, we assume that R is complete. Thus GR is a (normal) subgroup of the
subgroup of GL(V ) which stabilises R.

Let us set
VR :=

∑
r∈R

Lr .

Since R is complete, the subspace VR is stable by the action of G.

From now on, we shall assume that
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The action of G on V is completely reducible.

Remark. Notice that the preceding hypothesis is satisfied

• when G is finite and k of characteristic zero,
• or when k is a subfield of the field C of complex numbers and G preserves a positive

nondegenerate hermitian form on V .

2.1. Proposition. Assume that the action of G on V is completely reducible.

(1)
V = VR ⊕ V G ,

(2) The restriction from V down to VR induces an isomorphism from G onto its image in
GL(VR).

Proof of 2.1.
(1) The subspace VR is G-stable, hence there is a supplementary subspace V ′ which is G-

stable. Whenever r ∈ R, the space VR contains the one-dimensional non trivial eigenspace for
sr, hence (by lemma 1.6) V ′ is contained in Hr ; it follows that V ′ ⊆

⋂
r∈RHr. So it suffices

to prove that VR ∩ V G = 0.
(2) Since V G is stable by G, there exists a supplementary subspace V ” which is stable by

G. Whenever sr ∈ R, we have Lr ⊆ V ” (otherwise, by lemma 1.6, we have V ” ⊆ Hr, which
implies that sr is trivial since V = V G ⊕ V ”, a contradiction). This shows that VR ⊆ V ”, and
in particular that VR ∩ V G = 0. �

Orthogonal decomposition.

We denote by ∼ the equivalence relation on the set of roots (or on the set of k×-orbits on
roots, i.e., on the set of reflections) as the transitive closure of the relation “r and r′ are not
orthogonal”.

2.2. Lemma. If r ∼ r′ and if g ∈ G, then g · r ∼ g · r′. In particular the equivalence classes
of R are G-stable.

Proof of 2.2. It suffices to prove that the relation “being orthogonal” is stable under G, which
is obvious. �

Notice that the number of equivalence classes is finite : it is bounded by the dimension of V .
Indeed, assume that r1 = (v1, v1

∗) , r2 = (v2, v2
∗) . . . , rm = (vm, vm∗) are mutually not

equivalent (i.e., belong to distinct equivalence classes). Let us check that (v1, v2, . . . , vm) is
linearly independant. Assume λ1v1 +λ2v2 + · · ·+λmvm = 0. The scalar product with vi∗ yields
λi〈vi, v∗i 〉 = 0, hence λi = 0.

Let R = R1

�
∪R2

�
∪ . . .

�
∪Rn be the decomposition of R into equivalence classes.

Let us denote by Gi the subgroup of G generated by the reflections sr for r ∈ Ri, and by Vi
the subspace of V generated by the spaces Lr for r ∈ Ri.

The following properties are straightforward.
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2.3. Lemma.

(1) The group Gi acts trivially on
∑
j 6=i Vj.

(2) For 1 ≤ i 6= j ≤ n, Gi and Gj commute.
(3) G = G1G2 . . . Gn .

2.4. Proposition. Assume that the action of G on V is completely reducible.

(1) For 1 ≤ i ≤ n, the action of Gi on Vi is irreducible.
(2) VR =

⊕i=n
i=1 Vi .

(3) G = G1 ×G2 × · · · ×Gn

Proof of 2.4.
(1) The subspace Vi is stable under G, and the action of G on a stable subspace is completely

reducible. But the image of G in GL(Vi) is the same as the image of Gi. So the action of Gi
on Vi is completely reducible.

Assume that R = Ri is a single equivalence class, so V = VR and G = Gi. Let us prove that
V is irreducible for G. Since V is completely reducible for G we may assume that V = V ′⊕V ′′
where V ′ and V ′′ are stable by G, and prove that V ′ or V ′′ equals V . Let us define

R′ := {sr ∈ R |Lr ⊆ V ′} and R′′ := {sr ∈ R |Lr ⊆ V ′′} .

Then by lemma 1.6, we see that whenever r ∈ R′, then V ′′ ⊆ Hr, and whenever r ∈ R′′, then
V ′ ⊆ Hr, which shows that any two elements of R′ and R′′ are mutually orthogonal. Thus one
of them has to be all of R.

(2) By 2.3, we have
∑
j 6=i Vj ⊂ V Gi . By (1), and by 2.1, we then get Vi ∩

∑
j 6=i Vj = 0 .

(3) An element of g ∈ Gi which also belongs to
∏
j 6=iGj acts trivially on Vi. Since (by (1)

and by 2.1) the representation of Gi on Vi is faithful, we see that g = 1. �

The Shephard–Todd classification.

Here we assume that k = C, the field of complex numbers.

The general infinite family G(de, e, r).

Let d, e and r be three positive integers.

• Let Dr(de) be the set of diagonal complex matrices with diagonal entries in the group
µde of all de–th roots of unity.

• The d–th power of the determinant defines a surjective morphism

detd : Dr(de) � µe .

Let A(de, e, r) be the kernel of the above morphism. In particular we have |A(de, e, r)| =
(de)r/e .

• Identifying the symmetric group Sr with the usual r×r permutation matrices, we define

G(de, e, r) := A(de, e, r)oSr .
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We have |G(de, e, r)| = (de)rr!/e , and G(de, e, r) is the group of all monomial r×r matrices,
with entries in µde, and product of all non-zero entries in µd.

Let (x1, x2, . . . , xr) be a basis of V . Let us denote by (Σj(x1, x2, . . . , xr))1≤j≤r the family of
fundamental symmetric polynomials. Let us set{

fj := Σj(xde1 , x
de
2 , . . . , x

de
r ) for 1 ≤ j ≤ r − 1 ,

fr := (x1x2 · · ·xr)d .

Then we have
C[x1, x2, . . . , xr]G(de,e,r) = C[f1, f2, . . . , fr] .

Examples.
• G(e, e, 2) is the dihedral group of order 2e.
• G(d, 1, r) is isomorphic to the wreath product µd oSr. For d = 2, it is isomorphic to the

Weyl group of type Br (or Cr).
• G(2, 2, r) is isomorphic to the Weyl group of type Dr.

About the exceptional groups.

There are 34 exceptional irreducible complex reflection groups, of ranks from 2 to 8, denoted
G4, G5, . . . , G37.

The rank 2 groups are connected with the finite subgroups of SL2(C) (the binary polyhedral
groups).

2.5. Theorem. (Shephard–Todd) Let (V,W ) be an irreducible complex reflection group. Then
one of the following assertions is true :

• There exist integers d, e, r, with de ≥ 2, r ≥ 1 such that (V,W ) ' G(de, e, r).
• There exists an integer r ≥ 1 such that (V,W ) ' (Cr−1,Sr).
• (V,W ) is isomorphic to one of the 34 exceptional groups Gn (n = 4, . . . , 37).

Field of definition.

The following theorem has been proved (using a case by case analysis) by Bessis [Bes1] (see
also [Ben]), and generalizes a well known result on Weyl groups.

2.6. Theorem–Definition.
Let (V,W ) be a reflection group. Let K be the field generated by the traces on V of all

elements of W . Then all irreducible KW–representations are absolutely irreducible.
The field K is called the field of definition of the reflection group W .

• If K ⊆ R, the group W is a (finite) Coxeter group.
• If K = Q, the group W is a Weyl group.

2.7. Question. Find a “conceptual” proof of theorem 2.6.
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Reflecting pairs.

Here we make the following hypothesis
• V is a k-vector space of dimension r,
• G is a finite subgroup of GL(V ) ; we denote by Ref(G) the set of all reflections of G,
• the order |G| of G is not divisible by the characteristic of k ; in particular the kG-module

V is completely reducible.

Let X be a subspace of V .
We denote by NG(X), as “normaliser”, the stabiliser of X in G, i.e., the set of g ∈ G such

that g(X) = X.
We denote by G(X) (or CG(X), as “centraliser”) the fixator of X, i.e., the set of g ∈ G such

that, for all x ∈ X, g(x) = x.
Notice that G(X) /NG(X) and that NG(X)/G(X) is naturally isomorphic to a subgroup of

GL(X).

2.8. Definition.
(1) Let H be a hyperplane of V . We say that H is a reflecting hyperplane for G if there

exists g ∈ G, g 6= 1, such that ker (g − 1) = H.
(2) Let L be a line in V . We say that L is a reflecting line for G if there exists g ∈ G, g 6= 1,

such that im (g − 1) = H.

For H a reflecting hyperplane, notice that

G(H) = {1}
⋃
{g ∈ G | ker (g − 1) = H} .

For L a reflecting hyperplane, we set

G(V/L) := {1}
⋃
{g ∈ G | im (g − 1) = L} .

Notice that G(V/L) is a group : this is the group of all elements of G which stabilize L and
which act trivially on V/L, a normal subgroup of NG(L).

2.9. Proposition.
(1) Let H be a reflecting hyperplane for G. There exists a unique reflecting line L such that

G(H) = G(V/L).
(2) Let L be a reflecting line for G. There exists a unique reflecting hyperplane H such that

G(V/L) = G(H).
If L and H are as above, we say that (L,H) is a reflecting pair for G, and we set

G(H,V/L) := G(H) = G(V/L).
(3) If (L,H) is a reflecting pair, then

(a) G(H,V/L) consists in the identity and of reflections sr where Hr = H and Lr = L,
(b) G(H,V/L) is a cyclic group, isomorphic to a subgroup of k×,
(c) we have NG(H) = NG(L).

Proof of 2.9.
• Assume G(H) 6= {1}. Since the action of G(H) on V is completely reducible, there is a line

L which is stable by G(H) and such that H ⊕ L = V . Such a line is obviously the eigenspace
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(corresponding to an eigenvalue different from 1) for any non trivial element of G(H). This
shows that L is uniquely determined, and that G(H) consists of 1 and of reflections with
hyperplane H and line L. It follows also that G(H) ⊆ G(V/L). Notice that H and L are the
isotypic components of V under the action of G(H).
• Assume G(V/L) 6= {1}. Since the action of G(V/L) on V is completely reducible, there

is a hyperplane H which is stable by G(V/L) and such that L ⊕H = V . Such an hyperplane
is clearly the kernel of any nontrivial element of G(V/L). This shows that H is uniquely
determined, and that G(V/L) ⊆ G(H).

We let the reader conclude the proof. �
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CHAPTER I

PREREQUISITES AND COMPLEMENTS IN COMMUTATIVE ALGEBRA

§3. Finite ring extensions

3.1. Proposition. Let A be a subring of a ring B, and let x ∈ B. The following assertions
are equivalent :

(i) The element x is integral over A, i.e., there exists a monic polynomial P (t) = tn +
a1t

n−1 + · · ·+ an−1t+ an ∈ A[t] such that P (x) = 0.
(ii) The subring A[x] of B generated by A and x is a finitely generated A–module.
(iii) There exists a subring A′ of B, containing A[x], which is a finitely generated A–module.

The proof is classical and is left to the reader.

Properties and definitions.

I1. If A is a subring of B, the set of elements of B which are integral over A is a subring of
B, called the integral closure of A in B.

For S a multiplicatively stable subset of A, if A denotes the integral closure of A in B, then
S−1A is the integral closure of S−1A in S−1B

I2. One says that B is integral over A if it is equal to the integral closure of A.

I3. One says that B is finite over A (or that B/A is finite) if B is a finitely generated
A–module.

The following assertions are equivalent :

(i) The extension B/A is finite.
(ii) B is a finitely generated A–algebra and is integral over A.
(iii) B is generated as an A–algebra by a finite number of elements which are integral over

A.

I4. An integral domain A is said to be integrally closed if it is integrally closed in its field
of fractions.

Examples.

• A unique factorisation domain, a Dedekind domain are integrally closed.
• The polynomial ring A[t1, t2, . . . , tr] is integrally closed if and only if A is integrally

closed (see for example [Bou2], chap.5, §1, no3).

I5. If B is integral over A, then B is a field if and only if A is a field.

Spectra and finite extensions.

In all the sequel, we suppose B/A finite.
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3.2. Proposition (Cohen–Seidenberg Theorem). The map Spec(B) → Spec(A) is sur-
jective : for each p ∈ Spec(A), there exists q ∈ Spec(B) such that q ∩ A = p (we then say that
q “lies above p”). Moreover,

(1) If both q1 and q2 lie above p, then q1 ⊂ q2 implies q1 = q2,
(2) If p1, p ∈ Spec(A) with p1 ⊂ p, and if q1 ∈ Spec(B) lies above p1, then there exists

q ∈ Spec(B) which lies above p and such that q1 ⊂ q.
(3) For each p ∈ Spec(A), there is only a finite number of prime ideals of B which lie above

p.

Proof of 3.2. We localize at p : the extension Bp/Ap is finite, and the prime ideals of B which
lie above p correspond to the prime ideals of Bp which lie above pAp. Since pAp is maximal in
Ap, the proposition thus follows from the following lemma.

3.3. Lemma. Suppose that B/A is finite.
(1) The map Spec(B)→ Spec(A) induces a surjective map

MaxSpec(B) � MaxSpec(A) .

(2) Any prime ideal of B which lies above a maximal ideal of A is also maximal.

Proof of 3.3.
To prove that n is a maximal ideal of B if and only if n ∩ A is a maximal ideal of A, we

divide by n, and we now have to prove that, if B is integral over A, with B an integral domain,
then B is a field if and only if A is a field (see I5 above).

To prove the surjectivity of the map MaxSpec(B)→ MaxSpec(A), it suffices to prove that,
for m ∈ MaxSpec(A), we have mB 6= B. Now if mB = B, then there exists a ∈ m such that
(1− a)B = 0 (it is left to the reader to prove that), whence 1− a = 0 and 1 ∈ m. �

�

Case of integrally closed rings.

3.4. Proposition. Let A and B be integrally closed rings with field of fractions K and L
respectively. Suppose B is a finite extension of A. Suppose the extension L/K is normal, and
let G := AutK(L) be the Galois group of this extension. Then, for each p ∈ Spec(A), the group
G acts transitively on the set of q ∈ Spec(B) which lie above p.

Proof of 3.4.
We first suppose that the extension L/K is separable, and thus is a Galois extension. Then

we have K = LG, so that A = BG (indeed, every element of BG is integral over A and thus
belongs to K, whence to A since A is integrally closed). Let q and q′ be two prime ideals of
B which lie above p. Suppose that q′ is none of the g(q)’s (g ∈ G). Then q′ is not contained
in any of the g(q)’s (g ∈ G), and there exists x ∈ q′ which doesn’t belong to any of the g(q)’s
(g ∈ G). But then

∏
g∈G g(x) is an element of A ∩ q′ which doesn’t belong to A ∩ q, which is a

contradiction.
We now deal with the general case. Let p be the characteristic of K. Let K ′ := LG.

Then L/K ′ is a Galois extension with Galois group G, and the extension K ′/K is purely
inseparable, i.e., for each x ∈ K ′, there exists an integer n such that xp

n ∈ K. Let A′ be
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the integral closure of A in K ′. Then there is a unique prime ideal of A′ which lies above p,
namely p′ := {x ∈ A′ | (∃n ∈ N)(xp

n ∈ p)} . Proposition 3.4 thus follows from the above case
K ′ = K. �

3.5. Proposition. Let A be an integrally closed ring and let K be its field of fractions. Let B
be an A–algebra which is finite over A. Suppose B is an integral domain and let L be its field
of fractions. Let p, p1 ∈ Spec(A) be such that p ⊂ p1, and let q1 ∈ Spec(B) lie above p1. Then
there exists q ∈ Spec(B) which lies above p and such that q ⊂ q1.

Proof of 3.5. Let M be a finite normal extension of K containing L and let C be the normal
closure of A in M . By 3.2, we know that there exist prime ideals r1 and r of C which lie above
q1 and p respectively. Since r1 lies above p1, we also know that there exists r′1 ∈ Spec(C) which
lies above p1, and such that r ⊂ r′1. By 3.4, there exists g ∈ Gal(M/K) such that r1 = g(r′1).
We then set q := g(r) ∩B. �

Krull dimension : first definitions.

Let A be a ring. A chain of length n of prime ideals of A is a strictly increasing sequence

p0  p1  · · ·  pn

of prime ideals of A.

• If the set of lengths of chains of prime ideals of A is bounded, then the greatest of these
lengths is called Krull dimension of A, and written Krdim(A). Otherwise, A is said to have
infinite Krull dimension. The Krull dimension of the ring 0 is, by definition, −∞.

• If M is an A–module, then we call Krull dimension of M and write KrdimA(M) the Krull
dimension of the ring A/AnnA(M). Note that

KrdimA(M) ≤ Krdim(A) .

• For p ∈ Spec(A), we call height of p and write ht(p) the Krull dimension of the ring Ap.
Thus ht(p) is the maximal length of chains of prime ideals of A whose greatest element is p.

The height of p is also sometimes called codimension of p.

3.6. Some properties.

(1) Krdim(A) = sup{ht(m)}m∈MaxSpec(A) ,
(2) Krdim(A/Nilrad(A)) = Krdim(A) .
(3) If B is an A–algebra which is finite over A, then Krdim(B) = Krdim(A) .

3.7. Proposition. Let k be a field. The Krull dimension of the algebra of polynomials in r
indeterminates k[t1, t2, . . . , tr] over k is r.

Proof of 3.7. We first note that there exists a chain of prime ideals of length r, namely the
sequence 0 ⊂ (t1) ⊂ (t1, t2) ⊂ · · · ⊂ (t1, t1, . . . , tr) . It is therefore sufficient to prove that the
Krull dimension of k[t1, t2, . . . , tr] is at most r.

If K/k is a field extension, then we denote by trdegk(K) its transcendance degree.
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3.8. Lemma. Let A and B be two integral domains which are finitely generated k–algebras,
with field of fractions K and L respectively. Suppose there exists a surjective k–algebra homo-
morphism f : A→ B .

(1) We have trdegk(L) ≤ trdegk(K).
(2) If trdegk(L) = trdegk(K), then f is an isomorphism.

Proof of 3.8.
(1) Any generating system for A as k–algebra is also a generating system for K over k. Thus

K has a finite transcendance degree over k, and, if this degree is n and if n 6= 0, then there
exists a system of n algebraically independant elements in A which is a basis of transcendance
for K over k. The same conclusion applies to B and L. Now, by inverse image by f , any k–
algebraically independant system of elements of B can be lifted to a system of k–algebraically
independant elements of A. This proves the first assertion.

(2) Suppose that trdegk(L) = trdegk(K).
If trdegk(L) = trdegk(K) = 0, then K and L are algebraic extensions of k, and, for each

a ∈ K, a and f(a) have the same minimal polynomial over k. This proves that the kernel of f
is just 0.

Suppose now that trdegk(L) = trdegk(K) = n > 0. We know (cf. proof of (1) above) that
there exists a basis of transcendance (a1, a2, . . . , an) for K over k which consists of elements of A,
and such that (f(a1), f(a2), . . . , f(an)) is a basis of transcendance for L over k. In particular, we
see that the restriction of f to k[a1, a2, . . . , an] is an isomorphism onto k[f(a1), f(a2), . . . , f(an)],
and induces an isomorphism

k(a1, a2, . . . , an) ∼−→ k(f(a1), f(a2), . . . , f(an)) .

If a ∈ A has minimal polynomial P (t) over k(a1, a2, . . . , an), then f(a) has minimal polyno-
mial f(P (t)) over k(f(a1), f(a2), . . . , f(an)), which proves that f is injective, whence is an
isomorphism. �

Let then p0 ⊂ p1 ⊂ · · · ⊂ pn be a chain of prime ideals of k[t1, t2, . . . , tr]. Applying the above
lemma to the sequence of algebras k[t1, t2, . . . , tr]/pj , we see that, for each j (0 ≤ j ≤ n), writing
Kj for the field of fractions of k[t1, t2, . . . , tr]/pj , we have trdegkKj ≤ trdegkK0 − j ≤ r− j . It
follows in particular that n ≤ r. �

3.9. Corollary. Let A be an integral domain which is a finitely generated algebra over a field
k. Let K be its field of fractions. Then

Krdim(A) = trdegk(K) .

3.10. Proposition. Let A = k[x1, x2, . . . , xr] be a finitely generated algebra over a field k,
generated by r elements x1, x2, . . . , xr. We have Krdim(A) ≤ r , and Krdim(A) = r if and only
if x1, x2, . . . , xr are algebraically independant.

Proof of 3.10. Consider r indeterminates t1, t2, . . . , tr. Let A be the kernel of the homomorphism
from the polynomial algebra k[t1, t2, . . . , tr] to A such that tj 7→ xj . The algebra A is isomorphic
to k[t1, t2, . . . , tr]/A. We thus see that Krdim(A) ≤ r. Moreover, if Krdim(A) = r, then we see
that

Krdim(k[t1, t2, . . . , tr]) = Krdim(k[t1, t2, . . . , tr]/A) ,

whence A = 0 since 0 is a prime ideal of k[t1, t2, . . . , tr]. �
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§4. Jacobson Rings and Hilbert’s Nullstellensatz

On maximal ideal of polynomial algebras.

Let A be a commutative ring (with unity), and let A[X] be a polynomial algebra over A.

Whenever A is an ideal of A[X], let us denote by A and x respectively the images of A and
x through the natural epimorphism A[X] � A[X]/A. Thus we have

A = A/A ∩ A and A[X] = A[x] .

Note that if P is a prime ideal of A[X], then P ∩ A is a prime ideal of A. We shall be
concerned by the case of maximal ideals.

Let us point out two very different behaviour of maximal ideals of A[X] with respect to A.

• If M is a maximal ideal of Z[X], then M∩Z 6= {0} (this will be proved below : see 4.1,
(3)).

As a consequence, a maximal ideal M of Z[X] can be described as follows : there is a
prime number p and a polynomial P (X) ∈ Z[X] which becomes irreducible in (Z/pZ)[X]
such that M = pZ[X] + P (X)Z[X].

Thus the quotients of Z[X] by maximal ideals are the finite fields.
• Let p be a prime number, and let Zp := {a/b ∈ Q | p - b} . Then Zp[1/p] = Q,

which shows that M := (1 − pX)Zp[X] is a maximal ideal of Zp[X]. Notice that here
M ∩ Zp = {0} .

Let us try to examine these questions through the following proposition.

4.1. Proposition.

(1) If there is M ∈ Specmax(A[X] such that M∩A = {0}, then there exists a ∈ A∗ := A−{0}
such that (1− aX)A[X] ∈ Specmax(A[X].

In other words : if there exists x in an extension of A such that A[x] is a field, then
there is a ∈ A∗ such that A[1/a] is a field.

(2) Let Spec∗(A) be the set of all nonzero prime ideals of A. We have⋂
p∈Spec∗(A)

p = {0} ∪ {a ∈ A∗ |A[1/a] is a field} .

(3) Assume
⋂

p∈Spec∗(A) p = {0}. Then for all M ∈ Specmax(A[X] we have M ∩A 6= {0}.
In other words : there is no x such that A[x] is a field.

Proof of 4.1.
(1) Assume that A[x] is a field. Then A is an integral domain, and if F denotes its field

of fractions, we have A[x] = F [x]. Since F [x] is a field, x is algebraic over F , hence a root of
a polynomial with coefficients in A. If a is the coefficient of the highest degree term of that
polynomial, x is integral over A[1/a]. Whence A[x] is integral over A[1/a], and since A[x] is a
field, it follows that A[1/a] is a field.

(2) Assume first that a ∈
⋂

p∈Spec∗(A) p and a 6= 0. We must show that A[1/a] is a field.
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There is a maximal ideal M of A[X] containing (1− aX)A[X].

• We then have M ∩ A = {0}. Indeed, if it were not the case, we would have M ∩ A ∈
Spec∗(A), hence a ∈M ∩A, then a ∈M, aX ∈M, so 1 ∈M.

• Let x be the image of X in A[X]/M. Thus A[x] is a field. But 1− ax = 0, proving that
x = 1/a and A[1/a] is a field.

Assume now that A[1/a] is a field, hence that (1 − aX)A[X] ∈ Specmax(A[X]). Let p ∈
Spec∗(A). Then p 6⊆ (1 − aX)A[X], since (1 − aX)A[X] ∩ A = {0}. It follows that pA[X] +
(1 − aX)A[X] = A . Interprated in the polyomial ring (A/p)[X], that equality shows that the
polynomial 1− aX is invertible, which implies that a = 0, i.e., a ∈ P.

(3) Assume that A[x] is a field. By (1), there is a ∈ A∗ such that A[1/a] is a field. By (2),
we know that a ∈

⋂
p∈Spec∗(A) p, a contradiction. �

Remark. The assertion (3) of the preceding proposition shows in particular that if A is a
principal ideal domain with infinitely many prime ideals (like Z or k[X] for example), then
whenever M ∈ Specmax(A[X]), we have M ∩A 6= {0}, hence M ∩A ∈ Specmax(A).

4.2. Proposition–Definition. The following assertions are equivalent

(J1) Whenever p ∈ Spec(A), we have

p =
⋂

m∈Specmax(A)
p⊆m

m .

(J2) Whenever M ∈ Specmax(A[X]), we have M ∩A ∈ Specmax(A).

A ring which fulfills the preceding conditions is called a Jacobson ring.

Proof of 4.2.
Let us first notice that both properties (J1) and (J2) transfer to quotients : if A satisfies

(J1) (respectively (J2)), and if a is an ideal of A, then A/a satisfies (J1) (respectively (J2) as
well.

Let us show (J1) =⇒ (J2). Let M ∈ Specmax(A[X]). We set A[X]/M = (A/M ∩A)[x].
We have M∩A ∈ Spec(A), hence M∩A is an intersection of maximal ideals of A. If M∩A

is not maximal, it is an intersection of maximal ideals in which it is properly contained, thus
in the ring A/M ∩A, we have ⋂

p∈Spec∗(A/M∩A)

p = {0} ,

which shows (by 4.1, (3)) that (A/M ∩A)[x] cannot be a field, a contradiction.

Let us show (J2) =⇒ (J1). Let p ∈ Spec(A). Working in A/p, we see that it suffices to prove
that if A is an integral domain which satisfies (J2), then the intersection of maximal ideals is
{0}.

Let a ∈
⋂

m∈Specmax(A) m. Thus whenever M ∈ Specmax(A[X]), we have a ∈ M, hence
aX ∈M, which proves that 1− aX is invertible, hence a = 0. �

Let us emphasize the defining property of Jacobson rings, by stating the following proposition
(which is nothing but a reformulation of property (J2)).
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4.3. Proposition. The following two assertions are equivalent :

(i) A is a Jacobson ring.
(ii) If A[x] is a quotient of A[X] which is a field, then A is a field and x is algebraic over

A.

Remark. Let us immediately quote some examples and counterexamples of Jacobson rings :
• Examples of Jacobson rings : fields, principal ideal domains with infinitely many prime

ideals, quotients of Jacobson rings.
• Non Jacobson rings : discrete valuation rings.

The next theorem enlarges the set of examples of Jacobson ring to all the finitely generated
algebras over a Jacobson ring.

4.4. Theorem. Let A be a Jacobson ring.

(1) A[X] is a Jacobson ring.
(2) If B is a finitely generated A–algebra, then B is a Jacobson ring.

4.5. Corollary.

(1) Let A be a Jacobson ring. Assume that A[v1, v2, . . . , vr] is a finitely generated A–algebra
which is a field. Then A is a field, and A[v1, v2, . . . , vr] is an algebraic (hence finite)
extension of A.

(2) Let k be a field. If k[v1, v2, . . . , vr] is a finitely generated k–algebra which is a field, then
it is an algebraic (hence finite) extension of k.

(3) Let k be an algebraically closed field. If k[v1, v2, . . . , vr] is a finitely generated k–algebra
which is a field, then it coincides with k.

Assertion (3) of the preceding corollary may be reformulated as Hilbert’s Nullstellensatz.

Hilbert’s Nullstellensatz. Let k be an algebraically closed field. The map

kr −→ Specmax(k[v1, v2, . . . , vr])

(λ1, λ2, . . . , λr) 7→ 〈v1 − λ1, v2 − λ2, . . . , vr − λr〉

is a bijection.

Proof of 4.4.
Let us prove (1).
Let M be a maximal ideal of A[X,Y ]. We set

A := A/M ∩A ,
A[x] := A[X]/M ∩A[X] and A[y] := A[Y ]/M ∩A[Y ] ,

A[x, y] := A[X,Y ]/M .

