A generic Atlas for Spetses ?

Michel Broué

Université Paris-Diderot Paris VII

Finite Simple Groups: Thirty Years of the Atlas and Beyond

Princeton, November 2015

In honor of John Conway
An example of a known Unknown : Spets

Long lasting joint work between Gunter Malle, Jean Michel, and myself, initiated in the Greek island named SPETSES in 1993 (there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the "generic fake finite reductive group" (Spets?) whose Weyl group is the cyclic group μ_3 of order 3...), going on with the collaboration of Olivier Dudas, and more and more of Cédric Bonnafé.

Michel Broué
An example of a known Unknown : Spets

Long lasting joint work between Gunter Malle, Jean Michel, and myself,
Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated in the Greek island named SPETSES in 1993
Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated in the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the “generic fake finite reductive group”
An example of a known Unknown : Spets

Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated in the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the “generic fake finite reductive group” (“Spets?”)
Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated in the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the “generic fake finite reductive group” (“Spets?”) whose Weyl group is the cyclic group μ_3 of order 3...),
An example of a known Unknown: Spets

Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated in the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the “generic fake finite reductive group” (“Spets?”) whose Weyl group is the cyclic group μ_3 of order 3...),

going on with the collaboration of Olivier Dudas, and more and more of Cédric Bonnafé.
I. Generic point of view on finite reductive groups

Let G be a connected reductive algebraic group over \mathbb{F}_q, with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_q via a Frobenius endomorphism F. The group $G := G_{\mathbb{F}_q}$ is called a finite reductive group.

To simplify the lecture (but this is bad) we assume that G is split, i.e., F acts on Y by multiplication by q.

The type of G is $G := (V, W)$ where $V := \mathbb{C} \otimes \mathbb{Z} Y$.

Lots of numerical data associated with G come from evaluation at $x = q$ of polynomials in x which depends only on the type G.

Let us give some examples.
Let G be a connected reductive algebraic group over \overline{F}_q, with
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W,
Let G be a connected reductive algebraic group over \overline{F}_q, with Weyl group W, group of co-characters Y,
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_q via a Frobenius endomorphism F. Lots of numerical data associated with G come from evaluation at $x = q$ of polynomials in x which depends only on the type G. Let us give some examples.
Let G be a connected reductive algebraic group over \overline{F}_q, with Weyl group W, group of co-characters Y, endowed with a rational structure over \overline{F}_q via a Frobenius endomorphism F.

The group $G := G^F$ is called a finite reductive group.
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_q via a Frobenius endomorphism F.

The group $G := G^F$ is called a finite reductive group.

To simplify the lecture
I. Generic point of view on finite reductive groups

Let G be a connected reductive algebraic group over \overline{F}_q, with Weyl group W, group of co-characters Y, endowed with a rational structure over \overline{F}_q via a Frobenius endomorphism F.

The group $G := G^F$ is called a finite reductive group.

To simplify the lecture (but this is bad)
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_q via a Frobenius endomorphism F.

The group $G := G^F$ is called a **finite reductive group**.

To simplify the lecture (but ☹️ this is bad) we assume that G is **split**, i.e., F acts on Y by multiplication by q.

I. Generic point of view on finite reductive groups

Let \(G \) be a connected reductive algebraic group over \(\overline{\mathbb{F}}_q \), with Weyl group \(W \), group of co-characters \(Y \), endowed with a rational structure over \(\mathbb{F}_q \) via a Frobenius endomorphism \(F \).

The group \(G := G^F \) is called a finite reductive group.

To simplify the lecture (but \(! \) this is bad) we assume that \(G \) is split, i.e., \(F \) acts on \(Y \) by multiplication by \(q \).

The type of \(G \) is \(G := (V, W) \) where \(V := \mathbb{C} \otimes_{\mathbb{Z}} Y \).
I. Generic point of view on finite reductive groups

Let G be a connected reductive algebraic group over \overline{F}_q, with Weyl group W, group of co-characters Y, endowed with a rational structure over \overline{F}_q via a Frobenius endomorphism F.

The group $G := G^F$ is called a finite reductive group.

To simplify the lecture (but this is bad) we assume that G is split, i.e., F acts on Y by multiplication by q.

The type of G is $\mathfrak{G} := (V, W)$ where $V := \mathbb{C} \otimes \mathbb{Z} Y$.

Lots of numerical data associated with G come from evaluation at $x = q$ of polynomials in x which depends only on the type \mathfrak{G}.
I. Generic point of view on finite reductive groups

Let G be a connected reductive algebraic group over \overline{F}_q, with Weyl group W, group of co-characters Y, endowed with a rational structure over \overline{F}_q via a Frobenius endomorphism F.

The group $G := G^F$ is called a finite reductive group.

To simplify the lecture (but this is bad) we assume that G is split, i.e., F acts on Y by multiplication by q.

The type of G is $\mathcal{G} := (V, W)$ where $V := \mathbb{C} \otimes_{\mathbb{Z}} Y$.

Lots of numerical data associated with G come from evaluation at $x = q$ of polynomials in x which depends only on the type \mathcal{G}.

Let us give some examples.
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by $|G|(x) = x^N \prod \zeta \mod \text{Gal} \Phi_\zeta(x) a(\zeta)$ for L an F-stable Levi subgroup of G, its polynomial order $|L|(x)$ divides $|G|(x)$.

I insist: the polynomial order depends only on the type (V, W) (not on a root datum).

Thus $|SO_{2n+1}(q)| = |Sp_{2n}(q)|$. Michel Broué
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

\[|G|_q(x) = \prod_{\zeta \in \text{Gal}(\Phi)} \zeta \mod |G|_q(x) \]
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}$$
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}$$

is the polynomial order of G,
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}$$

is the polynomial order of G, that is, $|G|(q) = |G|$.
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$|G|(x) = x^N \prod_{\zeta \mod \text{Gal}} \Phi_\zeta(x)^{a(\zeta)}$$

is the polynomial order of G, that is, $|G|(q) = |G|$.

Then

$$|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}$$
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}$$

is the polynomial order of G, that is, $|G|(q) = |G|$.

Then

$$|G|(x) = x^N \prod_{\zeta \mod \text{Gal}} \Phi_{\zeta}(x)^{a(\zeta)},$$

(for L an F-stable Levi subgroup of G, its polynomial order $|L|(x)$ divides $|G|(x)$).
1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

\[
|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}
\]

is the polynomial order of G, that is, $|G|(q) = |G|$.

- Then

\[
|G|(x) = x^N \prod_{\zeta \mod \text{Gal}} \Phi_{\zeta}(x)^{a(\zeta)},
\]

(for L an F-stable Levi subgroup of G, its polynomial order $|L|(x)$ divides $|G|(x)$).

- I insist: the polynomial order depends only on the type (V, W) (not on a root datum).
1. The polynomial order

The element of \(\mathbb{Z}[x] \) defined by

\[
|G|(x) = x^N \frac{1}{|W|} \sum_{w \in W} \frac{1}{\det_V(1 - wx)}
\]

is the polynomial order of \(G \), that is, \(|G|(q) = |G| \).

- Then

\[
|G|(x) = x^N \prod_{\zeta \mod \text{Gal}} \Phi_\zeta(x)^{a(\zeta)},
\]

(for \(L \) an \(F \)-stable Levi subgroup of \(G \), its polynomial order \(|L|(x) \) divides \(|G|(x) \)).

- I insist: the polynomial order depends only on the type \((V, W) \) (not on a root datum). Thus

\[
|SO_{2n+1}(q)| = |Sp_{2n}(q)|.
\]
2. Unipotent characters, generic degrees (Lusztig)

The set $\text{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\text{Un}(G)$ (depending only on the type). Let us denote that parametrization by $\text{Un}(G) \rightarrow \text{Un}(G)$, $\rho \mapsto \rho_q$.

Generic degree: for all $\rho \in \text{Un}(G)$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that $\text{Deg}_\rho(x) \mid x = q = \text{Deg}(\rho_q)$.

Of course, the (generic) degrees divide the (polynomial) order of G.

