Pseudo reductive groups over \mathbb{F}_x?

Michel Broué

Institut Henri–Poincaré

May 2009
Joint work between Michel Broué, Gunter Malle, and Jean Michel,
Joint work between Michel Broué, Gunter Malle, and Jean Michel, initiated in the Greek island named SPETSES in 1993.
Joint work between Michel Broué, Gunter Malle, and Jean Michel, initiated in the Greek island named SPETSES in 1993.
<table>
<thead>
<tr>
<th>Character</th>
<th>Degree Fake degree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_1, 0$</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_1, 6$</td>
<td>q^6</td>
<td>q^6</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_2, 1$</td>
<td>6</td>
<td>q^2, Φ_2^2, Φ_3^2</td>
<td>S_3. ($g_2, 1$)</td>
</tr>
<tr>
<td>$\phi_2, 2$</td>
<td>2</td>
<td>q, Φ_2^2, Φ_6^2</td>
<td>S_3. ($g_2, 1$)</td>
</tr>
<tr>
<td>$\phi_3', 3$</td>
<td>3</td>
<td>q^3, Φ_3^2, Φ_6^2</td>
<td>S_3. ($g_3, 1$)</td>
</tr>
<tr>
<td>$\phi_3', 3$</td>
<td>3</td>
<td>q^3, Φ_3^2, Φ_6^2</td>
<td>S_3. ($g_3, 1$)</td>
</tr>
</tbody>
</table>
Unipotent characters for G_2

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>Fake degree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,6}$</td>
<td>q^6</td>
<td>q^6</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{1}{6}q\Phi_2^2\Phi_3$</td>
<td>$q\Phi_8$</td>
<td>1</td>
<td>$S_3.(1, 1)$</td>
</tr>
<tr>
<td>$\phi_{2,2}$</td>
<td>$\frac{1}{2}q\Phi_2^2\Phi_6$</td>
<td>$q^2\Phi_4$</td>
<td>1</td>
<td>$S_3.(g_2, 1)$</td>
</tr>
<tr>
<td>$\phi'_{1,3}$</td>
<td>$\frac{1}{3}q\Phi_3\Phi_6$</td>
<td>q^3</td>
<td>1</td>
<td>$S_3.(g_3, 1)$</td>
</tr>
<tr>
<td>$\phi''_{1,3}$</td>
<td>$\frac{1}{3}q\Phi_3\Phi_6$</td>
<td>q^3</td>
<td>1</td>
<td>$S_3.(1, \rho)$</td>
</tr>
<tr>
<td>$G_2[1]$</td>
<td>$\frac{1}{6}q\Phi_1^2\Phi_6$</td>
<td>0</td>
<td>1</td>
<td>$S_3.(1, \varepsilon)$</td>
</tr>
<tr>
<td>$G_2[-1]$</td>
<td>$\frac{1}{2}q\Phi_1^2\Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$S_3.(g_2, \varepsilon)$</td>
</tr>
<tr>
<td>$G_2[\zeta_3]$</td>
<td>$\frac{1}{3}q\Phi_1^2\Phi_2^2$</td>
<td>0</td>
<td>ζ_3</td>
<td>$S_3.(g_3, \zeta_3)$</td>
</tr>
<tr>
<td>$G_2[\zeta_3^2]$</td>
<td>$\frac{1}{3}q\Phi_1^2\Phi_2^2$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$S_3.(g_3, \zeta_3^2)$</td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

$G_4 = 2 \times S_3$

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\varphi_{2,1}$</td>
<td>3</td>
<td>$-\sqrt{-3}$</td>
<td>Φ_3'</td>
<td>Φ_4'</td>
</tr>
<tr>
<td>$\varphi_{3,2}$</td>
<td>q^2</td>
<td>Φ_3</td>
<td>Φ_6</td>
<td>Φ_3</td>
</tr>
<tr>
<td>$\varphi_{1,4}$</td>
<td>1</td>
<td>$-\sqrt{-3}$</td>
<td>Φ_3'</td>
<td>Φ_4'</td>
</tr>
<tr>
<td>$\varphi_{2,5}$</td>
<td>1</td>
<td>$\sqrt{-3}$</td>
<td>Φ_3'</td>
<td>Φ_4'</td>
</tr>
<tr>
<td>$\varphi_{3,7}$</td>
<td>q^2</td>
<td>Φ_3</td>
<td>Φ_6</td>
<td>Φ_3</td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

$(G_4 = 2 \times S_3)$

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{3-\sqrt{-3}}{6} q \Phi_3' \Phi_4 \Phi_6''$</td>
<td>$q \Phi_4$</td>
<td>1</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$\frac{3+\sqrt{-3}}{6} q \Phi_3'' \Phi_4 \Phi_6'$</td>
<td>$q^3 \Phi_4$</td>
<td>1</td>
<td>$X_3.02$</td>
</tr>
<tr>
<td>$Z_3 : 2$</td>
<td>$\frac{\sqrt{-3}}{3} q \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_3.12$</td>
</tr>
<tr>
<td>$\phi_{3,2}$</td>
<td>$q^2 \Phi_3 \Phi_6$</td>
<td>$q^2 \Phi_3 \Phi_6$</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>$\frac{-\sqrt{-3}}{6} q^4 \Phi_3' \Phi_4 \Phi_6''$</td>
<td>q^4</td>
<td>1</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>$\frac{\sqrt{-3}}{6} q^4 \Phi_3' \Phi_4 \Phi_6'$</td>
<td>q^8</td>
<td>1</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\phi_{2,5}$</td>
<td>$\frac{1}{2} q^4 \Phi_2 \Phi_6^2$</td>
<td>$q^5 \Phi_4$</td>
<td>1</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$Z_3 : 11$</td>
<td>$\frac{\sqrt{-3}}{3} q^4 \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_5.4$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\frac{1}{2} q^4 \Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$X_5.5$</td>
</tr>
</tbody>
</table>

Φ_3', Φ_3'' (resp. Φ_6', Φ_6'') are factors of Φ_3 (resp Φ_6) in $\mathbb{Q}(\zeta_3)$
Finite reductive groups

- G a reductive group over \overline{F}_q,

\[\begin{align*}
\text{UnCh}(G) := & \{ \text{unipotent characters} \} = \{ \text{irreducible constituents of } R^G_T \}\ \\
\text{UnSh}(G) := & \{ \text{unipotent character sheaves} \} = \text{another } \mathbb{C} \text{-basis for the space of class functions on } G.
\end{align*} \]
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite.
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split.
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split. Set $G := G^F$.
Finite reductive groups

- \(G \) a reductive group over \(\mathbb{F}_q \), \(F \) an isogeny such that \(G \) is finite. For simplicity we assume \((G, F)\) split. Set \(G := G^F \).

- \{ \text{\(G \)-conjugacy classes of \(F \)-stable maximal tori of \(G \)} \}
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split. Set $G := G^F$.

- \{ G-conjugacy classes of F–stable maximal tori of G \} \leftrightarrow \{ conjugacy classes of the Weyl group W \}
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split. Set $G := G^F$.

- $\{G$-conjugacy classes of F–stable maximal tori of $G\} \longleftrightarrow \{\text{conjugacy classes of the Weyl group } W\}$

- $\text{UnCh}(G) := \{\text{Unipotent characters}\}$
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split. Set $G := G^F$.

- $\{G$-conjugacy classes of F–stable maximal tori of $G\}$
 $\leftrightarrow \{\text{conjugacy classes of the Weyl group } W\}$

- $\text{UnCh}(G) := \{\text{Unipotent characters}\}$
 $:= \{\text{Irreducible constituents of } R^{G}_{T_w}(1)\}$
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split. Set $G := G^F$.

- $\{ G$-conjugacy classes of F–stable maximal tori of $G \}$
 \[\leftrightarrow \quad \{ \text{conjugacy classes of the Weyl group } W \}$

- $\text{UnCh}(G) := \{ \text{Unipotent characters} \}$
 \[:= \{ \text{Irreducible constituents of } R_{Tw}^G(1) \}$

- $\text{UnSh}(G) := \{ \text{Unipotent character sheaves} \}$
Finite reductive groups

- **G** a reductive group over \(\overline{F}_q\), \(F\) an isogeny such that \(G\) is finite. For simplicity we assume \((G, F)\) **split**. Set \(G := G^F\).

- \(\{\text{\(G\)-conjugacy classes of } F\text{–stable maximal tori of } G\}\) \(\longleftrightarrow\) \(\{\text{conjugacy classes of the Weyl group } W\}\)

- \(\text{UnCh}(G) := \{\text{Unipotent characters}\}\)
 \(\quad := \{\text{Irreducible constituents of } R^G_{T_w}(1)\}\)

- \(\text{UnSh}(G) := \{\text{Unipotent character sheaves}\}\)
 \(\quad = \text{Another } \mathbb{C}\text{–basis for the space of class functions on } G\text{ generated by UnCh}(G)\).

- **Lusztig’s Fourier matrix** \(S\)
Finite reductive groups

- G a reductive group over \overline{F}_q, F an isogeny such that G is finite. For simplicity we assume (G, F) split. Set $G := G^F$.

- $\{ G\text{-conjugacy classes of } F\text{-stable maximal tori of } G \} \longleftrightarrow \{ \text{conjugacy classes of the Weyl group } W \}$

- $\text{UnCh}(G) := \{ \text{Unipotent characters} \}
 := \{ \text{Irreducible constituents of } R_{T_w}^G(1) \}$

- $\text{UnSh}(G) := \{ \text{Unipotent character sheaves} \}$
 $= \text{Another } \mathbb{C}\text{-basis for the space of class functions on } G \text{ generated by } \text{UnCh}(G)$.

- **Lusztig’s Fourier matrix** S
 $:= (\text{square}) \text{ matrix between } \text{UnCh}(G) \text{ and } \text{UnSh}(G)$.
Finite reductive groups

- \(G \) a reductive group over \(\overline{F}_q \), \(F \) an isogeny such that \(G \) is finite. For simplicity we assume \((G, F)\) split. Set \(G := G^F \).