We have to prove that A[x] is a field.
Since A[x, y] is a field, A is an integral domain, and if k denotes its field of fractions, we have

A[x, y] = k[x, y].
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Since k[x, y] = k[x][y] is a field, x is not transcendental (by 4.1, (3)) over k, hence k[x] is a
field. As in the proof of 4.1, (1), we see that there exists a ∈ A∗ such that x is integral over
A[1/a].

Similarly, there exists b ∈ A∗ such that y is integral over A[1/b]. It follows that A[x, y] is
integral over A[1/ab]. Since A[x, y] is a field, it implies that A[1/ab] is a field.

Now since A is a Jacobson ring, it follows from Proposition 3 that A is a field, i.e., A = k.
We have already seen that k[x] is a field, proving that A[x] is a field.

Let us prove (2).
By induction on r, it follows from (1) that, for all r, A[v1, v2, . . . , vr] is a Jacobson ring. So

are the quotients of these algebras, which are the finitely generated A–algebras. �

Proof of 4.5.
(1) Assume that A[v1, v2, . . . , vr] is a field. Since A[v1, v2, . . . , vr−1] is a Jacobson ring (by

theorem 4, (2)), it follows from Proposition 3 that A[v1, v2, . . . , vr−1] is a field over which vr is
algebraic. Repeating the argument leads to the required statement.

(2) and (3) are immediate consequences of (1) �

Radicals and Jacobson rings, application to algebraic varieties.

4.6. Proposition–Definition.

(1) The Jacobson radical of a ring A is the ideal

Rad(A) :=
⋂

m∈Specmax(A)

m .

The Jacobson radical coincides with the set of elements a ∈ A such that, for all x ∈ A,
(1− ax) is invertible.

(2) The nilradical of a ring A is the ideal

Nilrad(A) :=
⋂

p∈Spec(A)

p .

The nilradical coincides with the set of nilpotent elements of A.

Proof of 4.6. We prove only (2). It is clear that any nilpotent element of A belongs to Nilrad(A).
Let us prove the converse.

Whenever M is a maximal ideal of A[X], we know that M ∩ A is a prime ideal of A. It
implies that Nilrad(A) ⊂ Rad(A) , and thus for a ∈ Nilrad(A), the polynomial (1 − aX) is
invertible, which implies that a is nilpotent. �

Now if A is a Jacobson ring, it follows from 4.2 that

Rad(A) = Nilrad(A) .

Applying that remark to a quotient A/a of a Jacobson ring, we get the following proposition.
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4.7. Proposition. Let A be a Jacobson ring, and let a be an ideal of A. We have⋂
m∈Specmax(A)

a⊆m

m = {a ∈ A | (∃n ≥ 0)(an ∈ a)} .

Applying the preceding proposition to the case where A = k[X1, X2, . . . , Xr] for k alge-
braicaly closed gives the “strong form” of Hilbert’s Nullstellensatz.

4.8. Corollary (Strong Nullstellensatz). Let k be an algebraically closed field. For A an
ideal of k[X1, X2, . . . , Xr], let us set

V(A) := {(λ1, λ2, . . . , λr) ∈ kr | (∀P ∈ A)(P (λ1, λ2, . . . , λr) = 0)} .
If Q ∈ k[X1, X2, . . . , Xr] is such that

(∀(λ1, λ2, . . . , λr) ∈ V(A))(Q(λ1, λ2, . . . , λr)) = 0) ,

then there exists n ≥ 0 such that Qn ∈ A.

Proof of 4.8. Translating via the dictionary kr ←→ Specmax(k[X1, X2, . . . , Xr]), we see that

V(A)←→ {M ∈ Specmax(k[X1, X2, . . . , Xr]) | A ⊆M} ,
while the hypothesis on Q translates to

Q ∈
⋂

M∈Specmax(k[X1,X2,...,Xr ])
A⊆M

M .

�

§5. Graded algebras and modules

Graded modules.

Let k be a ring. We call graded k–module any k–module of the form

M =
n=∞⊕
n=−∞

Mn

where, for each n, Mn is a finitely generated k–module, and Mn = 0 whenever n < N for some
integer N (i.e., “for n small enough”).

For each integer n, the non-zero elements of Mn are said to be homogeneous of degree n.
If x =

∑
n xn where xn ∈ Mn, then the element xn is called the homogeneous component of

degree n of x.
A graded module homomorphism M → N is a linear map f : M → N such that, for each

n ∈ Z, we have f(Mn) ⊂ Nn.
From now on, we suppose that k is a field. The graded k–modules are then called graded

k–vector spaces.
We set Z((q)) := Z[[q]][q−1], the ring of formal Laurent series with coefficients in Z. The

graded dimension of M is the element of Z((q)) defined by

grdimk(M) :=
∞∑

n=−∞
dimk(Mn)qn .
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Elementary constructions.

Direct sum : if M and N are two graded modules, then the graded module M ⊕N is defined
by the condition (M ⊕N)n := Mn ⊕Nn. If k is a field, then we have

grdimk(M ⊕N) = grdimk(M) + grdimk(N) .

Tensor product : if M and N are two graded modules, then the graded module M ⊗ N is
defined by the condition (M ⊗N)n :=

⊕
i+j=nMi ⊗Nj . If k is a field, then we have

grdimk(M ⊗N) = grdimk(M)grdimk(N) .

Shift : if M is a graded module and m is an integer, then the graded module M [m] is defined
by the condition M [m]n := Mm+n. If k is a field, then we have

grdimk(M [m]) = q−mgrdimk(M) .

Examples. Let k be a field.
• If t is transcendental over k and of degree d, then we have grdimk(k[t]) = 1/(1− qd).
• More generally, if t1, t2, . . . , tr are algebraically independant elements over k of degree

d1, d2, . . . , dr respectively, then we have k[t1, t2, . . . , tr] ' k[t1]⊗ k[t2]⊗ · · · ⊗ k[tr] and

grdimk(k[t1, t2, . . . , tr]) =
1

(1− qd1)(1− qd2) · · · (1− qdr )
.

• If M has dimension 1 and is generated by an element of degree d, then we have M '
k[−d], and grdimk(M) = qd .

• If V is a vector space of finite dimension r, then the symmetric algebra S(V ) and
the exterior algebra Λ(V ) of V are naturally endowed with structures of graded vector
spaces, and we have

grdimk(S(V )) =
1

(1− q)r
and grdimk(Λ(V )) = (1 + q)r .

A linear map f : M → N between two graded vector spaces is said to be of degree m if, for
all n, we have f(Mn) ⊂ Nn+m . Thus, a map of degree m defines a homomorphism from M to
N [m].

Suppose then that
0→M ′

α−→M β−→M ′′ → 0

is an exact sequence of k–vector spaces, where M ′, M and M ′′ are graded, and where α and
β are maps of degree a and b respectively. We then have an exact sequence of graded vector
spaces

0→M ′
α−→M [a]

β−→M ′′[a+ b]→ 0 ,

whence the formula

grdimk(M ′′)− qbgrdimk(M) + qa+bgrdimk(M ′) = 0 .
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Koszul complex.

Let V be a vector space of dimension r. Let S := S(V ) and Λ := Λ(V ). The Koszul complex
is the complex

0 → S ⊗ Λr δr−→ S ⊗ Λr−1 δr−1−→ · · · δ1−→ S ⊗ Λ0

↓
k
↓
0

where the homomorphism S ⊗ Λ0 → k is the homomorphism defined by v 7→ 0 for all v ∈ V ,
and where the homomorphism δj is defined in the following way :

δj(y ⊗ (x1 ∧ · · · ∧ xj)) =
∑
i

(−1)i+1yxi ⊗ (x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xj) .

If we endow S⊗Λj with the graduation of S, the homomorphism δj has thus degree 1, and the
homomorphism S ⊗ Λ0 → k has degree 0.

One can prove (see for example [Be], lemma 4.2.1) that the Koszul complex is exact. It
follows that

1 =
j=r∑
j=0

(−1)jqjdim(Λj)grdimk(S) ,

or, equivalently,
1 = grdimk(Λ)(−q)grdimk(S)(q) .

Graded algebras and modules.

Let k be a (noetherian) ring. We call graded k–algebra any finitely generated algebra over
k of the form A =

⊕∞
n=0An , with A0 = k, and AnAm ⊂ An+m for any integers n and m. We

then write M for the maximal ideal of A defined by M :=
⊕∞

n=1An .

A graded A–module M is then a (finitely generated) A–module of the form M =
⊕n=∞

n=−∞Mn

where AnMm ⊂Mn+m for all n and m, and where Mn is zero if n < N for some integer N .
Each homogeneous component Mn is a finitely generated k–module.

Indeed, A is a noetherian ring, and we have Mn '
⊕

m≥nMm/
⊕

m>n
Mm , which proves that

Mn is finitely generated over A/M.

A graded A–module homomorphism is an A–module homomorphism which is a graded k–
module homomorphism.

A submodule N of a graded A–module is an A–submodule such that the natural injection is
a graded k–module homomorphism, i.e., such that N =

⊕
n(N ∩Mn) .

A graded (or “homogeneous”) ideal of A is a graded submodule of A, seen as graded module
over itself. If a is an ideal of A, then the following conditions are equivalent :

(i) a is a graded ideal,
(ii) a =

⊕
n(a ∩An),

(iii) for all a ∈ a, each homogeneous component of a belongs to a,
(iv) a is generated by homogeneous elements.
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The Hilbert–Serre Theorem.

5.1. Theorem. Let k be a field. Let A = k[x1, x2, . . . , xr] be a graded k–algebra, generated by
homogeneous elements of degree d1, d2, . . . , dr respectively. Let M be a graded A–module. Then
there exists P (q) ∈ Z[q, q−1] such that the graded dimension of M over k is

grdimk(M) =
P (q)

(1− qd1)(1− qd2) · · · (1− qdr )
.

Proof of 5.1. We use induction on r. The theorem is obvious if r = 0, so we suppose that r > 0.
Let M ′ and M ′′ be the kernel and cokernel of multiplication by xr respectively. We thus have
the following exact sequence of graded A–modules :

0→M ′ →M
xr−→M [dr]→M ′′[dr]→ 0 ,

whence the equality

qdrgrdimk(M ′)− qdrgrdimk(M) + grdimk(M)− grdimk(M ′′) = 0 .

Now M ′ and M ′′ are both graded modules over k[x1, . . . , xr−1], so that, by the induction
hypothesis, there exist P ′(q), P ′′(q) ∈ Z[q, q−1] such that

grdimk(M ′) =
P ′(q)

(1− qd1)(1− qd2) · · · (1− qdr−1)
and

grdimk(M ′′) =
P ′′(q)

(1− qd1)(1− qd2) · · · (1− qdr−1)
.

The theorem follows immediately. �

Nakayama’s lemma.

Let k be a (commutative) field, and let A a graded k-algebra.

Convention.

We make the convention that
• “ideal of A” means “graded ideal of A”,
• “element of A” means “homogeneous element of A”.

It can be shown that the “graded Krull dimension” of A, (i.e., the maximal length of chains
of (graded) prime ideals of A) coincides with its “abstract” Krull dimension (i.e., the maximal
length of chains of any prime ideals of A).

Nakayama’s lemma.

With the above conventions, Nakayama’s lemma takes the following form.
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5.2. Proposition. Let A be a graded k–algebra, with maximal ideal M, and let M be an
A–module. If MM = M , then M = 0.

Proof of 5.2. Indeed, then we know that there exists a ∈ M such that (1 − a)M = 0. If
M 6= 0, then let m be a non-zero (homogeneous) element of M . The equality m = am yields a
contradiction. �

5.3. Corollary.
(S1) If M ′ is a submodule of the A–module M , then M ′ = M if and only if M = M ′+MM .
(S2) If f : M → N is an A–module homomorphism which induces a surjection from M onto

N/MN , then f is surjective.
(S3) A system (x1, x2, . . . , xs) of elements of M is a generating system for M if and only if its

image in M/MM is a generating system of the k–vector space M/MM . In particular,
all the minimal generating systems have the same order, which is the dimension of
M/MM over k.

Proof of 5.3.
For (S1), we apply 5.2 to the module M/M ′.
For (S2), we apply (S1) to the module N and the submodule f(M).
For (S3), we apply (S2) to the module F :=

⊕
j A[−deg(xj)] and the homomorphism F →M

defined by the system we consider. �

If M is an A–module, we write r(M) and call rank of M the dimension of M/MM over k.

5.4. Corollary. Let R be a graded algebra, with maximal graded ideal M. Let (u1, u2, . . . , un)
be a family of homogeneous elements of R with positive degrees.

(1) The following assertions are equivalent :
(i) R = k[u1, u2, . . . , un],

(ii) M = Ru1 +Ru2 + · · ·+Run,
(iii) M/M2 = ku1 + ku2 + · · ·+ kun.

(2) Assume moreover that R is a graded polynomial algebra with Krull dimension r. Then
the following assertions are equivalent :

(i) n = r, (u1, u2, . . . , ur) are algebraically independant, and R = k[u1, u2, . . . , ur],
(ii) (u1, u2, . . . , un) is a minimal set of generators of the R–module M,

(iii) (u1, u2, . . . , un) is a basis of the k–vector space M/M2.

Proof of 5.4.
(1) The implications (i)⇒(ii)⇒(iii) are clear. The implication (iii)⇒(ii) is a direct application

of Nakayama’s lemma to the R–module M. Finally if (ii) holds, the image of k[u1, u2, . . . , un]
mudulo M is k, hence k[u1, u2, . . . , un] = R again by Nakayama’s lemma.

(2) The equivalence between (ii) and (iii) follows from Nakayama’s lemma. If (i) holds, then
(u1, u2, . . . , un) generates M by (1), and if it contains a proper system of generators of R, say
(u1, u2, . . . , um) (m < r) then again by (1) we have R = k[u1, u2, . . . , um], a contradiction with
the hypothesis about the Krull dimension of R.

Assume (iii) holds. Since R is a polynomial algebra with Krull dimension r, and since
(i)⇒(iii), we see that the dimension of M/M2 is r. Hence n = r, and since R = k[u1, u2, . . . , ur]
(by (1)), we see that (u1, u2, . . . , ur) is algebraically independant (otherwise the Krull dimension
of R would be less than r). �
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5.5. Proposition. Let A be a graded k–algebra, and let M be a finitely generated projective
A–module. Then M is free.

Proof of 5.5. Let M :=
∑
n≥1An be the unique maximal ideal of A. Then M/MM is a (left)

finite dimensional vector space over the field k. Let d denote its dimension. The isomorphism
kd = (A/M)d ∼−→M/MM can be lifted (by projectivity of Ad) to a morphism Ad →M , which
is onto by Nakayama’s lemma. Since M is projective, we get a split short exact sequence

0→M ′ → Ad →M → 0 .

Note that M ′ is then a direct summand of Ad, hence is also finitely generated. Tensoring with
k = A/MA, this exact sequence gives (since it is split) the short exact sequence

0→M ′/MM ′ → kd →M/MM → 0 ,

which shows that M ′/MM ′ = 0, hence again by Nakayama’s lemma M ′ = 0. Thus we get that
M is isomorphic to Ad. �

§6. Polynomial algebras and parameters subalgebras

Degrees and Jacobian.
Let S = k[v1, v2, . . . , vr] be a polynomial graded algebra over the field k, where (v1, v2, . . . , vr)

is a family of algebraically independant, homogeneous elements, with degrees respectively
e1, e2, . . . , er. Assume e1 ≤ e2 ≤ · · · ≤ er.

Let (u1, u2, . . . , ur) be a family of homogeneous elements with degrees d2, d2, . . . , dr such
that d1 ≤ d2 ≤ · · · ≤ dr.

6.1. Proposition. Assume that (u1, u2, . . . , ur) is algebraically free.
(1) For all i (1 ≤ i ≤ r), we have ei ≤ di.
(2) We have ei = di for all i (1 ≤ i ≤ r) if and only if S = k[u1, u2, . . . , ur].

Proof of 6.1.
(1) Let i such that 1 ≤ i ≤ r. The family (u1, u2, . . . , ui) is algebraically free, hence it cannot

be contained in k[v1, v2, . . . , vi−1]. Hence there exist j ≥ i and l ≤ i such that vj does appear
in ul. It follows that ej ≤ ul, hence ei ≤ ej ≤ dl ≤ di.

(2) We know that grdimR = (
∏i=r
i=1(1−qei))−1 . Thus it suffices to prove that

∏i=r
i=1(1−qei) =∏i=r

i=1(1− qdi) if and only if ei = di for all i (1 ≤ i ≤ r), which is left as an exercise. �

By 6.1, we see in particular that the family (e1, e2, . . . , er) (with e1 ≤ e2 ≤ · · · ≤ er) is
uniquely determined by R. Such a family is called the family of degrees of R.

Let us now examine the algebraic independance of the system (u1, u2, . . . , ur).

Definition. The Jacobian of (u1, u2, . . . , ur) relative to (v1, v2, . . . , vr) is the homogeneous
element of degree

∑
i(di − ei) defined by

Jac((u1, u2, . . . , ur)/(v1, v2, . . . , vr)) := det(
∂ui
∂vj

)i,j .
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6.2. Proposition.
(1) Jac((u1, u2, . . . , ur)/(v1, v2, . . . , vr)) is a homogeneous element of S with degree

∑
i(di−

ei).
(2) The family (u1, u2, . . . , ur) is algebraically free if and only if

Jac((u1, u2, . . . , ur)/(v1, v2, . . . , vr)) 6= 0 .

(3) We have k[u1, u2, . . . , ur] = k[v1, v2, . . . , vr] if and only if

Jac((u1, u2, . . . , ur)/(v1, v2, . . . , vr)) ∈ k× .

Proof of 6.2.
(1) is trivial.
Proof of (2).
(a) Assume that (u1, u2, . . . , ur) is algebraically dependant.
Let P (t1, t2, . . . , tr) ∈ k[t1, t2, . . . , tr] be a minimal degree polynomial subject to the condition

P (u1, u2, . . . , ur) = 0. Let us differentiate that equality relatively to vj :∑
i

∂P

∂ti
(u1, u2, . . . , ur)

∂ui
∂vj

= 0 .

There is i such that
∂P

∂ti
6= 0, and by minimality of P we have

∂P

∂ti
(u1, u2, . . . , ur) 6= 0, which

shows that the matrix (
∂ui
∂vj

)i,j is singular and so that

Jac((u1, u2, . . . , ur)/(v1, v2, . . . , vr)) = 0 .

(b) Assume that (u1, u2, . . . , ur) is algebraically free.
For each i, let us denote by Pi(t0, t1, . . . , tr) ∈ k[t0, t1, . . . , tr] a polynomial with minimal

degree such that Pi(vi, u1, u2, . . . , ur) = 0 . Let us differentiate that equality relatively to vj :

∂Pi
∂t0

(vi, u1, u2, . . . , ur) +
∑
l

∂Pi
∂tl

(vi, u1, u2, . . . , ur)
∂ul
∂vj

= 0 ,

which can be rewritten as an identity between matrices :

(
∂Pi
∂tl

(vi, u1, u2, . . . , ur))i,l · (
∂ul
∂vj

)l,j = −D(
∂Pi
∂t0

(vi, u1, u2, . . . , ur)i) ,

where D((λi)i) denotes the diagonal matrix with spectrum (λi)i.

Since, for all i, we have
∂Pi
∂t0

(vi, u1, u2, . . . , ur) 6= 0 (by minimality of Pi), we see that the

matrix (
∂ul
∂vj

)l,j is nonsingular.

(3) follows from 6.1 and from (1). �
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Systems of parameters.

Let A be a finitely generated graded k–algebra.

Definition. A system of parameters of A is a family (x1, x2, . . . , xr) of homogeneous elements
in A such that

(P1) (x1, x2, . . . , xr) is algebraically free,
(P2) A is a finitely generated k[x1, x2, . . . , xr]–module.

We ask the reader to believe, to prove, or to check in the appropriate literature the following
fondamental result.

6.3. Theorem.

(1) There exists a system of parameters.
(2) All systems of parameters have the same cardinal, equal to Krdim(A).
(3) If (x1, x2, . . . , xm) is a system of homogeneous elements of A such that m ≤ Krdim(A)

and if A is finitely generated as a k[x1, x2, . . . , xm]–module, then m = Krdim(A) and
(x1, x2, . . . , xm) is a system of parameters of A.

(4) The following assertions are equivalent.
(i) There is a system of parameters (x1, x2, . . . , xr) of A such that A is a free module

over k[x1, x2, . . . , xr].
(ii) Whenever (x1, x2, . . . , xr) is a system of parameters of A, A is a free module over

k[x1, x2, . . . , xr].
In that case we say that A is a Cohen-Macaulay algebra.

We shall now give some characterizations or systems of parameters of a polynomial algebra.

In what follows, we denote by
• k an algebraically closed field,
• S = k[v1, v2, . . . , vr] a polynomial algebra, where (v1, v2, . . . , vr) is a family of homogeneous

algebraically independant elements with degrees (e1, e2, . . . , er),
• (u1, u2, . . . , ur) is a family of nonconstant homogeneous elements of S with degrees respec-

tively (d1, d2, . . . , dr)
• R := k[u1, u2, . . . , ur], and M the maximal graded ideal of R.

6.4. Proposition.

(1) The following assertions are equivalent.
(i) (x = 0) is the unique solution in kr of the system

u1(x) = u2(x) = · · · = ur(x) = 0 .

(ii) S/MS is a finite dimensional k–vector space.
(iii) S is a finitetely generated R–module.
(iv) (u1, u2, . . . , ur) is a system of parameters of S.

(2) If the preceding conditions hold, then

(a) S is a free R–module, and its rank is
∏
i di∏
i ei

.
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(b) The map {
kr −→ kr

x 7→ (u1(x), u2(x), . . . , ur(x))

is onto.

Proof of 6.4.
Let us prove (1)
• (i)⇒(ii). Since S/MS is a finitely generated k–algebra, it suffices to prove that S/MS is

algebraic over k. Since the set V(MS) of zeros of MS reduces to {0} by assumption, and since
all the indeterminates vi vanish on that set, it follows from the strong Nullstellensatz that for
all i there is an integer ni ≥ 1 such that vnii ∈ MS, hence vnii = 0 in S/MS, proving that
S/MS is indeed an algebraic extension of k.
• (ii)⇒(iii) results from Nakayama lemma.
• (iii)⇒(iv) results from the general properties of systems of parameters (see 6.3, (3)).
• (iv)⇒(i). Let V(MS) be the set of zeros of MS. In order to prove that V(MS) = {0}, it

suffices to prove that V(MS) is finite. Indeed, if it contains a nonzero element x, it contains
λx for all λ ∈ k.

Let us prove that |V(MS)| ≤ dim(S/MS). Let x1, x2, . . . , xn ∈ V(MS) be pairwise distinct.
Consider the map {

S −→ kn

u 7→ (u(x1), u(x2), . . . , u(xn))

That map factorizes through S/MS. But the interpolation theorem shows that it is onto, which
proves that n ≤ dim(S/MS).

Remark : The interpolation theorem. Let V be a k–vector space with dimension r, and let
S be its symmetric algebra, isomorphic to the algebra polynomial in r indeterminates. Let
x1, x2, . . . , xn be pairwise distinct elements of V . Then the map{

S −→ kn

u 7→ (u(x1), u(x2), . . . , u(xn))

is onto.
Indeed, for each pair (i, j) with i 6= j, let us choose a linear form ti,j : V → k such that

ti,j(xi) 6= ti,j(xj). Then the polynomial function ui on V defined by

ui(v) :=
∏
i6=j

ti,j(v)− ti,j(xj)
ti,j(xi)− ti,j(xj)

satisfies ui(xj) = δi,j .

Let us prove (2)
(a) Since S is free over itself, it is Cohen-Macaulay (see 6.3, (4), hence is free over R. Thus

we have

S ' R⊗k (S/MS) , which implies grdim(S) = grdim(R)grdim(S/MS) .
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It follows that

grdim(S/MS) =
∏
i(1 + q + · · ·+ qdi−1)∏
i(1 + q + · · ·+ qei−1)

hence

dim(S/MS) = grdim(S/MS)q=1 =
∏
i di∏
i ei

.

(b) Let λ = (λ1, λ2, . . . , λr) ∈ kr. We are looking for µ = (µ1, µ2, . . . , µr) ∈ kr such that, for
all i (1 ≤ i ≤ r), we have ui(µ) = λi.

Consider the maximal ideal Mλ of R defined by λ, i.e., the kernel of the morphism

ϕλ :
{
R = k[u1, u2, . . . , ur] −→ k

ui 7→ λi .

By Cohen-Seidenberg theorem, there is a maximal ideal N of S such that N ∩ R = Mλ. By
Nullstellensatz, there is µ = (µ1, µ2, . . . , µr) ∈ kr such that N = Nµ, i.e.,, N is the kernel of
the morphism

ψµ :
{
S = k[v1, v1, . . . , vr] −→ k

vi 7→ µi .

which, restricted to R, is ϕλ. Thus for all i we have ui(µ) = λi. �

The Chevalley Theorem.

6.5. Theorem. Let S a polynomial algebra : there exist a system (v1, v2, . . . , vr) of homo-
geneous algebraically independant elements such that S = k[v1, v2, . . . , vr]. Let R be a graded
subalgebra of S such that S is a finitely generated R–module.

The following assertions are equivalent ;
(i) S is a free R–module,

(ii) R is a polynomial algebra : whenever (u1, u2, . . . , un) is a system of homogeneous ele-
ments of R which is a generating system for the maximal graded ideal M of R, and
such that n is minimal for that property, then n = r, R = k[u1, u2, . . . , ur], and
(u1, u2, . . . , un) is algebraically independant.

Proof of 6.5.
The implication (ii)⇒(i) results from the fact that S is Cohen–Macaulay (see [parameters].
The implication (i)⇒(ii) has a natural homological proof (see for example [Se2]) : in order to prove
that R is a regular graded algebra, it suffices to prove that it has finite global dimension, which
results easily from the same property for S and from the fact that S is free over R. We provide
below a selfcontained and elementary proof, largely inspired by [Bou1], chap. V, §5, Lemme 1.

Let (u1, u2, . . . , un) be a system of homogeneous elements of R which is a generating system
for the maximal graded ideal M of R, and assume that n is minimal for that property. It is
clear that R is generated by (u1, u2, . . . , un) as a k–algebra. We shall prove that (u1, u2, . . . , un)
is algebraically independant (from which it results that n = r).

Assume not. Let k[t1, t2, . . . , tn] be the polynomial algebra in n indeterminates, graduated
by deg ti := deg ui. Let P (t1, t2, . . . , tm) ∈ k[t1, t2, . . . , tm] be a homogeneous polynomial with
minimal degree such that

P (u1, u2, . . . , un) = 0 .
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Let us set δi :=
∂P

∂ti
(u1, u2, . . . , un) and let us denote by δM the (graded) ideal of R generated

by (δ1, δ2, . . . , δn).
Choose I ⊆ {1, 2, . . . , n} minimal such that δM is generated by the family (δi)i∈I . So we

have
(∀j /∈ I) δj =

∑
i∈I

ai,jδi with ai,j ∈ R .

Since we have for all l

0 =
∂P

∂vl
(u1, u2, . . . , un) =

i=n∑
i=1

δi
∂ui
∂vl

(u1, u2, . . . , un) ,

replacing δj (for j /∈ I) by its value we get

(*)
∑
i∈I

δi

∂ui
∂vl

+
∑
j /∈I

ai,j
∂uj
∂vl

 = 0

Let us set xi,l :=
∂ui
∂vl

+
∑
j∈I ai,j

∂uj
∂vl

so that the relation (*) becomes

(*)
∑
i∈I

xi,l δi = 0 .

• We shall prove that xi,l ∈MS.
For that purpose, let us remember the hypothesis by introducing a basis (eα)α of S as an

R–module. We have
xi,l =

∑
α

λi,l;α eα

with λi,l;α ∈ R . We want to prove that, for all i, j, α, we have λi,l;α ∈M.
The relation (*) implies that, for all l and α,∑

i∈I
λi,l;α δi = 0 .

Assume that for some i0, l0, α0, we have λ0i,l0;α0 /∈ M. Let us then consider the projection of
the above equality onto the space of elements with degree deg δi0 . We get a relation∑

i∈I
λ′i,l0;α0

δi = 0 where λ′i0,l0;α0
∈ k× ,

i.e., an expression of δi0 as linear combination of the δi (i 6= i0), a contradiction with the
minimality of I.