Every $\rho \in \text{Un}(G)$ comes equipped with a Frobenius eigenvalue Fr_ρ, a root of unity...which has something to do with the Deligne–Lusztig varieties X_w...but can also be defined by $
abla_{F/F}(\rho \chi) = \sum_{\rho \in \text{Un}(G)} \text{Fr}_\rho \langle R \chi; \rho \rangle$ for $\chi \in \text{Irr}(W)$.
The set $\text{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\text{Un}(G)$ (depending only on the type). Let us denote that parametrization by

$$\text{Un}(G) \rightarrow \text{Un}(G), \ \rho \mapsto \rho_q.$$
The set $\text{Un}(G)$ of unipotent characters of G is parametrized by the set of \textit{unipotent generic characters} $\text{Un}(G)$ (depending only on the type). Let us denote that parametrization by

$$\text{Un}(G) \rightarrow \text{Un}(G), \, \rho \mapsto \rho_q.$$

\textbf{2. Generic degree:} for all $\rho \in \text{Un}(G)$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \mid_{x=q} = \text{Deg}(\rho_q).$$
The set \(\text{Un}(G) \) of unipotent characters of \(G \) is parametrized by the set of \textcolor{red}{unipotent generic characters} \(\text{Un}(\mathbb{G}) \) (depending only on the type). Let us denote that parametrization by

\[
\text{Un}(\mathbb{G}) \to \text{Un}(G) , \quad \rho \mapsto \rho_q .
\]

\[
\text{Generic degree : for all } \rho \in \text{Un}(\mathbb{G}) , \text{ there exists } \text{Deg}_\rho(x) \in \mathbb{Q}[x] \text{ such that }
\]

\[
\text{Deg}_\rho(x) \big|_{x=q} = \text{Deg}(\rho_q) .
\]

Of course, the (generic) degrees divide the (polynomial) order of \(\mathbb{G} \).
2. Unipotent characters, generic degrees (Lusztig)

1. The set $\text{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\text{Un}(G)$ (depending only on the type). Let us denote that parametrization by

$$\text{Un}(G) \to \text{Un}(G) , \; \rho \mapsto \rho_q .$$

2. Generic degree: for all $\rho \in \text{Un}(G)$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \mid_{x=q} = \text{Deg}(\rho_q) .$$

Of course, the (generic) degrees divide the (polynomial) order of G.

3. Every $\rho \in \text{Un}(G)$ comes equipped with a Frobenius eigenvalue Fr_ρ, a root of unity...
2. Unipotent characters, generic degrees (Lusztig)

1. The set $\text{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\text{Un}(G)$ (depending only on the type). Let us denote that parametrization by

$$\text{Un}(G) \rightarrow \text{Un}(G), \quad \rho \mapsto \rho_q.$$

2. Generic degree: for all $\rho \in \text{Un}(G)$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \mid_{x=q} = \text{Deg}(\rho_q).$$

Of course, the (generic) degrees divide the (polynomial) order of G.

3. Every $\rho \in \text{Un}(G)$ comes equipped with a Frobenius eigenvalue Fr_ρ, a root of unity

...which has something to do with the Deligne–Lusztig varieties X_w...
The set $\text{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\text{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$\text{Un}(\mathbb{G}) \to \text{Un}(G), \rho \mapsto \rho_q.$$

Generic degree: for all $\rho \in \text{Un}(\mathbb{G})$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \big|_{x=q} = \text{Deg}(\rho_q).$$

Of course, the (generic) degrees divide the (polynomial) order of \mathbb{G}.

Every $\rho \in \text{Un}(\mathbb{G})$ comes equipped with a Frobenius eigenvalue F_{ρ}, a root of unity

...which has something to do with the Deligne–Lusztig varieties X_w... but can also be defined by

$$\text{sh}_{F/F}(\rho \chi) = \sum_{\rho \in \text{Un}(G)} F_{\rho} \langle R_{\chi} ; \rho \rangle \rho \quad \text{for} \quad \chi \in \text{Irr}(W).$$
Generic unipotent characters, continued

For all $\zeta \in \mu$, partition of $\text{Un}(G)$ into ζ-Harish-Chandra series.

Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.

Let us devote some time to the notion of ζ-cyclotomic Hecke algebras.

Then we shall come back to the generic properties of $\text{Un}(G)$.
Generic unipotent characters, continued

... lots of other properties, like the partition of $\text{Un}(G)$ into Harish-Chandra series, or more generally

\[\text{Description of the principal } \zeta \text{-Harish-Chandra series with a } \zeta \text{-cyclotomic Hecke algebra.} \]

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series. Let us devote some time to the notion of ζ-cyclotomic Hecke algebras. Then we shall come back to the generic properties of $\text{Un}(G)$.

Michel Broué

A generic Atlas for Spetses?
... lots of other properties, like the partition of $\text{Un}(G)$ into Harish-Chandra series, or more generally

5. For all $\zeta \in \mu$, partition of $\text{Un}(G)$ into ζ-Harish-Chandra series.
... lots of other properties, like the partition of $\text{Un}(G)$ into Harish-Chandra series, or more generally

5. For all $\zeta \in \mu$, partition of $\text{Un}(G)$ into ζ-Harish-Chandra series.

6. Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.
... lots of other properties, like the partition of $\text{Un}(G)$ into Harish-Chandra series, or more generally

5. For all $\zeta \in \mu$, partition of $\text{Un}(G)$ into ζ-Harish-Chandra series.

6. Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.
... lots of other properties, like the partition of $\text{Un}(G)$ into Harish-Chandra series, or more generally

5. For all $\zeta \in \mu$, partition of $\text{Un}(G)$ into ζ-Harish-Chandra series.

6. Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.

Let us devote some time to the notion of ζ-cyclotomic Hecke algebras.
... lots of other properties, like the partition of $\text{Un}(G)$ into Harish-Chandra series, or more generally

5 For all $\zeta \in \mu$, partition of $\text{Un}(G)$ into ζ-Harish-Chandra series.

6 Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.

Let us devote some time to the notion of ζ-cyclotomic Hecke algebras.
Then we shall come back to the generic properties of $\text{Un}(G)$.
What follows holds more generally for any pair $G = (V, W)$ where V is a finite dimensional complex vector space, W is a finite subgroup of $GL(V)$ generated by (pseudo)-reflections.

Let A be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V$ such that $w(x) = \zeta x$. We then say that w is ζ-regular. From now on we assume that ζ is regular. Then $[\text{Springer}]$ the group $W_\zeta := C_W(w)$ acts faithfully as a reflection group on the vector space $V_\zeta := \ker(w - \zeta \text{Id}_V)$. The group W_ζ is called the ζ-cyclotomic Weyl group. [Note that $W_1 = W$.]
What follows holds more generally for any pair \(G = (V, W) \) where

\[V \] is a finite dimensional complex vector space, \(W \) is a finite subgroup of \(\text{GL}(V) \) generated by (pseudo)-reflections.

Let \(A \) be the set of reflecting hyperplanes of \(W \). A root of unity \(\zeta \) is called regular if there exist \(w \in W \) and \(x \in V \) such that

\[w(x) = \zeta x. \]

We then say that \(w \) is \(\zeta \)-regular.

From now on we assume that \(\zeta \) is regular. Then \(W_\zeta := C_W(w) \) acts faithfully as a reflection group on the vector space \(V_\zeta := \ker(w - \zeta \text{Id}_V) \).

The group \(W_\zeta \) is called the \(\zeta \)-cyclotomic Weyl group.

[Note that \(W_1 = W \).]
3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathcal{G} = (V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\text{GL}(V)$ generated by (pseudo)-reflections.

Let A be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V_{\text{reg}} := V \setminus \bigcup H \in A H$ such that $w(x) = \zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then $W_\zeta := C_W(w)$ acts faithfully as a reflection group on the vector space $V_\zeta := \ker(w - \zeta \text{Id}_V)$.

The group W_ζ is called the ζ-cyclotomic Weyl group.

[Note that $W_1 = W$.]
3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair \(\mathcal{G} = (V, W) \) where
- \(V \) is a finite dimensional complex vector space,
- \(W \) is a finite subgroup of \(\text{GL}(V) \) generated by (pseudo)-reflections.

A root of unity \(\zeta \) is called regular if there exist \(w \in W \) and \(x \in V \) such that \(w(x) = \zeta x \). We then say that \(w \) is \(\zeta \)-regular.

From now on we assume that \(\zeta \) is regular. Then \([\text{Springer}] \) the group \(W_\zeta := C_W(w) \) acts faithfully as a reflection group on the vector space \(V_\zeta := \ker(w - \zeta \text{Id}_V) \).