- \{ \text{\(G \)-conjugacy classes of \(F \)-stable maximal tori of \(G \)} \} \leftrightarrow \{ \text{conjugacy classes of the Weyl group \(W \)} \}

- \(\text{UnCh}(G) := \{ \text{Unipotent characters} \} := \{ \text{Irreducible constituents of} \ R^G_{T_w}(1) \} \)

- \(\text{UnSh}(G) := \{ \text{Unipotent character sheaves} \} \) = Another \(\mathbb{C} \)-basis for the space of class functions on \(G \) generated by \(\text{UnCh}(G) \).

- \text{Lusztig’s Fourier matrix} \(S \) := \(\text{(square) matrix between} \ \text{UnCh}(G) \) \text{ and UnSh}(G).

- The blocks of \(S \) correspond to \text{Lusztig’s families of unipotent characters}.

Michel Broué Pseudo reductive groups over \(F_x \) ?
Lusztig’s Fourier matrix for G_2

<table>
<thead>
<tr>
<th></th>
<th>$(1, 1)$</th>
<th>$(g_2, 1)$</th>
<th>$(g_3, 1)$</th>
<th>$(1, \rho)$</th>
<th>$(1, \varepsilon)$</th>
<th>(g_2, ε)</th>
<th>(g_3, ζ_3)</th>
<th>(g_3, ζ_3^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 1)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(g_2, 1)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(g_3, 1)$</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
<td>1/2</td>
<td>1/3</td>
<td>1/3</td>
<td>1/6</td>
<td>1/2</td>
</tr>
<tr>
<td>$(1, \rho)$</td>
<td>0</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>2/3</td>
<td>-1/3</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>$(1, \varepsilon)$</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
<td>-1/2</td>
<td>1/3</td>
<td>1/3</td>
<td>1/6</td>
<td>-1/2</td>
</tr>
<tr>
<td>(g_2, ε)</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>-1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>(g_3, ζ_3)</td>
<td>0</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>-1/3</td>
<td>-1/3</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>(g_3, ζ_3^2)</td>
<td>0</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>-1/3</td>
<td>-1/3</td>
<td>1/3</td>
<td>0</td>
</tr>
</tbody>
</table>
Lusztig’s Fourier matrix for G_2

<table>
<thead>
<tr>
<th></th>
<th>$(1, 1)$</th>
<th>$(g_2, 1)$</th>
<th>$(g_3, 1)$</th>
<th>$(1, \rho)$</th>
<th>$(1, \varepsilon)$</th>
<th>(g_2, ε)</th>
<th>(g_3, ζ_3)</th>
<th>(g_3, ζ_3^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 1)$</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$(g_2, 1)$</td>
<td>.</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>$(g_3, 1)$</td>
<td>.</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{-1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{-1}{3}$</td>
</tr>
<tr>
<td>$(1, \rho)$</td>
<td>.</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{-1}{3}$</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{-1}{3}$</td>
</tr>
<tr>
<td>$(1, \varepsilon)$</td>
<td>.</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{-1}{2}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{-1}{2}$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>(g_2, ε)</td>
<td>.</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{-1}{2}$</td>
<td>.</td>
<td>.</td>
<td>$\frac{-1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>.</td>
</tr>
<tr>
<td>(g_3, ζ_3)</td>
<td>.</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{-1}{3}$</td>
<td>$\frac{-1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{2}{3}$</td>
</tr>
<tr>
<td>(g_3, ζ_3^2)</td>
<td>.</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{-1}{3}$</td>
<td>$\frac{-1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>.</td>
<td>$\frac{-1}{3}$</td>
</tr>
<tr>
<td>Character</td>
<td>Degree</td>
<td>Fake degree</td>
<td>Eigenvalue</td>
<td>Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_{1,6}$</td>
<td>q^6</td>
<td>q^6</td>
<td>1</td>
<td>C_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{1}{6} q \Phi_2^2 \Phi_3$</td>
<td>$q \Phi_8$</td>
<td>1</td>
<td>$S_3.(1, 1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_{2,2}$</td>
<td>$\frac{1}{2} q \Phi_2^2 \Phi_6$</td>
<td>$q^2 \Phi_4$</td>
<td>1</td>
<td>$S_3.(g_2, 1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi'_{1,3}$</td>
<td>$\frac{1}{3} q \Phi_3 \Phi_6$</td>
<td>q^3</td>
<td>1</td>
<td>$S_3.(g_3, 1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi''_{1,3}$</td>
<td>$\frac{1}{3} q \Phi_3 \Phi_6$</td>
<td>q^3</td>
<td>1</td>
<td>$S_3.(1, \rho)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G_2[1]$</td>
<td>$\frac{1}{6} q \Phi_1^2 \Phi_6$</td>
<td>0</td>
<td>1</td>
<td>$S_3.(1, \varepsilon)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G_2[-1]$</td>
<td>$\frac{1}{2} q \Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$S_3.(g_2, \varepsilon)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G_2[\zeta_3]$</td>
<td>$\frac{1}{3} q \Phi_1^2 \Phi_2^2$</td>
<td>0</td>
<td>ζ_3</td>
<td>$S_3.(g_3, \zeta_3)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G_2[\zeta_3^2]$</td>
<td>$\frac{1}{3} q \Phi_1^2 \Phi_2^2$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$S_3.(g_3, \zeta_3^2)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Fourier matrix for G_4

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>$\frac{3-\sqrt{-3}}{6}$</td>
<td>$\frac{3+\sqrt{-3}}{6}$</td>
<td>$\sqrt{-3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>$\frac{3+\sqrt{-3}}{6}$</td>
<td>$\frac{3-\sqrt{-3}}{6}$</td>
<td>$-\sqrt{-3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>$\frac{3+\sqrt{-3}}{6}$</td>
<td>$\frac{3-\sqrt{-3}}{6}$</td>
<td>$-\sqrt{-3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>$\sqrt{-3}$</td>
<td>$-\sqrt{-3}$</td>
<td>$\sqrt{-3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-\frac{\sqrt{-3}}{6}$</td>
<td>$\frac{\sqrt{-3}}{6}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{-3}$</td>
<td>$-\frac{-\sqrt{-3}}{6}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{-3}$</td>
<td>$-\frac{\sqrt{-3}}{3}$</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
</tr>
</tbody>
</table>
The Fourier matrix for G_4

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>02</td>
<td>.</td>
<td>$\frac{3-\sqrt{-3}}{6}$</td>
<td>$\frac{3+\sqrt{-3}}{6}$</td>
<td>$\frac{\sqrt{-3}}{3}$</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>.</td>
<td>$\frac{3+\sqrt{-3}}{6}$</td>
<td>$\frac{3-\sqrt{-3}}{6}$</td>
<td>$\frac{-\sqrt{-3}}{3}$</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>- $\frac{\sqrt{-3}}{6}$</td>
<td>$\frac{-\sqrt{-3}}{6}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{\sqrt{-3}}{3}$</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{\sqrt{-3}}{6}$</td>
<td>$\frac{-\sqrt{-3}}{6}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{-\sqrt{-3}}{3}$</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{\sqrt{-3}}{3}$</td>
<td>$\frac{-\sqrt{-3}}{3}$</td>
<td>.</td>
<td>$\frac{\sqrt{-3}}{3}$</td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{-\frac{1}{2}}{2}$</td>
<td>.</td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{3-\sqrt{-3}}{6} q\Phi_3' \Phi_4 \Phi_6''$</td>
<td>$q\Phi_4$</td>
<td>1</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$\frac{3+\sqrt{-3}}{6} q\Phi_3'' \Phi_4 \Phi_6'$</td>
<td>$q^3\Phi_4$</td>
<td>1</td>
<td>$X_3.02$</td>
</tr>
<tr>
<td>$Z_3 : 2$</td>
<td>$\frac{\sqrt{-3}}{3} q\Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_3.12$</td>
</tr>
<tr>
<td>$\phi_{3,2}$</td>
<td>$q^2\Phi_3 \Phi_6$</td>
<td>$q^2\Phi_3 \Phi_6$</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>$-\frac{\sqrt{-3}}{6} q^4 \Phi_3' \Phi_4 \Phi_6''$</td>
<td>q^4</td>
<td>1</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>$\frac{\sqrt{-3}}{6} q^4 \Phi_3' \Phi_4 \Phi_6'$</td>
<td>q^8</td>
<td>1</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\phi_{2,5}$</td>
<td>$\frac{1}{2} q^4 \Phi_2 \Phi_3^2 \Phi_6$</td>
<td>$q^5\Phi_4$</td>
<td>1</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$Z_3 : 11$</td>
<td>$\frac{\sqrt{-3}}{3} q^4 \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_5.4$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\frac{1}{2} q^4 \Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$X_5.5$</td>
</tr>
</tbody>
</table>

It gives rise to $\xrightarrow{N G} V \xleftarrow{L F W G(\mathcal{L})}$ and to \Rightarrow Harish–Chandra induction $\Rightarrow R_{G \mathcal{L}} := \text{Ind}_{G P} \cdot \text{Res}_{P} \rightarrow L$:

$\xrightarrow{C \mathcal{L} \text{mod}} \xrightarrow{C G \text{mod}}$ and restriction $\ast R_{G \mathcal{L}} : C G \text{mod} \rightarrow C \mathcal{L} \text{mod}$ which do not depend on the choice of P.

Michel Broué | Pseudo reductive groups over \mathbb{F}_x?

Michel Broué
A Levi subgroup of an F–stable parabolic subgroup \mathbf{P} of \mathbf{G} is called a $\mathbf{1}$–Levi subgroup of \mathbf{G}.

It gives rise to

Harish-Chandra induction

$\text{Ind}^\mathbf{G}_{\mathbf{P}} \cdot \text{Res}^\mathbf{P}_\mathbf{L} \colon \mathbb{C}^\mathbf{L} \mod \to \mathbb{C}^\mathbf{G} \mod$

and restriction

$\ast \text{Res}^\mathbf{P}_\mathbf{L} \colon \mathbb{C}^\mathbf{G} \mod \to \mathbb{C}^\mathbf{L} \mod$

which do not depend on the choice of \mathbf{P}.