• Let us multiply by vl both sides of the equality xi,l :=
∂ui
∂vl

+
∑
j∈I ai,j

∂uj
∂vl

which defines

xi,l, and then sum up over l = 1, 2, . . . , r. By the Euler relation, we get (for i ∈ I)

deg(ui)ui +
∑
j /∈I

ai,j deg(uj)uj =
∑
l

xi,lvl .
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Since xi,l ∈MS, the above equality shows that (for i ∈ I)

deg(ui)ui +
∑
j /∈I

ai,j deg(uj)uj =
∑
l

xlul

where, for all l, xl is a positive degree (homogeneous) element of S. Projecting onto the space
of elements with degree deg(ui), we get that, for all i ∈ I, ui is a linear combination (with
coefficients in S) of the uj (j 6= i).
• Since S is free as an R–module, it results from Nakayama’s lemma that any system of

elements of S which defines a k–basis of R/MR is also an R–basis of S. In particular there
exists a basis of S over R which contains 1, and so there is an R–linear projection π : S � R.

Now if ui =
∑
l 6=i ylul with yl ∈ S, by applying π to that equality we get ui =

∑
l 6=i π(yl)ul ,

an R–linear dependance relation on the set of (ul)1≤l≤n, a contradiction with the minimality
of n. �
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CHAPTER II

POLYNOMIAL INVARIANTS OF LINEAR FINITE GROUPS

§7. Finite Groups invariants

Generalities.

Let B be an integral domain, with field of fractions L. Let G be a finite group of automor-
phisms of B. We set A := BG, the subring of G–fixed points of B, and we denote by K its field
of fractions. L

B
, �

tttt

K

A
, �

ttt

7.1. Proposition.

(1) B is integral over A.

(2) Any element of L can be written
b

a
with a ∈ A and b ∈ B. We have K = LG and L/K

is a Galois extension, with G as Galois group.
(3) If B is integrally closed, A is also integrally closed.

Proof of 7.1.
(1) Every b ∈ B is aroot of the polynomial Pb(t) :=

∏
g∈G(t− g(b)) .

(2) For b1, b2 ∈ B and b2 6= 0, we have

b1
b2

=
b1
∏
g∈G,g 6=1 g(b2)∏
g∈G g(b2)

.

(3) An element of K which is integral over A is a fortiori integral over B, whence it belongs
to B and so to B ∩K. But B ∩K = B ∩ LG = BG = A. �

From now on we assume that B is integrally closed ; hence A is also integrally closed.
Let us recall the Cohen–Seidenberg theorems in that context (see for example [Bou2], §2, 2).

We recall that the map

Spec(B)→ Spec(A) is defined by q 7→ A ∩ q .

If p = q ∩A we say that q is above p.
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7.2. Theorem.

(1) The map Spec(B)→ Spec(A) is onto. Moreover
(a) If q, q′ ∈ Spec(B) are both above p, then q ⊆ q′ implies q = q′.
(b) Given p ⊆ p′ in Spec(A) and q ∈ Spec(B) above p there exists q′ ∈ Spec(B) above

p′ such that q ⊂ q′ : q′

�
�
�

q
- 

x
x

p′

p
- 

xxxx

(c) Given p ⊆ p′ in Spec(A) and q′ ∈ Spec(B) above p′ there exists q ∈ Spec(B) above
p such that q ⊂ q′. q′

q
- 

x
x

�
�
�

p′

p
- 

xxxx

(2) (Transitivity) Given p ∈ Spec(A), the group G acts transitively on the set of q ∈ Spec(B)
which are over p.

Let q ∈ Spec(B), and let p := A ∩ q.

• We call decomposition group of q and we denote by Gd(q) (or NG(q)) the subgroup of G
consisting in those g ∈ G such that g(q) = q.

Since G acts transitively on the set of prime ideals of B above p, the number of such ideals
is |G : Gd(q)|. We set νp := |G : Gd(q)| .
• We call inertia group of q and we denote by Gi(q) the normal subgroup of Gd(q) consisting

in those g ∈ Gd(q) which act trivially on B/q.

The group Gd(q)/Gi(q) is identified with a subgroup of the group of automorphisms of B/q
which act trivially on A/p.

We denote by kA(p) := Ap/pAp and kB(q) := Bq/qBq the fields of fractions of respectively
A/p and B/q. Thus we have Gd(q)/Gi(q) ↪→ Gal(kB(q)/kA(p)) .

The degree [kB(q) : kA(p)] depends only on p, and we set fp := [kB(q) : kA(p)] .

7.3. Proposition.

(1) The field extension kB(q)/kA(p) is normal with Galois group Gd(q)/Gi(q).
(2) The following assertions are equivalent :

(i) Gi(q) = 1.
(ii) pBq = qBq, and the extension kB(q)/kA(p) is Galois.

If the preceding properties hold, we say that the ideal p ∈ Spec(A) is unramified on B, or
that q ∈ Spec(B) is unramified on A.

Case of height one primes.

From now on we assume A and B are normal domains, i.e., noetherian and integrally closed.
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We denote by Spec1(A) (resp. Spec1(B)) the set of height one primes ideals (i.e., minimal
nonzero prime ideals) of A (resp. of B). By 7.2, if q is above p ∈ Spec(B), q has height one if
and only if p has height one.

For p ∈ Spec1(A), the local ring Ap is a normal domain, and it has a unique nonzero prime
ideal (which is then maximal) ; hence it is a local Dedekind domain, i.e., a local principal ideal
domain (discrete valuation ring).

Similarly, for q ∈ Spec1(B), Bq is a discrete valuation ring.
We then call ramification index of p on B (or of q on A) and we denote by ep the integer

defined by the equality pBq = qepBq .

7.4. Proposition. Let p ∈ Spec1(A), and let q ∈ Spec1(B) lying over p. We have

(1) |G| = νpepfp ,
(2) |Gd(q)| = epfp ,
(3) ep divides |Gi(q).

Sketch of proof of 7.4.
Let us first notice that the spectrum of the ring Bp consists in {0} and the ideals g(q)Bp for

g ∈ G. Hence the ring Bp is a Dedekind domain, since it is a normal domain whose all non
zero prime ideals are maximal.

Now we have
pBp =

∏
g∈G/Gd(q)

g(q)epBp ,

and by the Chinese Remainder theorem it follows that

Bp/pBp =
∏

g∈G/Gd(q)

Bp/g(q)epBp .

Let us denote by [Bp/pBp : Ap/pAp] the dimension of Bp/pBp over the field kA(p) = Ap/pAp.
It is not difficult then to establish that

[Bp/pBp : Ap/pAp] = |G : Gd(q)|epfp .

But since Ap is a principal ideal domain, Bp is a free Ap–module, with rank |G| since [L : K] =
|G|. It implies that [Bp/pBp : Ap/pAp] = |G|, proving (1) and (2).

Since Gd(q)/Gi(q) is a subgroup of Gal(kB(q)/kA(p), we see that |Gd(q) : Gi(q)| divides fq,
hence that ep divides |Gi(q)|. �

§8. Finite linear groups on symmetric algebras

In what follows, we let S be the symmetric algebra of an r–dimensional vector space V over
the field k. We let n be its graded maximal ideal, so that S/n = k. Let L be the field of
fractions of S. Notice that V = n/n2 (the tangent space).

Let G be a finite group of automorphisms of V .
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We denote by R = SG the subring of fixed points of G on S and we set m := R ∩ n = nG

(the maximal graded ideal of R. Let K be the field of fractions of R.

L

n
� �

S
/ �

~~~~~~~~

    @@@@@@@@ K

m
� �

R
/ �

~~~~~~~
// // k

8.1. Proposition.
(1) S is a finitely generated R–module.
(2) R is a finitely generated k–algebra.

Proof of 8.1.
(1) Since S is a k–algebra of finite type, S is a fortiori of finite type over R. Since S is

integral over R, S is then a finitely generated R–module.
(2) Assume S = k[x1, x2, . . . , xr]. Let P1(t), P2(t), . . . , Pr(t) ∈ R[t] be nonzero polynomials

having respectively x1, x2, . . . , xr as roots. Let C1, C2, . . . , Cr denote respectively the set of
coefficients of P1(t), P2(t), . . . , Pr(t). Thus, S is integral over k[C1, C2, . . . , Cr], and since S
is a finitely generated algebra over k[C1, C2, . . . , Cr], S is a finitely generated module over
k[C1, C2, . . . , Cr]. Since k[C1, C2, . . . , Cr] is noetherian, the submodule R of S is also finitely
generated. Hence R, a finitely generated module over a finitely generated k–algebra, is a finitely
generated k–algebra. �

Assume k algebraically closed.
It results from Nullstellensatz that there is a (GL(V )–equivariant) bijection

Specmax(S) ∼←→V .

Theorem 7.2 implies then that there is a commutative diagram

Specmax(S) ∼ //

����

V

����
Specmax(R) ∼ // V/G

From now on, we assume that k has characteristic 0.

Ramification and reflecting pairs.

Let us start by studying certain height one prime ideals.
From now on, we denote by q be an ideal of S generated by a degree one element of S (hence

q = SL where L is a line in V ). The ideal q is a prime ideal of height one.
Let us denote by p its image in Spec(R). Thus p = R ∩ q.
Let us denote by Spec(B, p) the set of prime ideals of B lying over p. We recall that

Spec(B, p) = {g(q) | (g ∈ G/Gd(q))} .
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8.2. Lemma. For such an ideal q = SL, we have Gi(q) = G(V/L) .

Proof of 8.2. Let us prove that G(V/L) ⊆ Gi(q). Let g ∈ G(V/L). Whenever v ∈ V , we have
g(v)− v ∈ L. The identity g(xy)− xy = g(x)(g(y)− y) + (g(x)− x)y and an easy induction on
the degree of x ∈ S shows then that g(x)− x ∈ SL for x ∈ S.

The inverse inclusion is obvious. �

The following proposition gives a bijection between the height one prime ideals of S which
are ramified over R and and the reflecting pairs of G on V (for the notation used here, the
reader may refer to 2.9 above).

8.3. Proposition.
(1) The bijection :

(a) If (L,H) is a reflecting pair for G, then the ideal q = SL is a height one prime
ideal of S ramified over R.

(b) Reciprocally, if q is a height one prime ideal of S, ramified over R, there exists a
a reflecting pair (L,H) for G such that q is the principal ideal of S generated by
L.

(2) If q and (L,H) are associated as above, then
(a) Gi(q) = G(H,V/L),
(b) Let p := q ∩R. Then we have

ep = |G(H,V/L)| and fp = |NG(L,H)/G(H,V/L)| .

Proof of 8.3.
(1)(a) Let (L,H) be a reflecting pair of G, and let q := SL. It is clear that q is a prime ideal

with height one in S. Since (see 8.2) Gi(q) = G(H,V/L) and since G(H,V/L) 6= {1}, we see
that q is ramified over R.

(b) Let q ∈ SpecA(B), and suppose that q is ramified over R, i.e., that Gi(q) 6= {1} : there
exists g ∈ G, g 6= 1, such that, for all x ∈ S, g(x)− x ∈ q.

On the other hand, since the morphism V → n/n2 is a G–equivariant isomorphism (hence
the morphism G → GL(n/n2) is injective), there is a homogeneous element x ∈ S such that
g(x)− x /∈ n2. Such an element x is then of degree 1, i.e., x ∈ V .

Let us denote by L the line generated by g(x)− x. Thus L ⊆ q. Since q has height one and
since it contains the prime ideal generated by L, we have q = SL.

(2) Assertion (a) results from 8.2. Since k has characteristic zero, the extension kS(q)/kR(p)
(see 7.3) is not only normal but also Galois. Since its Galois group is

Gd(q)/Gi(q) = NG(L,H)/G(H,V/L) ,

we see that fp = |NG(L,H)/G(H,V/L)|. Now since (see 7.4) |Gd(q)| = epfp, it follows that
ep = |G(H,V/L)|. �

We denote by Specram
1 (S) the set of height one prime ideals of S which are ramified over R,

and we denote by Specram
1 (R) the set of height one prime ideals of R ramified in S.

The set Specram
1 (R) is in natural bijection with the set Specram

1 (S)/G of orbits of G on
Specram

1 (S).



38 Course at UC Berkeley

The set of reflecting pairs is in bijection with the set of reflecting hyperplanes, denoted by
A. Thus :
• Specram

1 (S) is in natural bijection with the set A of reflecting hyperplanes of G,
• Specram

1 (R) is in natural bijection with the set A/G of orbits of G on its reflecting hyper-
planes arrangement.

Linear characters associated with reflecting hyperplanes.

Let p ∈ Specram
1 (R). For q ∈ Specram

1 (S) lying above p, associated with the reflecting pair
(L,H), we denote by jq a nonzero element of L. We define jp ∈ S by the formula

jp :=
∏

q∈Spec(S;p)

jq .

Notice that jp is uniquely defined up to multiplication by a nonzero element of k, and that
it is a homogeneous element of S of degree νp.

Moreover, jp is an eigenvector for all elements of G, so it defines a linear character of G,
denoted by θp : whenever g ∈ G, we have

g(jp) = θp(g) jp .

8.4. Lemma. Let p ∈ Specram
1 (R). The linear character θp takes the following values on a

reflection s ∈ G :

θp(s) =

{
detV (s) if s ∈ Gi(q) for q ∈ Spec(S; p) ,

1 if s ∈ Gi(q) for q /∈ Spec(S; p) .

Proof of 8.4. Let s ∈ G be a reflection . We shall prove that

s(jp) =

{
detV (s)jp if s ∈ Gi(q) for q ∈ Spec(S; p) ,

jp if s ∈ Gi(q) for q /∈ Spec(S; p) .

For q ∈ Spec(S; p), let ns(q) denote the cardinal of the orbit of q under s. Thus (up to
multiplication by an element of k×), we have

jp =
∏

q∈(Spec(S;p)/〈s〉)

(jqs(jq) · · · sns(q)−1(jq)) .

By definition of ns(q), jq is an eigenvector of sns(q). Let (L,H) be the reflecting pair of s. We
have s ∈ G(H), hence sns(q) ∈ G(H).
• Assume that G(H) 6= Gi(q). Then we know that q 6= SL, hence jq /∈ L. Nevertheless, jq

is an eigenvector of sns(q). But, either sns(q) = 1, or sns(q) is a reflection with reflecting pair
(L,H). Thus, in any case, we see that jq is fixed by sns(q). This proves that if s ∈ Gi(q) for
some q /∈ Spec(S; p), then s(jp) = 1.
• Assume now G(H) = Gi(q). Then (L,H) is the reflecting pair associated with q, and

s ∈ Gi(q). Hence s(jp) = detV (s)jp . �
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8.5. Proposition.

(1) The restrictions provide a natural morphism

ρG : Hom(G, k×)→

 ∏
q∈Specram

1 (S)

Hom(Gi(q), k×)

G

=

(∏
H∈A

Hom(G(H), k×)

)G

(2) The morphism ρG is onto.

Remarks.
1. The homogeneous element

jram :=
∏

p∈Specram
1 (R)

jp ,

a monomial with degree ∑
p∈Specram

1 (R)

νp = |Specram
1 (S)| = |A|

(the number of reflecting hyperplanes of G), defines the linear character

θram :=
∏

p∈Specram
1 (R)

θp

which coincides with the determinant on the subgroup of G generated by reflections.
In general we have θram 6= detV .
Indeed, notice that for any ζ ∈ µ(k), one has θram(ζIdV ) = ζN where N denotes the number

of reflecting hyperplanes of G, while detV (ζIdV ) = ζr.

2. Let (v1, v2, . . . , vr) be a basis of V , let (u1, u2, . . . , ur) be a system of parameters for the
algebra R, and let us denote by J the corresponding Jacobian, defined up to a nonzero scalar
by

J := det
(
∂ui
∂vj

)
i,j

.

Then, for all g ∈ G, we have
g(J) = detV (g−1)J .

We shall see below that, if G is generated by reflections, we can express J as a monomial in the
jH)H∈A.

Now we can describe the ideal p.
Let us set

∆p := j
ep
p =

∏
g∈G/Gd(q)

g(jq)ep .
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8.6. Proposition.
(1) We have p ⊆ R∆p .
(2) If G is generated by its reflections, we have

p = R∆p , hence Sp =
∏

g∈G/Gd(q)

Sg(jq)ep .

Proof of 8.6.
(1) Let x ∈ p. In order to prove that x is divisible by ∆p, it suffices to prove that whenever

q ∈ Spec(B, p), then x is divisible by j
e(q)
q . So let us pick q ∈ Spec(B, p), associated with the

reflecting pair (L,H). Let us choose a basis (v1, v2, . . . , vr−1) of H, so that (jq, v1, v2, . . . , vr−1)
is a basis of V . Then x = P (jq, v1, v2, . . . , vr−1), where P (t0, t1, . . . , tr−1) ∈ k[t0, t1, . . . , tr−1].
Since x ∈ q = Sjq, there exists a polynomal Q(t0, t1, . . . , tr−1) ∈ k[t1, . . . , tr−1] such that
P (t0, t1, . . . , tr−1) = t0Q(t0, t1, . . . , tr−1).

Now let s be a generator of the cyclic group G(H) = Gi(q), and let us denote by ζs its
determinant, a root of the unity of order |G(H)| = ep. Since s(x) = x, we have

ζst0Q(ζst0, t1, . . . , tr−1) = t0Q(t0, t1, . . . , tr−1) , i.e.,

Q(ζst0, t1, . . . , tr−1) = ζep−1
s Q(t0, t1, . . . , tr−1)

and we apply the following lemma to conclude that Q(t0, t1, . . . , tr−1) is divisible by t
ep−1
0 ,

hence that P (t0, t1, . . . , tr−1) is divisible by tep

0 , i.e., x is divisible by jep
q .

8.7. Lemma. Let A be a commutative domain, let P (t) ∈ A[t]. Assume there exist an integer
m and a ∈ A such that aj 6= 1 for 1 ≤ j ≤ m− 1, and P (at) = amP (t). Then P (t) is divisible
by tm.

Proof of 8.7. Set P (t) =
∑
n bnt

n. By hypothesis, we have
∑
n a

mbnt
n =

∑
n bna

ntn , hence for
all n < m, bn = 0. �

(2) It follows from 8.4 that ∆p is invariant by all reflections in G, hence invariant under G
if G is generated by reflections. �

§9. Coinvariant algebra and Harmonic polynomials.

The coinvariant algebra.
We set

SG := S/MS

and we call that graded k–algebra the coinvariant algebra of G.
The algebra SG is a finite dimensional k–vector space, whose dimension is the minimal

cardinality of a set of generators of S as an R–module (by Nakayama’s lemma). Thus there is
an integer M such that

SG = k ⊕ S1
G ⊕ · · · ⊕ SMG ,

and so in particular
⊕

n>M Sn ⊆MS .
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9.1. Lemma. The set of fixed points of G in SG is k.

Proof of 9.1. It suffices to prove that no homogeneous element of SG of degree > 0 can be fixed
under G. Assume that x ∈ S is a homogeneous element of S of degree > 0 such that, for all
g ∈ G, g(x)−x ∈MS. Then we have x− (1/|G|)

∑
g∈G g(x) ∈MS . Since (1/|G|)

∑
g∈G g(x) ∈

M, we see that x ∈MS. �

Whenever T is a graded subspace of S, which is G–stable, the multiplication induces a
morphism of graded kG–modules R ⊗ T −→ S . By complete reducibility of the action of G
on each homogeneous component of S, there exists a G–stable graded subspace T of S such
that MS ⊕ T = S. Combined with the isomorphism S/MS

∼−→T which follows from that
decomposition, we then get a morphism of graded kG–modules

µT : R⊗ SG −→ S .

9.2. Lemma. The morphism µT is onto.

Proof of 9.2. It follows from Nakayama’s lemma. �

Remarks.
• In the next chapter we shall prove that G is generated by reflections if and only if µT

is an isomorphism.
Notice that if µT is an isomorphism, then S is a free R–module, which implies (by

6.5) that R is a polynomial algebra.
• We shall now define a natural supplement subspace T : the space of harmonic polyno-

mials.

Galois twisting of a representation.

Generalities.
We shall recall how the group Aut(k) acts on the set of isomorphism types of the k–

representations of a finite group G.
Let ρ : G→ GL(X) be a representation of G over k, and let σ ∈ Aut(k). We define another

k–representation σρ, called the twisting of ρ by σ, as follows.
Let σX be the k–vector space whose structural abelian group equals X, and where the

external multiplication by elements of k is defined by

λ · x := σ−1(λ)x for λ ∈ k and x ∈ X .

Besides, σ acts as a ring automorphism on the group algebra kG :

σ :
∑
g∈G

λgg 7→
∑
g∈G

σ(λg)g .

Then the image of the composition map

kG
σ−1

→ kG
ρ→ EndZ(X)

is contained in Endk(σX) hence defines a k–algebra morphism

σρ : kG→ Endk(σX)

hence a k–representation of G.
Let us choose a basis B of X. Then it is also a basis of σX. It is clear that, for g ∈ G, the

matrix of σρ(g) on B is obtained by applying σ to all entries of the matrix of ρ(g) on B. Thus
in particular
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9.3.
(1) the characteristic polynomial det(1 − σρ(g)q) of σρ(g) is the image under σ of the

characteristic polynomial det(1− ρ(g)q) of ρ(q),
(2) whenever g ∈ G, we have χσρ(g) = σ(χ(g)) .

We shall denote by σχ the character of the σ–twisted of a representation with character χ.
It is easy to check that we have canonical isomorphisms

Sym(σX) = σSym(X) and Λ(σX) = σΛ(X) ,

and also that
Sym(σX)σρ(G) = σSym(X)ρ(G) .

More generally, if χ is an irreducible character of G, there is a natural identification

(9.4) σ(Sym(X)χ) = (σSym(X))σχ .

Let us fix a basis (x1, x2, . . . , xm) of X. Then it is also a basis of σX.
For n = (n1, n2, . . . , nm) ∈ Nm , we set xn := xn1

1 xn2
2 · · ·xnrr . A general element of Sym(X)

has the shape
∑
λnx

n , where λn ∈ k. Then we have

(9.5)
(∑

λnx
m ∈ Sym(X)χ

)
⇔

(∑
σ(λn)xn ∈ (σSym(X))σχ

)
.

Complex conjugation and contragredient representation.
Assume now that k = C, the field of complex numbers. We denote the complex conjugation

by λ 7→ λ∗.
There exists a positive definite hermitian form on X which is G–invariant. Using an or-

thonormal basis for such a form (as well as its dual basis for the dual space X∗), we see that
the matrix of the contragredient of ρ(g) is the complex conjugate of the matrix of ρ(g).

9.6. If k = C, the contragredient representation of a representation ρ, denoted by ρ∗, is the
twisting of ρ by the complex conjugation.

Case of reflection groups.
For the particular case of reflection groups, we have the following result.

9.7. The group ρ(G) is generated by reflections if and only if σρ(G) is generated by reflections.

Differential operators, harmonic polynomials.

Generalities.

We denote by S∗ the symmetric algebra of the dual space V ∗.n! Attention n!
The space S∗ is not the dual of S : the dual is the completion Ŝ∗ of S∗ at its maximal
graded ideal.
The proofs of the following two lemmas are left to the reader.
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9.8. Lemma. There is a unique k–algebra morphism D : S∗ → EndkS satisfying the following
properties.

(1) For v∗ ∈ V ∗, D(v∗) is a derivation of S, i.e.,

D(v∗)(xy) = D(v∗)(x)y + xD(v∗)(y) .

(2) For v∗ ∈ V ∗ and v ∈ V we have D(v∗)(v) =< v∗, v > .

Notice the following properties of D.

• For λ ∈ k, we have D(λ) = λId .
• For x∗ a homogeneous element of S∗, D(x∗) is a degree −deg(x) endomorphism of S.
• For g ∈ GL(V ), x ∈ S and x∗ ∈ S∗, we have

g(D(x∗)(x)) = D(g(x∗))(g(x)) .

Let (v1, v2, . . . , vr) be a basis of V , and let (
∂

∂v1
,
∂

∂v2
, . . . ,

∂

∂vr
) be the dual basis of V ∗. For

m := (m1,m2, . . . ,mr) ∈ Nr, we set

m! := m1!m2! · · ·mr! , vm := vm1
1 vm2

2 · · · vmrr ,
∂

∂v

m

:=
∂

∂v1

m1 ∂

∂v2

m2

· · · ∂
∂vr

mr

.

9.9. Lemma. There is a natural duality between S and S∗ defined by the formula

〈x∗, x〉 := D(x∗)(x)(0) .

We have

〈 ∂
∂v

m′

,vm〉 =

{
m! if m = m′

0 if not.

In what follows, we assume that k = C.
Assume that V is endowed with a positive definite hermitian product stable by G, and let

us choose an orthonormal basis (v1, v2, . . . , vr) of V . Let ( ∂
∂vi

)1≤i≤r denote the dual basis. For

x :=
∑

λmvm ∈ S

(with λm ∈ C), let us denote by x∗ the element of S∗ defined by

x∗ :=
∑

λ∗m(
∂

∂v
)m

(where λ∗m denotes the complex conjugate of λm). Let x =
∑
λmvm and y =

∑
µmvm be two

elements of S. Then we have
〈x∗, y〉 =

∑
m

λ∗mµm ,

and in particular (
〈x∗, x〉 =

∑
m

|λm|2 = 0

)
⇔ (x = 0) .

The map x 7→ x∗ is an semi-isomorphism from S onto S∗. If X is any graded subspace of S,
we denote by X∗ its image through that semi-isomorphism. We set

(X∗)⊥ := {y ∈ S | (∀x ∈ X)(〈x∗, y〉 = 0)} .
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9.10. Lemma. Assume k = C. Whenever X is any graded subspace of S, so is (X∗)⊥, and
we have

X ⊕ (X∗)⊥ = S .

Proof of 9.10. Indeed, it is enough to prove that the equality holds for each homogeneous
component, which is obvious. �

Harmonic elements.

We set R∗ := S∗G , and we denote by m∗ the maximal graded ideal of R∗.
Notice that the notation is consistant with the notation introduced previously about the

anti-isomorphism x 7→ x∗ : the image of R and m under such an anti-isomorphism are indeed
respectively R∗ and m∗.

Definition. We call “harmonic elements” of S and we denote by Har the space defined by

Har := (m∗S∗)⊥ = {h ∈ S | (∀x∗ ∈ m∗)(〈x∗, h〉 = 0)} .

9.11. Proposition. We have a G–stable decomposition

S = mS ⊕Har .

Proof of 9.11. It is clear that Har is stable by G. The assertion is a direct consequence of
9.10. �

Notice that in particular the projection S � Har parallel to mS induces an isomorphism

SG
∼−→Har .

§10. Graded characters and applications

From now on, we assume that the field k has characteristic zero, and is large enough so that
all irreducible representations of G on k are absolutely irreducible.

Graded characters of graded kG–modules.

A kG–module is a finite dimensional k–vector space endowed with an operation of G.
A graded kG–module is a graded k–vector space M =

⊕
nMn endowed with an operation

of G (i.e., for each n, Mn is a kG–module).
Th graded character of M is then the class function

grcharM : G→ Z((q))

defined by
grcharM (g) :=

∑
n

tr(g ; Mn)qn .

In particular, grcharM (1) = grdimk(M) .
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Example. Let X be a kG–module. We have

grcharΛ(X)(g) = detX(1 + gq) and grcharS(X)(g) =
1

detX(1− gq)
.

Note that, since the Koszul complex is exact, we have

grcharΛ(X)(−g)grcharS(X)(g) = 1 .

For all irreducible kG–module X, since by assumption X is absolutely irreducible, we have

dimkHomkG(X,X) = 1 .

Definitions and Notation.
• For all graded kG-module M , the graded multiplicity of X in M is the formal series

grmult(X,M) ∈ Z((q)) defined by

grmult(X,M) := grdimkHomkG(X,M) .

• We call X–isotypic component of M and we denote by MX the direct sum of all X–
isotypic components of the homogeneous spaces Mn for −∞ < n < +∞. Thus, MX is
a graded kG–submodule of M .

The proof of the following proposition is easy and left to the reader.

10.1. Proposition. Let X be an irreducible kG–module with character χ. We have
(1) grcharMX

= grmult(X,M)χ .

(2) grmult(X,M) =
1
|G|

∑
g∈GgrcharM (g)χ(g−1) .

We also set (using preceding notation) : grmult(χ,M) := grmult(X,M) .