The group \(W_\zeta \) is called the \(\zeta \)-cyclotomic Weyl group.

[Note that \(W_1 = W \).]
What follows holds more generally for any pair $\mathcal{G} = (V, W)$ where
- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\text{GL}(V)$ generated by (pseudo)-reflections.

Let A be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text{reg}} := V \setminus \bigcup_{H \in A} H$ such that $w(x) = \zeta x$. We then say that w is ζ-regular.
3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G} = (V, W)$ where
- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\text{GL}(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called \textbf{regular} if there exist $w \in W$ and $x \in V^{\text{reg}} := V \setminus \bigcup_{H \in \mathcal{A}} H$ such that $w(x) = \zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then
3. \(\zeta \)-regular elements and \(\zeta \)-cyclo
tomic Hecke algebras

What follows holds more generally for any pair \(\mathcal{G} = (V, W) \) where

- \(V \) is a finite dimensional complex vector space,
- \(W \) is a finite subgroup of \(\text{GL}(V) \) generated by (pseudo)-reflections.

Let \(A \) be the set of reflecting hyperplanes of \(W \). A root of unity \(\zeta \) is called regular if there exist \(w \in W \) and \(x \in V^\text{reg} := V \setminus \bigcup_{H \in A} H \) such that \(w(x) = \zeta x \). We then say that \(w \) is \(\zeta \)-regular.

From now on we assume that \(\zeta \) is regular. Then

- [Springer] The group \(W_\zeta := C_W(w) \) acts faithfully as a reflection group on the vector space \(V_\zeta := \ker(w - \zeta \text{Id}_V) \).
3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $G = (V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\text{GL}(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called **regular** if there exist $w \in W$ and $x \in V^{\text{reg}} := V \setminus \bigcup_{H \in \mathcal{A}} H$ such that $w(x) = \zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then

- [Springer] The group $W_{\zeta} := C_W(w)$ acts faithfully as a reflection group on the vector space $V_{\zeta} := \ker(w - \zeta \text{Id}_V)$.
- The group W_{ζ} is called the ζ-cyclotomic Weyl group.
3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G} = (V, W)$ where
- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\text{GL}(V)$ generated by (pseudo)-reflections.

Let A be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text{reg}} := V \setminus \bigcup_{H \in A} H$ such that $w(x) = \zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then

- [Springer] The group $W_\zeta := C_W(w)$ acts faithfully as a reflection group on the vector space $V_\zeta := \ker(w - \zeta \text{Id}_V)$.
- The group W_ζ is called the ζ-cyclotomic Weyl group.

 [Note that $W_1 = W$].
3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\text{Un}(G,1)$ corresponds to unipotent characters of G occurring in $\mathbb{Q}_\ell(G/B)$, and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ–principal series $\text{Un}(G,\zeta)$ for a good choice of w corresponds to unipotent characters of G occurring in $\bigoplus H_n^c(X_w, \mathbb{Q}_\ell)$, and the commutant of that module is a ζ-cyclotomic Hecke algebra of W_ζ evaluated at q.

We shall now introduce the notion of ζ-cyclotomic Hecke algebra.
One knows that the (ordinary) principal series $\text{Un}(G, 1)$ corresponds to unipotent characters of G occurring in $\mathcal{Q}_\ell(G/B)$, and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ-principal series $\text{Un}(G, \zeta)_n$ for a good choice of ω corresponds to unipotent characters of G occurring in $\bigoplus_n H_n^c(X_\omega, \mathcal{Q}_\ell)$, and the commutant of that module is a ζ-cyclotomic Hecke algebra of W_ζ evaluated at q.

We shall now introduce the notion of ζ-cyclotomic Hecke algebra.
3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\text{Un}(G, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbb{Q}}_\ell(G/B)$,
One knows that the (ordinary) principal series $\text{Un}(\mathbb{G}, 1)$
- corresponds to unipotent characters of G occurring in $\overline{\mathbb{Q}}_\ell(G/B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

We shall now introduce the notion of ζ-cyclotomic Hecke algebra.
One knows that the (ordinary) principal series $\text{Un}(G, 1)$
- corresponds to unipotent characters of G occurring in $\overline{\mathbb{Q}}_\ell(G/B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ–principal series $\text{Un}(G, \zeta)$

We shall now introduce the notion of ζ–cyclotomic Hecke algebra.
3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\text{Un}(G, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbb{Q}}_\ell(G/B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ–principal series $\text{Un}(G, \zeta)$

- for a good choice of w
3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\text{Un}(G, 1)$
- corresponds to unipotent characters of G occurring in $\overline{\mathbb{Q}}_\ell(G/B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ–principal series $\text{Un}(G, \zeta)$
- for a good choice of w
- corresponds to unipotent characters of G occurring in $\bigoplus_n H^n_c(X_w, \overline{\mathbb{Q}}_\ell)$.
One knows that the (ordinary) principal series $\text{Un}(G, 1)$
- corresponds to unipotent characters of G occurring in $\overline{Q}_\ell(G/B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ–principal series $\text{Un}(G, \zeta)$
- for a good choice of w
 - corresponds to unipotent characters of G occurring in
 $\bigoplus_n H^c_n(X_w, \overline{Q}_\ell)$,
 - and the commutant of that module is a ζ-cyclotomic Hecke algebra of W_ζ evaluated at q.
3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\text{Un}(G, 1)$

- corresponds to unipotent characters of G occurring in $\overline{Q}_\ell(G/B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

One conjectures that the ζ–principal series $\text{Un}(G, \zeta)$

- for a good choice of w

- corresponds to unipotent characters of G occurring in $\bigoplus_n H^n_c(X_w, \overline{Q}_\ell)$,
- and the commutant of that module is a ζ-cyclotomic Hecke algebra of W_ζ evaluated at q.

We shall now introduce the notion of ζ-cyclotomic Hecke algebra.
3.2. ζ-cyclotomic Hecke algebras

A ζ-cyclotomic Hecke algebra $H(W_ζ)$ of $W_ζ$ is in particular $\mathbb{C}[x, x−1]$-algebra, an image of the group algebra of the braid group $B_{W_ζ}$ attached to $W_ζ$, a deformation (via x) of the group algebra of $W_ζ$, which specializes to that algebra for $x = ζ$.

Examples:

- Case where $G = GL_3$, $ζ = 1$:

 $W_ζ = W_3 = S_3$ ←→ $H(W_3) = \langle S, T; STS = TST, (S−x)(S+1) = 0 \rangle$ is 1-cyclotomic.

- For $G = O_8(q)$, $W = D_4$, $ζ = i$, $W_i = G(4, 2, 2)$ ←→ $H(W_i) = \langle S, T, U; \{STU = TUS = UST \} \rangle$.
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular a $C[x, x-1]$-algebra, an image of the group algebra of the braid group $B W_\zeta$ attached to W_ζ, a deformation (via x) of the group algebra of W_ζ, which specializes to that algebra for $x = \zeta$.

Examples:

- Case where $G = GL_3$, $\zeta = 1$: $W_\zeta = W = S_3$ is 1-cyclotomic.

- For $G = O_{8}^-(q)$, $W = D_4$, $\zeta = i$, $W_i = G(4,2,2)$: $H(W_i) = \langle S, T, U; \{STU = TUS = UST\} \rangle$.
3.2. \(\zeta \)-cyclotomic Hecke algebras

- A \(\zeta \)-cyclotomic Hecke algebra \(\mathcal{H}(W_\zeta) \) of \(W_\zeta \) is in particular
 - a \(\mathbb{C}[x, x^{-1}] \)-algebra,
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ.

Examples:
- Case where $G = \text{GL}_3$, $\zeta = 1$: $W_\zeta = W = S_3$ \leftrightarrow $H(W) = \langle S, T; STS = TST, (S-x)(S+1) = 0 \rangle$ is 1-cyclotomic.
- For $G = \text{O}_8^-$ (q), $W = D_4$, $\zeta = i$, $W_i = G(4, 2, 2)$ \leftrightarrow $H(W_i) = \langle S, T, U; \{ STU = TUS = UST \} \rangle$.
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ,
 - which specializes to that algebra for $x = \zeta$.