Michel Broué

It gives rise to

\[
\begin{array}{ccc}
P^F & \rightarrow & N_{G^F}(L) \\
V^F & \downarrow & \downarrow W_{G(L)} \\
1 & \downarrow & \downarrow L^F \\
& & \end{array}
\]

It gives rise to

and to

Harish-Chandra induction $R_{G/L} := \text{Ind}_{G/P} \cdot \text{Res}_{P \to L}$, which do not depend on the choice of P.

Michel Broué

It gives rise to

$$\begin{array}{ccc}
P^F & \overset{\text{P}}{\longrightarrow} & N_{G^F}(L) \\
V^F & \overset{\text{W}}{\longrightarrow} & L^F \\
1 & \overset{\text{G}}{\longrightarrow} & G \end{array}$$

and to

- Harish–Chandra induction $R_L^G := \text{Ind}_P^G \cdot \text{Res}_{P \to L}$

It gives rise to

$$
\begin{array}{c}
P^F \\
\downarrow \\
V^F \\
\downarrow \\
1
\end{array} \quad \begin{array}{c}
N_{G^F}(L) \\
\downarrow \\
L^F \\
\downarrow \\
W_G(L)
\end{array}
$$

and to

- Harish–Chandra induction $R_L^G := \text{Ind}_P^G \cdot \text{Res}_{P \to L} : C_{L \text{mod}} \to C_{G \text{mod}}$

It gives rise to

$$
\begin{array}{ccc}
F & N_{GF}(L) \\
P & V^F & L^F \\
1 & W_G(L) & \\
\end{array}
$$

and to

- Harish–Chandra induction $R_L^G := \text{Ind}_P^G \cdot \text{Res}_{P \to L} : \mathcal{C}_L \text{mod} \to \mathcal{C}_G \text{mod}$
- and restriction $^*R_L^G : \mathcal{C}_G \text{mod} \to \mathcal{C}_L \text{mod}$

It gives rise to

$$
\begin{array}{c}
P^F \\
\downarrow \\
\downarrow \\
V^F \\
\downarrow \\
\downarrow \\
L^F \\
\downarrow \\
\downarrow \\
1
\end{array}
$$

and to

- Harish–Chandra induction $R^G_L := \text{Ind}_P^G \cdot \text{Res}_{P \to L} : \mathcal{C}_L \text{mod} \to \mathcal{C}_G \text{mod}$
- and restriction $^*R^G_L : \mathcal{C}_G \text{mod} \to \mathcal{C}_L \text{mod}$
- which do not depend on the choice of P.

Michel Broué Pseudo reductive groups over \mathbb{F}_x
Definition: cuspidal character

An irreducible character γ of G is said to be 1–cuspidal if, whenever L is a proper 1–Levi subgroup, we have $\ast_R G L(\gamma) = 0$.

A pair (L, λ) is called 1–cuspidal if L is a 1–Levi subgroup of G and λ a 1–cuspidal irreducible character of L.

Main theorem

1. Partition: $\text{Irr}_K(G) = \bigcup (L, \lambda)$ cuspidal $\text{Irr}_R G L(\lambda)$

2. For (L, λ) 1–cuspidal, the relative Weyl group $W_{G(L, \lambda)} := N_G(L, \lambda)/L$ is a finite Coxeter group.

3. The commuting algebra $\text{End}_K G R G L(\lambda)$ is a Hecke algebra for $W_{G(L, \lambda)}$.
Definition: cuspidal character

- An irreducible character γ of G is said to be 1-cuspidal if, whenever L is a proper 1-Levi subgroup, we have $\ast R_G L (\gamma) = 0$.

A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

1. **Partition:**

 \[
 \text{Irr}_K(G) = \bigcup (L, \lambda) \text{ cuspidal} / \text{Irr}_R G L (\lambda)
 \]

2. For (L, λ) 1-cuspidal, the relative Weyl group $W_G (L, \lambda) := N_G (L, \lambda) / L$ is a finite Coxeter group.

3. The commuting algebra $\text{End}_K R G L (\lambda)$ is a Hecke algebra for $W_G (L, \lambda)$.
Definition: cuspidal character

An irreducible character γ of G is said to be 1–cuspidal if, whenever L is a proper 1–Levi subgroup, we have $^*R^G_L(\gamma) = 0$.

A pair (L, λ) is called 1–cuspidal if L is a 1–Levi subgroup of G and λ a 1–cuspidal irreducible character of L.

Main theorem

1. Partition: $\text{Irr}_K(G) = \bigcup (L, \lambda) \text{ cuspidal/}G \text{ Irr}_R^G(L, \lambda)$

2. For (L, λ) 1–cuspidal, the relative Weyl group $W_G(L, \lambda) := N_G(L, \lambda)/L$ is a finite Coxeter group.

3. The commuting algebra $\text{End}_K^G R^G_L(\lambda)$ is a Hecke algebra for $W_G(L, \lambda)$.
Definition: cuspidal character

- An irreducible character γ of G is said to be 1–cuspidal if, whenever L is a proper 1–Levi subgroup, we have $\ast R^G_L(\gamma) = 0$.
- A pair (L, λ) is called 1–cuspidal if L is a 1–Levi subgroup of G and λ a 1–cuspidal irreducible character of L.

Main theorem

1. Partition:
 $$\text{Irr}^K_G(G) = \bigcup \text{cuspidal} / \text{Irr}\, R^G_L(\lambda)$$

2. For (L, λ) 1–cuspidal, the relative Weyl group $W^G(L, \lambda) := N_G(L, \lambda) / L$ is a finite Coxeter group.

3. The commuting algebra $\text{End}^{KG}(R^G_L(\lambda))$ is a Hecke algebra for $W^G(L, \lambda)$.

Michel Broué
Definition: cuspidal character

- An irreducible character γ of G is said to be 1-cuspidal if, whenever L is a proper 1-Levi subgroup, we have $\ast R^G_L(\gamma) = 0$.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

1. Partition: $\text{Irr}_K(G) = \bigcup (L, \lambda) \text{ cuspidal}/\text{Irr}_{R^G_L(\lambda)}$
2. For (L, λ) 1-cuspidal, the relative Weyl group $W_G(L, \lambda) := N_G(L, \lambda)/L$ is a finite Coxeter group.
3. The commuting algebra $\text{End}_{K^G_L(\lambda)}$ is a Hecke algebra for $W_G(L, \lambda)$.
Definition: cuspidal character

- An irreducible character γ of G is said to be 1-cuspidal if, whenever L is a proper 1-Levi subgroup, we have $^*R^G_L(\gamma) = 0$.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

1. Partition:

$\text{Irr}_K(G) = \bigcup_{(L, \lambda) \text{ cuspidal}/G} \text{Irr} R^G_L(\lambda)$
Definition: cuspidal character

- An irreducible character γ of G is said to be 1-cuspidal if, whenever L is a proper 1-Levi subgroup, we have $\ast R^G_L(\gamma) = 0$.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

1. Partition:

$$\text{Irr}_K(G) = \bigcup_{(L, \lambda) \text{ cuspidal/G}} \text{Irr} R^G_L(\lambda)$$

2. For (L, λ) 1-cuspidal, the relative Weyl group

$$W_G(L, \lambda) := N_G(L, \lambda)/L$$

is a finite Coxeter group.
Definition: cuspidal character

- An irreducible character γ of G is said to be 1–cuspidal if, whenever L is a proper 1–Levi subgroup, we have $^*R^G_L(\gamma) = 0$.
- A pair (L, λ) is called 1–cuspidal if L is a 1–Levi subgroup of G and λ a 1–cuspidal irreducible character of L.

Main theorem

1. Partition:
$$\text{Irr}_K(G) = \bigcup_{(L, \lambda) \text{ cuspidal}/G} \text{Irr } R^G_L(\lambda)$$

2. For (L, λ) 1–cuspidal, the relative Weyl group
$$W_G(L, \lambda) := N_G(L, \lambda)/L$$
is a finite Coxeter group.

3. The commuting algebra $\text{End}_{KG} R^G_L(\lambda)$ is a Hecke algebra for $W_G(L, \lambda)$.
Degrees and Eigenvalues

The elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are parametrized by finite sets which are independent of q (depend only on the "type" of G). The degrees of elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are polynomials evaluated at q.

Among the unipotent character sheaves are the functions $R \chi = 1 |W| \sum_{w \in W} \chi(w) R_G T_w$ and $\text{Deg} R \chi$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the "fake degree" of χ).

The degrees of the irreducible constituents of $R_G L(\lambda)$ are given by the "generic degrees" for the Hecke algebra of $W_G(L, \lambda)$.

The Fourier matrix is independent of q.

Michel Broué
The elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are parametrized by finite sets which are independent of q. The degrees of elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are polynomials evaluated at q.

Among the unipotent character sheaves are the functions $R \chi = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_G T_w$ and $\text{Deg} R \chi$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the fake degree of χ).

The degrees of the irreducible constituents of $R_G L(\lambda)$ are given by the “generic degrees” for the Hecke algebra of $W_G(L, \lambda)$.

The Fourier matrix is independent of q.Michel Broué
The elements of \(\text{UnCh}(G) \) and \(\text{UnSh}(G) \) are parametrized by finite sets which are independent of \(q \) (depend only on the “type” of \(G \)).
The elements of UnCh(\(G\)) and UnSh(\(G\)) are parametrized by finite sets which are independent of \(q\) (depend only on the “type” of \(G\)).

The degrees of elements of UnCh(\(G\)) and UnSh(\(G\)) are polynomials evaluated at \(q\).
The elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are parametrized by finite sets which are independent of q (depend only on the “type” of G).

The degrees of elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are polynomials evaluated at q.

Among the unipotent character sheaves are the functions

$$R_\chi = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_{T_w}^G$$
Degrees and Eigenvalues

Degrees

- The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the “type” of G).
- The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.

 - Among the unipotent character sheaves are the functions

 \[R_\chi = \frac{1}{|W|} \sum_{w \in W} \chi(w) R^G_{T_w} \]

 and \(\text{Deg} R_\chi \) is the graded multiplicity of \(\chi \) in the coinvariant algebra of \(W \), evaluated at \(q \) (the fake degree of \(\chi \)).
The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the “type” of G).