Isotypic components of the symmetric algebra.

As before, let V be an r-dimensional k–vector space and let G finite subgroup of GL(V ). We
denote by S the symmetric algebra of V , and we set R := SG.

The algebra S is a graded kG–module. For all irreducible character χ of G on k, we let SGχ
(or simply Sχ) denote the χ–isotypic component of S. Note that if 1G is the trivial character
of G, then SG1G = R.

10.2 Lemma.
(1) Each SGχ is a graded kG–module, and a graded R–submodule of S.
(2) We have

S =
⊕

χ∈Irrk(G)

SGχ .

(3) For χ an irreducible character of G we have (with obvious notation)

grmult(χ, S) =
1
|G|

∑
g∈G

χ(g−1)
detV (1− gq)

and grcharSGχ = grmult(χ, S)χ .
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Proof of 10.2. Whenever Sn is a homogeneous component of degree n of S, multiplication by
a homogeneous element x ∈ R defines an isomorphism of kG–modules from Sn to xSn. Thus
multiplication by x sends SGχ into itself, which proves (1).

(2) is immediate. (3) results from 10.1. �

For χ any class function on G, let us set

〈S, χ〉G :=
1
|G|

∑
g∈G

χ(g−1)
detV (1− gq)

,

a linear form on χ.

Some numerical identities.

By 10.2, (3), the coefficient of
1

(1− q)r
in the Laurent series development of 〈S, χ〉G around

q = 1 equals
χ(1)
|G|

.

Let γ(χ) be the number such that the coefficient of
1

(1− q)r−1
in the Laurent series devel-

opment of 〈S, χ〉G around q = 1 equals
γ(χ)
2|G|

. Thus

(10.3) 〈S, χ〉G =
χ(1)
|G|

1
(1− q)r

+
γ(χ)
2|G|

1
(1− q)r−1

+ . . . ,

or, in other words
χ(1)
|G|

= ((1− q)r(〈S, χ〉G)|q=1

γ(χ)
2|G|

= − d

dq
((1− q)r(〈S, χ〉G)|q=1

.

10.4. Proposition.

(1) Let A the set of reflecting hyperplanes of G. We have

γ(χ) =
∑
H∈A

γ(ResGG(H)(χ)) .

(2) γ(1G) is the number of reflections of G.

Proof of 10.4.
(1) The set Ref(G) of all reflections of G is the disjoint union, for H ∈ A, of the sets

Ref(G(H)) of reflections of the fixator (pointwise stabilizer) G(H) of H. For s ∈ Ref(G), se
wet ζs := detV (s) . Since

〈S, χ〉G =
1
|G|

∑
g∈G

χ(g−1)
detV (1− gq)

,
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we see that

γ(χ) = 2
∑

s∈Ref(G)

χ(s−1)
1− ζs

= 2
∑
H∈A

∑
s∈Ref(G(H))

χ(s−1)
1− ζs

=
∑
H∈A

γ(ResGGH (χ)) .

(2) By the preceding assertion, it is enough to check (2) for the case G = G(H). Then,
following the above computation, we have

γ(1G(H)) = 2
∑

s∈Ref(G(H))

1
1− ζs

= 2
∑

s∈G(H)

s6=1,s2=1

1
2

+
∑

s∈G(H)

s6=1,s2 6=1

(
1

1− ζs
+

1
1− ζ−1

s

)

= |Ref(G(H))| .

�

10.5. Corollary. The development around q = 1 of the graded dimension of R has the shape

grdimkR =
1
|G|

1
(1− q)n

+
|RefG|
2|G|

1
(1− q)n−1

+ . . . .

Isotypic components are Cohen–Macaulay.

10.6. Proposition.
Whenever P is a parameter algebra of R, and whenever χ ∈ Irrk(G), the isotypic component

SGχ is free over P .
In particular the invariant algebra R is Cohen–Macaulay.

Proof of 10.6. A parameter algebra P of R is a parameter algebra of S. Since S is free over
itself, S is free over P . The proposition follows from 10.2, (2). �

Computations with power series.

Let P be a parameter algebra of R. We denote by mP the unique maximal graded ideal of
P .

Let m denote the rank of R over P , which is also the dimension of the graded k-vector space
R/mPR = k ⊗P R.

We call P–exponents of R the family (e1, e2, . . . , em) of integers such that

grdimk(R/mPR) = qe1 + qe2 + · · ·+ qem .
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Thus there exists a k–basis of R/mPR consisting of homogeneous elements of degrees respec-
tively e1, e2, . . . , em.

Let d1, d2, . . . , dr be the characteristic degrees of P , so that

grdimk(P ) =
1

(1− qd1)(1− qd2) · · · (1− qdr )
.

Since R is free on P , we have
R ' P ⊗k R/mPR .

Thus the graded dimension of R is

grdimk(R) =
qe1 + qe2 + · · ·+ qem

(1− qd1)(1− qd2) · · · (1− qdr )
.

Now let χ ∈ Irrk(G). Let χ(1)mχ denote the rank of SGχ over P , which is also the dimension
of the graded k-vector space SGχ /mPS

G
χ = k ⊗P SGχ .

Since each homogeneous component of SGχ /mPS
G
χ is a direct sum of modules with character

χ, the graded dimension of SGχ /mPS
G
χ has the shape

grdimSGχ /mPS
G
χ = χ(1)(qe1(χ) + qe2(χ) + · · ·+ qemχ (χ)) ,

from which we deduce

grdimk(SGχ ) = χ(1)
qe1(χ) + qe2(χ) + · · ·+ qemχ (χ)

(1− qd1)(1− qd2) · · · (1− qdr )
.

Note that

(10.7)
1
|G|

∑
g∈G

grchar(SGχ /mPS
G
χ )(g)χ(g−1) = (qe1(χ) + qe2(χ) + · · ·+ qemχ (χ)) .

We set

grmult(χ, S) := 〈S, χ〉G =
qe1(χ) + qe2(χ) + · · ·+ qemχ (χ)

(1− qd1)(1− qd2) · · · (1− qdr )
EP (χ) := e1(χ) + e2(χ) + · · ·+ emχ(χ) = (grmult(χ, S/MPS))|q=1

.

10.8. Proposition.
(1) We have (d1d2 · · · dr) = m|G| .
(2) |Ref(G)| =

∑i=r
i=1(di − 1)− 2

m

∑j=m
j=1 ej .

Moreover, for all χ ∈ Irrk(G), we have
(3) mχ = mχ(1) ,

(4) γ(χ) = χ(1)|Ref(G)|+ 2
m

(
χ(1)

∑i=m
i=1 ej −

∑i=mχ
i=1 ej(χ)

)
.

Proof of 10.8. We first prove the following lemma.
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10.9. Lemma. Let r, n, d1, d2, . . . , dr, e1, e2, . . . , en be integers, and let α(q) the rational
fraction defined by

α(q) :=
qe1 + qe2 + · · ·+ qen

(1− qd1)(1− qd2) · · · (1− qdr )
.

Let
α(q) =

ar
(1− q)r

+
ar−1

(1− q)r−1
+ . . .

be the Laurent development of α(q) around q = 1. We have
(1) ar(d1d2 · · · dr) = n ,

(2) 2ar−1(d1d2 · · · dr) = n
∑j=r
j=1(dj − 1)− 2

∑i=n
i=1 ei .

Proof of 10.9. Set
α1(q) := (1− q)rα(q) .

Then
α1(q) =

qe1 + qe2 + · · ·+ qen

(1 + q + · · ·+ qd1−1) · · · (1 + q + · · ·+ qdr−1)
.

To prove the first assertion, one computes α1(q) for q = 1.
To prove the second assertion, one computes the derivative of α1(q) for q = 1. We have

α′1(q) = α1(q)

e1q
e1−1 + · · ·+ enq

en−1

qe1 + · · ·+ qen
−
j=r∑
j=1

1 + 2q + . . . (dj − 1)qdj−2

1 + q + · · ·+ qdj−1

 .

It follows that

ar−1 = −α′1(1) = ar

1
2

j=r∑
j=1

(dj − 1)− e1 + · · ·+ en
n

 ,

hence the value announced for ar−1. �

Let us notice the following particular case of what precedes. Let P be a polynomial algebra
with characteristic degrees d1, d2, . . . , dn. Then

(10.10) grdimkP =
1

d1d2 · · · dn
1

(1− q)n
+
∑n
i=1(di − 1)

2d1d2 · · · dn
1

(1− q)n−1
+ . . . .

Let us now prove 10.8
We remark that

qe1(χ) + qe2(χ) + · · ·+ qemχ (χ)

(1− qd1)(1− qd2) · · · (1− qdr )
= χ(1)

1
|G|

1
(q − 1)r

+
γ(χ)

2
1
|G|

1
(q − 1)r−1

+ . . . ,

from which, applying the preceding lemma, we get
χ(1)

1
|G|

d1d2 · · · dr = mχ

γ(χ)
1
|G|

d1d2 · · · dr = mχ

j=r∑
j=1

(dj − 1)− 2
i=mχ∑
i=1

ej(χ) .
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Specializing the above formulae to the case where χ = 1, we get

(10.11)


1
|G|

d1d2 · · · dr = m

|Ref(G)|m = m

j=r∑
j=1

(dj − 1)− 2
i=m∑
i=1

ej .

Using this in the general formulae gives

(10.12)


χ(1)m = mχ

γ(χ) = χ(1)|Ref(G)|+ 2
m

χ(1)
i=m∑
i=1

ej −
i=mχ∑
i=1

ej(χ)

 .

�

10.13. Theorem. Assume that k is a any characteristic zero field. Let P be a parameter
algebra for the algebra of invariant R, with degrees (di)1≤i≤r, and let us denote by m the rank
of R over P .

(1) the kG–module S/mPS is isomorphic to (kG)m,
(2) the PG–module S is isomorphic to (PG)m,
(3) we have |G|m =

∏=r
i=1 di .

Proof of 10.13. It is enough to prove the theorem when k is replaced by an extension. So we
may assume that k is a splitting field for the group algebra kG, which we do. It suffices to
prove that the (ordinary) character (grcharS/mPS)|q=1

of the kG–module S/mPS equals the

character of (kG)m, i.e., for all χ ∈ Irrk(G), the multiplicity of χ in S/mPS equals mχ(1),
which is precisely the first formula in 10.12 above. �

A simple example.

Let us consider G :=
{(

1 0
0 1

)
,

(
−1 0
0 −1

)}
⊂ GL2(k) . As before, we set S := k[x, y]

and R := SG.
It is easy to check that

grdim(R) =
∞∑
n=0

(2n+ 1)qn =
1− q4

(1− q2)3
=

1 + q2

(1− q2)2
,

from which one can deduce the two equalities{
R = k[x2, xy, y2] ' k[u, v, w]/(uw − v2)

R = k[x2, y2]⊕ k[x2, y2]xy .

The first equality gives the formula

grdim(R) =
1− q4

(1− q2)3
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(see 5.1), while the second equality gives the formula

grdim(R) =
1 + q2

(1− q2)2
:

in that case, we may choose P := k[x2, y2], and then m = 1, e1 = 0, e2 = 2.
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CHAPTER III
POLYNOMIAL INVARIANTS OF FINITE REFLECTION GROUPS

§11. The Shephard–Todd/Chevalley–Serre Theorem

From now on we keep the notation previously introduced :
• V is an r–dimensional vector space over the characteristic 0 field k,
• S is the symmetric algebra of V , N is its maximal graded ideal,
• G is a finite subgroup of GL(V ), Ref(G) is the set of reflections in G,
• R = SG is the invariant algebra, M is its maximal graded ideal, SG := S/MS is the

coinvariant algebra.

11.1. Theorem.
(1) The following assertions are equivalent.
(i) G is generated by reflections.

(ii) R is a polynomial algebra.
(iii) S is a free R–module.
(iv) R⊗ SG ' S as graded R–modules.
(2) If this is the case, let us denote by (d1, d2, . . . , dr) the characteristic degrees of R. Then
(a) |G| = d1d2 · · · dr,
(b) |Ref(G)| = d1 − 1 + d2 − 1 + · · ·+ dr − 1,
(c) As ungraded RG–modules (resp. kG–modules), we have S ' RG (resp. SG ' kG).

Proof of 11.1.
We shall prove (i)⇒(iv)⇒(iii)⇒(ii)⇒(i) :
• The proof of (i)⇒(iv) uses the Demazure operators that we introduce below.
• (iv)⇒(iii) is clear, and (iii)⇒(ii) is theorem 6.5.
• We shall then prove that (ii)⇒ (2).
• Finally we shall prove (ii)⇒i) using that (i)⇒(ii) and that (ii)⇒ (2).
So let us start with (i)⇒(iv).
The Demazure operators
Let r = (v, v∗) be a root in V ⊗ V ∗, defining the reflection sr, and the reflecting pair

(Lr, Hr) (where Lr = kv and Hr = ker v∗). Since s belongs to the inertia group of the ideal
SLr, whenever x ∈ S there is an element ∆r(x) ∈ S such that

sr(x)− x = ∆r(x)v .

It is easy to check the following properties.
(δ1) The operator ∆r : S −→ S has degree −1, and extends the linear form v∗ : V → k.
(δ2) We have

∆r(xy) = x∆r(y) + ∆r(x)y + ∆r(x)∆r(y)v and ∆r(x) = 0⇔ x ∈ R ,
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from which it follows that ∆r is an R–linear endomorphism of S. Thus in particular
∆r induces a degree −1 endomorphism of the coinvariant algebra SG.

11.2. Lemma. Assume G generated by reflections. Let x ∈ SG.
(1) The following assertions are equivalent

(i) x ∈ k,
(ii) for all roots r such that sr ∈ G, ∆r(x) = 0.

(2) If x is homogeneous of degree n ≥ 1, there exist roots r1, r2, . . . , rn such that

∆r1∆r2 · · ·∆rn(x) ∈ k× .

Proof of 11.2.
(1) It suffices to prove the assertion for the case where x is homogeneous. Now since G is

generated by its reflections, we see that (ii) hold if and only if x is fixed by G. We quote 9.1 to
conclude.

(2) Follows from (1) by induction on the degree of x. �

11.3. Theorem. Assume G is generated by reflections.
Then for each choice of a G–stable graded submodule T of S such that MS ⊕ T = S, the

morphism
µT : R⊗ SG −→ S

is an isomorphism.

Proof of 11.3. We know that µT is onto (see 9.2). It suffices to prove that if (x1, x2, . . . , xm)
is a family of homogeneous elements of S whose image in SG is k–free, then (x1, x2, . . . , xm) is
R–free.

Assume this is not the case. Choose m minimal such that there is a family of homogeneous
elements (x1, x2, . . . , xm) in S which is not R–free, while it defines a free family in SG. Assume
that deg x1 ≤ deg xi. Let

t1x1 + · · ·+ tmxm = 0 ,

(where ti ∈ R, ti 6= 0) be a dependance relation.
By 11.2, (2), there is a family (perhaps empty) of roots (r1, r2, . . . , rn) (where n = deg x1)

such that, if ∆ := ∆r1∆r2 · · ·∆rn , then ∆(x1) ∈ k×. Moreover, since ∆ is an R–endomorphism
of S, we get a dependance relation

t1∆(x1) + · · ·+ tm∆(xm) = 0 .

Let us set λ := −∆(x1)−1, and ui := λprG(∆(xi)) for i ≥ 2. We have

t1 = λt2∆(x2) + · · ·+ λtm∆(xm) = t2u2 + · · ·+ tmum ,

which implies
t2(x2 + u2x1) + . . . tm(xm + umx1) = 0 .

We see that the family (x2 + u2x1, . . . , xm + umx1) is a family of homogeneous elements of S
which defines a free family in SG : a contradiction with the minimality of m. �
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Let us prove (ii)⇒(2).
Let us use notation from §9. We may choose P = R hence m = 1. So we see that 10.13 does

imply (c), and moreover by 10.8 we have
|G| = d1d2 · · · dr

|Ref(G)| =
i=r∑
i=1

(di − 1)

from which (2) follows.
Let us now prove that (ii)⇒(i).
Let G0 := 〈Ref(G)〉. Let us set R0 := SG

0
, and thus R ⊆ R0.

Since (i)⇒(ii), we know that R0 is a polynomial algebra. Let us denote by (d0
1 ≤ d0

2 ≤ · · · ≤
d0
r) its family of characteristic degrees. If (d1 ≤ d2 ≤ · · · ≤ dr) denotes the set of charateristic

degrees of R, we know that, for all i = 1, . . . , r, we have d0
i ≤ di (see 6.1).

On the other hand, by (2) we know that

|Ref(G)| =
i=r∑
i=1

(di − 1) =
i=r∑
i=1

(d0
i − 1) ,

from which it follows that for all i, di = d0
i . But since |G| = d1d2 · · · dr and |G0| = d0

1d
0
2 · · · d0

r,
we see that G = G0. �

§12. Steinberg theorem and first applications

The Jacobian as a monomial.
We shall compute the Jacobian Jac(S/R) for G a complex reflection group. Whenever (H,L)

is a reflecting pair for G, let us choose a nonzero element jH ∈ L. We recall that we denote by
eH the order of the cyclic group G(H).

12.1. Proposition. We have

Jac(S/R) =
∏
H∈A

jeH−1
H .

Proof of 12.1. Let (u1, u2, . . . , ur) be an algebraic basis of R. We recall that, for (v1, v2, . . . , vr)
a basis of V , we have Jac(S/R) = det (∂ui∂vj

)i,j .
If (d1, d2, . . . , dr) are the characteristic degrees of R, it follows that deg Jac(S/R) = (d1 −

1) + (d2 − 1) + · · ·+ (dr − 1) , and then (cf. above 11.1) that deg Jac(S/R) =
∑
H∈A eH − 1 .

It suffices then to prove that for H ∈ A, jeH−1
H divides Jac(S/R).

Let (L,H) be the reflecting pair corresponding to H, let (v1 := jH , v2, . . . , vr−1) be a basis
such that (v2, . . . , vr) is a basis of H. For x ∈ S, if P (t1, t2, . . . , tr) ∈ k[t1, t2, . . . , tr] is the

polynomial such that x = P (jH , v2, . . . , vr), we set ∂Lx :=
∂P

∂t1
(jH , v2, . . . , vr) . It suffices to

prove that for u ∈ R, jeH−1
H divides ∂Lu.
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Let s be a generator of G(H), and let ζs denote its determinant. Since u is invariant under
s, for u = P (jH , v2, . . . , vr), we have

P (ζsjH , v2, . . . , vr) = P (jH , v2, . . . , vr) ,

which yields
∂P

∂t1
(ζst1, t2, . . . , tr) = ζeH−1

s

∂P

∂t1
(t0, t2, . . . , tr) .

The required property results from 8.7. �

Action of the normalizer and generalized degrees.
Let G ⊂ GL(V ) be a finite group generated by reflections. We set

N(G) := NGL(V )(G) and N(G) := N(G)/G .

The group N(G) acts on R, hence on M and on the finite dimensional graded k–vector space
VG := M/M2.

The graded dimension of VG is

grdimVG = qd1 + qd2 + · · ·+ qdr =
∑
d

r(d)qd .

Let H be a subgroup of N(G).
Let us denote by ξd the character of the representation of H on the space V dG of degree d

elements of VG (a space of dimension r(d)). Thus the graded character of the kH–module VG
is

grcharVG =
∑
d

ξdq
d ,

and we have
grcharVG(1) =

∑
d

ξd(1)qd =
∑
d

r(d)qd .

For each d, we have

ξd =
∑

ν∈Irr(H)

md(ν)ν where md(ν) = 〈ξd, ν〉 .

The family
(d, ν)d≥0,ν∈Irr(H) where (d, ν) is repeated md(ν) times

is called the family of generalized invariant degrees of (G,H).
For each d, let us denote by Xi(d, ν)ν,i=1,...,md(ν) a family of H–stable subspaces of the space

Md of degree d elements of M, such that

Md = (M2)d ⊕
⊕
ν,i

Xi(d, ν) .

Then we have
R = k[Xi(d, ν)d,ν,i=1,...,md(ν)] .

The choice, for all d, ν, i, of a basis of Xi(d, ν), provides a set of homogeneous algebraically
elements (u1, u2, . . . , ur) such that R = k[u1, u2, . . . , ur] .
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Action of an element.
Let n ∈ N(G), with image n in N(G). By applying what precedes to the cyclic group H

generated by n, we see that

12.2. Proposition. Let (ζ1, ζ2, . . . , ζr) be the spectrum of n in its action on VG = M/M2.
(1) There is an algebraic basis (u1, u2, . . . , ur) of R, with degrees (d1, d2, . . . , dr), such that,

for 1 ≤ i ≤ r, we have n(ui) = ζiui .
(2) We have

(ζ1, ζ2, . . . , ζr) = (1, 1, . . . , 1) ⇔ n ∈ G .

The family ((d1, ζ1), (d1, ζ1), , . . . , (d1, ζ1)) is called the family of generalized degrees of (G,n).

First application : order of the center.

12.3. Proposition. Assume that G acts irreducibly on V . We have

|ZG| = gcd{d1, d2, . . . , dr} .

Proof of 12.3. Since G is irreducible, ZG = {ζIdV | (ζIdV ∈ k×)(ζIdV ∈ G.
If ζIdV ∈ G, then by applying it to the invariant polynomials we see that for each degree di

we have ζdi = 1.
Reciprocally, let d := gcd{d1, d2, . . . , dr}. Let ζ be a root of unity of order d. Since for all

i we have ζdi = 1, the generalized degrees of the pair (G, ζIdV ) are (d1, 1), (d2, 1), . . . (dr, 1),
proving that ζIdV ∈ G. �

Steinberg theorem.

12.4. Steinberg theorem. Let G be a finite reflection group on V . Let X be a subset of V .
Then the fixator G(X) = CG(X) of X is a reflection group, generated by those reflections in G
whose reflecting hyperplane contains X.

The proof given below is due to Gus Lehrer [Le]. The reader may refer to [St] for the original
proof, or to [Bou1], Ch. v, §6, ex. 8, for another proof.

Proof of 12.4. It is clear that it is enough to prove that the fixator of an element v ∈ V is
generated by reflections, which we shall prove.

Let Ref(G(v)) be the set of all reflections in G(v), i.e., those reflections of G whose reflecting
hyperplane contains v. Let G(v)0 be the subgroup of G(v) generated by Ref(G(v)). We shall
prove that G(v)0 = G(v).

Now let us consider G as acting (through the contragredient representation) on the dual V ∗.
Let us denote by S∗ the symmetric algebra of V ∗ (notice that S∗ is not the dual vector space
of S).

SinceG(v)0 is a normal subgroup ofG(v), whenever g ∈ G(v), we can consider the generalized
characteristic degrees ((d1(v), ζ1), (d2(v), ζ2), . . . , (dr(v), ζr)) of the pair (G(v)0, g) acting on S∗,
and it suffices (see 12.2) to prove that ζi = 1 for i = 1, 2, . . . , r to ensure that g ∈ G(v)0.

Let (x1, x2, . . . , xr) be a basis of V ∗.
Let (u(v)

1 , u
(v)
2 , . . . , u

(v)
r ) be an algebraic basis of S∗G(v)0 such that, for 1 ≤ i ≤ r, we have

g(u(v)
i ) = ζiu

(v)
1 . In particular, each u

(v)
i is a polynomial in (x1, x2, . . . , xr).
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Let (u1, u2, . . . , ur) be an algebraic basis of R∗ := S∗G. Since R∗ ⊆ S∗G(v)0 , there exist
polynomials Pi(t1, t2, . . . , tr) ∈ k[t1, t2, . . . , tr] such that, for i = 1, 2, . . . , r, we have ui =
Pi(u

(v)
1 , u

(v)
2 , . . . , u

(v)
r ).

• On one hand, since ui is fixed by g, we have

Pi(ζ1t1, ζ2t2, . . . , ζrtr) = Pi(t1, t2, . . . , tr) .

Taking the partial derivative yields

ζj
∂Pi
∂tj

(ζ1t1, ζ2t2, . . . , ζrtr) =
∂Pi
∂tj

(t1, t2, . . . , tr)

hence

g

(
∂Pi
∂tj

(t1, t2, . . . , tr)
)

= ζ−1
j

∂Pi
∂tj

(t1, t2, . . . , tr) .

Apply the preceding equality to the vector v. Since g(v) = v, we get

〈∂Pi
∂tj

(u(v)
1 , u

(v)
2 , . . . , u(v)

r ), v〉 = ζj〈
∂Pi
∂tj

(u(v)
1 , u

(v)
2 , . . . , u(v)

r ), v〉 .

Thus we see that if ζj 6= 1, for i = 1, 2, . . . , r, we have

〈∂Pi
∂tj

(u(v)
1 , u

(v)
2 , . . . , u(v)

r ), v〉 = 0 .

• On the other hand, we have

∂ui
∂xj

=
m=r∑
m=1

∂Pi
∂tm

(u(v)
1 , u

(v)
2 , . . . , u(v)

r )
∂u

(v)
m

∂xj
,

hence

det
(
∂ui
∂xj

)
= det

(
∂Pi
∂tm

(u(v)
1 , u

(v)
2 , . . . , u(v)

r )
)

det

(
∂u

(v)
m

∂xj

)
.

For each reflecting hyperplane H ∈ A, let us denote by j∗H a linear form on V with kernel H.
Then we have (up to a nonzero scalar)

det
(
∂ui
∂xj

)
=

∏
(H∈A)

j∗H
eH−1 and det

(
∂u

(v)
m

∂xj

)
=

∏
(H∈A)(〈j∗H ,v〉=0)

j∗H
eH−1

hence

det
(
∂Pi
∂tm

(u(v)
1 , u

(v)
2 , . . . , u(v)

r )
)

=
∏

(H∈A)(〈j∗H ,v〉6=0)

j∗H
eH−1 ,

and in particular

〈det
(
∂Pi
∂tm

(u(v)
1 , u

(v)
2 , . . . , u(v)

r )
)
, v〉 6= 0 .

Thus we see that, for j = 1, 2, . . . , r, we have ζj = 1. �
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Fixed points of elements of G.

Let X be a subset of V . Let us set

X :=
⋂

h∈A,H⊇X

H .

Then it follows from Steinberg theorem that G(X) = G(X).

Definition. The fixators of subsets of V in G are called the parabolic subgroups of G.

Let us denote by Par(G) the set of parabolic subgroups of G, and let us denote by I(A) the
set of intersections of elements of A. Then the map

I(A)→ Par(G) , X 7→ G(X)

is a G–equivariant inclusion–reversing bijection.
The following result gives another description of I(A).

12.5. Proposition. The set I(A) coincides with the set of fixed points V g for g ∈ G.

Proof of 12.5.
1. We prove by induction on |G| that for g ∈ G, the space V g of fixed points of g is a

reflecting hyperplanes intersection.
Notice that the property is obvious when G is cyclic.
By Steinberg theorem, we know that G(V g) is a reflection group. If G(V g) is a proper

subgroup of G, since g ∈ G(V g), by the induction hypothesis we see that V g is an intersection
of reflecting hyperplanes for G(V g), which are reflecting hyperplanes for G.

2. Conversely, let us prove that whenever X ∈ A, there exists g ∈ G such that X = V g.
Choose H1, H2, . . . ,Hm ∈ A with m minimal such that X = H1 ∩ H2 ∩ · · · ∩ Hm. Thus
the corresponding lines L1, L2, . . . , Lm are linearly independant, i.e., L1 + L2 + · · · + Lm =
L1 ⊕ L2 ⊕ . . . ,⊕Lm . The desired result will follow from the next lemma.

12.6. Lemma. Let H1, H2, . . . ,Hm be a family of linearly independant reflecting hyperplanes.
For all i = 1, 2, . . . ,m, let us choose a reflection si ∈ G(Hi), and let us set g := s1s2 · · · sm.
Then V g = H1 ∩H2 ∩ · · · ∩Hm .

Proof of 12.6. We argue by induction on m. The case m = 1 is trivial. Assume the property
holds for m − 1 independant hyperplanes. Since obviously

⋂
1≤i≤mHi ⊆ V g, it is enough to

prove that V g ⊆
⋂

1≤i≤mHi. Let v ∈ V g.
Whenever x ∈ V and i = 1, 2, . . . ,m, we have si(x) ≡ x mod Li , hence

(s2s3 · · · sm)(v) ≡ v mod L2 ⊕ L3 ⊕ · · · ⊕ Lm .