Examples:

- Case where $G = \text{GL}_3$, $\zeta = 1$:
 $W_\zeta = W = S_3 \leftrightarrow \langle s, t; STS = TST, (S - x)(S + 1) = 0 \rangle$ is 1-cyclotomic.

- For $G = O_8^-(q)$, $W = D_4$, $\zeta = i$, $W_i = G(4, 2, 2)$:
 $H(W_i) = \langle S, T, U; \{STU = TUS = UST, (S - x^2)(S - 1) = 0 \} \rangle$.
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ,
 - which specializes to that algebra for $x = \zeta$.

- Examples:
A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
- a $\mathbb{C}[x, x^{-1}]$-algebra,
- an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
- a deformation (via x) of the group algebra of W_ζ,
- which specializes to that algebra for $x = \zeta$.

Examples:
- Case where $G = \text{GL}_3$, $\zeta = 1$: $W_\zeta = W = \mathfrak{S}_3$
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ,
 - which specializes to that algebra for $x = \zeta$.

- Examples:
 - Case where $G = GL_3$, $\zeta = 1$: $W_\zeta = W = S_3$ \leftrightarrow $s \rightarrow t$
3.2. ζ-cyclotomic Hecke algebras

A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular

- a $\mathbb{C}[x, x^{-1}]$-algebra,
- an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
- a deformation (via x) of the group algebra of W_ζ,
- which specializes to that algebra for $x = \zeta$.

Examples:

- Case where $G = \text{GL}_3$, $\zeta = 1$: $W_\zeta = W = \mathfrak{S}_3$ \leftrightarrow $\begin{array}{c}s \\ \swarrow \\ t \end{array}$

$$\mathcal{H}(W) = \left\langle S, T ; STS = TST, (S - x)(S + 1) = 0 \right\rangle$$

is 1-cyclotomic.
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ,
 - which specializes to that algebra for $x = \zeta$.

- **Examples:**
 - Case where $G = \text{GL}_3$, $\zeta = 1$: $W_\zeta = W = \mathfrak{S}_3$ \(\longleftrightarrow\) \(s \rightarrow t\)

 $\mathcal{H}(W) = \left\langle S, T ; STS = TST , (S - x)(S + 1) = 0 \right\rangle$ is 1-cyclotomic.

 - For $G = \text{O}_8(q)$, $W = D_4$, $\zeta = i$, $W_i = G(4, 2, 2)$
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ,
 - which specializes to that algebra for $x = \zeta$.

Examples:
- Case where $G = \text{GL}_3$, $\zeta = 1$: $W_\zeta = W = \mathfrak{S}_3$ \iff $H(W) = \langle S, T ; STS = TST , (S - x)(S + 1) = 0 \rangle$ is 1-cyclotomic.

- For $G = \text{O}_8(q)$, $W = D_4$, $\zeta = i$, $W_i = G(4, 2, 2)$ \iff $H(W) = \langle S, T , U ; TUS = STU, (S - x^2)(S + 1) = 0 \rangle$ is 2-cyclotomic.
3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is in particular
 - a $\mathbb{C}[x, x^{-1}]$-algebra,
 - an image of the group algebra of the braid group B_{W_ζ} attached to W_ζ,
 - a deformation (via x) of the group algebra of W_ζ,
 - which specializes to that algebra for $x = \zeta$.

- Examples:
 - Case where $G = \text{GL}_3$, $\zeta = 1$: $W_\zeta = W = \mathfrak{S}_3 \leftrightarrow s \circledast t$

 $$\mathcal{H}(W) = \left\langle S, T \ ; \ STS = TST \ , \ (S - x)(S + 1) = 0 \right\rangle \text{ is 1-cyclotomic.}$$

 - For $G = \text{O}_8(q)$, $W = D_4$, $\zeta = i$, $W_i = G(4, 2, 2) \leftrightarrow s \circledast t \circledast u$

 $$\mathcal{H}(W_i) = \left\langle S, T, U \ ; \begin{cases} STU = TUS = UST \\ (S - x^2)(S - 1) = 0 \end{cases} \right\rangle$$
Fundamental properties

Case by case checking...

There is a proof, but so far I've not seen an explanation.

Such an algebra has a canonical symmetrizing form τ. It becomes split semisimple over $\mathbb{C}(\frac{x_1}{|ZW\zeta|}, \frac{x-1}{|ZW\zeta|})$. Hence each absolute irreducible character χ of $H(W\zeta)$ is equipped with a Schur element $S\chi \in \mathbb{C}[\frac{x_1}{|ZW\zeta|}, \frac{x-1}{|ZW\zeta|}]$ defined by $\tau = \sum_{\chi \in \text{Irr}H(W\zeta)} \chi S\chi$.

Michel Broué
Fundamental properties

Case by case checking...

“There is a proof, but so far I’ve not seen an explanation” [JHC]
Fundamental properties

Case by case checking...

“There is a proof, but so far I’ve not seen an explanation” [JHC]

Such an algebra has a canonical symmetrizing form τ.
Fundamental properties

Case by case checking...

“There is a proof, but so far I’ve not seen an explanation” [JHC]

- Such an algebra has a canonical symmetrizing form τ.
- It becomes split semisimple over $\mathbb{C}(x^{1/|ZW_\zeta|})$.
Fundamental properties

Case by case checking...

“There is a proof, but so far I’ve not seen an explanation” [JHC]

- Such an algebra has a canonical symmetrizing form τ.
- It becomes split semisimple over $\mathbb{C}(x^{1/|ZW_\zeta|})$.

\Rightarrow Hence each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$ is equipped with a Schur element
Fundamental properties

Case by case checking...

“There is a proof, but so far I’ve not seen an explanation” [JHC]

- Such an algebra has a canonical symmetrizing form τ.
- It becomes split semisimple over $\mathbb{C}(x^{1/|ZW_\zeta|})$.

\Rightarrow Hence each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$ is equipped with a Schur element

$$S_\chi \in \mathbb{C}[x^{1/|ZW_\zeta|}, x^{-1/|ZW_\zeta|}] \quad \text{defined by} \quad \tau = \sum_{\chi \in \text{Irr} \mathcal{H}(W_\zeta)} \frac{\chi}{S_\chi}. $$
3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is spetsial for G if...
3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is spetsial for G if it satisfies various technical conditions...
3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is **spetsial** for G if

1. it satisfies various technical conditions...
2. for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,

$$S_\chi \in \mathbb{C}[x, x^{-1}]$$
3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ of W_ζ is spetsial for G if

1. it satisfies various technical conditions...
2. for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,

$$S_\chi \in \mathbb{C}[x, x^{-1}]$$

(and not only $\mathbb{C}[x^{1/|ZW_\zeta|}, x^{-1/|ZW_\zeta|}]$).
On $\text{Un}(G)$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of $\text{Un}(G)$ into ζ-Harish-Chandra series:

6. Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.

7. Partition of $\text{Un}(G)$ into families and their intersections with ζ-Harish-Chandra series (Rouquier blocks).

8. Ennola permutation on $\text{Un}(G)$.

[This is an abstract formulation of the fact that $\text{U}_n(\mathbb{Q}) = \pm \text{GL}_n(\mathbb{Q})$]

We shall review this now in the more general context of “Spetses.”
On Un(G) again

When we started speaking about \(\zeta \)-regular elements, \(\zeta \)-cyclotomic Weyl groups, spetsial \(\zeta \)-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:
When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of $\text{Un}(G)$ into ζ-Harish-Chandra series:
When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of $\text{Un}(G)$ into ζ-Harish-Chandra series:

6. Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.
On Un(G) again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of Un(G) into ζ-Harish-Chandra series:

6. Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.

7. Partition of Un(G) into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).
When we started speaking about \(\zeta \)-regular elements, \(\zeta \)-cyclotomic Weyl groups, spetsial \(\zeta \)-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of \(\text{Un}(G) \) into \(\zeta \)-Harish-Chandra series:

6 Description of the principal \(\zeta \)-Harish-Chandra series with a spetsial \(\zeta \)-cyclotomic Hecke algebra.

Let us come back to that long list.

7 Partition of \(\text{Un}(G) \) into families and their Intersections with \(\zeta \)-Harish-Chandra series (Rouquier blocks).