The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.

- Among the unipotent character sheaves are the functions

$$R_{\chi} = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_{T_w}^{G}$$

and $\text{Deg}R_{\chi}$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the fake degree of χ).

- The degrees of the irreducible constituents of $R_{L}^{G} (\lambda)$ are given by the “generic degrees” for the Hecke algebra of $W_{G}(L, \lambda)$.
The elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are parametrized by finite sets which are independent of q (depend only on the “type” of G).

The degrees of elements of $\text{UnCh}(G)$ and $\text{UnSh}(G)$ are polynomials evaluated at q.

- Among the unipotent character sheaves are the functions

$$R_\chi = \frac{1}{|W|} \sum_{w \in W} \chi(w) R^G_{T_w}$$

and $\text{Deg}R_\chi$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the fake degree of χ).

- The degrees of the irreducible constituents of $R^G_L(\lambda)$ are given by the “generic degrees” for the Hecke algebra of $W_G(L, \lambda)$.

- The Fourier matrix is independent of q.

Unipotent characters for G_2

In red, the principal series $= \text{degrees prime to } \Phi_1 \ (i.e., \ \text{Deg}_\chi(q)_{q=1} \neq 0)$

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>Fake degree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,6}$</td>
<td>q^6</td>
<td>q^6</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{1}{6} q\Phi_2^2 \Phi_3$</td>
<td>$q\Phi_8$</td>
<td>1</td>
<td>$S_3.(1,1)$</td>
</tr>
<tr>
<td>$\phi_{2,2}$</td>
<td>$\frac{1}{2} q\Phi_2^2 \Phi_6$</td>
<td>$q^2 \Phi_4$</td>
<td>1</td>
<td>$S_3.(g_2, 1)$</td>
</tr>
<tr>
<td>$\phi_{1,3}'$</td>
<td>$\frac{1}{3} q\Phi_3 \Phi_6$</td>
<td>q^3</td>
<td>1</td>
<td>$S_3.(g_3, 1)$</td>
</tr>
<tr>
<td>$\phi_{1,3}''$</td>
<td>$\frac{1}{3} q\Phi_3 \Phi_6$</td>
<td>q^3</td>
<td>1</td>
<td>$S_3.(1, \rho)$</td>
</tr>
<tr>
<td>$G_2[1]$</td>
<td>$\frac{1}{6} q\Phi_2^2 \Phi_6$</td>
<td>0</td>
<td>1</td>
<td>$S_3.(1, \varepsilon)$</td>
</tr>
<tr>
<td>$G_2[-1]$</td>
<td>$\frac{1}{2} q\Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$S_3.(g_2, \varepsilon)$</td>
</tr>
<tr>
<td>$G_2[\zeta_3]$</td>
<td>$\frac{1}{3} q\Phi_2^2 \Phi_2$</td>
<td>0</td>
<td>ζ_3</td>
<td>$S_3.(g_3, \zeta_3)$</td>
</tr>
<tr>
<td>$G_2[\zeta_3^2]$</td>
<td>$\frac{1}{3} q\Phi_1^2 \Phi_2$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$S_3.(g_3, \zeta_3^2)$</td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

Red = the principal series
Blue = series (L,λ)
Purple = Cuspidal

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{3-\sqrt{-3}}{6} q\Phi_3' \Phi_4 \Phi_6''$</td>
<td>$q\Phi_4$</td>
<td>1</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$\frac{3+\sqrt{-3}}{6} q\Phi_3' \Phi_4 \Phi_6'$</td>
<td>$q^3 \Phi_4$</td>
<td>1</td>
<td>$X_3.02$</td>
</tr>
<tr>
<td>$Z_3 : 2$</td>
<td>$\frac{\sqrt{-3}}{3} q\Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_3.12$</td>
</tr>
<tr>
<td>$\phi_{3,2}$</td>
<td>$\frac{1}{2} q^4 \Phi_3^2 \Phi_6^2$</td>
<td>$q^2 \Phi_3 \Phi_6$</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>$\frac{-\sqrt{-3}}{6} q^4 \Phi_3'' \Phi_4 \Phi''_6$</td>
<td>q^4</td>
<td>1</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>$\frac{\sqrt{-3}}{6} q^4 \Phi_3' \Phi_4 \Phi_6'$</td>
<td>q^8</td>
<td>1</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\phi_{2,5}$</td>
<td>$\frac{1}{2} q^4 \Phi_2^2 \Phi_6$</td>
<td>$q^5 \Phi_4$</td>
<td>1</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$Z_3 : 11$</td>
<td>$\frac{\sqrt{-3}}{3} q^4 \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_5.4$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\frac{1}{2} q^4 \Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$X_5.5$</td>
</tr>
</tbody>
</table>
Eigenvalues of Frobenius

$\text{Eigenvectors of Frobenius}$

Each $H_i c(X_w, Q_\ell)$ is a $G \times \mathbb{F}_\ell$–module.

For any unipotent character $\rho \in \text{UnCh}(G)$, the eigenvalues of \mathbb{F} on the ρ-isotypic part of $H_i c(X_w, Q_\ell)$ are $\lambda_\rho q^n/2$ where λ_ρ is a root of unity independent of i and of w.

Definition λ_ρ is the eigenvalue of Frobenius attached to ρ.

Michel Broué

Pseudo reductive groups over \mathbb{F}_x?
Eigenvalues of Frobenius

\[R^G_{T_w}(g) = \sum_i (-1)^i \text{Trace}(g \mid H^i_c(X_w, \mathbb{Q}_\ell)) \]
Eigenvalues of Frobenius

- $R_T^G(g) = \sum_i (-1)^i \text{Trace}(g \mid H_c^i(X_w, \mathbb{Q}_\ell))$
- Each $H_c^i(X_w, \mathbb{Q}_\ell)$ is a $G \times <F>$–module.

\[\lambda_{\rho}q^{n/2} \]

$n \in \mathbb{N}$

λ_{ρ} is a root of unity independent of i and of w.

Definition λ_{ρ} is the eigenvalue of Frobenius attached to ρ.

Michel Broué
Eigenvalues of Frobenius

- $R_{T_w}^G(g) = \sum_i (-1)^i \text{Trace}(g \mid H_c^i(X_w, \mathbb{Q}_\ell))$

- Each $H_c^i(X_w, \mathbb{Q}_\ell)$ is a $G \times <F>$–module.

- For any unipotent character $\rho \in \text{UnCh}(G)$, the eigenvalues of F on the ρ-isotypic part of $H_c^i(X_w, \mathbb{Q}_\ell)$ are $\lambda_\rho q^n/2$ where λ_ρ is a root of unity independent of i and of w.

Definition λ_ρ is the eigenvalue of Frobenius attached to ρ.

Michel Broué Pseudo reductive groups over \mathbb{F}_x?
Eigenvalues of Frobenius

- $R^G_{T_w}(g) = \sum_i (-1)^i \text{Trace}(g | H^i_c(X_w, \mathbb{Q}_\ell))$

- Each $H^i_c(X_w, \mathbb{Q}_\ell)$ is a $G \times <F>$–module.

- For any unipotent character $\rho \in \text{UnCh}(G)$, the eigenvalues of F on the ρ-isotypic part of $H^i_c(X_w, \mathbb{Q}_\ell)$ are

$$\lambda_\rho q^{n/2}$$

where
Eigenvalues of Frobenius

- \(R^G_{T_w}(g) = \sum_i (-1)^i \text{Trace}(g \mid H^i_c(X_w, \mathbb{Q}_\ell)) \)
- Each \(H^i_c(X_w, \mathbb{Q}_\ell) \) is a \(G \times <F> \)–module.
- For any unipotent character \(\rho \in \text{UnCh}(G) \), the eigenvalues of \(F \) on the \(\rho \)-isotypic part of \(H^i_c(X_w, \mathbb{Q}_\ell) \) are
 \[
 \lambda_\rho q^{n/2}
 \]

where
- \(n \in \mathbb{N} \)
Eigenvalues of Frobenius

- $R^G_{T_w}(g) = \sum_i (-1)^i \text{Trace}(g \mid H^i_c(X_w, \mathbb{Q}_\ell))$
- Each $H^i_c(X_w, \mathbb{Q}_\ell)$ is a $G \times <F>$–module.
- For any unipotent character $\rho \in \text{UnCh}(G)$, the eigenvalues of F on the ρ-isotypic part of $H^i_c(X_w, \mathbb{Q}_\ell)$ are

$$\lambda_\rho q^{n/2}$$

where

- $n \in \mathbb{N}$
- λ_ρ is a root of unity independent of i and of w.

Michel Broué
Pseudo reductive groups over \mathbb{F}_x?
Eigenvalues of Frobenius

- \[R^G_T(w(g)) = \sum_i (-1)^i \text{Trace}(g \mid H^i_c(X_w, \mathbb{Q}_\ell)) \]
- Each \(H^i_c(X_w, \mathbb{Q}_\ell) \) is a \(G \times <F> \)-module.
- For any unipotent character \(\rho \in \text{UnCh}(G) \), the eigenvalues of \(F \) on the \(\rho \)-isotypic part of \(H^i_c(X_w, \mathbb{Q}_\ell) \) are \(\lambda_\rho q^n/2 \)

where
- \(n \in \mathbb{N} \)
- \(\lambda_\rho \) is a root of unity independent of \(i \) and of \(w \).

Definition

\(\lambda_\rho \) is the **eigenvalue of Frobenius** attached to \(\rho \).
Reflection data and the Spetses game

By the isogeny theorem, (G, F) is determined by its reflection datum $(X(T), Y(T), \Phi, \Phi^\vee, q)$. All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from $W \subset GL(V)$, where $V = X(T) \otimes \mathbb{C}$.

The Hecke algebra $H(W) = \langle s \mid (s - q)(s + 1) = 0 \rangle$.

Spetses island: there we started to play the same game, replacing the Weyl group W by the complex reflection group of order 3.

Michel Broué

Pseudo reductive groups over F_x?
By the isogeny theorem, (G, F) is determined by its reflection datum.

All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from $W \subset \text{GL}(V)$, where $V = X(T) \otimes \mathbb{C}$.