Since (s1s2 · · · sm)(v) = v, we also have

(s2s3 · · · sm)(v) = s−1
1 (v) ≡ v mod L1 .

It follows that
(s2s3 · · · sm)(v) = s−1

1 (v) = v ,

thus v ∈ H1, and also by the induction hypothesis we have v ∈ H2 ∩H3 ∩ · · · ∩Hm. �

�
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Braid groups.

Recall that we set V reg := V − ∪H∈AH . We denote by p : V reg → V reg/G the canonical
surjection.

Definition. Let x0 ∈ V reg. We introduce the following notation for the fundamental groups:

P := Π1(V reg, x0) and B := Π1(V reg/G, p(x0)) ,

and we call B and P respectively the braid group (at x0) and the pure braid group (at x0)
associated to G.

We shall often write Π1(V reg/G, x0) for Π1(V reg/G, p(x0)).
The covering V reg → V reg/G is Galois by Steinberg’s theorem, hence the projection p induces

a surjective map B � B , σ 7→ σ, as follows :
Let σ̃ : [0, 1]→ V reg be a path in V reg, such that σ̃(0) = x0, which lifts σ. Then σ is defined

by the equality σ(x0) = σ̃(1) .
We have the following short exact sequence :

(12.7) 1→ P → B → G→ 1 ,

where the map B → G is defined by σ 7→ σ.

Remark. Bessis has recently proved that he spaces V reg and V reg/G are K(π, 1)-spaces (see
[Bes3]).

Braid reflections around the hyperplanes.
For H ∈ A, we set ζH := ζeH , We denote by sH and call distinguished reflection the reflection

in G with reflecting hyperplane H and determinant ζH . We set

LH := im (sH − IdV ) .

For x ∈ V , we set x = prH(x) + pr⊥H(x) with prH(x) ∈ H and pr⊥H(x) ∈ LH .
Thus, we have sH(x) = ζHpr⊥H(x) + prH(x) .
If t ∈ R, we set ζtH := exp(2iπt/eH), and we denote by stH the element of GL(V ) (a pseudo–

reflection if t 6= 0) defined by :

(12.8) stH(x) = ζtHpr⊥H(x) + prH(x) .

Notice that, denoting by steHH the eH -th power of the endomorphism stH , we have

(12.9) steHH (x) = exp(2πit)pr⊥H(x) + prH(x) .

For x ∈ V , we denote by σH,x the path in V from x to sH(x), defined by :

σH,x : [0, 1]→ V , t 7→ stH(x) .

and we denote by πH,x the loop in V with initial point x defined by :

πH,x : [0, 1]→ V , t 7→ steHH (x) .
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Let γ be a path in V reg, with initial point x0 and terminal point xH .

• The path defined by sH(γ−1) : t 7→ sH(γ−1(t)) is a path in V reg going from sH(xH) to
sH(x0). We define the path σH,γ from x0 to sH(x0) as follows :

σH,γ := sH(γ−1) · σH,xH · γ .

It is not difficult to see that, provided xH is chosen “close to H and far from the other
reflecting hyperplanes”, the path σH,γ is in V reg, and its homotopy class does not depend
on the choice of xH .

• We define the loop πH,γ by the formula

πH,γ := γ−1 · πH,xH · γ .

• ·== ·aa
γ

x0

Definition. We call braid reflections the elements sH,γ ∈ B defined by the paths σH,γ . If the
image of sH,γ in G is sH , we say that sH,γ is an sH–braid reflection, or an H–braid reflection.

We still denote by πH,γ the element of P defined by the loop πH,γ .

The following properties are immediate.

12.10. Lemma.

(1) Whenever γ′ is a path in V reg, with initial point x0 and terminal point xH , if τ denotes
the loop in V reg defined by τ := γ′

−1
γ, one has

σH,γ′ = τ · σH,γ · τ−1

and in particular sH,γ and sH,γ′ are conjugate in P .
(2) In the group B, we have

seHH,γ = πH,γ .

The variety V (resp. V/G) is simply connected, the hyperplanes (resp. the images of
the reflecting hyperplanes in V/G) are irreducible divisors (irreducible closed subvarieties of
codimension one), and the braid reflections as defined above are “generators of the monodromy”
around these irreducible divisors. Then it is not difficult to check the followng fundamental
theorem.

12.11. Theorem.

(1) The braid group is generated by the braid reflections (sH,γ) (for all H and all γ).
(2) The pure braid group is generated by the elements (seHH,γ)
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§13. Coinvariant algebra and harmonic polynomials

On the coinvariant algebra.
Let us recall our notation.
• V is an r–dimensional vector space on the characteristic zero field k, and G is a finite

subgroup of GL(V ) generated by reflections.
• S is the symmetric algebra of V , R := SG is the subalgebra of fixed points of G on S, a

polynomial algebra over k with characteristic degrees (d1, d2, . . . , dr) and maximal graded ideal
M.

We know that S is a free R-module of rank |G| = d1d2 · · · dr. We call coinvariant algebra
the algebra

SG := k ⊗R S = S/MS .

We have S = R⊗k SG .
• Ref(G) is the set of reflections of G and A is the set of their reflecting hyperplanes. We

set Nh := |A| and N := |Ref(G)| . For H ∈ A, G(H) is the fixator of H in G, and eH is its
order. We have N = d1 − 1 + d2 − 1 + · · ·+ dr − 1 =

∑
H∈A(eH − 1) .

13.1. Proposition. The maximal degree of an element of the coinvariant algebra SG is N ,
the number of reflections.

Proof of 13.1. Since

grdimK(R) =
1
|G|

∑
g∈G

1
det(1− gx)

=
1∏i=r

i=1(1− xdi)
,

the graded character of the coinvariant algebra is

χSG(g) =
i=r∏
i=1

(1− xdi) 1
det(1− gx)

.

and its graded dimension is

grdimKSG =
i=r∏
i=1

(1 + x+ · · ·+ xdi−1) .

In particular, we see that the maximal degree occuring in SG is indeed N . Thus we have

SG =
n=N⊕
n=0

SnG ,

�

13.2. Corollary. Let M be the maximal graded ideal of R. Then we have⊕
n>N

Sn ⊆ SM .
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Linear characters and their associated polynomials.

Let us recall notation and results from §8. Whenever (L,H) is a reflecting pair of G, we
denote by jH a nonzero element of L, and if p denotes the orbit of H under G, we set

jp :=
∏
H∈p

jH .

The linear character θp : G→ k× is defined by

g(jp) = θp(g)jp ,

and for s ∈ Ref(G) we have

θp(s) =
{ detV (s) if s ∈ G(H) for some H ∈ p ,

1 if not.

Since G is generated by reflections, we see in particular that for

j :=
∏
H∈A

jH

we have
(∀g ∈ G) g(j) = detV (g)j .

13.3. Theorem. Let G be a finite subgroup of GL(V ) generated by reflections.

(1) The restrictions induce an isomorphism

ρG : Hom(G, k×)→

(∏
H∈A

Hom(G(H), k×)

)G
.

(2) Let θ ∈ Hom(G, k×). For H ∈ A, denote by p its orbit under G. Then there is a unique
integer mp(θ) such that

ResGG(H)(θ) = detmp(θ)
V and 0 ≤ mp(θ) ≤ ep − 1 .

Set
jθ :=

∏
p∈A/G

j
mp(θ)
p .

We then have
SGθ = Rjθ .
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Proof of 13.3.
(1) The injectivity of ρG is an immediate consequence of the fact that G is generated by its

reflections. The surjectivity results from 8.5.
(2) For each H ∈ A, detV generates Hom(G(H)), k×). This implies the existence and unicity

of mp(θ). Moreover, it is clear that Rjθ ⊂ SGθ . Let us prove the inverse inclusion.
It suffices to check that for all H ∈ A and for all x ∈ SGθ , x is divisible by j

mp(θ)
H . We use

the same methods as in the proof of 8.6 : for H ∈ A, we denote (L,H) the associated reflecting
pair, and we choose a basis {j1, j2, . . . , jr−1} of H. Let P (t0, t1, . . . , tr−1) ∈ k[t0, t1, . . . , tr−1]
such that x = P (jH , j1, j2, . . . , jr−1). Let s be a generator of G(H)), with determinant ζs (ζs
is a primitive ep–th root of unity).

Since x ∈ SGθ , we have P (ζst0, t1, . . . , tr−1) = ζ
mp(θ)
s P (t0, t1, . . . , tr−1) . By 8.7, it follows

that tmp(θ)
0 divides P (t0, t1, . . . , tr−1), i.e., that jmp(θ)

H divides x. �

Remark. For p ∈ A, we have jθp = jp .

We set
j′θ := jθ−1 =

∏
p∈A/G

j
ep−mp(θ)
p =

∏
H∈A

j
eH−mH(θ)
H .

We also set
j = jdetV and J := j′ := Jac(S/R) = jdet−1

V
.

We have

j :=
∏

p∈A/G

jp =
∏
H∈A

jH and J :=
∏

p∈A/G

j′p =
∏

p∈A/G

j
ep−1
p =

∏
H∈A

jeH−1
H .

For p ∈ A, the discriminant at p (cf. 8.6 above) is such that

∆p = jpj
′
p .

We call discriminant of G the element of R defined by

∆ :=
∏

p∈A/G

∆p = jj′ =
∏
H∈A

jeHH .

The following properties result from what precedes.
13.4 Recall that we set Nh = |A| and N = |Ref(G)|. We have

deg jp = νp , deg j′p = νp(ep − 1) ,

deg j =
∑

p

νp = Nh , deg J =
∑

p

νp(ep − 1) = N ,

deg ∆p = νpep , deg ∆ =
∑

p

νpep = N +Nh .
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The case of cyclic groups.

Assume that G ⊂ GL(V ) is a cyclic group of order e, consisting of the identity and of e− 1
reflections with hyperplane H and line L. Thus V = L ⊕ H. Let us denote by j a nonzero
element of L. Let us summarize in this case the values of all invariants introduced so far.

Let us denote the set of all irreducible characters of G as

Irr(G) = {1,detV ,det2
V , . . . ,dete−1

V } .

We choose a basis (j, y1, y2, . . . , ye−1) of V such that (y1, y2, . . . , ye−1) is a basis of H. We
have

S = k[j, y1, y2, . . . , ye−1] and R = k[je, y1, y2, . . . , ye−1] .

It is easy to check that for 0 ≤ j ≤ e, we have

SGdetnV
= Rjn ,

which shows in particular that the unique exponent of detnV is n : we have

(13.5) grdimkS
G
detnV

=
qn

(1− q)r(1− qe)
and grmult(detnV , SG) = qn .

13.6. Proposition. Assume G cyclic of order e, consisting of 1 and of reflections with line
generated by j. Then 

Irr(G) = {1,detV ,det2
V , . . . ,dete−1

V }
jdetnV

= jn ,

grmult(detnV , SG) = qn ,

Jac(S/R) = je−1 ,

∆ = je .

Duality and isotypic components.
For H ∈ A, let j∗H denote a linear form on V with kernel H.
For θ : G→ k× a linear character of G, recall that we denote by mH(θ) the integer such that

0 ≤ mH(θ) ≤ eH − 1 and ResGG(H)(θ) = detmH(θ)
V . We set

E(θ) :=
∑
H∈A

mH(θ) .

Let us denote by j∗θ the homogeneous element of S∗, with degree E(θ), such that g(j∗θ ) =
θ−1(g)j∗θ . Thus we have

j∗θ =
∏
H∈A

j∗H
mH(θ) , and S∗θ−1 = R∗j∗θ .

The following lemma will be used later.
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13.7. Lemma. Whenever θ is a linear character of G, we have 〈j∗θ , jθ〉 6= 0 .

Proof of 13.7.
We first prove that whenever x is a homogeneous element of S with degree E(θ), there is

λ ∈ k such that 〈j∗θ , x〉 = λ〈j∗θ , jθ〉 .
Indeed, let us set xθ :=

1
|G|

∑
g∈G θ

−1(g)g(x) . We have xθ = λjθ for some λ ∈ k. Now,

whenever g ∈ G, we have 〈j∗θ , x〉 = g(〈j∗θ , x〉) = 〈j∗θ , θ−1(g)g(x)〉 , hence 〈j∗θ , x〉 = 〈j∗θ , xθ〉 =
λ〈j∗θ , jθ〉 .

Thus we see that if 〈j∗θ , jθ〉 = 0, then j∗θ is orthogonal to all homogeneous elements of S of
its degree, a contradiction. �

The preceding lemma is actually a particular case of a result concerning general isotypic
components, whose proof is left to the reader.

13.8. Proposition. For χ′ ∈ Irr(G) , χ′ 6= χ, we have 〈S∗χ∗ , Sχ′〉 = 0 .

The harmonic elements of a reflection group and the Poincaré duality.

The algebra morphism D : S∗ → Endk(S) defines a structure of S∗–module on S. The next
result shows that this module is cyclic.

Recall that we set Har := (M∗S∗)⊥ .
We set S∗G = S∗/M∗S∗, an algebra called the coinvariant dual algebra.

13.9. Theorem. Let J =
∏
H∈A j

eH−1
H be the jacobian of G.

(1) The annihilator of J in S∗ is M∗S∗, i.e.,

(x∗ ∈M∗S∗)⇔ (D(x∗)(J) = 0) .

(2) We have
Har = S∗J = {D(x∗)(J) | (x∗ ∈ S∗} .

(3) The map
S∗G → Har , x∗ 7→ x∗J

is an isomorphism of S∗G–modules.

Remark. It follows from the assertion (1) above and from Lemma 13.7 that J∗ /∈M∗S∗, hence
that J /∈MS.

In particular, the one dimensional space S(N)
G of elements of maximal degree of the coinvariant

algebra SG is generated by J .

Proof of 13.9.
(1) For x∗ ∈M∗ and g ∈ G we have

g(D(x∗)(J)) = D(g(x∗))(g(J) = det∗V (g)D(x∗)(J) ,

andD(x∗)(J) ∈ Sdet∗V
, henceD(x∗)(J) must be a multiple of J , which shows thatD(x∗)(J) = 0.

This establishes that M∗ annihilates J .
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Conversely, assume that D(x∗)(J) = 0. In order to prove that x∗ ∈M∗S∗, we may assume
that x∗ is homogeneous. Let us argue by descending induction on the degree of x∗. Notice
that, since the largest degree of S∗/M∗S∗ is N , all homogeneous elements of S∗ with degree
strictly larger than N belong to M∗S∗. Choose x∗ ∈M∗S∗ such that deg x∗ ≤ N , and assume
that our desired property is established for elements with degree strictly larger than deg(x∗).

Let s be a reflection in G, and let j∗s be a non trivial eigenvector of s in V ∗. Then
D(j∗sx

∗)(J) = 0, so by induction hypothesis we have j∗sx
∗ ∈ M∗S∗, i.e., j∗sx

∗ =
∑
j µ
∗
jy
∗
j

with µ∗j ∈M∗ and y∗j ∈ S∗.
Applying s we get detV (s)∗j∗ss(x

∗) =
∑
j µ
∗
js(y

∗
j ) , which yields

j∗s (x∗ − detV (s)∗s(x∗)) =
∑
j

µ∗j
(
y∗j − s(y∗j )

)
.

Since each y∗j − s(y∗j ) is divisible by j∗s , we get

x∗ − detV (s)∗s(x∗) ∈M∗S∗ .

Thus x∗ belongs to the detV –isotypic component of S∗/M∗S∗. That isotypic component is the
image modulo M∗S∗ of R∗J∗ (where J∗ is the corresponding jacobian), hence x∗ is an element
of degree at least N of S∗/M∗S∗. Since by assumption the degree of x∗ is smaller than N , we
must have

x∗ ≡ λJ∗ mod M∗S∗ for some λ ∈ k .

By the implication already proved above, since λJ∗ ∈ x∗ + M∗S∗ , it follows that

D(λJ∗)(J) = 0 .

By lemma 13.7, we conclude that λ = 0, hence that x∗ ∈M∗S∗ as desired.
(2) Let us prove that S∗J ⊆ Har. Since by definition Har = (M∗S∗)⊥, we must prove that

〈M∗S∗, J〉 = 0, which results from (1).
Let us now prove that Har ⊆ S∗J . To do that, we prove that (S∗J)⊥ ⊆ (Har)⊥ = M∗S∗.

Assume that y∗ ∈ (S∗J)⊥ i.e.,

(∀x∗ ∈ S∗) 〈y∗, D(x∗)(J)〉 = 0 .

Since
〈y∗, D(x∗)(J)〉 = 〈x∗, D(y∗)(J)〉 ,

we see D(y∗)(J) = 0 and y∗ ∈M∗S∗ by (1).
Assertion (3) is an immediate consequence of (1) and (2). �

13.10. Corollary.
(1) The pairing

(S∗G)n × (S∗G)N−n → (S∗G)N , (x, y) 7→ xy

is a duality.
(2) The preceding isomorphism provides an isomorphism of graded modules

S∗G ⊗ kdet−1
V
→ Homk(S∗G, k)[N ] .
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Proof of 13.10.
(1) Since Har = (M∗S∗)⊥ and S∗G = S/M∗S∗, we see that for each n the pairing

(S∗G)n × (Har)n → k , (x∗, h) 7→ 〈x∗, h〉

is a duality.
Since h = y∗J for a well defined y∗, and since

〈x∗, y∗J〉 = 〈x∗y∗, J〉 ,

that shows that the pairing

(S∗G)n × (S∗G)N−n → (S∗G)N , (x, y) 7→ xy

is a duality.
(2) The map

S∗G → Homk(S∗G, k) , a 7→ [b 7→ 〈a, bJ〉 = D(ab)(J)(0)]

is indeed an isomorphism of k–vector spaces, which sends an homogeneous element a to an
homogeneous element with degree deg a−N .

Let compute its behaviour under G–action. We have

g(a) 7→ [b 7→ 〈g(a)b, J〉] .

But
〈g(a)b, J〉 = 〈g(ag−1(b), J〉) = detV (g)〈g(ag−1(b), g(J)〉 = detV (g)〈ag−1(b), J〉

proving what we announced. �

A finite dimensional graded k–algebra A equipped with an isomorphism of A–modules

A
∼−→Homk(A, k)[M ]

for some integer M is called a Poincaré duality algebra.

Remark. The isomorphism of G–modules described in 13.10, (2) can be detected on the graded
character of S∗G. Indeed, we have

grcharS∗G(g, q) =
∏i=r
i−1(1− qdi)

detV (1− g−1q)
.

hence

grcharS∗G(g, q))detV (g−1) =
∏i=r
i−1(1− qdi)

detV (g − q)
,

and since N = (d1 + d2 + · · ·+ dr)− r, we get

grcharS∗G(g, q)detV (g−1) = qN
∏i=r
i=1(q−di − 1)

detV (gq−1 − 1)
= qN

∏i=r
i=1(1− q−di)

detV (1− gq−1)

= qNgrcharS∗G(g−1, q−1) = qNgrcharHomk(S∗,k)(g, q) .
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§14. Application to braid groups : Discriminants and length

Let p be an orbit of G on A. Recall that we denote by ep the (common) order of the pointwise
stabilizer G(H) for H ∈ p. We call discriminant at p and we denote by ∆∗p the element of the
symmetric algebra of V ∗ defined (up to a non zero scalar multiplication) by

∆∗p := (
∏
H∈p

j∗H)ep .

Since (see 8.6) ∆∗p is G-invariant, it induces a continuous function ∆∗p : V reg/G → C× , hence
induces a group homomorphism

Π1(∆∗p) : B → Z .

14.1. Proposition. For any H ∈ A, we have

Π1(∆∗p)(sH,γ) =
{ 1 if H ∈ p ,

0 if H /∈ p .

What precedes allows us to define length functions on B.

• There is a unique length function ` : B → Z defined as follows (see [BMR], Prop. 2.19): if
b = sn1

1 · s
n2
2 · · · snmm where (for all j) nj ∈ Z and sj is a distinguished braid reflection around

an element of A in B, then
`(b) = n1 + n2 + · · ·+ nm .

Indeed, we set ` := Π1(δ) . Let b ∈ B. By Theorem 12.11 above, there exists an integer k and for
1 ≤ j ≤ k, Hj ∈ A, a path γj from x0 to Hj and an integer nj such that

b = sn1
H1,γ1

sn2
H2,γ2

· · · snkHk,γk .

From Proposition 14.1 above, it then results that we have `(b) =
∑j=k

j=1
nj .

If {s} is a set of distinguished braid reflections around hyperplanes which generates B, let us
denote by B+ the sub–monoid of B generated by {s}. Then for b ∈ B+, its length `(b) coincide
with its length on the distinguished set of generators {s} of the monoid B+.

• More generally, given p ∈ A/G, there is a unique length function `p : B → Z (this is
the function denoted by Π1(δp) in [BMR], see Prop. 2.16 in loc.cit.) defined as follows: if
b = sn1

1 · s
n2
2 · · · snmm where (for all j) nj ∈ Z and sj is a distinguished braid reflection around

an element of pj , then
`p(b) =

∑
{j | (pj=p)}

nj .

Thus we have, for all b ∈ B,
`(b) =

∑
p∈A/G

`p(b) .
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14.2. Theorem. We denote by Bab the largest abelian quotient of B. For p ∈ A/G, we denote
by sab

p the image of sH,γ in Bab for H ∈ p. Then

Bab =
∏

p∈A/G

〈sab
p 〉 ,

where each 〈sab
p 〉 is infinite cyclic.

Dually, we have
Hom(B,Z) =

∏
p∈A/G

〈Π1(∆∗p)〉 .

Complement : Artin–like presentations of the braid diagrams.

General results.
Following [Op2], 5.2), we say that B has an Artin–like presentation if it has a presentation

of the form
〈s ∈ S | {vi = wi}i∈I〉

where S is a finite set of distinguished braid reflections, and I is a finite set of relations which
are multi–homogeneous, i.e., such that (for each i) vi and wi are positive words in elements of
S (and hence, for each p ∈ A/W , we have `p(vi) = `p(wi)).

The following result is mainly due to Bessis (cf. [Bes3], 4.2 and also [BMR] and [BeMi] for
case–by–case results).

14.3. Theorem. Let G ⊂ GL(V ) be a complex reflection group. Let (d1, d2, . . . , dr) be the
family of its invariant degrees, ordered to that d1 ≤ d2 ≤ · · · ≤ dr.

(1) The following integers are equal.
(a) The minimal number of reflections needed to generate G.
(b) The minimal number of braid reflections needed to generate B.
(c) d(N +Nh)/dre.

(2) If ΓG denotes the integer defined by properties (a) to (c) above, we have either ΓG = r
or ΓG = r+ 1, and the group B has an Artin–like presentation by ΓG braid reflections.

The braid diagrams.
Let us first introduce some more notation.
As previously, we set V reg := V −

⋃
H∈AH, B := Π1(V reg/G, x0), and we denote by σ 7→ σ

the morphism B � G defined by the Galois covering V reg � V reg/G.
Let D be one of the diagrams given in tables 1 to 4 of the Appendix (see below) symbolizing

a set of relations as described in Appendix.
• We denote by Dbr and we call braid diagram associated to D the set of nodes of D subject

to all relations of D but the orders of the nodes, and we represent the braid diagram Dbr by
the same picture as D where numbers insides the nodes are omitted. Thus, if D is the diagram

s©a ne ©b t
©c u

, then Dbr is the diagram s© ne © t

©u

and represents the relations

stustu · · ·︸ ︷︷ ︸
e factors

= tustus · · ·︸ ︷︷ ︸
e factors

= ustust · · ·︸ ︷︷ ︸
e factors

.
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Note that this braid diagram for e = 3 is the braid diagram associated to G(2d, 2, 2) (d ≥ 2), as
well as G7, G11, G19. Also, for e = 4, this is the braid diagram associated to G12 and for e = 5,

the braid diagram associated to G22. Similarly, the braid diagram s©
5

��© t

© u

is associated to

the diagrams of both G15 and G(4d, 4, 2).

The following statement is well known for Coxeter groups (see for example [Br1] or [De2]). It has
been noticed by Orlik and Solomon (see [OrSo3], 3.7) for the case of non real Shephard groups (i.e.,
non real complex reflection groups whose braid diagram – see above – is a Coxeter diagram). It
has been proved for all the infinite series, as well as checked case by case for all the exceptional
groups but G24, G27, G29, G31, G33, G34 in [BMM2]. The remaining cases have been treated by
Bessis–Michel ([BeMi]) and by Bessis ([Be3]).

14.4. Theorem. Let G be a finite irreducible complex reflection group.
Let N (D) be the set of nodes of the diagram D for G given in tables 1–4 of the appendix,

identified with a set of distinguished reflections in G. For each s ∈ N (D), there exists an
s–distinguished braid reflection s in B such that the set {s}s∈N (D), together with the braid
relations of Dbr, is a presentation of B.

§15. Graded multiplicities and Solomon’s theorem

Preliminary : graded dimension of (S ⊗ V )G.
The S–module S⊗k V is a free (graded) S–module of rank r, hence a free R–module of rank

|G|r. It is also endowed with an action of G (defined by g.(x⊗ v) := gx⊗ gv).
The graded vector space (S ⊗ V )G of fixed points under G is the image of the projector

(1/|G|)
∑
g∈G g, hence is also a free (graded) R–module, and we have

(S ⊗ V )G = R⊗k (SG ⊗ V )G ,

where (SG ⊗ V )G is a finite dimensional graded vector space, which we shall describe now.

The differential d : S → S ⊗ V .
It is easy to check that the map

d : S1 = V → S ⊗ V , v 7→ dv := 1⊗ v

extends uniquely to a k–linear derivation of S–modules d : S → S ⊗ V , i.e., it satisfies

d(xy) = xd(y) + d(x)y for x, y ∈ S .

That derivation has degree −1, and it is such that, whenever (v1, v2, . . . , vr) is a basis of V , we
have

dx =
i=r∑
i=1

∂x

∂vi
dxi .
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The map d in injective. Indeed, let us consider the product

µ : S ⊗ V → S , x⊗ v 7→ xv .

That S–linear map has degree +1, and µ · d : S → S is an automorphism of S since, whenever
x is a homogeneous element, we have µ · d(x) = deg(x)x .

Finally the maps d and µ commute with the action of G hence they define

d : R→ (S ⊗ V )G and µ : (S ⊗ V )G → R .

15.1. Proposition.
(1) The map d induces an isomorphism of graded vector spaces

d : M/M2 ∼−→ (SG ⊗ V )G[1] .

(2) We have
grdim((SG ⊗ V )G) = qd1−1 + qd2−1 + · · ·+ qdr−1 .

Proof of 15.1.
(1) Let us first check that the vector spaces M/M2 and (SG ⊗ V )G have both dimension r.
• We know that the dimension of M/M2 equals the Krull dimension of R, hence equals

r.
• If we forget the graduation, (SG⊗V )G is isomorphic to (kG⊗V )G, hence its dimension

is
1
|G|

∑
g∈G χkG(g)χV (g) = χV (1) = r .

Since d is a derivation, it sends M2 into M(S ⊗ V )G, hence induces a morphism of graded
vector spaces :

d : M/M2 ∼−→ (SG ⊗ V )G[1] .

Since that map is injective, it is an isomorphism.
(2) is an immediate consequence of (1), since grdim(M/M2) = qd1 + qd2 + · · ·+ qdr . �

Exponents and Gutkin–Opdam matrices.

To conform ourselves with the usual notation, we switch from the study of the symmetric
algebra S of V to the study of the symmetric algebra S∗ of V ∗. We view S∗ as the algebra of
algebraic functions (polynomials !) on the algebraic variety V , hence we set k[V ] := S∗ . We
introduce the following complementary notation for the invariant and coinvariant algebras :

k[V ]G = R∗G and k[V ]G = S∗G = S∗/M∗S∗ = k ⊗k[V ]G k[V ] .

Multiplicity module, Fake degree, Exponents.
Let X be any kG–module, with dimension denoted by dX .
The k[V ]G–module (k[V ] ⊗k X∗)G is a direct summand of k[V ] ⊗k X∗, hence is free. It

follows that
(k[V ]⊗k X)G = k[V ]G ⊗k Mult(X)

where
Mult(X) := (k[V ]⊗k X∗)G/M∗(k[V ]⊗k X∗)G = (k[V ]G ⊗k X∗)G .

Thus Mult(X) is a finite dimensional graded vector space.
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Definition.
(1) The graded dimension of Mult(X) is called the fake degree of X and is denoted by

FegX(q) := grdimMult(X) .