8 Ennola permutation on \(\text{Un}(G) \).
When we started speaking about ζ-regular elements, ζ-cyclo-
tomic Weyl groups, spetsial
ζ-cyclo-
tomic Hecke algebras, we were stating “generic properties” of unipotent
characters:

... lots of other properties, like the partition of $\mathrm{Un}(G)$ into ζ-Harish-Chandra series:

6 Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclo-
tomic Hecke algebra.

Let us come back to that long list.

7 Partition of $\mathrm{Un}(G)$ into families and their Intersections with
ζ-Harish-Chandra series (Rouquier blocks).

8 Ennola permutation on $\mathrm{Un}(G)$.

[This is an abstract formulation of the fact that $U_n(q) = \pm \mathrm{GL}_n(-q)$]
On Un(\(G\)) again

When we started speaking about \(\zeta\)-regular elements, \(\zeta\)-cyclotomic Weyl groups, spetsial \(\zeta\)-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of Un(\(G\)) into \(\zeta\)-Harish-Chandra series:

6 Description of the principal \(\zeta\)-Harish-Chandra series with a spetsial \(\zeta\)-cyclotomic Hecke algebra.

Let us come back to that long list.

7 Partition of Un(\(G\)) into families and their Intersections with \(\zeta\)-Harish-Chandra series (Rouquier blocks).

8 Ennola permutation on Un(\(G\)).

[This is an abstract formulation of the fact that \(U_n(q) = \pm GL_n(−q)\)]

9 Fourier matrices and SL\(_2(\mathbb{Z})\)-representation.
On $\text{Un}(G)$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating “generic properties” of unipotent characters:

... lots of other properties, like the partition of $\text{Un}(G)$ into ζ-Harish-Chandra series:

6 Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.

7 Partition of $\text{Un}(G)$ into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).

8 Ennola permutation on $\text{Un}(G)$.
 [This is an abstract formulation of the fact that $U_n(q) = \pm GL_n(-q)$]

9 Fourier matrices and $\text{SL}_2(\mathbb{Z})$-representation.

We shall review this now in the more general context of “Spetses”.
II. Towards Spetses

Try to treat a complex reflection group as a Weyl group: try to build a thing $G(x^a)$ associated with a type $G = (V, W)$ where W is a (pseudo)-reflection group.

Try at least to build "unipotent characters" of G, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.

Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.

Stating a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive spetsial complex reflection groups.

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $G(x)$ (x an indeterminate) associated with a type $G = (V, W)$ where W is a (pseudo)-reflection group.

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.

- Stating a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive spetsial complex reflection groups.

Try to treat a complex reflection group as a Weyl group: try to build a thing $G(x)$ (x an indeterminate) associated with a type $G = (V, W)$ where W is a (pseudo)-reflection group.

Try at least to build “unipotent characters” of G, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.
II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing \(G(x) \) (\(x \) an indeterminate) associated with a type \(G = (V, W) \) where \(W \) is a (pseudo)-reflection group.

- Try at least to build "unipotent characters" of \(G \), or at least to build their degrees (polynomials in \(x \)), Frobenius eigenvalues (roots of unity), Fourier matrices.
 - Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for \(H_4 \) which was determined by Malle in 1994).

- Stating a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive spetsial complex reflection groups.

Try to treat a complex reflection group as a Weyl group: try to build a thing $G(x)$ (x an indeterminate) associated with a type $G = (V, W)$ where W is a (pseudo)-reflection group.

Try at least to build “unipotent characters” of G, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.
II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $G(x)$ (x an indeterminate) associated with a type $G = (V, W)$ where W is a (pseudo)-reflection group.

- Try at least to build “unipotent characters” of G, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.

 ▶ Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

 ▶ Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.

 ▶ Stating a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive spetsial complex reflection groups.
II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $G(x)$ (x an indeterminate) associated with a type $G = (V, W)$ where W is a (pseudo)-reflection group.

- Try at least to build “unipotent characters” of G, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.

 - Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

 - Malle gave a solution for imprimitive complex reflection groups in 1995.

 - Stating a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive complex reflection groups.

A double object: double N

$N = (V, W)$, where V is a complex vector space of dimension r, W is a finite (pseudo)-reflection subgroup of $\text{GL}(V)$, $\mathcal{A}(W) :=$ the hyperplanes arrangement of W, $N_{\text{hyp}} :=$ number of reflecting hyperplanes, $N_{\text{ref}} :=$ number of reflections. $N_{\text{hyp}} = N_{\text{ref}}$ if W is generated by true reflections.
A double object: double N

$\mathbb{G} = (V, W)$, where

$N_{\text{hyp}} = N_{\text{ref}}$ if W is generated by true reflections.
A double object: double \(\mathcal{N} \)

\[\mathcal{G} = (V, W), \text{ where} \]

- \(V \) is a complex vector space of dimension \(r \),
A double object: double \(\mathbb{N} \)

\[\mathbb{G} = (V, W), \text{ where} \]
- \(V \) is a complex vector space of dimension \(r \),
- \(W \) is finite (pseudo)-reflection subgroup of \(\text{GL}(V) \),

\(\mathbb{N}_{\text{hyp}} \) := number of reflecting hyperplanes,
\(\mathbb{N}_{\text{ref}} \) := number of reflections.

\(\mathbb{N}_{\text{hyp}} = \mathbb{N}_{\text{ref}} \) if \(W \) is generated by true reflections.
$\mathcal{G} = (V, W)$, where
- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $GL(V)$,

$\mathcal{A}(W) :=$ the hyperplanes arrangement of W.

Michel Broué
\[G = (V, W), \text{ where} \]

- \(V \) is a complex vector space of dimension \(r \),
- \(W \) is finite (pseudo)-reflection subgroup of \(\text{GL}(V) \).

\[A(W) := \text{the hyperplanes arrangement of } W. \]

- \(N^\text{hyp}_W \) := number of reflecting hyperplanes,
A double object: double \mathcal{N}

$\mathcal{G} = (V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $\text{GL}(V)$,

$\mathcal{A}(W) :=$ the hyperplanes arrangement of W.

- $N_{W}^{\text{hyp}} :=$ number of reflecting hyperplanes,
- $N_{W}^{\text{ref}} :=$ number of reflections.

$\mathcal{N}_{\text{hyp}} = \mathcal{N}_{\text{ref}}$ if W is generated by true reflections.
A double object: double N

$\mathcal{G} = (V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $\text{GL}(V)$,
- $A(W) :=$ the hyperplanes arrangement of W.

- $N^\text{hyp}_W :=$ number of reflecting hyperplanes,
- $N^\text{ref}_W :=$ number of reflections.

$N^\text{hyp}_W = N^\text{ref}_W$ if W is generated by true reflections.
Double polynomial order

\[G_c(x) := (-1)^r x^N \sum_{w \in W_1} \text{det} V(1 - wx)^* \]

The compact and the noncompact order coincide if \(W \) is generated by true reflections.

Michel Broué
Double polynomial order

\[|G_c|(x) := (-1)^r x^{N^\text{hyp}_W} \frac{1}{|W| \sum_{w \in W} \det_V (1 - wx)^*} \]

\[|G_{nc}|(x) := (-1)^r x^{N^\text{ref}_W} \frac{1}{|W| \sum_{w \in W} \det_V (1 - wx)^*} \]

The compact and the noncompact order coincide if \(W \) is generated by true reflections.
Double polynomial order

\[|G_c| (x) := (-1)^r x^{N_{W}^{hyp}} \frac{1}{|W| \sum_{w \in W} \frac{1}{\det_V (1 - wx)^*}} \]

\[|G_{nc}| (x) := (-1)^r x^{N_{W}^{ref}} \frac{1}{|W| \sum_{w \in W} \frac{1}{\det_V (1 - wx)^*}} \]

The compact and the noncompact order coincide if \(W \) is generated by true reflections.
2. Spetsial ζ-cyclotomic Hecke algebras for G

As above, $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$, A_ζ-cyclotomic Hecke algebra $H(W_\zeta)$ is spetsial for G if

1. For each absolute irreducible character χ of $H(W_\zeta)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.

2. $H(W_\zeta)$ satisfies various technical conditions, which split into

- compact type conditions,
- noncompact type conditions.