The Hecke algebra $H(W) = \langle s \mid (s - q)(s + 1) = 0 \rangle$.

Spetses island: there we started to play the same game, replacing the Weyl group W by the complex reflection group of order 3.
By the isogeny theorem, \((G, F)\) is determined by its **reflection datum**

\[(X(T), Y(T), \Phi, \Phi^\vee, q)\]
Reflection data and the Spetses game

- By the isogeny theorem, \((G, F)\) is determined by its reflection datum
 \((X(T), Y(T), \Phi, \Phi^\vee, q)\)

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from

\[W \subset \text{GL}(V), \quad V = X(T) \otimes \mathbb{C} \]
By the isogeny theorem, \((G, F)\) is determined by its **reflection datum**

\[(X(T), Y(T), \Phi, \Phi^\vee, q)\]

All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from

\[W \subset GL(V), \text{ where } V = X(T) \otimes \mathbb{C}.\]
Reflection data and the Spetses game

- By the isogeny theorem, \((G, F)\) is determined by its reflection datum

 \[(X(T), Y(T), \Phi, \Phi^\vee, q)\]

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from

 - \(W \subset GL(V)\), where \(V = X(T) \otimes \mathbb{C}\).
 - The Hecke algebra

 \[\mathcal{H}(W) = \langle s \mid (s - q)(s + 1) = 0 \rangle\]
Reflection data and the Spetses game

- By the isogeny theorem, \((G, F)\) is determined by its reflection datum

 \((X(T), Y(T), \Phi, \Phi^\vee, q)\)

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from
 - \(W \subset \text{GL}(V)\), where \(V = X(T) \otimes \mathbb{C}\).
 - The Hecke algebra

 \[\mathcal{H}(W) = \langle s \mid (s - q)(s + 1) = 0 \rangle \]

- **Spetses island**

 There we started to play the same game, replacing the Weyl group \(W\) by the complex reflection group of order 3.
Reflection data and the Spetses game

- By the isogeny theorem, \((G, F)\) is determined by its reflection datum
 \[(X(T), Y(T), \Phi, \Phi^\vee, q)\]

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from
 - \(W \subset \text{GL}(V)\), where \(V = X(T) \otimes \mathbb{C}\).
 - The Hecke algebra
 \[\mathcal{H}(W) = \langle s \mid (s - q)(s + 1) = 0 \rangle\]

- **Spetses island**: there we started to play the same game, replacing the Weyl group \(W\) by the complex reflection group of order 3.
Hecke algebras of complex reflection groups

Every complex reflection group W has a nice presentation \("a la Coxeter\):

G_2:

\[S T S T S T = T S T S T S \]

G_4:

\[S^3 T S T S T S T S T = T S T S T S T S T S T \]

and a field of realisation $\mathbb{Q} W$:

$\mathbb{Q} G_2 = \mathbb{Q}$ and $\mathbb{Q} G_4 = \mathbb{Q}(\zeta_3)$.

The associated generic Hecke algebra is defined from such a presentation:

$H(G_2) := \langle S, T; S T S T S T = T S T S T S T S T S T S T \rangle$

$H(G_4) := \langle S, T; S^3 T S T S T S T S T S T S T = T S T S T S T S T S T S T S T \rangle$
Every complex reflection group W has a nice presentation “à la Coxeter”:

$G_2 : \begin{array}{c}
\circ \rightarrow \circ \\
\circ \rightarrow \circ
\end{array}$, \quad $G_4 : \begin{array}{c}
3 \rightarrow 3
\end{array}$
Every complex reflection group W has a nice presentation “à la Coxeter”:

$$G_2 : \begin{array}{c}
\circ \quad \circ \\
\hline \\
\circ \quad \circ
\end{array} \quad , \quad G_4 : \begin{array}{c}
\bullet \quad \bullet \\
\hline \\
\bullet \quad \bullet
\end{array}$$

and a field of realisation \mathbb{Q}_W:

$$\mathbb{Q}_{G_2} = \mathbb{Q} \quad \text{and} \quad \mathbb{Q}_{G_4} = \mathbb{Q}(\zeta_3).$$
Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice presentation “à la Coxeter”:

 $G_2 : \begin{array}{c} \circ \equiv \circ \end{array}$, \hspace{1cm} $G_4 : \begin{array}{c} 3 \equiv 3 \end{array}$

 and a field of realisation \mathbb{Q}_W:

 $\mathbb{Q}_{G_2} = \mathbb{Q}$ and $\mathbb{Q}_{G_4} = \mathbb{Q}(\zeta_3)$.

- The associated generic Hecke algebra is defined from such a presentation:

 $\mathcal{H}(G_2) := \langle S, T \rangle \begin{cases}
 STSTST = TSTSTS \\
 (S - u_0)(S - u_1) = 0 \\
 (T - v_0)(T - v_1) = 0
 \end{cases}$

 $\mathcal{H}(G_4) := \langle S, T \rangle \begin{cases}
 STS = TST \\
 (S - u_0)(S - u_1)(S - u_2) = 0
 \end{cases}$
The generic Hecke algebra $\mathcal{H}(W)$ is free of rank $|W|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates. With suitable choice we get a bijection $\text{Irr}(W) \leftrightarrow \text{Irr}(\mathcal{H}(G))$, $\chi \mapsto \chi_{\mathcal{H}(W)}$. The generic Hecke algebra $\mathcal{H}(W)$ is endowed with a canonical symmetrizing form $t: \mathcal{H}(W) \to \mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$ which specialises to the canonical form of the group algebra Q_W, and satisfies some other condition. The Schur elements of the irreducible characters of W are the elements $s_\chi \in \mathbb{Z}_W[(x^{\pm 1}), (y^{\pm 1}), \ldots]$ defined by $t = \sum_{\chi \in \text{Irr}(W)} 1 s_\chi \chi_{\mathcal{H}(W)}$. Michel Broué

Pseudo reductive groups over \mathbb{F}_x ?
The generic Hecke algebra $\mathcal{H}(W)$ is free of rank $|W|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.
1. The generic Hecke algebra $\mathcal{H}(W)$ is free of rank $|W|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.

3. With suitable choice we get a bijection

$$\text{Irr}(W) \sim \text{Irr}(\mathcal{H}(G)), \quad \chi \mapsto \chi_{\mathcal{H}(W)}.$$
1. The generic Hecke algebra $\mathcal{H}(W)$ is free of rank $|W|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$.

2. It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.

3. With suitable choice we get a bijection

$$\text{Irr}(W) \xrightarrow{\sim} \text{Irr}(\mathcal{H}(G)) , \quad \chi \mapsto \chi_{\mathcal{H}(W)}.$$

4. The generic Hecke algebra $\mathcal{H}(W)$ is endowed with a canonical symmetrizing form $t : \mathcal{H}(W) \rightarrow \mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$
 ▶ which specialises to the canonical form of the group algebra $\mathbb{Q}_W W$,
 ▶ and satisfies some other condition.
The generic Hecke algebra $\mathcal{H}(W)$ is free of rank $|W|$ over the corresponding Laurent polynomial ring $\mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$.

It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.

With suitable choice we get a bijection

$$\text{Irr}(W) \sim \text{Irr}(\mathcal{H}(G)) \quad , \quad \chi \mapsto \chi_{\mathcal{H}}(W).$$

The generic Hecke algebra $\mathcal{H}(W)$ is endowed with a canonical symmetrizing form $t : \mathcal{H}(W) \rightarrow \mathbb{Z}[(u_i^{\pm 1}), (v_j^{\pm 1}), \ldots]$ which specialises to the canonical form of the group algebra $\mathbb{Q}_W W$, and satisfies some other condition.

The Schur elements of the irreducible characters of W are the elements $s_\chi \in \mathbb{Z}_W[(x_i^{\pm 1}), (y_j^{\pm 1}), \ldots]$ defined by

$$t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_\chi} \chi_{\mathcal{H}}(W).$$
The spetsial Hecke algebra is the specialisation of $H(W)$ defined as follows: if $G = s d m t \cdots$, then the relation $(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$ specializes to $(S - q)(S_d - 1 + \cdots + S + 1) = 0$. Thus the spetsial algebra becomes the group algebra of W at $q = 1$. In our cases:

▶ For G_2: $(S - q)(S + 1) = 0$
▶ For G_4: $(S - q)(S^2 + S + 1) = 0$
The **spetsial Hecke algebra** is the specialisation of $\mathcal{H}(W)$ defined as follows:

If $G = \bigcirc s \bigcirc t \bigcirc \cdots$, then the relation

$$(S - q_0)(S - q_1) \cdots (S - q_{d-1}) = 0$$

specializes to

$$(S - q)(S_d + 1 + \cdots + S + 1) = 0$$

Thus the spetsial algebra becomes the group algebra of W at $q = 1$.

In our cases:

- For G_2: $(S - q)(S + 1) = 0$
- For G_4: $(S - q)(S^2 + S + 1) = 0$
The spetsial Hecke algebra is the specialisation of $\mathcal{H}(W)$ defined as follows:

$$\text{If } G = \begin{tikzpicture}[baseline=(current bounding box.center)]
 \node (s) at (0,0) {s};
 \node (d) at (1,0) {d};
 \node (e) at (2,0) {e};
 \node (t) at (3,0) {t};
 \draw (s) -- (d);
 \draw (d) -- (e);
 \draw (e) -- (t);
\end{tikzpicture},$$

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S - q)(S + 1)(S + 2) \cdots = 0$$

Thus the spetsial algebra becomes the group algebra of W at $q = 1$.

In our cases:

▶ For G_2: $(S - q)(S + 1) = 0$
▶ For G_4: $(S - q)(S^2 + S + 1) = 0$
The **spetsial Hecke algebra** is the specialisation of $\mathcal{H}(W)$ defined as follows:

If $G = \circlearrowleft \, s^m e_t \, \cdots$, then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S - q)(S - (d+1)) \cdots = 0$$

Thus the spetsial algebra becomes the group algebra of W at $q = 1$.