(2) The family of exponents of X is the family of integers (ei(X))1≤i≤dX defined by

FegX(q) = qe1(X) + qe2(X) + · · ·+ qedX (X) .

(3) We set

E(X) :=
d

dq
FegX(q)|q=1 = e1(X) + e2(X) + · · ·+ edX (X) .

Let χ denote the character of the kG–module X. Then we have

FegX(q) =
1
|G|

∑
g∈G

χ(g)
detV (1− gq)

.

The following property shows that E(X) is “local”, i.e., may be computed from the fixators
of reflecting hyperplanes.

15.2. Proposition. We have

E(X) =
∑
H∈A

E(ResGG(H)X) .

Proof of 15.2. Let us set

FegX(q) =
χ(1)
|G|

1
(q − 1)r

+
γ(X)
2|G|

1
(q − 1)r−1

+ . . . .

We know from 10.4, (1), that γ(X) is local. But it also results from 10.8, 4), that

γ(X) = χ(1)|Ref(G)| − 2E(X) ,

which shows that E(X) is local. �

E(X) and E(detX).

Let us compute E(ResGG(H)X).
Since the degree of X is dX , and since the irreducible characters of G(H) are powers of detV ∗ ,

there is a family (mH,1(X),mH,2(X), . . . ,mH,dX (X)) of integers such that 0 ≤ mH,n(X) ≤
eH − 1 and

ResGG(H)χ =
n=dX∑
n=1

detmH,n(X)
V ∗ .
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It follows from 13.6 that

FegdetV ∗
(q) = q , hence Feg

det
mH,n(X)

V ∗
(q) = qmH,n(X) ,

and it follows that

(15.3) FegResG
G(H)X

(q) =
n=dX∑
n=1

qmH,n(X) .

Hence we have

E(ResGG(H)X) =
n=dX∑
n=1

mH,n(X) and E(X) =
∑
H∈A

n=dX∑
n=1

mH,n(X) .

Notice that the preceding notation means that there exists a basis of the k-vector space X∗

on which the matrix of sH is the diagonal matrix with spectrum

(ζmH,1(X)
H , ζ

mH,2(X)
H , . . . , ζ

mH,dX (X)

H ) .

In particular we have detX(sH) = ζ
E(X)
H .

The following proposition follows from what precedes.

15.4. Proposition.

(1) The integer E(ResGG(H)X) depends only on the orbit p of H under G, and for all H ∈ p

we have
E(ResGG(H)X) = epmp + E(ResGG(H)detX)

where 0 ≤ E(ResGG(H)detX) < ep and mp ∈ N .

(2) If the reflections of G acts trivially or as reflections on X, we have

E(detX) = E(X) .

(3) We have

E(V ) =
∑
H∈A

eH − 1 = N and E(V ∗) =
∑
H∈A

1 = Nh .

The Gutkin–Opdam matrix.

Let us go on along the lines of the preceding analysis.
Let us choose a basis (µ1, µ2, . . . , µdX ) of Mult(X) consisting of homogeneous elements of

degrees respectively e1(X), e2(X), . . . , edX (X). We may view them as elements of k[V ]G ⊗k
Mult(X) = (k[V ]⊗k X∗)G with the same degrees.
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Thus these elements belong to k[V ]⊗k X∗, and if (ξ1, ξ2, . . . , ξdX ) is a basis of X∗, we get a
matrix JX = (jα,β(X))1≤α,β≤dX , with entries in k[V ], each element jα,β(X) being homogeneous
of degree eβ(X), defined by

µβ =
α=dX∑
α=1

jα,β(X)ξα ,

i.e., we have the identity between matrices

(µ1, µ2, . . . , µdX ) = (ξ1, ξ2, . . . , ξdX ).JX .

In other words, JX is the matrix (written over the basis (ξ1, ξ2, . . . , ξdX )) of the endomorphism
of the k[V ]–module which sends the basis (ξ1, ξ2, . . . , ξdX ) onto the system (µ1, µ2, . . . , µdX ).

Let us denote by ρX∗(g) the matrix of g written on the basis (ξ1, ξ2, . . . , ξdX ), i.e.,
g(ξ1)
g(ξ2)

...
g(ξdX )

 = ρX∗(g)


ξ1
ξ2
...
ξdX

 .

Since µα ∈ (k[V ]⊗k X∗)G, we see that

(∀g ∈ G) , g(JX) = tρX∗(g−1)JX ,

hence
(∀g ∈ G) , g(JX) = ρX(g)JX ,

where ρX(g) is the matrix (computed on the dual basis of (ξ1, ξ2, . . . , ξdX )) of the operation of
g on X.

15.5. Theorem.
(1) We have (up to a nonzero scalar)

det(JX) =
∏
H∈A

j∗H
E(ResGG(H)X) .

(2) We have det(JX) ∈ k[V ]Gj∗detX∗
, and more precisely

detJX =

 ∏
p∈A/G

∆mp
p

 j∗detX∗
for some integers mp .

(3) For g ∈ G, let ρX(g) denote the matrix of the operation of g on X computed on the
dual basis of (ξ1, ξ2, . . . , ξdX ). Let M ∈ MatdX (k[V ]). The following two conditions are
equivalent :

(i) ∀g ∈ G , g(M) = ρX(g)M ,
(ii) M ∈ JXMatdX (k[V ]G) .

(4) A matrix J ∈ MatdX (k[V ]G) satisfies assertion (3) if and only if there exists an element
Φ ∈ GLdX (k) such that J = JXΦ.

(5) If X is absolutely irreducible, the X–isotypic component k[V ]X of k[V ] is isomorphic to
JXMatdX (R).
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Proof of 15.5.
Proof of (1)

(a) Let us first prove that det(JX) 6= 0.
Choose a regular element v ∈ V reg, and choose a G–stable subspace H of k[V ] complementary

to M∗k[V ], thus H⊕M∗k[V ] = k[V ], H is a finite dimensional graded vector space, isomorphic
to k[V ]G, and the multiplication induces an isomorphism of graded vector spaces

k[V ]G ⊗k H
∼−→ k[V ] .

15.6. Lemma. The k–linear map

ιv :

{
H ⊗X∗ → X∗

h⊗ ξ 7→ h(v)ξ

induces a k–linear isomorphism

ιv : (H ⊗X∗)G ∼−→X∗ .

Proof of 15.6. The vector space (H⊗X∗)G has the same dimension as X∗ since H is isomorphic
to the regular module kG. Hence it suffices to prove that ιv is onto.

Let G.v denote the orbit of v under G. Since v is regular, that orbit has cardinality |G|. By
Lagrange interpolation theorem, the any k–valued function on the finite set G.v is the restriction
of a polynomial function on V , i.e., of the form x 7→ f(x) for f ∈ k[V ]. Since k[V ] = k[V ]G⊗kH
and since k[V ]G defines the constant functions on G.v, it follows that any function on G.v is of
the shape x 7→ h(x) for some h ∈ H.

In particular, there exists hv ∈ H such that hv(g(v)) = δg,1.
Let ξ ∈ X∗. Consider the element

∑
g∈G g(hv)⊗ g(ξ) ∈ (H ⊗X∗)G . Its image under ιv is ξ,

proving the desired surjectivity. �

Consider now the k–linear automorphism of X∗ defined as the composition of the two k–
linear isomorphisms{

X∗ → (H ⊗k X∗)G

ξα 7→ µα
and ιv : (H ⊗k X∗)G → X∗ ,

thus defined by

ξβ 7→
α=dX∑
α=1

jα,β(v)ξα .

The determinant of that automorphism is

det(jα,β(v))α,β = (detJX)(v) ,

which shows indeed that detJX 6= 0.
(b) Let us now prove (1).
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Since for all α, jα,β(X) is homogeneous of degree eβ(X), we see that detJX has degree∑
β eβ(X) = E(X). By 15.2, we see that detJX and

∏
H∈A(j∗H)E(ResGG(H)X) have the same

degree. Thus it suffices to prove that, whenever H ∈ A, then (j∗H)E(ResGG(H)X) divides detJX .
Choose H ∈ A. Since

ResGG(H)X '
n=dX⊕
n=1

detmH,n(X)
V ∗

we have

(k[V ]⊗k X∗)G(H) =
n=dX⊕
n=1

k[V ]
det

mH,n(X)

V ∗
=
n=dX⊕
n=1

k[V ]j∗H
mH,n(X) .

Thus every µα has the shape

µα =
n=dX∑
n=1

fα,nj
∗
H
mH,n(X)

with fα,n ∈ k[V ], which shows that the determinant of the matrix JX is indeed divisible by

n=dX∏
n=1

j∗H
mH,n(X) = j∗H

E(X) .

Proof of (2)

Proof of (3)

In order to prove (3), we establish the following isomophisms of graded vector spaces :{
M ∈ MatdX (k[V ]G) | g(M) = ρX(g)M}

' (k[V ]⊗k X∗)G ⊗k X
' Homk[V ]G(k[V ]G ⊗k X∗, k[V ]G ⊗k Mult(X))

' JX Homk[V ]G(k[V ]G ⊗k X∗, k[V ]G ⊗k X∗)
= JXMatdX (k[V ]G) .

Proof of (4)

Proof of (5)

�

Solomon theorem.

Exterior algebra and bigrading.
Let A be a graded k–algebra, and let M be a free graded A–module. Then the A–module

ΛA(M) is naturally bigraded with the following rule : for (x1, x2, . . . , xn) homogeneous elements
of M with degrees respectively (d1, d2, . . . , dn), we set

bideg(x1 ∧ x2 ∧ · · · ∧ xn) = (
i=n∑
i=1

di , n) .
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The bigraded dimension of ΛA(M) is the power series in two indeterminates x and y defined
by the formula

bigrdimΛA(M) :=
∑
m,n

dimΛA(M)(m,n)xmyn

(so x counts the grading of M while y counts the “exterior power grading”). More generally, if
M is endowed with an action of a finite group G, we define the bigraded character of M by

bigrcharM (g) :=
∑
m,n

tr(g,ΛA(M)(m,n))xmyn .

In particular,
• if M is a finite dimensional graded k–module with grdimM = qe1 + · · ·+ qed , then

bigrdimΛ(M) = (1 + yxe1)(1 + yxe2) · · · (1 + yxed) .

• If A is a graded k–algebra, and if we view A ⊗k M as graded by the product, then
ΛA(A ⊗M) = A ⊗ Λ(M) is bigraded as follows : for a an homogeneous element of A
and (x1, x2, . . . , xn) homogeneous elements of M , we set

bideg(a(x1 ∧ x2 ∧ · · · ∧ xn)) = (deg a+
i=n∑
i=1

deg(xi) , n) .

15.7. Theorem. Let X be a kG–module such that E(X) = E(detX), i.e., such that detJX =
j∗detX∗

.

(1) The identity endomorphism of (k[V ]⊗k X∗)G, viewed as an isomorphism

Λ1
k[V ]G(k[V ]G ⊗k MultX) ∼−→ (k[V ]⊗k Λ1(X)∗)G ,

extends uniquely to an isomorphism of bigraded k[V ]G–algebras

Λk[V ]G(k[V ]G ⊗k MultX) ∼−→ (k[V ]⊗k Λ(X)∗)G) ,

thus defining isomorphisms of bigraded algebras

Λk[V ]G(k[V ]G ⊗k MultX) ∼−→ (k[V ]G ⊗k MultΛX) and ΛMultX ' MultΛX

(2) We have the following identities between power series

1
|G|

∑
g∈G

detX(1 + gy)
detV (1− gx)

=
(1 + yxe1(X))(1 + yxe2(X)) · · · (1 + yxedX (X))

(1− xd1)(1− xd2) · · · (1− xdr )
,

(1 + yxe1(X))(1 + yxe2(X)) · · · (1 + yxedX (X)) =
n=dX∑
n=1

grdimMult(Λn(X))(x)yn

In particular, we have

FegΛm(X)(q) =
∑

1≤i1<i2<···<im≤dX

qei1 (X)+ei2 (X)+···+eim (X) .
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Proof of 15.7.
(1) We keep using the notation introduced above. If (µ1, µ2, . . . , µdX ) is an homogeneous

basis of Mult(X), hence a homogeneous k[V ]G–basis of (k[V ]⊗X∗)G, it suffices to prove that,
if for I = (i1 < i2 < · · · < in) a subset of (1, 2, . . . , dX) we set µI := µi1 ∧ µi2 ∧ · · · ∧ µidX ,
then the family (µI)I (a k[V ]G–basis of Λk[V ]G(k[V ]G ⊗k MultX)), defines a k[V ]G–basis of
(k[V ]⊗k Λ(X∗))G.

For I as above, let us denote by I ′ its complementary subset in (1, 2, . . . , dX), and let us set
µ := µ1∧µ2∧· · ·∧µdX , so that µIµI′ = ±µ. Notice that µ 6= 0 since µ = detJX(ξ1∧ξ2∧· · ·∧ξdX )
and detJX 6= 0.

Let us denote by K the field of fractions of k[V ]G and by L the field of fractions of k[V ].
• Let us first check that the family (µI)I is free over k[V ].
Indeed, given a linear combination

∑
J fIµI where fJ ∈ k[V ], we can pick an I, multiply

that linear combination by µI′ , which gives fIµ = 0, whence fI = 0.
• Let us now check that the family (µI)I generates (k[V ]⊗k Λ(X)∗)G) as a k[V ]G–module.
The family (µI)I is a basis of ΛL(L ⊗ X∗), hence whenever α ∈ (k[V ] ⊗k Λ(X)∗)G), there

are elements αI ∈ K such that α =
∑
I αIµI . Applying the projector 1/|G|

∑
g∈G g shows that

αI ∈ LG = K.
Picking an I and mulpiplyng by µI′ gives

αµI′ = αIµ = αIdetJX(ξ1 ∧ ξ2 ∧ · · · ∧ ξdX ) .

We see that the element βI := αIdetJX belongs to k[V ], and that g(βI) = detX∗(g)βI . It
follows that βI ∈ k[V ]Gj∗detX∗

.
By hypothesis we have detJX = j∗detX∗

. This shows that αI ∈ k[V ]G.

(2) Let us express the preceding isomorphism as

k[V ]G ⊗k ΛMultX ' (k[V ]⊗k Λ(X∗))G .

• The bigraded dimension of the left handside is

bigrdim(k[V ]G ⊗k ΛMultX) = bigrdim(k[V ]G) · bigrdim(ΛMultX)

=
(1 + yxe1(X))(1 + yxe2(X)) · · · (1 + yxedX (X))

(1− xd1)(1− xd2) · · · (1− xdr )
.

• The bigraded dimension of the right handside is

1
|G|

∑
g∈G

bigrchark[V ](g) · bigrcharΛ(X∗)(g) =
1
|G|

∑
g∈G

detX(1 + g−1y)
detV (1− g−1x)

.

This shows the first identity of (2).
The second one is an immediate consequence of the isomorphism

ΛMultX ' MultΛX .

�
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Derivations and Differential forms on V .
Here we follow closely Orlik and Solomon [OrSo2].

Let us denote by ∆1 the k[V ]–module of derivations of the k–algebra k[V ], and by Ω1 the
k[V ]–dual of ∆1 (“module of 1–forms”). We have

∆1 = k[V ]⊗ V and Ω1 = k[V ]⊗ V ∗ ,

and there is an obvious duality

〈 , 〉 : Ω1 ×∆1 −→ k[V ] .

Let (x1, x2, . . . , xr) be a basis of V ∗. Note that the family (
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xr
) of elements of

∆1 is the dual basis. Denote by d : Ω1 −→ Ω1 the derivation of the k[V ]–module Ω1 = k[V ]⊗V ∗
defined by d(x⊗ 1) := 1⊗ x for all x ∈ V ∗ . Then (

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xr
) is a basis of the k[V ]–module ∆1 .

(dx1 , dx2 , . . . , dxr) is a basis of the k[V ]–module Ω1 .

Let us endow ∆1 and Ω1 respectively with the graduations defined by
∆1 =

∞⊕
n=−1

∆(n)
1 where ∆(n)

1 := k[V ]n+1 ⊗ V

Ω1 =
∞⊕
n=1

Ω1,(n) where Ω1,(n) := k[V ]n−1 ⊗ V ∗

In other words, we have {
(δ ∈ ∆(n)

1 )⇐⇒ (δ(k[V ]m) ⊆ k[V ]n+m) ,

(ω ∈ Ω1,(n))⇐⇒ (〈ω,∆(m)
1 〉 ⊆ k[V ]n+m) ,

and so (with previous notation) the elements (
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xr
) have degree −1,

while the elements (dx1 , dx2 , . . . , dxr) have degree 1.

We denote by ∆ and Ω the exterior algebras of respectively the k[V ]–modules ∆1 and Ω1.
We have

∆ = k[V ]⊗ Λ(V ) and Ω = k[V ]⊗ Λ(V ∗) .

We endow ∆ and Ω respectively with the bi–graduations extending the graduations of ∆1 and
Ω1 : {

∆(m,n) := k[V ]m ⊗ Λ−n(V )

Ω(m,n) := k[V ]m ⊗ Λn(V ∗)
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The Poincaré series of the preceding bigraded modules are defined as follows :
grdim ∆(t, u) :=

∞∑
m=0

n=r∑
n=0

dim ∆(m,−n)tm(−u)−n

grdim Ω(t, u) :=
∞∑
m=0

n=r∑
n=0

dim Ω(m,−n)tm(−u)n .

The following assertion is easy to check.

15.8. Proposition. The map

d : k[V ]→ Ω1 , d(x) =
∑
i

∂x

∂xi
⊗ dxi

extends uniquely to a k-linear endomorphism of Ω which satisfies

• d(ωη) = dω.η + (−1)degωω.dη
• d2 = 0
• d(x⊗ λ) = dx.λ for x ∈ k[V ] and λ ∈ Λ(V ∗).

Fixed points under G.

By our previous notation, we have

(Ω1)G = MultV and (∆1)G = MultV ∗ .

• Degrees again : If f1, . . . , fr is a family of algebraically independant homogeneous ele-
ments of k[V ] such that k[V ]G = k[f1, f2, . . . , fr], then df1, . . . , dfr is a basis of (Ω1)G

over k[V ]G (thus consisting in a family of homogeneous elements with degrees respec-
tively (d1, d2, . . . , dr)).

• Codegrees : If δ1, δ2, . . . , δr is a basis of (∆1)G over k[V ]G consisting of homogeneous
elements of degrees (d∨1 , d

∨
2 , . . . , d

∨
r ), the family (d∨1 , d

∨
2 , . . . , d

∨
r ) is called the family of

codegrees of G.

The Poincaré series of (Ω1)G and (∆1)G are respectively
grdim (Ω1)G(q) := FegV (q) =

q−1
∑j=r
j=1 q

dj∏j=r
j=1(1− qdj )

grdim (∆1)G(q) := FegV ∗(q) =
q
∑j=r
j=1 q

d∨j∏j=r
j=1(1− qdj )

.

Let us denote by ∆G := (k[V ] ⊗ Λ(V ∗))G and ΩG := (k[V ] ⊗ Λ(V ))G respectively the
subspaces of fixed points under the action of G.
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Solomon’s theorem (see 15.7 stays in particular that the k[V ]G–modules ∆G and ΩG are the
exterior algebras of respectively the k[V ]G–modules (∆1)G and (Ω1)G :{

∆G = Λk[V ]G((∆1)G)

ΩG = Λk[V ]G((Ω1)G)

Let us denote by grdim ∆(t, u) and grdim Ω(t, u) respectively the generalized Poincaré series
of these modules defined by

grdim ∆G(t, u) :=
∞∑
m=0

n=r∑
n=0

dim (∆(m,−n))Gtm(−u)−n

grdim ΩG(t, u) :=
∞∑
m=0

n=r∑
n=0

dim (Ω(m,−n))Gtm(−u)n .

Then the identities following from Solomon’s theorem may be rewritten as
grdim ∆G(t, u) =

1
|G|

∑
g∈G

det(1− g−1u−1)
det(1− gt)

=
j=r∏
j=1

1− u−1td
∨
j +1

1− tdj

grdim ΩG(t, u) =
1
|G|

∑
g∈G

det(1− gu)
det(1− gt)

=
j=r∏
j=1

1− utdj−1

1− tdj

First applications of Solomon’s theorem.

A multiplicative average.

15.9. Lemma. We have∏
g∈G

detV (1− gq)

1/|G|

=
j=r∏
j=1

(1− qdj )1/dj .

Proof of 15.9. By 15.7, (2), we have

1
|G|

∑
g∈G

det(1− gy)
det(1− gq)

=
j=r∏
j=1

1− yqdj−1

1− qdj
.

Let us differentiate with respect to y both sides of the preceding equality. We get

1
|G|

∑
g∈G

d

dy
detV (1− gy)

detV (1− gq)
=

j=r∑
j=1

−qdj−1

(∏
k 6=j(1− yqdk−1)∏k=r
k=1(1− qdk)

)
.

Now specialize the preceding equality at y = q. We get

d

dq
Log

∏
g∈G

detV (1− gq)

1/|G|

=
d

dq
Log

j=r∏
j=1

(1− qdj )1/dj

 ,

thus proving the identity announced in 15.9. �
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Degrees, Codegrees, Hyperplane intersections.

Whenever g ∈ G, we denote by V g the set of fixed points of V under g. Thus we have
V g = ker(g − 1) . We recall that the family of fixed points of elements of G coincides with the
family I(A) of intersections of reflecting hyperplanes (see 12.5).

The following identities are consequences of Solomon’s theorem.

15.10. Proposition.

(1)
∑
g∈G q

dimV g =
∏i=r
i=1(q + di − 1) ,

(2)
∑
g∈G(−1)codimV gdetV (g)qdimV g =

∏i=r
i=1(q + d∨i + 1) ,

Proof of 15.10.
(1) We apply 15.7, (2), to the case where X = V . We get

(O-V)
1
|G|

∑
g∈G

detV (1 + gy)
detV (1− gx)

=
∏

1≤i≤r

1 + yxdi−1

1− xdi
.

Let g ∈ G. Assume dimV g = n, and assume that the nontrivial eigenvalues of g on V are
ζ1, . . . ζr−n. Then we have

detV (1 + gy)
detV (1− gx)

=
(1 + y)n

(1− x)n

∏
i(1 + ζiy)∏
i(1− ζix)

.

Let us define the indeterminate q by the formula

1 + y = q(1− x) .

The preceding equality becomes

detV (1 + gy)
detV (1− gx)

= qn
∏
i(1− ζiy) + ζiq(1− x)∏

i(1− ζix)
,

Now let x tend to 1. The left hand side of (O-V) becomes
1
|G|

∑
g∈G q

dimV g , while each i-th

factor of the right hand side of (O-V) becomes

(1− xdi−1) + qxdi−1(1− x)
1− xdi

which tends to (q + di − 1)/di when x tends to 1.
The desired formula comes now from the fact that |G| = d1d2 · · · dr.
(2) We apply now 15.7, (2) to the case where X = V ∗. We get

(O-V∗)
1
|G|

∑
g∈G

detV (1 + g−1y)
detV (1− gx)

=
∏

1≤i≤r

1 + yxd
∗
i+1

1− xdi
.
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Let g ∈ G, and assume dimV g = n. Then we have (with previous notation)

detV (1 + g−1y)
detV (1− gx)

=
(1 + y)n

(1− x)n

∏
i(1 + ζ−1

i y)∏
i(1− ζix)

.

As previously, with 1 + y = q(1− x) and then x = 1, we get

detV (1 + g−1y)
detV (1− gx)

= qn
∏
i(1− ζ

−1
i y) + ζ−1

i q(1− x)∏
i(1− ζix)

,

which tends to

qn
∏
i(1− ζ

−1
i )∏

i(1− ζi)
.

Since
(1 + ζ−1

i )
(1− ζi)

= −ζ−1
i , we get

detV (1 + g−1y)
detV (1− gx)

= qn(−1)r−ndetV (g−1) ,

so the left hand side of (O-V∗) becomes

1
|G|

∑
g∈G

(−1)codimV gdetV (g)qdimV g .

As in the proof of (1), the right hand side of (O-V∗) becomes∏
1≤i≤r

(q + d∨i + 1) ,

which proves (2). �

Remark.
• The relation

E(V ) = (d1 − 1) + (d2 − 1) + · · ·+ (dr − 1) = N = |Ref(G)|

is a consequence of the first equality of the preceding proposition.
• The second equality provides another known identity :

E(V ∗) = (d∨1 + 1) + (d∨1 + 1) + · · ·+ (d∨1 + 1) = Nh = |A| .

Indeed, if we identify the coefficients of qr−1 in both sides of the equality (2), we get∑
s∈Ref(G)−det(s) =

∑
1≤i≤r(d

∨
i + 1) . But

∑
s∈Ref(G)

−det(s) = −
∑
H∈A

i=eH−1∑
i=1

ζiH = −
∑
H∈A

(−1) = |A| .
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§16. Eigenspaces

Pianzola–Weiss formula.

Let φ ∈ NGL(V )(G) be an element of finite order. Let (d1, ζ1), (d2, ζ2), . . . , (dr, ζr) be the
family of generalized characteristic degrees of (G,φ) : there exists an algebraic basis (ui)1≤i≤r
of R such that, for 1 ≤ i ≤ r we have deg ui = di and φ(ui) = ζiui .

We shall study eigenspaces of elements gφ for g ∈ G. Whenever ζ is a root of unity, we set

V (gφ, ζ) = ker(gφ− IdV ) ,

and we call such a subspace of V a ζ–eigenspace of an element of Gφ.
Define the family Deg(φ, ζ) as

Deg(φ, ζ) :=
(
(di, ζi) | (ζdi = ζi)

)
,

and the set I(φ, ζ) ⊆ {1, 2 . . . , r} by

I(φ, ζ) :=
{
i | (1 ≤ i ≤ r)((ζdi = ζi)

}
.

Thus we have
Deg(φ, ζ) = ((di, ζi) | (i ∈ I(φ, ζ))) .

The folllowing formula generalizes 15.10.

16.1. Proposition.

(1) Whenever φ is an element of finite order of NGL(V )(G), we have

1
|G|

∑
g∈G

detV (1 + gφy)
detV (1− gφx)

=
∏

1≤i≤r

1 + ζiyx
di−1

1− ζixdi

(2) Whenever ζ is a root of unity, then∑
g∈G

qdimV (gφ,ζ) = (
∏

i/∈I(φ,ζ)

di)
∏

i∈I(φ,ζ)

(q + di − 1) .

Proof of 16.1.
(1) From theorem 15.7, (1), we deduce an isomorphism of bigraded NGL(V )(G)–modules

(S ⊗k Λ(V ))G ∼−→R⊗k Λ((SG ⊗k V )G) ,

which implies

bigrchar(φ, (S ⊗k Λ(V ))G) = bigrchar(φ,R⊗k ΛR((SG ⊗k V )G)) .

Expanding the above equation provides assertion (1).
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(2) Let (ξ1, ξ2, . . . , ξr) denote the spectrum of gφ on V . Since

detV (1 + gφy)
detV (1− gφx)

=
i=r∏
i=1

1 + ξiy

1− ξix
,

we see that this formal series has a pole of order dimV (gφ, ζ) at x = ζ−1. Let us define the
indeterminate q by the formula

1 + ζy = q(1− ζx) .

Then
detV (1 + gφy)
detV (1− gφx)

= qdimV (gφ,ζ)
∏
ξi 6=ζ

1− ξiζ−1 + qξiζ
−1(1− ζx)

1− ξix
,

which tends to qdimV (gφ,ζ) when x tends to ζ−1.
On the other hand, we have

1 + ζiyx
di−1

1− ζixdi
=

1− ζiζ−1xdi−1 + ζiζ
−1xdi−1(1− ζx)q

1− ζixdi

which tends to 
1
di

(q + di − 1) if ζdi = ζi

1 if if ζdi 6= ζi

Since |G| = d1d2 · · · dr, the formula of (1) becomes∑
g∈G

qdimV (gφ,ζ) = (
∏

i/∈I(φ,ζ)

di)
∏

i∈I(φ,ζ)

(q + di − 1) .