These conditions coincide if W is generated by true reflections.
2. Spetsial ζ-cyclotomic Hecke algebras for G

As above,
As above,

- $\mathcal{W}_\zeta = C_{\mathcal{W}}(w)$ is the centralizer of a ζ-regular element $w \in \mathcal{W}$,
2. Spetsial ζ-cyclotomic Hecke algebras for G

As above,

- $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $H(W_\zeta)$ is spetsial for G if
2. Spetsial ζ-cyclotomic Hecke algebras for G

As above,

- $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ is spetsial for G if
 - for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,
 \[S_\chi \in \mathbb{C}[x, x^{-1}] , \]
As above,

- $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ is spetsial for G if
 - for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,
 $$S_\chi \in \mathbb{C}[x, x^{-1}],$$
 - and $\mathcal{H}(W_\zeta)$ satisfies various technical conditions, which split into
2. Spetsial ζ-cyclotomic Hecke algebras for G

As above,

- $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ is spetsial for G if
 1. for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,
 $$S_\chi \in \mathbb{C}[x, x^{-1}],$$
 2. and $\mathcal{H}(W_\zeta)$ satisfies various technical conditions, which split into
 * compact type conditions,
2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ is spetsial for \mathbb{G} if
 1. for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,
 \[S_\chi \in \mathbb{C}[x, x^{-1}] , \]
 2. and $\mathcal{H}(W_\zeta)$ satisfies various technical conditions, which split into
 * compact type conditions,
 * noncompact type conditions.
2. Spetsial ζ-cyclotomic Hecke algebras for G

As above,

- $W_\zeta = C_W(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}(W_\zeta)$ is spetsial for G if
 1. for each absolute irreducible character χ of $\mathcal{H}(W_\zeta)$,
 \[S_\chi \in \mathbb{C}[x, x^{-1}] , \]
 2. and $\mathcal{H}(W_\zeta)$ satisfies various technical conditions, which split into
 - compact type conditions,
 - noncompact type conditions.

These conditions coincide if W is generated by true reflections.
Theorem

A 1-cyclotomic Hecke algebra can be spetsial of compact type for G only if it is the algebra $H^c(W)$ defined by

$$H^c(W) = \langle s_H \rangle_{H \in A}$$

with relations:

$$(s_H - x)(x^{e_H-1} + x^{e_H-2}s_H + \cdots + s_{e_H-1}) = 0$$

if s_H has order e_H.

A 1-cyclotomic Hecke algebra can be spetsial of noncompact type for G only if it is the algebra $H^{nc}(W)$ defined by

$$H^{nc}(W) = \langle s_H \rangle_{H \in A}$$

with relations:

$$(s_H - x)(x^{e_H-1} + x^{e_H-2}s_H + \cdots + s_{e_H-1}) = 0$$.
2.1. Spetsial 1-cyclotomic Hecke algebras, special groups

Theorem

A 1-cyclotomic Hecke algebra can be *spetsial of compact type* for \mathbb{G} only if it is the algebra $\mathcal{H}_{c}(W)$ defined by

$$
\begin{aligned}
\mathcal{H}_{c}(W) &= \langle s_{H} \rangle_{H \in \mathcal{A}} \quad \text{with relations:} \\
(s_{H} - x)(1 + s_{H} + \cdots + s_{H}^{e_{H} - 1}) &= 0 \quad \text{(if s_{H} has order e_{H})}
\end{aligned}
$$

Michel Broué

A generic Atlas for Spetses?
2.1. Spetsial 1-cyclotomic Hecke algebras, special groups

Theorem

1. A 1-cyclotomic Hecke algebra can be *spetsial of compact type* for \mathbb{G} only if it is the algebra $\mathcal{H}^c(W)$ defined by

$$\mathcal{H}^c(W) = \langle s_H \rangle_{H \in \mathcal{A}} \quad \text{with relations:}$$

$$\left(s_H - x \right) \left(1 + s_H + \cdots + s_H^{e_H-1} \right) = 0 \quad \text{(if } s_H \text{ has order } e_H)$$

2. A 1-cyclotomic Hecke algebras can be *spetsial of noncompact type* for \mathbb{G} only if it is the algebra $\mathcal{H}^{nc}(W)$ defined by

$$\mathcal{H}^{nc}(W) = \langle s_H \rangle_{H \in \mathcal{A}} \quad \text{with relations:}$$

$$\left(s_H - x \right) \left(x^{e_H-1} + x^{e_H-2} s_H + \cdots + s_H^{e_H-1} \right) = 0.$$
2.2. Spetsial groups

Let $H(W)$ denote either $H_c(W)$ or $H_{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $H(W)$ is spetsial.

(ii) For each absolutely irreducible character χ of $H(W)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.

(iii) W is one of the following groups (Shephard–Todd's notation), called the spetsial groups:

- $G(d, 1, n)$ ($d, n \geq 1$),
- $G(e, e, n)$ ($e, n \geq 2$),
- all groups G_i ($4 \leq i \leq 37$) well generated by true reflections, $G_4, G_6, G_8, G_{25}, G_{26}, G_{32}$.

Michel Broué
2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $\mathcal{H}(W)$ is spetsial.

(ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.

(iii) W is one of the following groups (Shephard–Todd’s notation), called the spetsial groups:

- $G(d, 1, n)$ ($d, n \geq 1$)
- $G(e, e, n)$ ($e, n \geq 2$)
- All groups G_i ($4 \leq i \leq 37$) well generated by true reflections, $G_4, G_6, G_8, G_{25}, G_{26}, G_{32}$.

Michel Broué

A generic Atlas for Spetses?
Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $\mathcal{H}(W)$ is special.

(ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S\chi \in \mathbb{C}[x, x^{-1}]$.

(iii) W is one of the following groups (Shephard–Todd's notation), called the special groups:

- $G(d, 1, n)$ ($d, n \geq 1$),
- $G(e, e, n)$ ($e, n \geq 2$),
- all groups G_i ($4 \leq i \leq 37$) well generated by true reflections,
- G_4, G_6, G_8, G_{25}, G_{26}, G_{32}.
Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

1. $\mathcal{H}(W)$ is special.
2. For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_\chi \in \mathcal{C}[x, x^{-1}]$.
3. W is one of the following groups (Shephard–Todd's notation), called the special groups:
 - $G(d, 1, n)$ ($d, n \geq 1$),
 - $G(e, e, n)$ ($e, n \geq 2$),
 - all groups G_i ($4 \leq i \leq 37$) well generated by true reflections, G_4, G_6, G_8, G_{25}, G_{26}, G_{32}.
2.2. Spetsial groups

Let \(\mathcal{H}(W) \) denote either \(\mathcal{H}^c(W) \) or \(\mathcal{H}^{nc}(W) \).

Theorem (G. Malle)–Definition

Assume \(W \) acts irreducibly on \(V \). The following assertions are equivalent.

(i) \(\mathcal{H}(W) \) is spetsial.
Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $\mathcal{H}(W)$ is spetsial.

(ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_{\chi} \in \mathbb{C}[x, x^{-1}]$.

Michel Broué

A generic Atlas for Spetses?
Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $\mathcal{H}(W)$ is spetsial.

(ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.

(iii) W is one of the following groups (Shephard–Todd’s notation), called the **spetsial groups**:

- $G(d, 1, n)$ ($d, n \geq 1$)
- $G(e, e, n)$ ($e, n \geq 2$)
- G_i ($4 \leq i \leq 37$) well generated by true reflections,
 - G_4,
 - G_6,
 - G_8,
 - G_{25},
 - G_{26},
 - G_{32}.
2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $\mathcal{H}(W)$ is spetsial.

(ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.

(iii) W is one of the following groups (Shephard–Todd’s notation), called the **spetsial groups**:

- $G(d, 1, n)_{(d, n \geq 1)}$, $G(e, e, n)_{(e, n \geq 2)}$.
2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

- (i) $\mathcal{H}(W)$ is spetsial.
- (ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.
- (iii) W is one of the following groups (Shephard–Todd’s notation), called the spetsial groups:
 - $G(d, 1, n)_{(d,n\geq 1)}$, $G(e, e, n)_{(e,n\geq 2)}$,
 - all groups G_i ($4 \leq i \leq 37$) well generated by true reflections,
2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^c(W)$ or $\mathcal{H}^{nc}(W)$.

Theorem (G. Malle)–Definition

Assume W acts irreducibly on V. The following assertions are equivalent.

(i) $\mathcal{H}(W)$ is spetsial.