In our cases:

- For G_2: $(S - q)(S + 1) = 0$
- For G_4: $(S - q)(S^2 + S + 1) = 0$
The **spetsial Hecke algebra** is the specialisation of $\mathcal{H}(W)$ defined as follows:

If $G = \dfrac{d}{s} m \circ \dfrac{e}{t} \cdots$, then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S - q)(S^{d-1} + \cdots + S + 1) = 0$$
The spetsial Hecke algebra is the specialisation of $\mathcal{H}(W)$ defined as follows:

If \[G = \frac{d}{s} \overbrace{e \cdots e}^{m} \frac{t}{s} \]

then the relation

\[(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0\]

specializes to

\[(S - q)(S^{d-1} + \cdots + S + 1) = 0\]

Thus the spetsial algebra becomes the group algebra of W at $q = 1$.
The spetsial Hecke algebra is the specialisation of $\mathcal{H}(W)$ defined as follows:

If $G = \begin{array}{ccc} d & m & e \\ s & & t \end{array} \cdots \cdots$,

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S - q)(S^{d-1} + \cdots + S + 1) = 0$$

Thus the spetsial algebra becomes the group algebra of W at $q = 1$.

In our cases:

$\begin{array}{l}
\hline
\begin{array}{l}
\text{For } G_2: (S - q)(S + 1) = 0 \\
\text{For } G_4: (S - q)(S^2 + S + 1) = 0 \\
\end{array}
\hline
\end{array}$
The spetsial Hecke algebra is the specialisation of $\mathcal{H}(W)$ defined as follows:

$$G = \underbrace{d \circ m \circ e \cdots}_{s \circ t},$$

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S - q)(S^{d-1} + \cdots + S + 1) = 0$$

Thus the spetsial algebra becomes the group algebra of W at $q = 1$.

In our cases:

- For G_2: $(S - q)(S + 1) = 0$
The spetsial Hecke algebra is the specialisation of $\mathcal{H}(W)$ defined as follows:

If \(G = \genfrac(){0pt}{0}{d}{s} \cdot \genfrac(){0pt}{0}{m}{e} \cdot \genfrac(){0pt}{0}{t}{\cdots} \),

then the relation

\[(S - u_0)(S - u_1)\cdots(S - u_{d-1}) = 0\]

specializes to

\[(S - q)(S^{d-1} + \cdots + S + 1) = 0\]

Thus, the spetsial algebra becomes the group algebra of W at $q = 1$.

In our cases:

- For G_2: \((S - q)(S + 1) = 0\)
- For G_4: \((S - q)(S^2 + S + 1) = 0\)
Spetsial groups

The group W is called spetsial if

$$\text{Deg} \chi(q) := q^{N(q-1)}rW(q)/S\chi \in QW[q]$$

Here is the list of the spetsial groups:

- Among the imprimitive groups: $G(e, 1, r), G(e, e, r)$.
- Among the exceptional groups:

<table>
<thead>
<tr>
<th>Group G_n</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–10</td>
<td>2</td>
</tr>
<tr>
<td>11–16</td>
<td>2</td>
</tr>
<tr>
<td>17–20</td>
<td>2</td>
</tr>
<tr>
<td>21–25</td>
<td>2</td>
</tr>
<tr>
<td>26–27</td>
<td>2, 3</td>
</tr>
<tr>
<td>28–35</td>
<td>4, 4</td>
</tr>
<tr>
<td>36–40</td>
<td>5, 6</td>
</tr>
<tr>
<td>41–50</td>
<td>7, 8</td>
</tr>
</tbody>
</table>

Groups H_3, F_4, H_4, E_6, E_7, E_8.

Michel Broué

Pseudo reductive groups over F_x?
The group W is called \textit{spetsial} if

$$\text{Deg} \chi(q) := q^N(q-1)r_{\mathcal{W}(q)} / S_{\chi} \in \mathbb{Q}_{\mathcal{W}[q]}$$
The group W is called \textit{spetsial} if

$$\text{Deg}_\chi(q) := q^N(q - 1)^r P_W(q)/S_\chi$$
The group W is called spetsial if

$$\text{Deg}_\chi(q) := q^N(q - 1)^r P_W(q)/S_\chi \in \mathbb{Q}_W[q]$$
The group W is called spetsial if

$$\text{Deg}_\chi(q) := q^N(q - 1)^r P_W(q)/S_\chi \in \mathbb{Q}_W[q]$$

Here is the list of the spetsial groups:

- Among the imprimitive groups:
 - $G(e_1, 1, r)$,
 - $G(e_1, e_1, r)$.

- Among the exceptional groups:
 - Group
 | G_n | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
 | Rank | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
 - Group
 | G_n | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
 | Rank | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
 - Remark
 | H_3 |
 - Group
 | G_n | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
 | Rank | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 7 | 8 |
 - Remark
 | F_4 |
 | H_4 |
 | E_6 |
 | E_7 |
 | E_8 |
The group W is called \textit{spetsial} if
\[
\text{Deg}_\chi(q) := q^N(q - 1)^r P_W(q) / S_\chi \in \mathbb{Q}_W[q]
\]

Here is the list of the spetsial groups :

- Among the imprimitive groups : $G(e, 1, r), G(e, e, r)$.
The group W is called spetsial if

$$\text{Deg}_\chi(q) := q^N(q - 1)^r P_W(q)/S_\chi \in \mathbb{Q}_W[q]$$

Here is the list of the spetsial groups:

- Among the imprimitive groups: $G(e, 1, r), G(e, e, r)$.
- Among the exceptional groups:
Spetsial groups

- The group W is called **spetsial** if

\[
\text{Deg}_\chi(q) := q^N(q-1)^r \frac{P_W(q)}{S_\chi} \in \mathbb{Q}_W[q]
\]

- Here is the list of the spetsial groups :

 - Among the imprimitive groups : $G(e, 1, r), G(e, e, r)$.
 - Among the exceptional groups :

<table>
<thead>
<tr>
<th>Group G_n</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group G_n</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Remark</td>
<td>H_3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group G_n</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Remark</td>
<td>F_4</td>
<td>H_4</td>
<td>E_6</td>
<td>E_7</td>
<td>E_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Back to the context of a finite reductive group with Weyl group W.

A unipotent character ρ is in $R_{G_{T_w}(1)}$ iff $\text{Deg} \, \rho(\zeta) \neq 0$.

Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that $H_{W_w} = \text{End}_{\mathbb{Q}_\ell} G(H^\bullet_c(\mathcal{X}_w, \mathbb{Q}_\ell))$. The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R_{G_{T_w}(1)}$.
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element,
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element, i.e., $V(w, \zeta) := \ker(w - \zeta \text{Id}_V)$ is maximal.
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element, i.e., $V(w, \zeta) := \ker(w - \zeta \text{Id}_V)$ is maximal.

- The centralizer $W(w)$ of w is a complex reflection group on $V(w, \zeta)$.

A unipotent character ρ is in \(R_{G,w}(1) \) iff \(\text{Deg} \rho(\zeta) \neq 0 \).

Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that $H_{W(w)} = \text{End}_{Q_\ell} G(H^\bullet c(X_w, Q_\ell))$.

The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R_{G,w}(1)$.

This conjecture was prompted by the abelian defect groups conjecture.

Michel Broué
\(\zeta\)-Harish-Chandra theory (simplified version)

Back to the context of a finite reductive group with Weyl group \(W\). Let \(w \in W\) be a \(\zeta\)-regular element, i.e., \(V(w, \zeta) := \ker(w - \zeta \text{Id}_V)\) is maximal.

- The centralizer \(W(w)\) of \(w\) is a complex reflection group on \(V(w, \zeta)\).
- \(N_G(T_w, \text{Id})/T_w \simeq W(w)\).
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element, i.e., $V(w, \zeta) := \ker(w - \zeta \text{Id}_V)$ is maximal.

- The centralizer $W(w)$ of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(T_w, \text{Id})/T_w \simeq W(w)$.
- There is a ζ–cyclotomic Hecke algebra $\mathcal{H}_W(w)$ for $W(w)$ which controls $R^G_{T_w}(1)$.
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element, i.e., $V(w, \zeta) := \ker(w - \zeta \text{Id}_V)$ is maximal.

- The centralizer $W(w)$ of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(T_w, \text{Id})/T_w \simeq W(w)$.
- There is a ζ–cyclo-Hecke algebra $\mathcal{H}_W(w)$ for $W(w)$ which controls $R^G_{T_w}(1)$.
 - A unipotent character ρ is in $R^G_{T_w}(1)$ iff $\text{Deg}_\rho(\zeta) \neq 0$.

Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that $\mathcal{H}_W(w) = \text{End}_{\mathbb{Q}_\ell} G(H^\text{c} \left(X_w, \mathbb{Q}_\ell \right))$.

The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R^G_{T_w}(1)$.

This conjecture was prompted by the abelian defect groups conjecture.

Michel Broué
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element, i.e., $V(w, \zeta) := \ker(w - \zeta \text{Id}_V)$ is maximal.

- The centralizer $W(w)$ of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(T_w, \text{Id})/T_w \simeq W(w)$.
- There is a ζ–cyclotomic Hecke algebra $\mathcal{H}_W(w)$ for $W(w)$ which controls $R_{T_w}^G(1)$.

 ▶ A unipotent character ρ is in $R_{T_w}^G(1)$ iff $\text{Deg}_\rho(\zeta) \neq 0$.

 ▶ Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that $\mathcal{H}_W(w) = \text{End}_{\mathbb{Q}_\ell G}(H_c^\bullet(X_w, \mathbb{Q}_\ell))$.

\[\zeta\text{-Harish-Chandra theory (simplified version)}\]
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a \textit{ζ–regular element}, i.e., $V(w, \zeta) \colonequals \ker(w - \zeta \mathrm{Id}_V)$ is maximal.

- The centralizer $W(w)$ of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(T_w, \mathrm{Id})/T_w \cong W(w)$.
- There is a \textit{ζ–cyclotomic Hecke algebra} $\mathcal{H}_W(w)$ for $W(w)$ which controls $R_{T_w}^G(1)$.

- A unipotent character ρ is in $R_{T_w}^G(1)$ iff $\text{Deg}_\rho(\zeta) \neq 0$.
- Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that $\mathcal{H}_W(w) = \text{End}_{\mathbb{Q}_\ell G}(H^\bullet_c(X_w, \mathbb{Q}_\ell))$.