�

16.2. Corollary. The maximal dimension of the ζ–eigenspaces of elements of Gφ is |I(φ, ζ)|.

Proof of 16.2. This results from the value of the degree of the polynomial described in 16.1,
(2). �

16.3. Corollary. The lcm of orders of elements of G is equal to lcm(d1, d2, . . . , dr).

Proof of 16.2. Applying 16.1 to the case where φ = 1, we see that ζ is an eigenvalue of an
element of G if and only if there exists an invariant degree d of G such that ζd = 1, i.e., if and
only if the order of ζ divides one of the invariant degrees. This proves the statement :

• If g ∈ G, its order is the lcm of the orders of its eigenvalues, so the order of g divides
the lcm of the invariant degrees.

• Conversely, if d is an invariant degree and if ζ is a root of the unity with order d, there
is g ∈ G with ζ as an eigenvalue, hence the order of such a g is a multiple of d.

�
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Maximal eigenspaces : Lehrer–Springer theory.
Here we follow mainly [Sp] and [SpLe].

More generalities.
Let us start by some preliminary results.
Recall that we view k[V ] = Sym(V ∗) as acting on V :(∑

λm1,...,mnv
∗
1
m1 · · · v∗n

mn
)

(v) :=
∑

λm1,...,mn〈v∗1 , v〉
m1 · · · 〈v∗n, v〉

mn .

For v ∈ V , we denote by ev : k[V ] → k the algebra morphism “evaluation at v”, such that
ev(x∗) := x∗(v) and we denote by m∗v its kernel, a maximal ideal of k[V ]. The Hilbert Null-
stellenSatz tells us that the map v 7→ m∗v is a bijection from V onto the maximal spectrum of
k[V ].

It is clear that, for g ∈ G, we have g(m∗v) = m∗g(v) .

16.4. Lemma. Let v, v′ ∈ G. The following properties are equivalent :
(i) Whenever u∗ ∈ k[V ]G, we have u∗(v) = u∗(v′).

(ii) We have
k[V ]G ∩m∗v = k[V ]G ∩m∗v′ ,

(iii) There exists g ∈ G such that v′ = g(v),

Proof of 16.4.
(i)⇒(ii) : If (i) holds, we see that the restrictions to k[V ]G of both ev and ev′ coincide. Hence

they have the same kernel, i.e., k[V ]G ∩m∗v = k[V ]G ∩m∗v′ .
(ii)⇒(iii) : If (iii) holds, both prime (maximal) ideals m∗v and m∗v′ lie over the same prime

ideal of k[V ]G = k[V ]. Hence they have to be conjugate by G, which implies (iii).
(iii)⇒(i) : clear. �

The preceding lemma shows, as already noticed before, that the set of orbits G\V of V under
G may be viewed as the maximal spectrum of k[V ]G. Thus, viewing V as an algebraic affine
variety whose functions algebra is k[V ], we see that G\V is an algebraic affine variety whose
functions algebra is k[V ]G.

More generally, the spectrum Spec(k[V ]G) of k[V ]G (in bijection with the set of irreducible
subvarieties of G\V ) is naturally identified with the set G\Spec(k[V ]) of orbits of G on the
spectrum of k[V ].

16.5. Lemma. Let X1 and X2 be two irreducible subvarieties of V . The following assertions
are equivalent :

(i) Whenever u∗ ∈ k[V ]G, u∗(X1) = u∗(X2),
(ii) There exists g ∈ G such that X2 = g(X1).

Proof of 16.5. Let q∗1 := {u∗ ∈ k[V ] | (u∗(X1) = 0)} and q∗2 := {u∗ ∈ k[V ] | (u∗(X2) = 0)} be
the prime ideals of k[V ] attached to X1 and X2 respectively.

(i)⇒(ii) : If (i) holds, we see that q∗1 ∩ k[V ]G = q∗2 ∩ k[V ]G, hence there exists g ∈ G such
that q∗2 = g(q∗1). Since Xi = {x ∈ V | (∀u∗ ∈ q∗i )(u

∗(x) = 0)} , we see that X2 = g(X1).
(ii)⇒(i) is clear. �
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We recall that φ ∈ NGL(V )(G) is an element of finite order, and (d1, ζ1), (d2, ζ2), . . . , (dr, ζr)
is the family of generalized characteristic degrees of (G,φ).

For ζ a root of unity, we recall that we set

V (gφ, ζ) = ker(gφ− IdV )

Deg(φ, ζ) :=
(
(di, ζi) | (ζdi = ζi)

)
I(φ, ζ) := {i | (1 ≤ i ≤ r)(ζdi = ζi)} .

We shall prove the following theorem, essentially due to Springer and Springer–Lehrer (see [Sp]
and [LeSp]).

16.6. Theorem. Let φ be an element of finite order of the normalizer of G in GL(V ), with
generalised characterisitic degrees (d1, ζ1), (d2, ζ2), . . . , (dr, ζr).

(1) The maximal ζ–eigenspaces of elements of Gφ are all conjugate by G.
(2) The maximal ζ–eigenspaces of elements of Gφ have dimension |I(φ, ζ)|.
(3) Assume that V (gφ, ζ) is such a maximal ζ–eigenspace. Then the group

G(gφ, ζ) := NG(V (gφ, ζ))/CG(V (gφ, ζ))

is a reflection group in its action on V (gφ, ζ).
Moreover, if V G = 0 and V (gφ, ζ) 6= 0, then G(gφ, ζ) is nontrivial.

(4) The family (ResVV (gφ,ζ)(u
∗
i ))i∈I(φ,ζ) is an algebraic basis of Sym(V (gφ, ζ)∗)G(gφ,ζ), and

Deg(φ, ζ) is the family of generalized characteristic degrees of (G(gφ, ζ), gφ).
(5) The set A(gφ, ζ) of reflecting hyperplanes of G(gφ, ζ) is the set of traces of reflecting

hyperplanes of G on V (gφ, ζ), i.e.,

A(gφ, ζ) = {H ∩ V (gφ, ζ) | (H ∈ A)(V (gφ, ζ) 6⊆ H) } .

Proof of 16.6.
Note that the generalized characteristic degrees of (G,φ) in its action on the dual space V ∗

are (d1, ζ
−1
1 ), (d2, ζ

−1
2 ), . . . , (dr, ζ−1

r ). Let (u∗i )1≤i≤r be an algebraic basis of k[V ]G such that
deg u∗i = di and φ(u∗i ) = ζ−1

i u∗i .
For 1 ≤ i ≤ r, let us set

H(u∗i ) := {v ∈ V | (u∗i (v) = 0)} .

16.7. Lemma. We have ⋃
g∈G

V (gφ, ζ) =
⋂

i/∈I(φ,ζ)

H(u∗i ) .

Proof of 16.7. Indeed, the set described in the left hand side is the set of all vectors v ∈ V
such that ζv and φ(v) are in the same orbit under G. By 16.4 we see that it is also the
set of vectors v ∈ V such that u∗i (ζv) = u∗i (φ(v)), i.e., ζdiu∗i (v) = ζiu

∗
i (v) , which is indeed

∩i/∈I(φ,ζ)H(u∗i ). �

We prove now (2) : the maximal ζ–eigenspaces have all dimension |I(φ, ζ)|. These maximal ζ–
eigenspaces are the irreducible components of ∩i/∈I(φ,ζ)H(u∗i ). The codimension of an irreducible
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component of the intersection of n hypersurfaces in V is at least r − n, hence in this case that
codimension is at least |I(φ, ζ)|. But we know by 16.1, (2), that it is at most I(φ, ζ)|, whence
the desired equality.

We prove now (1), (3) and (4). Consider the system of equations

(u∗i (v) = 0) for i ∈ I(φ, ζ) and v ∈ V (gφ, ζ) .

The only solution of that system is v = 0. Indeed, by lemma 16.7, a solution v of the system
satisfies (u∗i (v) = 0) for all i, and it results from lemma 16.4 that v = 0. The following lemma
(a reformulation of 6.4) shows then that the family

(ResVV (gφ,ζ)(u
∗
i ))i∈I(φ,ζ)

is algebraically independant in k[V (gφ, ζ)]G(gφ,ζ).

16.8. Lemma. Let X be a complex vector space of dimension d. Let (µi)1≤i≤d be a family
of homogeneous elements of k[X] with strictly positive degrees. Assume that x = 0 is the only
solution in X of the system of equations

(µi(x) = 0)1≤i≤d .

Then
(1) the family (µi)1≤i≤d is algebraically independant,
(2) the map

X → Cd , x 7→ (µ1(x), µ2(x), . . . , µr(x))

is onto.

We prove now assertion (1) of 16.6.
Let V (gφ, ζ) and V (g′φ, ζ) be two maximal ζ-eigenspaces.
• For i /∈ I(φ, ζ), we have u∗i (V (gφ, ζ)) = u∗i (V (g′φ, ζ)) = 0.
• It results from 16.8 that the maps

V (gφ, ζ)→ C|I(φ,ζ)| , x 7→ (u∗i (x))i∈I(φ,ζ)

V (g′φ, ζ)→ C|I(φ,ζ)| , x 7→ (u∗i (x))i∈I(φ,ζ)

are onto.
Thus for all u∗ ∈ k[V ]G, we have

u∗(V (gφ, ζ)) = u∗(V (g′φ, ζ)) .

It follows then from 16.5 that there exists h ∈ G such that V (g′φ, ζ) = h((V (gφ, ζ)).
We prove (3) and (4).
The family (ResVV (gφ,ζ)(u

∗
i ))i∈I(φ,ζ) is is a family of parameters for k[V (gφ, ζ)]G(gφ,ζ). Thus

it follows from 10.13 that
• k[V (gφ, ζ)]G(gφ,ζ) is free of finite rank, say m, on k[(ResVV (gφ,ζ)(u

∗
i ))i∈I(φ,ζ)],

• k[V (gφ, ζ)] is free of rank m|G(gφ, ζ)| =
∏
i∈I(φ,ζ) di on that same polynomial algebra

k[(ResVV (gφ,ζ)(u
∗
i ))i∈I(φ,ζ)].
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Hence by 11.1 it suffices to prove that |G(gφ, ζ)| =
∏
i∈I(φ,ζ) di . Consider again 16.1, (2). The

coefficient of qdimV (gφ,ζ) in the left hand side equals

|CG(V (gφ, ζ))|.|G : NG(V (gφ, ζ))| = |G|/|G(gφ, ζ)| .
Comparison with the coefficient of q in the right hand side (and remembering that |G| =∏

1≤i≤r di) gives the result.
If V G = 0, none of the characteristic degrees is equal to 1. We have dimV (gφ, ζ) = |I(φ, ζ)|,

hence V (gφ, ζ) 6= 0 implies I(φ, ζ) 6= ∅, from which it follows that

|G(gφ, ζ)| =
∏

i∈I(φ,ζ)

di 6= 1 .

We prove (5).
Let X be a reflecting hyperplane for G(gφ, ζ), an hyperplane of V (gφ, ζ). Let us show that

there exists H ∈ A such that X = H ∩ V (gφ, ζ). We know by Steinberg theorem that CG(X)
is a reflection group, whose set of fixed points is

⋂
H∈A , H⊇X H. That set of fixed points does

not contain V (gφ, ζ) since there is at least an element in CG(X)∩NG(V (gφ, ζ)) which induces
a reflection on V (gφ, ζ). Hence we haveV (gφ, ζ) ∩

⋂
H∈A , H⊇X

H

 6= V (gφ, ζ) ,

from which it follows that there exists H ∈ A such that X = H ∩ V (gφ, ζ).
Conversely, assume that H0 ∈ A is such that X := H0 ∩ V (gφ, ζ) 6= V (gφ, ζ).
By Steinberg theorem, the group CG(X) is generated by its reflections, namely those re-

flections of G whose hyperplane contains X. It follows that the set of fixed points V CG(X) of
CG(X) is the intersection of all reflecting hyperplanes of G which contain X, and so we have
V (gφ, ζ) 6⊆ V CG(X)

Notice that gφ normalizes X (since it acts on X as ζIdX), hence normalizes CG(X), and
that V (gφ, ζ)) is a maximal ζ–eigenspace for CG(X)gφ.

Now consider the pair (CG(X), gφ) in its action on the vector space V/V CG(X). The last
assertion of 16.6, (3), applies here, if we replace V by V/V CG(X) and (G,φ) by (CG(X), gφ)) :
we get

NG(V (gφ, ζ)) ∩ CG(X)/CG(V (gφ, ζ)) 6= 1 ,

proving the existence of a reflection in G(gφ, ζ) with hyperplane X. �

§17. Regular elements

First properties.

The content of this paragraph is essentially due to Springer ([Sp]).
We keep using the same notation as in previous paragraph.
In particular, φ is a finite order element of NGL(V )(G), ((d1, ζ1), (d1, ζ1), . . . , (d1, ζ1)) is the

corresponding family of generalized degrees for the pair (G,φ), and (u∗1, u
∗
2, . . . , u

∗
r) is an alge-

braic basis of k[V ]G such that, for all i, we have

deg(u∗i ) = di and φ(u∗i ) = ζ−1
i u∗i .
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Definition. Let ζ be a root of unity. We say that an element gφ in the coset Wφ is ζ–regular
if

V (gφ, ζ) ∩ V reg 6= ∅ .

We say that the element gφ is regular if it is ζ–regular for some root of unity ζ.

Notice that by Steinberg’s theorem (see 12.4), and element gφ is ζ–regular if and only if

CG(V (gφ, ζ)) = {1} .

Let us also remark that the regularity is invariant G–conjugation : the coset Gφ is sta-
ble under G–conjugation (for h, g ∈ G, we have h(gφ)h−1 = hgφhφ−1φ) and h(V (gφ, ζ)) =
V (h(gφ)h−1, ζ) ,

The following result relates the regularity to Lehrer–Springer theory.

17.1. Proposition. Assume that gφ is ζ–regular, where ζ has order d.
(1) The space V (gφ, ζ) is a maximal ζ eigenspace.
(2) We have NG(V (gφ, ζ)) = G(gφ, ζ) = CG(gφ) .

The following corollary is then an immediate consequence of Springer–Lehrer theorem 16.6.

17.2. Corollary. Assume gφ is ζ–regular.
(1) dimV (gφ, ζ) = |I(φ, ζ)| .
(2) CG(gφ) is a reflection group in its action on V (gφ, ζ).
(3) (ResVV (gφ,ζ)(u

∗
i ))i∈I(φ,ζ) is an algebraic basis of Sym(V (gφ, ζ)∗)CG(gφ), and Deg(φ, ζ) is

the family of generalized degrees of (CG(gφ), gφ).
(4) The set A(gφ, ζ) of reflecting hyperplanes of CG(gφ) is the set of traces of reflecting

hyperplanes of G on V (gφ, ζ), i.e.,

A(gφ, ζ) = {H ∩ V (gφ, ζ) | (H ∈ A)(V (gφ, ζ) 6⊆ H) } .

Proof of 17.1. We use the following lemma.

17.3. Lemma. If gφ is ζ–regular and if V (gφ, ζ) ⊆ V (g′φ, ζ) for some g′ ∈ G, then g′φ = gφ.

Proof of 17.3. The element (g′φ)−1gφ = g′
−1
g centralizes V (gφ, ζ) which implies g′ = g. �

(1) follows immediately from the preceding lemma. Let us prove (2). Since CG(gζ) sta-
bilizes all the eigenspaces of gφ, it suffices to prove that NG(V (gφ, ζ)) ⊆ CG(gφ). Now if
h ∈ NG(V (gφ, ζ)), we have V (h(gφ)h−1, ζ) = V (gφ, ζ), hence h(gφ)h−1 = gφ. �

17.4. Proposition.
(1) The group G acts transitively on the set of ζ–regular elements of Gφ.
(2) Let m be the order of the image of φ in NGL(V )(G)/G, and let d be the order of ζ. Then

the (common) order of the ζ–regular elements of Gφ is lcm(d,m).

Proof of 17.4.
(1) Assume that gφ and g′φ are ζ–regular. Since V (gφ, ζ) and V (g′φ, ζ) are maximal ζ–

eigenspaces by 17.1, it follows from 16.6 that they are conjugate : there is h ∈ G such that
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V (g′φ, ζ) = h(V (gp, ζ)), hence V (g′φ, ζ) = V (h(gφ)h−1, ζ) and lemma 17.3 implies that g′φ =
h(gφ)h−1.

(2) Let us first assume that φ = 1, hence m = 1. In that case we see that gd induces the
identity on V (g, ζ), hence is trivial. This shows that the order of g is d.

Let us now treat the general case. The element (gφ)m belongs to G, and is ζm–regular. By
what precedes, we know that the order of (gφ)m is the order of ζm, i.e., d/ gcd(d,m). Assume
the order of gφ is dd′. Notice that m divides that order. It follows from what precedes that
dd′/m = d/ gcd(d,m) , hence d′ = m/ gcd(d,m) , and dd′ = dm/ gcd(d,m) = lcm(d,m) . �

Exponents and eigenvalues of regular elements.

17.5. Proposition. Let gφ be ζ–regular, and let X be a k[G〈φ〉]–module.
Let (ζ(X)

1 , ζ
(X)
2 , . . . , ζ

(X)
dX

) be the spectrum of φ on Mult(X) = k[V ]G ⊗X∗.
(1) The spectrum of gφ in its action on X∗ is

Spec(gφ,X∗) = (ζ(X)
α ζeα)1≤α≤dX .

(2) In particular, we have

detX∗(gφ) = ζE(X)detMult(X)(φ) .

Proof of 17.5.
Let (λ1, λ2, . . . , λdX ) be the spectrum of gφ on X∗. We choose a basis (ξ1, ξ2, . . . , ξdX ) of X∗

over which gφ is diagonal.
We choose a basis (µ1, µ2, . . . , µdX ) of Mult(X) consisting of homogeneous elements of degrees

(e1(X), e2(X), . . . , edX (X)) which are eigenvectors of φ with eigenvalues (ζ(X)
1 , ζ

(X)
2 , . . . , ζ

(X)
dX

).
Finally, we choose a basis (v1, v2, . . . , vr) of V over which gφ is diagonal, and such that v1 is a

regular ζ–eigenvector of gφ. We denote by (x1, x2, . . . , xr) its dual basis, and we view elements
of k[V ] as elements of k[x1, x2, . . . , xr].

We recall that the matrix JX = (jα,β(X))1≤α,β≤dX , with entries in k[V ], where jα,β(X) is
homogeneous of degree eβ(X), is defined by

µβ =
α=dX∑
α=1

jα,β(X)ξα .

Applying gφ to both sides of the preceding equality gives

ζ
(X)
β µβ =

α=dX∑
α=1

gφ(jα,β(X))λαξα ,

from which we deduce
ζ

(X)
β jα,β(X) = gφ(jα,β(X))λα .

We know that det(JX)(v) 6= 0 , which implies the existence of a permutation σ ∈ SdX

such that jσ(β),β(X)(v) 6= 0 , which in turn implies that, as a polynomial in (x1, x2, . . . , xr),

jσ(β),β(X) must involve a monomial xeβ(X)
1 .
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Projecting the previous equality onto that monomial gives

ζ
(X)
β = ζ−eβ(X)λσ(β) ,

which gives the announced equality. �

Remark. By assumption, we have

grcharMult(X)(φ) = ζ
(X)
1 qe1(X) + ζ

(X)
2 qe2(X) + · · ·+ ζ

(X)
dX

qedX (X) ,

from which we deduce that

χX∗(gφ) = grcharMult(X)(φ)(ζq)|q=1 .

Let us draw some consequences of 17.5 in some particular cases.
We say that the integer d is regular of G if there exists a root of unity ζ of order d and a

ζ–regular element g ∈ G.

17.6. Corollary. Assume that d is regular for G.
(1) Whenever X is a kG–module, d divides E(X) + E(X∗).
(2) Whenever p ∈ A/G, d divides ωpep.
(3) d divides N +Nh.

Proof of 17.6.
(1) Let g ∈ G be ζ–regular where ζ has order d. By 17.5 we have

detX(g) = ζE(X∗) and detX∗(g) = ζE(X) ,

which implies
ζE(X)+E(X∗) = 1 ,

proving (1).
(2) and (3) are particular cases of (1), when applied successively to X = θp (see 8.4) and to

X = V . �

Let (ζ∨1 , ζ
∨
2 , . . . , ζ

∨
r ) be the spectrum of φ−1 in its action on Mult(V ∗). We set

I∨(φ, ζ) := { i | (1 ≤ i ≤ r)(ζd
∨
i = ζ∨i )} .

We recall that
I(φ, ζ) := { i | (1 ≤ i ≤ r)(ζdi = ζi)} .

17.7. Corollary.
(1) Assume that gφ is ζ–regular. Then we have

Spec(gφ, V ) = {(ζ∨i )−1ζd
∨
i +1 | (1 ≤ i ≤ r)}

Spec(gφ, V ∗) = {ζ−1
i ζdi−1 | (1 ≤ i ≤ r)}

(2) We have |I(φ, ζ)| = |I∨(φ, ζ)| .
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Proof of 17.7.
The first assertion is an immediate consequence of 17.5. The second follows then from

the fact that the multiplicity of ζ as an eigenvalue of gφ in its action of both V and V ∗ is
dimV (gφ, ζ) = |I(φ, ζ)|. �

A characterisation of regularity.

We prove now yet another consequence of Solomon’s theorem (for the first three assertions,
see [LeMi] and [BLM]).

17.8. Proposition.
(1) We always have I(φ, ζ) ⊆ I∨(φ, ζ) .
(2) The following assertions are equivalent :

(i) There is a ζ regular element in Gφ.
(ii) We have |I(φ, ζ)| = |I∨(φ, ζ)| .

(3) If this is the case, denoting by g0φ a ζ–regular element, we have∑
g∈G

detV (gφ)qdimV (gφ,ζ) = detV (g0φ)
∏

i/∈I(φ,ζ)

di
∏

i∈I(φ,ζ)

(q − d∨i − 1)

(4) and the set of codegrees of the reflection group CG(gφ) is {d∨i | (i ∈ I(φ, ζ))}.

Proof of 17.8. The proof depends on the following consequence of Solomon’s theorem, an analog
of Pianzola–Weiss formula.

17.9. Lemma.

(1)
1
|G|

∑
g∈G

detV ∗(1 + gφy)
detV (1− gφx)

=
∏i=r
i=1

1 + ζ∨i yx
d∨i +1

1− ζixdi
.

(2) (−ζ)r
∑
g∈G detV (gφ)−1(−q)dimV (gφ,ζ) =
∏

i∈I∨(φ,ζ)

(q + d∨i + 1)
∏

i/∈I∨(φ,ζ)

(1− ζ∨i )
∏

i/∈I(φ,ζ)

di
1− ζi

if I(φ, ζ) = I∨(φ, ζ)

0 otherwise.

Proof of 17.9.
(1) As previously, the formula expresses the equality of bigraded traces of φ acting on both

sides of the isomorphism

(S ⊗k Λ(V ∗))G ' R⊗k Λ((SG ⊗k V ∗)G) .

Then comparing the order of pole at x = ζ−1 of the two sides of the equation (1) of 17.9 gives
the inclusion I(φ, ζ) ⊆ I∨(φ, ζ) .

(2) We replace the pair of indeterminates (x, y) in (1) by the pair (x, q) where 1 + ζx =
q(1− ζy), and we compute the limits of the two sides when x→ ζ−1. �

Let us now prove 17.8.
(1) was already noticed in the proof of 17.9.
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(2) We have already seen above (see 17.7, (2), that (i) implies (ii). Let us prove the converse.
Assume that no element of Gφ is ζ–regular. Let us then prove that the coefficient of q|I(φ,ζ)|

in the polynomial
∑
g∈G detV (gφ)−1(−q)dimV (gφ,ζ) is zero. Denote by c that coefficient. We

have
c = ±

∑
V ′ max. eigens.

∑
g∈G

V (gφ,ζ)=V ′

detV (gφ)−1 .

If V (gφ, ζ) is maximal, we have V (gφ, ζ) = V (g′φ, ζ) if and only if there exists z ∈ CG(V (gφ, ζ))
such that g′φ = zgφ. Hence denoting by gV ′ an element such that V (gV ′φ, ζ) = V ′, we have

c = ±
∑

V ′ max. eigens.

detV (gV ′φ)−1
∑

z∈CG(V ′)

detV (z)−1 .

Since CG(V ′) is a reflection group, the character det is nontrivial, hence∑
z∈CG(V ′)

detV (z)−1 = 0 ,

proving that c = 0.
(3) Applying 17.9, (2), we see that∑

g∈G
detV (gφ)qdimV (gφ,ζ) = a(ζ)

∏
i∈I(φ,ζ)

(q − d∨i − 1)

for some scalar a(ζ), which we compute by computing the coefficient of q|I(φ,ζ)|.

Remark. Combining (3) and 17.9, (2), we see that

detV (g0φ) = ζr
∏

i/∈I(φ,ζ)

1− ζ∨i
1− ζi

.

Let us now prove assertion (4) of 17.8.
It relies first on a remark about “control of fusion”, quite analogous to Burnside’s theorem

for Sylow subgroups of a finite group.

17.10. Lemma. Let E0 := V (g0φ) be a maximal ζ–eigenspace for Gφ.
(1) The group G0 := NG(E0) controls the fusion of ζ–eigenspaces for Gφ, i.e., whenever

E is a ζ–eigenspace for Gφ and g ∈ G are such that E, g(E) ⊆ E0, then there exist
g0 ∈ G0 and z ∈ CG(E) such that g = g0z.

(2) In particular, if E is a ζ–eigenspace contained in E0, we have NG(E) = NG0(E)CG(E) .

Proof of 17.10. It suffices to apply Springer–Lehrer theorem to the reflection group CG(E)
endowed with the automorphism g0φ. Indeed, E, g(E) ⊆ E0 implies that E0 and g−1(E0) are
both maximal ζ–eigenspaces for CG(E)g0φ, hence are conjugate under CG(E). �

We choose a maximal ζ-eigenspace E0 = V (g0φ, ζ), and we set G0 := NG(E0) = CG(g0φ).
Let (d∨0,j)j∈J be the family of codegrees of G0.
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Assertion (3) of 17.8 implies that
∑
g∈G

detV (gφ)qdimV (gφ,ζ) =
|G|
|G0|

detV (g0φ)
∏

i∈I(φ,ζ)

(q − d∨i − 1)

∑
g∈G0

detE0(gφ)qdimE0(gφ,ζ) = detE0(g0φ)
∏
j∈J

(q − d∨0,j − 1) .

Thus we see that in order to prove (4), it suffices to prove that

(0)
1
|G|

∑
g∈G

detV (gg−1
0 )qdimV (gφ,ζ) =

1
|G0|

∑
g∈G0

detE0(gg−1
0 )qdimE0(gφ,ζ) .

Let us reorder the lefthand side of the above desired identity as follows.
For each ζ–eigenspace E, we denote by GE the set of g ∈ G such that V (gφ, ζ) = E. Then∑

g∈G
detV (gg−1

0 )qdimV (gφ,ζ) =
∑
E

qdimE
∑
g∈GE

detV (gg−1
0 ) .

• Choose a complete set of representatives for the orbits of G on the set of ζ–eigenspaces,
chosen as a complete set of representatives for the orbits of G0 on its set of ζ–eigenspaces in
E0 = V (g0φ, ζ). We have∑

g∈G
detV (gg−1

0 )qdimV (gφ,ζ) =
∑

(E⊆E0)/G0

|G : NG(E)|qdimE
∑
g∈GE

detV (gg−1
0 ) .

Since NG(E) = NG0(E)CG(E), we have

|G : NG(E)| = |G : G0)||G0 : NG0(E)|/|CG(E) : CG0(E)|

so
1
|G|

∑
g∈G

detV (gg−1
0 )qdimV (gφ,ζ) =

1
|G0|

∑
(E⊆E0)/G0

|G0 : NG0(E)|
|CG(E) : CG0(E)|

qdimE
∑
g∈GE

detV (gg−1
0 ) .

Hence in order to prove (0) it suffices to prove

(0’)
1

|CG(E)|
∑
g∈GE

detV (gg−1
0 ) =

1
|CG0(E)|

∑
g∈(G0)E

detE0(gg−1
0 ) .

• Let us define the two functions α and α0 on the set of ζ–eigenspaces contained in E0 by
the formulae

α(E) :=
1

|CG0(E)|
∑
g∈GE

detV (gg−1
0 ) and α0(E) :=

1
|CG0(E)|

∑
g∈(G0)E

detE0(gg−1
0 ) .
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We want to prove that α = α0. Notice that

α(E0) = α0(E0) = 1 .

• The sets GE and (G0)E may be described through the formulae

CG(E)g0 =
�⋃
E⊆E′GE′ and CG0(E)g0 =

�⋃
E⊆E′⊆E0(G0)E′ .