(ii) For each absolutely irreducible character χ of $\mathcal{H}(W)$, $S_\chi \in \mathbb{C}[x, x^{-1}]$.

(iii) W is one of the following groups (Shephard–Todd’s notation), called the *spetsial groups*:

- $G(d, 1, n)_{(d, n \geq 1)}$, $G(e, e, n)_{(e, n \geq 2)}$,
- all groups G_i $(4 \leq i \leq 37)$ well generated by true reflections,
- G_4, G_6, G_8, G_{25}, G_{26}, G_{32}.
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are the set $Un(G_c)$ of unipotent characters (compact type), the set $Un(G_{nc})$ of unipotent characters (noncompact type), which coincide if W is generated by true reflections each of them (denoted $Un(G)$ below), endowed with two maps the map degree $\text{Deg} : Un(G) \to \mathbb{C}[x]$, $\rho \mapsto \text{Deg} \rho(x)$, defined up to sign, the map Frobenius eigenvalue $\rho \mapsto \text{Fr} \rho$, where $\text{Fr} \rho$ is a root of unity, a bijection (Alvis–Curtis duality) $Un(G_c) \to Un(G_{nc})$, $\rho \mapsto \rho_{nc}$, with lots of properties (axioms) described below.
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are
3. Some data associated with spetsial groups

Given $\mathcal{G} = (V, W)$ where W is special, there are

- the set $\text{Un}(\mathcal{G}_c)$ of unipotent characters (compact type),
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are

- the set $\text{Un}(G_c)$ of unipotent characters (compact type),
- the set $\text{Un}(G_{nc})$ of unipotent characters (noncompact type),
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are

- the set $\text{Un}(G_c)$ of unipotent characters (compact type),
- the set $\text{Un}(G_{nc})$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections.
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are

- the set $\text{Un}(G_c)$ of unipotent characters (compact type),
- the set $\text{Un}(G_{nc})$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections.

each of them (denoted $\text{Un}(G)$ below), endowed with two maps
3. Some data associated with spetsial groups

Given $\mathcal{G} = (V, W)$ where W is special, there are

- the set $\text{Un}(\mathcal{G}_c)$ of unipotent characters (compact type),
- the set $\text{Un}(\mathcal{G}_{nc})$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\text{Un}(\mathcal{G})$ below), endowed with two maps

- the map degree
 \[\text{Deg} : \text{Un}(\mathcal{G}) \to \mathbb{C}[x], \quad \rho \mapsto \text{Deg}_\rho(x), \]
 defined up to sign,
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are
- the set $\text{Un}(G_c)$ of unipotent characters (compact type),
- the set $\text{Un}(G_{nc})$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\text{Un}(G)$ below), endowed with two maps
- the map degree
 $$\text{Deg} : \text{Un}(G) \to \mathbb{C}[x], \ \rho \mapsto \text{Deg}_\rho(x),$$
defined up to sign,
- the map Frobenius eigenvalue $\rho \mapsto \text{Fr}_\rho$, where Fr_ρ is a root of unity,
3. Some data associated with spetsial groups

Given $G = (V, W)$ where W is special, there are

- the set $\text{Un}(G_c)$ of unipotent characters (compact type),
- the set $\text{Un}(G_{nc})$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\text{Un}(G)$ below), endowed with two maps

- the map degree

 \[\text{Deg} : \text{Un}(G) \rightarrow \mathbb{C}[x], \quad \rho \mapsto \text{Deg}_\rho(x), \]

defined up to sign,

- the map Frobenius eigenvalue $\rho \mapsto \text{Fr}_\rho$, where Fr_ρ is a root of unity,

- a bijection (Alvis–Curtis duality)

 \[\text{Un}(G_c) \rightarrow \text{Un}(G_{nc}), \quad \rho \mapsto \rho^{nc}, \]
Given $G = (V, W)$ where W is special, there are

- the set $\text{Un}(G_c)$ of unipotent characters (compact type),
- the set $\text{Un}(G_{nc})$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\text{Un}(G)$ below), endowed with two maps

- the map degree
 \[\text{Deg} : \text{Un}(G) \rightarrow \mathbb{C}[x], \quad \rho \mapsto \text{Deg}_\rho(x), \]
 defined up to sign,
- the map Frobenius eigenvalue $\rho \mapsto \text{Fr}_\rho$, where Fr_ρ is a root of unity,
- a bijection (Alvis–Curtis duality)
 \[\text{Un}(G_c) \rightarrow \text{Un}(G_{nc}), \quad \rho \mapsto \rho_{nc}, \]

with lots of properties (axioms) described below.
3.1. First axioms

Connection compact / noncompact

\[\deg \rho_{nc}(x) = x_{Nref} W \deg \rho(\frac{1}{x})^\ast, \]

up to sign!

Fr \rho_{nc} = 1.

From now on we only describe the compact type case.

Definition Let \(\zeta \in \mu \).

The \(\zeta \)-principal series is

\[\text{Un}(G, \zeta) := \{ \rho \in \text{Un}(G) | \deg \rho(\zeta) \neq 0 \}. \]
3.1. First axioms

Connection compact / noncompact
3.1. First axioms

Connection compact / noncompact

1. $\text{Deg}_{\rho}^{nc}(x) = x^{N_{W}^{\text{ref}}} \text{Deg}_{\rho}(1/x)^{*}$,
3.1. First axioms

Connection compact / noncompact

1. \(\text{Deg}_{\rho_{\text{nc}}} (x) = x^{N_W^{\text{ref}}} \text{Deg}_{\rho} (1/x)^* , \) up to sign!
3.1. First axioms

Connection compact / noncompact

1. \(\text{Deg}_{\rho_{nc}}(x) = x^{N^\text{ref}_W} \text{Deg}_{\rho}(1/x)^* \), \(\uparrow \) up to sign!

2. \(\text{Fr}_\rho \text{Fr}_{\rho_{nc}} = 1 \).
3.1. First axioms

Connection compact / noncompact

1. $\text{Deg}_{\rho_{nc}}(x) = x^{N^\text{ref}_{W}} \text{Deg}_{\rho}(1/x)^*$, \(\uparrow\) up to sign!

2. $\text{Fr}_{\rho} \text{Fr}_{\rho_{nc}} = 1$.

From now on we only describe the compact type case.
3.1. First axioms

Connection compact / noncompact

1. $\text{Deg}_{\rho_{nc}}(x) = x^{N_{W}^{\text{ref}}} \text{Deg}_{\rho}(1/x)^{\ast}$, \(\uparrow\) up to sign!

2. $\text{Fr}_{\rho} \text{Fr}_{\rho_{nc}} = 1$.

From now on we only describe the compact type case.

Definition

Let $\zeta \in \mu$.
3.1. First axioms

Connection compact / noncompact

1. \(\text{Deg}_{\rho^{nc}}(x) = x^{N_{\overline{W}}} \text{Deg}_\rho(1/x)^* \), up to sign!

2. \(\text{Fr}_\rho \text{Fr}_{\rho^{nc}} = 1 \).

From now on we only describe the compact type case.

Definition

Let \(\zeta \in \mu \).
The \(\zeta \)-principal series is

\[
\text{Un}(G, \zeta) := \{ \rho \in \text{Un}(G) \mid \text{Deg}_\rho(\zeta) \neq 0 \}.
\]
3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are a special ζ-cyclotomic Hecke algebra of compact type $H(W)$ associated with w, and a bijection $\text{Irr} H(W) \xrightarrow{\sim} \text{Un}(G, \zeta)$, $\chi \mapsto \rho_\chi$ such that

1. $\text{Deg} \rho_\chi(x) = \pm |G|(x) : |T_w|(x) \cdot |S_\chi(x)|$,

2. $\text{Fr} \rho_\chi$ explicit formula depending only on $H(W)$ and χ.