- The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R_{T_w}^G(1)$.

This conjecture was prompted by the abelian defect groups conjecture.
Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ–regular element, i.e., $V(w, \zeta) := \ker(w - \zeta \text{Id}_V)$ is maximal.

- The centralizer $W(w)$ of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(T_w, \text{Id})/T_w \simeq W(w)$.
- There is a ζ–cyclootomic Hecke algebra $\mathcal{H}_W(w)$ for $W(w)$ which controls $R^G_{T_w}(1)$.
 - A unipotent character ρ is in $R^G_{T_w}(1)$ iff $\text{Deg}_{\rho}(\zeta) \neq 0$.
 - Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that $\mathcal{H}_W(w) = \text{End}_{\mathbb{Q}_\ell G}(H^\bullet_c(X_w, \mathbb{Q}_\ell))$.
- The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R^G_{T_w}(1)$.

This conjecture was prompted by the abelian defect groups conjecture.
Cyclotomic Hecke algebras

For G_2 regular ζ $W(\zeta)$ $H_W(\zeta)$

$G_2(s - q)(s + 1) - 1$ $G_2(s - q)(s - 1)\zeta$ $C_6(s - q^2)(s - 1)(s - q^3)(s^3 + q^3)$

$G_4(s - q)(s + 1) - 1$ $G_4(s - q)(s - 1)\zeta$ $C_6(s - q^2)(s - 1)(s + 1)(s + \zeta^3 q)(s - \zeta^3)(s + q)$ $\zeta^4 C_4(s - q^3)(s - 1)(s - q)(s + 1)$ $\zeta^6 C_6(s - q^2)(s - q)(s - 1)(s - \zeta^2)(s^3 + \zeta^2 q^3)$

Michel Broué

Pseudo reductive groups over \mathbb{F}_x ?
For G_2
Cyclotomic Hecke algebras

For G_2

<table>
<thead>
<tr>
<th>Regular ζ</th>
<th>$W(\zeta)$</th>
<th>$H_W(\zeta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G_2</td>
<td>$(s - q)(s + 1)$</td>
</tr>
<tr>
<td>-1</td>
<td>G_2</td>
<td>$(s - q)(s - 1)$</td>
</tr>
<tr>
<td>ζ_3</td>
<td>C_6</td>
<td>$(s - q^2)(s - q)(s - 1)(s^3 + q^3)$</td>
</tr>
<tr>
<td>ζ_6</td>
<td>C_6</td>
<td>$(s - q^2)(s + q)(s - 1)(s^3 - q^3)$</td>
</tr>
</tbody>
</table>
Cyclotomic Hecke algebras

For G_2

<table>
<thead>
<tr>
<th>Regular ζ</th>
<th>$W(\zeta)$</th>
<th>$\mathcal{H}_W(\zeta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G_2</td>
<td>$(s - q)(s + 1)$</td>
</tr>
<tr>
<td>-1</td>
<td>G_2</td>
<td>$(s - q)(s - 1)$</td>
</tr>
<tr>
<td>ζ_3</td>
<td>C_6</td>
<td>$(s - q^2)(s - q)(s - 1)(s^3 + q^3)$</td>
</tr>
<tr>
<td>ζ_6</td>
<td>C_6</td>
<td>$(s - q^2)(s + q)(s - 1)(s^3 - q^3)$</td>
</tr>
</tbody>
</table>

For G_4

Michel Broué Pseudo reductive groups over \mathbb{F}_x ?
Cyclotomic Hecke algebras

For G_2

<table>
<thead>
<tr>
<th>Regular ζ</th>
<th>$W(\zeta)$</th>
<th>$\mathcal{H}_W(\zeta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G_2</td>
<td>$(s - q)(s + 1)$</td>
</tr>
<tr>
<td>-1</td>
<td>G_2</td>
<td>$(s - q)(s - 1)$</td>
</tr>
<tr>
<td>ζ_3</td>
<td>C_6</td>
<td>$(s - q^2)(s - q)(s - 1)(s^3 + q^3)$</td>
</tr>
<tr>
<td>ζ_6</td>
<td>C_6</td>
<td>$(s - q^2)(s + q)(s - 1)(s^3 - q^3)$</td>
</tr>
</tbody>
</table>

For G_4

<table>
<thead>
<tr>
<th>Regular ζ</th>
<th>$W(\zeta)$</th>
<th>$\mathcal{H}_W(\zeta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G_4</td>
<td>$(s - q)(s + 1)$</td>
</tr>
<tr>
<td>-1</td>
<td>G_4</td>
<td>$(s - q)(s - 1)$</td>
</tr>
<tr>
<td>ζ_3</td>
<td>C_6</td>
<td>$(s - q^2)(s - 1)(s + 1)(s + \zeta_3 q)(s - \zeta_3)(s + q)$</td>
</tr>
<tr>
<td>ζ_4</td>
<td>C_4</td>
<td>$(s - q^3)(s - 1)(s - q)(s + 1)$</td>
</tr>
<tr>
<td>ζ_6</td>
<td>C_6</td>
<td>$(s - q^2)(s - q)(s - 1)(s - \zeta_3^2 q)(s - \zeta_3^2)(s + 1)$</td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

In red = the Φ'_6–series.

• = the Φ_4–series.

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{3-\sqrt{-3}}{6} q\Phi'_3 \Phi_4 \Phi''$</td>
<td>$q\Phi_4$</td>
<td>1</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$\frac{3+\sqrt{-3}}{6} q\Phi'\Phi_4 \Phi'_6$</td>
<td>$q^3\Phi_4$</td>
<td>1</td>
<td>$X_3.02$</td>
</tr>
<tr>
<td>$Z_3 : 2$</td>
<td>$\frac{\sqrt{-3}}{3} q\Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_3.12$</td>
</tr>
<tr>
<td>$\phi_{3,2}$</td>
<td>$q^2\Phi_3 \Phi_6$</td>
<td>$q^2\Phi_3 \Phi_6$</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>$-\frac{\sqrt{-3}}{6} q^4 \Phi'_3 \Phi_4 \Phi''$</td>
<td>q^4</td>
<td>1</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>$\frac{\sqrt{-3}}{6} q^4 \Phi'_3 \Phi_4 \Phi'_6$</td>
<td>q^8</td>
<td>1</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\phi_{2,5}$</td>
<td>$\frac{1}{2} q^4 \Phi_2 \Phi_6$</td>
<td>$q^5\Phi_4$</td>
<td>1</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$Z_3 : 11$</td>
<td>$\frac{\sqrt{-3}}{3} q^4 \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_5.4$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\frac{1}{2} q^4 \Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$X_5.5$</td>
</tr>
</tbody>
</table>
Fourier matrices: G_4

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>3−√−3 6</td>
<td>3+√−3 6</td>
<td>√−3 3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>02</td>
<td>3+√−3 6</td>
<td>3−√−3 6</td>
<td>−√−3 3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>√−3 3</td>
<td>−√−3 3</td>
<td>√−3 3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>−√−3 6</td>
<td>√−3 6</td>
<td>1</td>
<td>√−3 3</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>√−3 6</td>
<td>−√−3 6</td>
<td>1 2</td>
<td>−√−3 3</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1 2</td>
<td>1 2</td>
<td>1 2</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>√−3 3</td>
<td>−√−3 3</td>
<td></td>
<td>√−3 3</td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1 2</td>
<td>1 2</td>
<td>−1 2</td>
<td>.</td>
</tr>
</tbody>
</table>
Fourier matrices: Properties

Let S be the Fourier matrix.

1. S is symmetric.
2. $S - 1 = S$.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

4. $S^2 \Omega = \Omega S^2$.
5. $(\Omega S^2)^3 = 1$.

Thus S and Ω define a representation of $\text{SL}_2(\mathbb{Z})$.

6. If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k, the sums $\sum_l S_{il} S_{jl} S_{kl} S_{l i_0}$ are integral.

(A special character is one whose fake degree has the same valuation as the corresponding generic degree.)
Let S be the Fourier matrix.
Let S be the Fourier matrix.

1. S is symmetric.

2. $S^{-1} = S$.

4. Let Ω be the diagonal matrix of Frobenius eigenvalues. Then $S^{-2} \Omega = \Omega S^2$.

5. $(\Omega S)^3 = 1$.

Thus S and Ω define a representation of $\text{SL}_2(\mathbb{Z})$.

6. If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k, the sums $\sum_l S^{il} S^{jl} S^{-1} i_0 l$ are integral.

(A special character is one whose fake degree has the same valuation as the corresponding generic degree.)
Let S be the **Fourier matrix**.

1. S is symmetric.
2. $S^{-1} = \bar{S}$.
Fourier matrices : Properties

Let S be the Fourier matrix.

1. S is symmetric.
2. $S^{-1} = \bar{S}$.
Fourier matrices : Properties

Let S be the Fourier matrix.

1. S is symmetric.
2. $S^{-1} = \overline{S}.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

Therefore, S and Ω define a representation of $\text{SL}_2(\mathbb{Z})$.

If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k, the sums $\sum_l S_{il} S_{jl} S_{kl} S^{l-1} i_0$ are integral.

(A special character is one whose fake degree has the same valuation as the corresponding generic degree.)
Fourier matrices: Properties

Let S be the *Fourier matrix*.

1. S is symmetric.
2. $S^{-1} = S$.

Let Ω be the *diagonal matrix of Frobenius eigenvalues*.

4. $S^2 \Omega = \Omega S^2$.

(A special character is one whose fake degree has same valuation as the corresponding generic degree)

Michel Broué
Let S be the \textbf{Fourier matrix}.

1. S is symmetric.
2. $S^{-1} = S$.

Let Ω be the \textbf{diagonal matrix of Frobenius eigenvalues}.

4. $S^2 \Omega = \Omega S^2$.
5. $(\Omega S)^3 = 1$.

(A special character is one whose fake degree has same valuation as the corresponding generic degree)
Fourier matrices: Properties

Let S be the Fourier matrix.