Since (for E strictly contained in E0) CG(E) is a nontrivial reflection group, this implies that,
for E ⊂ E0, ∑

{E′|(E⊆E′}

|CG(E′)|α(E′) =
∑

{E′|(E⊆E′⊆E0)}

|CG0(E′)|α0(E′) = 0 .

• For the left handside of the previous formula, let us sum over a set of representatives for
the CG(E)–orbits of eigenspaces E′ containing E. Since CG0(E) controls the fusion of CG(E)
onto the set of such eigenspaces, we can sum over a set of representatives of CG0(E)–orbits of
eigenspaces E′ such that E ⊆ E′ ⊆ E0. We get

∑
{E′|(E⊆E′}

|CG(E′)|α(E′) =
∑

{E′|(E⊆E′⊆E0)}/CG0 (E)

|CG(E)|
|NCG(E)(E′)|

|CG(E′)|α(E′) .

Since
NCG(E)(E′) = NCG0 (E)(E′)CG(E′) ,

we have
|CG(E)|

|NCG(E)(E′)|
|CG(E′)| = |CG(E)| |CG0(E)|

|NCG0 (E)(E′)|
,

from which it follows that

∑
{E′|(E⊆E′}

|CG(E′)|α(E′) = |CG(E)|
∑

{E′|(E⊆E′⊆E0)}/CG0 (E)

|CG0(E′)|
|NCG0 (E)(E′)|

α(E′)

= |CG(E)|
∑

{E′|(E⊆E′⊆E0)}

α(E′)

hence ∑
{E′|(E⊆E′⊆E0)}

α(E′) = 0 .

This shows that the function α is recursively determined by its value on E0.
The same holds of α0, and since both α and α0 take the same value on E0 we see that

α = α0. �
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§18. Regular braid automorphisms

Lifting the regular automorphisms.

When the base point is an eigenvector.

Let x0 ∈ V reg. We set B := Π1(V/V reg, x0) .

Let us denote by NGL(V )(G)(x0) the fixator (centralizer) of x0 in NGL(V )(G).
Then we define the injective group morphism{

a : NGL(V )(G)(x0) −→ Aut(B)

φ 7→ a(φ) ,

as follows.
Let γ : t 7→ γ(t) be a path from x0 to gx0. We denote by a(φ)(γ) the path from x0 to φgx0

defined by

a(φ)(γ) :

{
[0, 1]→ V reg

t 7→ φγ(t) .

Thus a(φ) defines an automorphism of B, and we have

• a is a group morphism,
• the natural epimorphism B � G is NGL(V )(G)(x0)–equivariant,
• ker a ⊆ CGL(V )(G)(x0).

Moreover, if G is irreducible in its action on V , then

CGL(V )(G) = C×IdV hence CGL(V )(G)(x0) = {1} and ker a = {1} .

More generally, let L = Cx0 be the line generated by x0, let NGL(V )(G,L) be the subgroup
of NGL(V )(G) which stabilizes (normalizes) L. The elements of finite order of NGL(V )(G,L) are
regular automorphisms.

Whenever φ ∈ NGL(V )(G,L), let ζφ ∈ C× be such that φx0 = ζφx0. Then the map{
NGL(V )(G,L)→ NGL(V )(G)(x0)

φ 7→ ζ−1
φ φ

is a group morphism, and we extend the group morphism a to{
a : NGL(V )(G,L) −→ Aut(B)

φ 7→ a(φ) ,

by the formula
a(φ) := a(ζ−1

φ φ) .
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18.1. Lemma. The group morphism a : NGL(V )(G,L) −→ Aut(B) has the following proper-
ties.

(1) The natural epimorphism B � G is NGL(V )(G,L)–equivariant.
(2) If G is irreducible on V , then ker a = C×IdV .
(3) If G is irreducible on V , the order of a(φ) is equal to the order of the automorphism

Ad(φ) of G defined by φ.

Proof of 18.1. Only (3) requires a proof. Assume that φx0 = ζx0. The order of a(φ) is equal
to the order of ζ−1φ. Now (ζ−1φ)m = 1 if and only if φm = ζmIdV , hence if and only if
φm ∈ C×IdV . �

Let ζ := exp(2πim/d) be a primitive d–th root of 1 (thus m is prime to d). We recall that,
for x ∈ V reg, we denote by πζ,x the path from x to ζx defined by

πζ,x :

{
[0, 1]→ V reg

t 7→ exp(2πimt/d)x .

18.2. Lemma. Let ζ = exp(2πim/d) with order d. Assume that φ ∈ NGL(V )(G,L) is such
that φx0 = ζx0. Then we have the following identity between paths in V reg :

πζ,x0 · φ(πζ,x0) · · ·φd−1(πζ,x0) = πm .

Proof of 18.2. This is immediate. �

The general case.
Let now x1 be another element of V reg. We set

B(xi) := Π1(V reg/G, xi) for i = 0, 1 .

Given a path γ from x0 to x1, we denote by

τγ : B(x0) ∼−→B(x1)

the isomorphism induced by the formula (with an admissible abuse of notation)

τγ(g) := γ−1 · g · gγ

whenever g is a path from x0 to gx0.
Now if φ1 is an element of NGL(V )(G) which fixes x1 we denote by a(φ1) the automorphism

of B(x1) defined as above. Through the isomorphism τγ , that automorphism becomes an
automorphism aγ(φ1), induced by the formula

aγ(φ1)(g) : = γ · φ1τγ(g) · (φ1g)γ−1

= (γ · φ1γ
−1) · φ1g · (φ1g)(φ1γ · γ−1) .

Notice that if p : B � G denotes the natural surjection, we have

p · aγ(φ1) = Ad(φ1) · p .
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Definition. A ζ–regular braid automorphism is an automorphism of the braid group B(x0) of
the form

aγ(φ1) : g 7→ (γ · φ1γ
−1) · φ1g · (φ1g)(φ1γ · γ−1)

where
• φ1 is an element of NGL(V )(G) such that φx1 = ζx1 for some element x1 ∈ V reg,
• γ is a path from x0 to x1.

A regular braid automorphism is an automorphism which is ζ–regular for some ζ.

A regular braid automorphism α = aγ(φ1) has a well–defined image α := Ad(φ1) in
NGL(V )(G)/CGL(V )(G), hence a fortiori it has a well–defined image in NGL(V )(G)/G.

In the case where φ and φ1 have the same image in NGL(V )(G)/G, it results from 17.4 that
φ and φ1 are conjugate under G.

18.3. Proposition. The set of regular braid automorphisms with given image in NGL(V )(G)/G
is a single orbit under B.

Proof of 18.3. It will follow from the following lemma. We must here use precise notation,
distinguishing between paths in V reg and elements of B.

18.4. Lemma. Let φ be an element of NGL(V )(G) which fixes x0. If γ is a path in V reg from
x0 to gx0, defining an element g ∈ B (with image g ∈ G), then

Ad(g) · a(φ) ·Ad(g−1) = aγ(gφg−1) .

Proof of 18.4. Notice that gφg−1 is an element φ1 of NGL(V )(G) which fixes the regular vector
x1 := gx0.

Let h ∈ B, defined by a path η in V reg from x0 to hx0. Hence h has image h in G. We must
prove

ga(φ)(g−1hg)g−1 = aγ(gφg−1)(h) ,

i.e., in other words

γ · gφ(g−1γ−1 · g−1η · g−1hγ) · (φ1hφ
−1
1 γ−1)

=(γ · φ1γ
−1) · φ1η · (φ1h)(φ1γ · γ−1) ,

an equality between two paths in V reg from x0 to φ1hx0 which we leave to the reader to
check. �

�

Assume that both gφ and φ are ζ–regular.
• There exists h ∈ G such that hgφh−1 = φ, i.e., g = h−1φh.
• If φx0 = ζx0, then for x1 := h−1x0, we have gφx1 = ζx1.

Let us set φ1 := gφ. We have (see lemma 18.2)

πζ,x1 · φ1(πζ,x1) · · ·φd−1
1 (πζ,x1) = πm .

The case of an inner automorphism : roots of powers of π.
Consider the particular case where φ belongs to G (hence induces an inner automorphism of

G).
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18.5. Proposition. Let ζ = exp(2πim/d) with order d. Assume that g is a ζ–regular element
of G, such that gx0 = ζx0.

(1) The path πζ,x0 defines an element g̃ ∈ B = Π1(V reg/G, x0) with image g through the
natural surjection B � G.

(2) We have a(g) = Ad(g̃) .
(3) The element g̃ is a d–th root of πm, i.e., g̃d = πm .

Lifting Springer theory.
Let us now turn again to the general case where φ ∈ NGL(V )(G) has regular ζ–eigenvector

x0.
We recall that G(φ, ζ) := NG(V (φ, ζ)) = CG(φ) , and that V (φ, ζ)reg ⊆ V reg (see 16.6).
The composition

ι(φ, ζ) : V (φ, ζ)reg/G(φ, ζ) ↪→ V reg/G(φ, ζ) � V reg/G

induces a morphism
Π1(V (φ, ζ)reg/G(φ, ζ), x0)→ Π1(V reg/G, x0)

i.e., a morphism
Π1ι(φ, ζ) : B(φ, ζ)→ B .

18.6. Proposition.

(1) The image of the map ι(φ, ζ) is the subvariety (V reg/G)〈ζ
−1φ〉 of fixed points under the

action of the group 〈ζ−1φ〉 generated by ζ−1φ, and ι(φ, ζ) induces an homeomorphism

V (φ, ζ)reg/G(φ, ζ) ∼−→ (V reg/G)〈ζ
−1φ〉 .

(2) The image of the map Π1ι(φ, ζ) is contained in the group CB(a(φ)) of fixed points of
a(φ) in B.

Proof of 18.7.
(1) Let x ∈ V (φ, ζ)reg. Thus we have φx = ζx , proving that x is fixed under ζ−1φ, hence its

image in V reg/G is also fixed by ζ−1φ.
Let us prove that ι(φ, ζ) is surjective on (V reg/G)〈ζ

−1φ〉. Let y ∈ V reg be such that its image
modulo G belongs to (V reg/G)〈ζ

−1φ〉. We want to prove that there is h ∈ G such that hy is
fixed by ζ−1φ. By assumption there is g ∈ G such that ζ−1gφy = y. Hence gφ is ζ–regular, and
it results from 16.6 that gφ and φ are G–conjugate : there exists h ∈ G such that hgφh−1 = φ.
It follows that ζ−1φhy = hy, hence hy is fixed under ζ−1φ.

Let us prove that ι(φ, ζ) is injective. Let x, x′ ∈ V (φ, ζ)reg, so that φx = ζx and φx′ = ζx′.
Assume that x and x′ have the same image in V reg/G, i.e., there is g ∈ G such that x′ = gx.
It follows that φ−1g−1φgx = x , and since x is regular we have g = φ−1gφ , proving that
g ∈ CG(φ) = G(φ, ζ).

(2) Let z ∈ G(φ, ζ), and let z̃ be a path from x0 to zx0 in V (φ, ζ)reg. It is clear that ζ−1φ
fixes z̃, proving that the image of Π1ι(φ, ζ) is contained in CB(a(φ)). �

Springer theory (see 16.6) shows that the group CG(φ) is a reflection group. The following
conjecture may be viewed as “Braid Springer theory”.
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18.8. Conjecture. The map Π1ι(φ, ζ) is injective and its image is CB(a(φ)).

The preceding conjecture is now proved for φ ∈ G (see [Bes3]). The case where φ /∈ G is still
open. Let us state Bessis’ result for completeness.

18.9. Theorem. Let ζd := e2iπ/d.
(1) The ζd–regular elements in G are the images of the d-th roots of π.
(2) All d-th roots of π are conjugate in B.
(3) Let g be a d-th root of π, with image g in G. Then CB(g) is the braid group of CG(g).
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APPENDIX
COXETER AND ARTIN LIKE PRESENTATIONS

Here are some definitions, notation, conventions, which will allow the reader to understand
the diagrams.

The groups have presentations given by diagrams D such that
• the nodes correspond to pseudo-reflections in G, the order of which is given inside the

circle representing the node,
• two distinct nodes which do not commute are related by “homogeneous” relations with

the same “support” (of cardinality 2 or 3), which are represented by links beween two
or three nodes, or circles between three nodes, weighted with a number representing
the degree of the relation (as in Coxeter diagrams, 3 is omitted, 4 is represented by a
double line, 6 is represented by a triple line). These homogeneous relations are called
the braid relations of D.

More details are provided below.

Meaning of the diagrams.
This paragraph provides a list of examples which illustrate the way in which diagrams provide

presentations for the attached groups.
• The diagram ©

s
d

e ©
t
d corresponds to the presentation

sd = td = 1 and ststs · · ·︸ ︷︷ ︸
e factors

= tstst · · ·︸ ︷︷ ︸
e factors

• The diagram ©
s
5 ©

t
3 corresponds to the presentation

s5 = t3 = 1 and stst = tsts .

• The diagram s©a ne ©b t
©c u

corresponds to the presentation

sa = tb = uc = 1 and stustu · · ·︸ ︷︷ ︸
e factors

= tustus · · ·︸ ︷︷ ︸
e factors

= ustust · · ·︸ ︷︷ ︸
e factors

.

• The diagram ©
v
2
�
©
s
2

©
t
2

n
©
w
2

©
u
2
�

corresponds to the presentation

s2 = t2 = u2 = v2 = w2 = 1 ,
uv = vu , sw = ws , vw = wv ,

sut = uts = tsu ,

svs = vsv , tvt = vtv , twt = wtw ,wuw = uwu .
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• The diagram s©d
e+1

��©2 t′2�

©2 t2
�
©
t3

2 corresponds to the presentation

sd = t′2
2 = t22 = t23 = 1 , st3 = t3s ,

st′2t2 = t′2t2s ,

t′2t3t
′
2 = t3t

′
2t3 , t2t3t2 = t3t2t3 , t3t

′
2t2t3t

′
2t2 = t′2t2t3t

′
2t2t3 ,

t2st
′
2t2t

′
2t2t

′
2 · · ·︸ ︷︷ ︸

e+1 factors

= st′2t2t
′
2t2t

′
2t2 · · ·︸ ︷︷ ︸

e+1 factors

.

• The diagram e
t′2©2 �

t2©2 �
©
t3

2 corresponds to the presentation

t′2
2 = t22 = t23 = 1 ,

t′2t3t
′
2 = t3t

′
2t3 , t2t3t2 = t3t2t3 , t3t

′
2t2t3t

′
2t2 = t′2t2t3t

′
2t2t3 ,

t2t
′
2t2t

′
2t2t

′
2 · · ·︸ ︷︷ ︸

e factors

= t′2t2t
′
2t2t

′
2t2 · · ·︸ ︷︷ ︸

e factors

.

• The diagram s©2
5

��©2 t

©3 u

corresponds to the presentation

s2 = t2 = u3 = 1 , stu = tus , ustut = stutu .

• The diagram ©
s
2
4©

t
2

�
©2 u

��
corresponds to the presentation

s2 = t2 = u2 = 1 , stst = tsts , tutu = utut , sus = usu , u(stu)2 = (stu)2t .

• The diagram ©
s
2
4©

t
2

5�
©2 u

�
corresponds to the presentation

s2 = t2 = u2 = 1 , stst = tsts , tutut = ututu , sus = usu , (uts)2t = s(uts)2 .

• The diagram ©
s
2 ©

t
2
←−©

u
2

�
©2 v

�
corresponds to the presentation

s2 = t2 = u2 = v2 = 1 , sv = vs , su = us ,

sts = tst , vtv = tvt , uvu = vuv , tutu = utut , vtuvtu = tuvtuv .
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• The diagram ns©2 n©2 t

©2 u
5

4 corresponds to the presentation

s2 = t2 = u2 = 1 , ustus = stust , tust = ustu .

• The diagram ©
s
2 ©

t
2
4©

u
2

�
©2 w

�
©
v
2 corresponds to the presentation

s2 = t2 = u2 = v2 = w2 = 1 , vt = tv , uv = vu , tu = ut , wu = uw ,

sts = tst , tut = utu , uvu = vuv , twt = wtw , uwu = wuw ,

twvstw = wvstwv .

In the following tables, we denote by H oK a group which is a non-trivial split extension
of K by H. We denote by H ·K a group which is a non-split extension of K by H. We denote
by pn an elementary abelian group of order pn.

A diagram where the orders of the nodes are “forgotten” and where only the braid relations
are kept is called a braid diagram for the corresponding group.

The groups have been ordered by their diagrams, by collecting groups with the same braid
diagram. Thus, for example,
• G15 has the same braid diagram as the groups G(4d, 4, 2) for all d ≥ 2,
• G4, G8, G16, G25, G32 all have the same braid diagrams as groups S3, S4 and S5,
• G5, G10, G18 have the same braid diagram as the groups G(d, 1, 2) for all d ≥ 2,
• G7, G11, G19 have the same braid diagram as the groups G(2d, 2, 2) for all d ≥ 2,
• G26 has the same braid diagram as G(d, 1, 3) for d ≥ 2.

The element β (generator of Z(G)) is given in the last column of our tables. Notice that
the knowledge of degrees and codegrees allows then to find the order of Z(G), which is not
explicitely provided in the tables.

The tables provide diagrams and data for all irreducible reflection groups.

• Tables 1 and 2 collect groups corresponding to infinite families of braid diagrams,
• Table 3 collects groups corresponding to exceptional braid diagrams (notice that the

fact that the diagram for G31 provides a braid diagram is only conjectural), but G24,
G27, G29, G33, G34,

• The last table (table 4) provides diagrams for the remaining cases (G24, G27, G29, G33,
G34). It is not known nor conjectural whether these diagrams provide braid diagrams
for the corresponding braid groups.

Degrees and codegrees of a braid diagram.

The following property may be noticed on the tables. It generalizes a property already
noticed by Orlik and Solomon for the case of Coxeter–Shephard groups (see [OrSo3], (3.7)).
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18.10. Theorem. Let D be a braid diagram of rank r. There exist two families

(d1,d2, . . . ,dr) and (d∨1 ,d
∨
2 , . . . ,d

∨
r )

of r integers, depending only on D, and called respectively the degrees and the codegrees of D,
with the following property: whenever G is a complex reflection group with D as a braid diagram,
its degrees and codegrees are given by the formulae

dj = |Z(G)|dj and d∨j = |Z(G)|d∨j (j = 1, 2, . . . , r) .

The zeta function of a braid diagram.
In [DeLo], Denef and Loeser compute the zeta function of local monodromy of the discrimi-

nant of a complex reflection group G, which is the element of Q[q] defined by the formula

Z(q,G) :=
∏
j

det(1− qµ,Hj(F0,C))(−1)j+1
,

where F0 denotes the Milnor fiber of the discriminant at 0 and µ denotes the monodromy
automorphism (see [DeLo]).

Putting together the tables of [DeLo] and our braid diagrams, one may notice the following
fact.

18.11. Theorem. The zeta function of local monodromy of the discriminant of a complex
reflection group G depends only on the braid diagram of G.

Remark. Two different braid diagrams may be associated to isomorphic braid groups. For
example, this is the case for the following rank 2 diagrams (where the sign “∼” means that the
corresponding groups are isomorphic) :

For e even, s©
e+1

��© t

© u

∼ s© ne © t

©u

,

for e odd, s©
e+1

��© t

© u

∼ ©
s

©
t
,

and ns© n© t

© u
5

4 ∼ ©
s
2 ©

t
2 .

It should be noticed, however, that the above pairs of diagrams do not have the same degrees
and codegrees, nor do they have the same zeta function. Thus, degrees, codegrees and zeta
functions are indeed attached to the braid diagrams, not to the braid groups.
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name diagram degrees codegrees β field G/Z(G)

G(de, e, r)
e>2,d,r≥2

s©d
e+1

��©2 t′2�

©2 t2
�
©
t3

2 ©
t4

2 · · ·©
tr

2
(ed,2ed,...,
(r−1)ed,rd)

(0,ed,...,
(r−1)ed)

s
r

(e∧r) (t′2t2t3···tr)
e(r−1)
(e∧r) Q(ζde)

G15 s©2
5

��©2 t

©3 u

12, 24 0, 24 ustut=s(tu)2 Q(ζ24) S4

Sr+1 ©
t1

2 ©
t2

2 · · ·©
tr

2
(2,3,...,
...,r+1)

(0,1,...,
...,r−1)

(t1···tr)r+1 Q

G4 ©
s
3 ©

t
3 4, 6 0, 2 (st)3 Q(ζ3) A4

G8 ©
s
4 ©

t
4 8, 12 0, 4 (st)3 Q(i) S4

G16 ©
s
5 ©

t
5 20, 30 0, 10 (st)3 Q(ζ5) A5

G25 ©
s
3 ©

t
3 ©

u
3 6, 9, 12 0, 3, 6 (stu)4 Q(ζ3) 32oSL2(3)

G32 ©
s
3 ©

t
3 ©

u
3 ©

v
3 12,18,24,30 0,6,12,18 (stuv)5 Q(ζ3) PSp4(3)

G(d, 1, r)
d≥2

©
s
d ©

t2

2 ©
t3

2 · · ·©
tr

2
(d,2d,...,
...,rd)

(0,d,...,
...,(r−1)d)

(st2t3···tr)r Q(ζd)

G5 ©
s
3 ©

t
3 6, 12 0, 6 (st)2 Q(ζ3) A4

G10 ©
s
4 ©

t
3 12, 24 0, 12 (st)2 Q(ζ12) S4

G18 ©
s
5 ©

t
3 30, 60 0, 30 (st)2 Q(ζ15) A5

G26 ©
s
2 ©

t
3 ©

u
3 6, 12, 18 0, 6, 12 (stu)3 Q(ζ3) 32oSL2(3)

Table 1
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name diagram degrees codegrees β field G/Z(G)

G(2d, 2, r)
d,r≥2

©
s
d n©2 t′2�

©2 t2

�
©
t3

2 ©
t4

2 · · ·©
tr

2
(2d,4d,...
2(r−1)d,rd)

(0,2d,...
2(r−1)d)

s
r

(2∧r) (t′2t2t3···tr)
2(r−1)
(2∧r) Q(ζ2d)

G7 s©2 n©3 t

©3 u

12, 12 0, 12 stu Q(ζ12) A4

G11 s©2 n©3 t

©4 u

24, 24 0, 24 stu Q(ζ24) S4

G19 s©2 n©3 t

©5 u

60, 60 0, 60 stu Q(ζ60) A5

G(e, e, r)
e≥2,r>2

e
t′2©2 �

t2©2 �
©
t3

2 ©
t4

2 · · ·©
tr

2
(e,2e,...,
(r−1)e,r)

(0,e,...,(r−2)e,
(r−1)e−r) (t′2t2t3···tr)

e(r−1)
(e∧r) Q(ζe)

G(e, e, 2)
e≥3

©
s
2

e ©
t
2 2, e 0, e− 2 (st)e/(e∧2) Q(ζe+ζ

−1
e )

G6 ©
s
3 ©

t
2 4, 12 0, 8 (st)3 Q(ζ12) A4

G9 ©
s
4 ©

t
2 8, 24 0, 16 (st)3 Q(ζ8) S4

G17 ©
s
5 ©

t
2 20, 60 0, 40 (st)3 Q(ζ20) A5

G14 ©
s
3

8 ©
t
2 6, 24 0, 18 (st)4 Q(ζ3,

√
−2) S4

G20 ©
s
3

5 ©
t
3 12, 30 0, 18 (st)5 Q(ζ3,

√
5) A5

G21 ©
s
3

10 ©
t
2 12, 60 0, 48 (st)5 Q(ζ12,

√
5) A5

Table 2
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name diagram degrees codegrees β field G/Z(G)

G12 s©2 nn©2 t

©2 u

6,8 0,10 (stu)4 Q(
√
−2) S4

G13
ns©2 n©2 t

©2 u
5

4 8,12 0,16 (stu)3 Q(ζ8) S4

G22 s©2 n5 ©2 t

©2 u

12,20 0,28 (stu)5 Q(i,
√

5) A5

G23 ©
s
2

5 ©
t
2 ©

u
2 2,6,10 0,4,8 (stu)5 Q(

√
5) A5

G28 ©
s
2 ©

t
2 ©

u
2 ©

v
2

2,6,
8,12

0,4,
6,10 (stuv)6 Q 24o(S3×S3) †

G30 ©
s
2

5©
t
2 ©

u
2 ©

v
2

2,12,
20,30

0,10,
18,28 (stuv)15 Q(

√
5) (A5×A5)o2 ‡

G35 ©
s1

2 ©
s3

2 ©
s4

2

©2 s2

©
s5

2 ©
s6

2
2,5,6,8,

9,12
0,3,4,6,

7,10 (s1···s6)12 Q SO−6 (2)′

G36 ©
s1

2 ©
s3

2 ©
s4

2

©2 s2

©
s5

2 ©
s6

2 ©
s7

2

2,6,8,
10,12,
14,18

0,4,6,
8,10,
12,16

(s1···s7)9 Q SO7(2)

G37 ©
s1

2 ©
s3

2 ©
s4

2

©2 s2

©
s5

2 ©
s6

2 ©
s7

2 ©
s8

2

2,8,12,
14,18,20,

24,30

0,6,10,
12,16,18,

22,28
(s1···s8)15 Q SO+

8 (2)

G31 ©
v
2
�
©
s
2

©
t
2

n
©
w
2

©
u
2
�

8,12,
20,24

0,12,
16,28 (stuvw)6 Q(i) 24oS6 ?

Table 3

† The action of S3 ×S3 on 24 is irreducible.
‡ The automorphism of order 2 of A5 × A5 permutes the two factors.
? The group G31/Z(G31) is not isomorphic to the quotient of the Weyl group D6 by its center.
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name diagram degrees codegrees β field G/Z(G)

G24 ©
s
2
4©

t
2

�
©2 u

��
(∗) 4,6,14 0,8,10 (stu)7 Q(

√
−7) GL3(2)

G27 ©
s
2
4©

t
2

5�
©2 u

�
(∗∗) 6,12,30 0,18,24 (stu)5 Q(ζ3,

√
5) A6

G29 ©
s
2 ©

t
2
←−©

u
2

�
©2 v

�
4,8,12,20 0,8,12,16 (stuv)5 Q(i) 24oS5 †

G33 ©
s
2 ©

t
2
4©

u
2

�
©2 w

�
©
v
2

4,6,10,
12,18

0,6,8,
12,14 (ustvw)9 Q(ζ3) SO5(3)′

G34 ©
s
2 ©

t
2
4©

u
2

�
©2 w

�
©
v
2 ©

x
2

6,12,18,24,
30,42

0,12,18,24,
30,36 (stuvwx)7 Q(ζ3) PSO−6 (3)′·2

Table 4

(*) 4 : u(stu)2 = (stu)2t

(**) 4 : (uts)2t = s(uts)2

† The group G29/Z(G29) is not isomorphic to the Weyl group D5.
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name diagram degrees codegrees β

B(de, e, r)
e≥2,r≥2,d>1

σ©
e+1

��©τ2�

©τ ′2
�
©
τ3

©
t4

· · ·©
τr

e, 2e, . . . ,
(r−1)e, r

0, e, . . . ,
(r−1)e σ

r
(e∧r) (τ2τ ′2τ3 · · · τr)

e(r−1)
(e∧r)

B(1, 1, r) ©
τ1

©
τ2

· · ·©
τr

2, 3, . . . , r + 1 0, 1, . . . ,r−1 (τ1 · · · τr)r+1

B(d, 1, r)
d>1

©
σ
©
τ2

©
τ3

· · ·©
τr

1, 2, . . . , r 0, , . . . , (r−1) (στ2τ3 · · · τr)r

B(e, e, r)
e≥2,r≥2

e
τ2©�

τ ′2©
�
©
τ3

©
τ4

· · ·©
τr

e, 2e, . . . ,
(r−1)e, r

0, e, . . . , (r−2)e,
(r−1)e− r (τ2τ ′2τ3 · · · τr)

e(r−1)
(e∧r)

Table 5 : braid diagrams

This table provides a complete list of the infinite families of braid diagrams and corresponding
data. Note that the braid diagram B(de, e, r) for e = 2, d > 1 can also be described by a diagram
as the one used for G(2d, 2, r) in Table 2. Similarly, the diagram for B(e, e, r), e = 2, can also be
described by the Coxeter diagram of type Dr. The list of exceptional diagrams is given by with
tables 3 and 4.
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