1. S is symmetric.
2. $S^{-1} = S$.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

4. $S^2 \Omega = \Omega S^2$.
5. $(\Omega S)^3 = 1$.

Thus S and Ω define a representation of $\text{SL}_2(\mathbb{Z})$.

Michel Broué | Pseudo reductive groups over \mathbb{F}_x
Let S be the Fourier matrix.

1. S is symmetric.
2. $S^{-1} = \overline{S}$.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

4. $S^2 \Omega = \Omega S^2$.
5. $(\Omega S)^3 = 1$.

Thus S and Ω define a representation of $\text{SL}_2(\mathbb{Z})$.

6. If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k the sums $\sum_l S_{il} S_{jl} \overline{S}_{kl} S_{i_0 l}^{-1}$ are integral.
Fourier matrices : Properties

Let S be the **Fourier matrix**.

1. S is symmetric.
2. $S^{-1} = \overline{S}$.

Let Ω be the **diagonal matrix of Frobenius eigenvalues**.

4. $S^2 \Omega = \Omega S^2$.
5. $(\Omega S)^3 = 1$.

Thus S and Ω define a representation of $SL_2(\mathbb{Z})$.

6. If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k the sums $\sum_l S_{il} S_{jl} \overline{S}_{kl} S_{i_0 l}^{-1}$ are integral.

(A **special** character is one whose fake degree has same valuation as the corresponding generic degree)
Families and Harish–Chandra theories

\[\text{UnCh}(G) = \bigcup_{F \in \text{Fam}(G)} F \]

(Lusztig families, blocks of Fourier matrix)

(and for all \(d\))

\[\bigcup_{(L, \lambda)} d - \text{cuspidal} / G \text{Irr}_R(G)(\lambda) = \text{Irr}_H(G)(L, \lambda) \]

So what are the sets \(F \cap \text{Irr}_H(G)(L, \lambda)\)?

Lusztig has described the intersections with the principal series \(\text{Irr}_R(G)^{(1)}\) using the Kazhdan-Lusztig basis, thus defining families of characters of \(W\).

In general, the partition \(\text{Irr}_H(G)(L, \lambda) = \bigcup_{F \in \text{Fam}(G)} F \cap \text{Irr}_H(G)(L, \lambda)\) is the partition into Rouquier blocks of the cyclotomic Hecke algebra \(H_G(L, \lambda)\).
Families and Harish–Chandra theories

\[\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \]

So what are the sets \(\mathcal{F} \cap \text{Irr}_H(G) \)?

Lusztig has described the intersections with the principal series \(\text{Irr}_R(G) \) using the Kazhdan-Lusztig basis, thus defining families of characters of \(W \).

In general, the partition \(\text{Irr}_H(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \cap \text{Irr}_H(G) \) is the partition into Rouquier blocks of the cyclotomic Hecke algebra \(H(G) \).
Families and Harish–Chandra theories

\[
\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \quad \text{(Lusztig families, blocks of Fourier matrix)}
\]
Families and Harish–Chandra theories

\[\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \]
(Lusztig families, blocks of Fourier matrix)

(and for all \(d\))
Families and Harish-Chandra theories

\[\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \] (Lusztig families, blocks of Fourier matrix)

(and for all \(d\)) \[= \bigcup_{(L,\lambda) \text{d–cuspidal}/G} \text{Irr } R^G_L(\lambda) \]
Families and Harish–Chandra theories

UnCh(\(G\)) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \quad \text{(Lusztig families, blocks of Fourier matrix)}

(\text{and for all } d) = \bigcup_{(L, \lambda)^{d-\text{cuspidal}/G}} \text{Irr } R_G^L(\lambda) = \text{Irr } \mathcal{H}_G(L, \lambda)
Families and Harish–Chandra theories

\[
\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \quad \text{(Lusztig families, blocks of Fourier matrix)}
\]

(and for all \(d\)) \[
\bigcup_{(L, \lambda) \text{d–cuspidal}/G} \text{Irr } R^G_L(\lambda) = \text{Irr } \mathcal{H}_G(L, \lambda)
\]

So what are the sets \(\mathcal{F} \cap \text{Irr } \mathcal{H}_G(L, \lambda)\)?
Families and Harish–Chandra theories

\[\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \quad \text{(Lusztig families, blocks of Fourier matrix)} \]

(and for all \(d\))

\[(\text{and for all } d) = \bigcup_{(L, \lambda) \text{d–cuspidal}/G} \text{Irr } R^G_L(\lambda) = \text{Irr } H_G(L, \lambda) \]

So what are the sets \(\mathcal{F} \cap \text{Irr } H_G(L, \lambda) \)?

- Lusztig has described the intersections with the principal series \(\text{Irr } R^G_T(1) \) using the Kazhdan-Lusztig basis, thus defining families of characters of \(W \).
Families and Harish–Chandra theories

$$\text{UnCh}(G) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F}$$ (Lusztig families, blocks of Fourier matrix)

(And for all d) $$= \bigcup_{(L, \lambda) \text{d–cuspidal}/G} \text{Irr } R^G_L(\lambda) = \text{Irr } \mathcal{H}_G(L, \lambda)$$

So what are the sets $\mathcal{F} \cap \text{Irr } \mathcal{H}_G(L, \lambda)$?

- Lusztig has described the intersections with the principal series $\text{Irr } R^G_{T_1}(1)$ using the Kazhdan-Lusztig basis, thus defining families of characters of W.
- In general, the partition

$$\text{Irr } \mathcal{H}_G(L, \lambda) = \bigcup_{\mathcal{F} \in \text{Fam}(G)} \mathcal{F} \cap \text{Irr } \mathcal{H}_G(L, \lambda)$$

is the partition into Rouquier blocks of the cyclotomic Hecke algebra $\mathcal{H}_G(L, \lambda)$.

Michel Broué
Pseudo reductive groups over \mathbb{F}_x ?
Rouquier blocks

The Rouquier blocks of a cyclotomic Hecke algebra of a group W are the ordinary blocks of that algebra over the ring $\mathbb{Z}_W[q, q^{-1}, (1-q^n)^n]_{n \geq 1}$.

They are, roughly speaking, the bad primes blocks of the Hecke algebra, where the bad primes are those prime ideals of \mathbb{Z}_W which divide the Schur elements (in other words, the primes in the denominators of the generic degrees).

All Rouquier blocks of all cyclotomic Hecke algebras of all complex reflection groups have been determined (Malle–Rouquier, Broué–Kim, Kim, Chlouveraki).
The Rouquier blocks of a cyclotomic Hecke algebra of a group W are the ordinary blocks of that algebra over the ring

$$\mathbb{Z}_W \left[q, q^{-1}, \left(\frac{1}{q^n - 1} \right)_{n \geq 1} \right]$$
The Rouquier blocks of a cyclotomic Hecke algebra of a group W are the ordinary blocks of that algebra over the ring

$$\mathbb{Z}_W \left[q, q^{-1}, \left(\frac{1}{q^n - 1} \right)_{n \geq 1} \right]$$

They are, roughly speaking, the bad primes blocks of the Hecke algebra,
The Rouquier blocks of a cyclotomic Hecke algebra of a group W are the ordinary blocks of that algebra over the ring

$$\mathbb{Z}_W \left[q, q^{-1}, \left(\frac{1}{q^n - 1} \right)_{n \geq 1} \right]$$

They are, roughly speaking, the bad primes blocks of the Hecke algebra, where the bad primes are those prime ideals of \mathbb{Z}_W which divide the Schur elements (in other words, the primes in the denominators of the generic degrees).
The Rouquier blocks of a cyclotomic Hecke algebra of a group W are the ordinary blocks of that algebra over the ring

$$\mathbb{Z}_W \left[q, q^{-1}, \left(\frac{1}{q^n - 1} \right)_{n \geq 1} \right]$$

They are, roughly speaking, the bad primes blocks of the Hecke algebra, where the bad primes are those prime ideals of \mathbb{Z}_W which divide the Schur elements (in other words, the primes in the denominators of the generic degrees).

All Rouquier blocks of all cyclotomic Hecke algebras of all complex reflection groups have been determined (Malle–Rouquier, Broué–Kim, Kim, Chlouveraki).
Spetses

We call Spets for a spetsial reflection group W a list of
▶ unipotent degrees,
▶ parameters for relative cylotomic Hecke algebras,
▶ eigenvalues of Frobenius,
▶ Fourier matrices satisfying the above properties... and many other.

Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

Malle gave a solution for imprimitive spetsial complex reflection groups in 1995, and also proposed (unpublished) data for many primitive spetsial groups.

We can now show that there is a unique solution for all primitive spetsial complex reflection groups.
We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

Malle gave a solution for imprimitive spetsial complex reflection groups in 1995, and also proposed (unpublished) data for many primitive spetsial groups.

We can now show that there is a unique solution for all primitive spetsial complex reflection groups.
We call **Spets for a spetsial reflection group** W a list of

- unipotent degrees,
We call **Spets for a spetsial reflection group** \(W \) a list of
- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
We call **Spets for a spetsial reflection group** W a list of
- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
- eigenvalues of Frobenius,
We call **Spets for a spetsial reflection group** W a list of

- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices
We call **Spets for a spetsial reflection group** W a list of
- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.
We call **Spets for a spetsial reflection group** W a list of
- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
We call **Spets for a spetsial reflection group** W a list of

- unipotent degrees,
- parameters for relative cyclotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

Malle gave a solution for imprimitive Spetsial complex reflection groups in 1995, and also proposed (unpublished) data for many primitive Spetsial groups.
We call \textbf{Spets for a spetsial reflection group W} a list of
\begin{itemize}
 \item unipotent degrees,
 \item parameters for relative cyclotomic Hecke algebras,
 \item eigenvalues of Frobenius,
 \item Fourier matrices
\end{itemize}
satisfying the above properties... and many other.

Lusztig knew already a solution for Coxeter groups which are not
Weyl groups (except the Fourier matrix for H_4 which was determined
by Malle in 1994).

Malle gave a solution for imprimitive Spetsial complex reflection
groups in 1995, and also proposed (unpublished) data for many
primitive Spetsial groups.

We can now show that there is a unique solution for all primitive
spetsial complex reflection groups.