Michel Broué

A generic Atlas for Spetses?
3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are...
3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a special ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}(W_\zeta)$ associated with w,

\[\text{Deg } \rho_\chi(x) = \pm |G(x) : |T_w(x)| x', S_\chi(x),\]

\[\text{Fr } \rho_\chi = \text{explicit formula depending only on } \mathcal{H}(W_\zeta) \text{ and } \chi.\]
3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}(W_\zeta)$
 associated with w,
- and a bijection

$$\text{Irr} \, \mathcal{H}(W_\zeta) \xrightarrow{\sim} \text{Un}(G, \zeta) \, , \, \chi \mapsto \rho_\chi$$
3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}(W_\zeta)$ associated with w,

- and a bijection

$$\text{Irr } \mathcal{H}(W_\zeta) \xrightarrow{\sim} \text{Un}(G, \zeta), \quad \chi \mapsto \rho_\chi$$

such that

$\text{Deg } \rho_\chi(x) = \pm \frac{|\mathcal{G}(x)|}{|T_w(x)|} x'$
3.2. \(\zeta \)-Axioms

For \(w \in W \) a \(\zeta \)-regular element, there are

- a spetsial \(\zeta \)-cyclotomic Hecke algebra of compact type \(\mathcal{H}(W_\zeta) \)
 associated with \(w \),

- and a bijection

\[
\text{Irr } \mathcal{H}(W_\zeta) \sim \rightarrow \text{Un}(G, \zeta), \; \chi \mapsto \rho_\chi
\]

such that

\[\text{Deg}_{\rho_\chi}(x) = \pm \frac{[|G|(x) : |T_w|(x)]_{x'}}{S_\chi(x)}, \]

where

- \(\text{Deg}_{\rho_\chi}(x) \) is the degree of the character \(\rho_\chi
- \(|G|(x) \) is the size of the group
- \(|T_w|(x) \) is the size of the stabilizer
- \(S_\chi(x) \) is a function of \(x \)

Michel Broué
A generic Atlas for Spetses ?
3.2. \(\zeta \)-Axioms

For \(w \in W \) a \(\zeta \)-regular element, there are

- a spetsial \(\zeta \)-cyclotomic Hecke algebra of compact type \(\mathcal{H}(W_{\zeta}) \) associated with \(w \),
- and a bijection

\[
\text{Irr} \mathcal{H}(W_{\zeta}) \xrightarrow{\sim} \text{Un}(G, \zeta), \ \chi \mapsto \rho_{\chi}
\]

such that

1. \(\text{Deg}_{\rho_{\chi}}(x) = \pm \frac{[G : \text{T}_{w}(x)]_{x'}}{S_{\chi}(x)} \),
2. \(\text{Fr}_{\rho_{\chi}} = \) explicit formula depending only on \(\mathcal{H}(W_{\zeta}) \) and \(\chi \).
3.3. Rouquier blocks

If the representation of W on V is rational over some cyclotomic field K, the ζ-cyclotomic Hecke algebra $H(W_\zeta)$ may be defined over $\mathbb{Z}_K[x, x^{-1}]$.

Definition

The Rouquier blocks of a ζ-cyclotomic Hecke algebra $H(W_\zeta)$ are the blocks of the algebra $\mathbb{Z}_K[x, x^{-1}, (x^n - 1) - 1] \otimes \mathbb{Z}_K[x, x^{-1}] H(W_\zeta)$.

The Rouquier blocks of ζ-cyclotomic Hecke algebras have been classified in all cases (Malle–Rouquier, B.–Kim, Chlouveraki).

For $\zeta = 1$ and W Coxeter group, Rouquier blocks are nothing but the characters associated with two sided cells (Kazhdan–Lusztig theory).

Michel Broué

A generic Atlas for Spetses?
3.3. Rouquier blocks

- If the representation of W_{ζ} on V_{ζ} is rational over some cyclotomic field K, the ζ-cyclotomic Hecke algebra $\mathcal{H}(W_{\zeta})$ may be defined over $\mathbb{Z}_K[x, x^{-1}]$.

Definition

The **Rouquier blocks** of a ζ-cyclotomic Hecke algebra $\mathcal{H}(W_{\zeta})$ are the blocks of the algebra

$$\mathbb{Z}_K[x, x^{-1}, ((x^n - 1)^{-1})_{n \geq 1}] \otimes_{\mathbb{Z}[x, x^{-1}]} \mathcal{H}(W_{\zeta}).$$

- The Rouquier blocks of ζ-cyclotomic Hecke algebras have been classified in all cases (Malle–Rouquier, B.–Kim, Chlouveraki).
- For $\zeta = 1$ and W Coxeter group, Rouquier blocks are nothing but the characters associated with two sided cells (Kazhdan–Lusztig theory).
3.3. Rouquier blocks

OMITTED in order to leave time for Alan Baker story.
3.4. Families and Rouquier blocks

There is a partition $\text{Un}(\mathcal{G}) = \bigsqcup_{F \in \text{Fam}(\mathcal{G})} F$, hence for all regular ζ, $\text{Un}(\mathcal{G}, \zeta) = \bigsqcup_{F \in \text{Fam}(\mathcal{G})} (F \cap \text{Un}(\mathcal{G}, \zeta))$, with the following properties.

1. Through the bijection $\text{Un}(\mathcal{G}, \zeta) \sim \rightarrow \text{Irr}_H(W_\zeta)$, the nonempty intersections $F \cap \text{Un}(\mathcal{G}, \zeta)$ are the Rouquier blocks of $\text{Irr}_H(W_\zeta)$.

2. The integers a_ρ (valuation of Deg_ρ) and A_ρ (degree of Deg_ρ) are constant for ρ in a family F.

Michel Broué
A generic Atlas for Spetses ?
3.4. Families and Rouquier blocks

Families

There is a partition

\[\text{Un}(G) = \bigsqcup_{F \in \text{Fam}(G)} F \]

(where the \(F \)'s are the families of unipotent characters), hence for all regular \(\zeta \),

\[\text{Un}(G, \zeta) = \bigsqcup_{F \in \text{Fam}(G)} (F \cap \text{Un}(G, \zeta)) , \]

with the following properties.

1. Through the bijection \(\text{Un}(G, \zeta) \sim \rightarrow \text{Irr} \mathcal{H}(W_\zeta) \), the nonempty intersections \(F \cap \text{Un}(G, \zeta) \) are the Rouquier blocks of \(\text{Irr} \mathcal{H}(W_\zeta) \).
2. The integers \(a_\rho \) (valuation of \(\text{Deg}_\rho \)) and \(A_\rho \) (degree of \(\text{Deg}_\rho \)) are constant for \(\rho \) in a family \(F \).
OMITTED in order to leave time for Alan Baker story.
Let us denote by B_2 the braid group on three brands, generated by two elements s and t satisfying the relation

$$s \cdot t \cdot st = tst.$$

Let us set $w_0 := sts$. It is known that
Let us denote by B_2 the braid group on three brands, generated by two elements s and t satisfying the relation

$$s \quad \quad t \quad \quad sts = tst.$$

Let us set $w_0 := sts$. It is known that

- the center of B_2 is infinite cyclic and generated by

$$w_0^2 = (sts)^2 = (st)^3,$$
The Fourier matrices

Let us denote by B_2 the braid group on three brands, generated by two elements s and t satisfying the relation

$$s \cdot t \cdot st = tst.$$

Let us set $w_0 := sts$. It is known that

- the center of B_2 is infinite cyclic and generated by $w_0^2 = (sts)^2 = (st)^3$,
- the map
 $$s \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad t \mapsto \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 induces an isomorphism $B_2/\langle w_0^4 \rangle \sim \text{SL}_2(\mathbb{Z})$.

Michel Broué

A generic Atlas for Spetses?
Let \mathcal{F} be a family in $\text{Un}(G)$.
Let \mathcal{F} be a family in $\text{Un}(G)$.

The S-matric (Fourier matrix)

1. S is unitary and symmetric,
2. S^2 is an order 2 monomial matrix with entries in $\{\pm 1\}$,
3. there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that
 - the corresponding row i_0 of S has no zero entry,
 - (Verlinde type formula) for all $i, j, k \in \mathcal{F}$, the sums
 \[\sum_l S^l, i S^l, j S^*, k S^{-1} l, i_0 \]
 are integers.
Let \(\mathcal{F} \) be a family in \(\text{Un}(G) \).

The S-matric (Fourier matrix)

There is a complex matrix \(S \) with entries indexed by \(\mathcal{F} \times \mathcal{F} \), such that for all \(\chi_0 \in \text{Irr}(W) \),

\[
\sum_{\chi \in \text{Irr}(W)} S_{\rho_\chi, \rho_{\chi_0}} \text{Feg}_\chi = \text{Deg}_{\rho_{\chi_0}},
\]

and with the following properties.

1. \(S \) is unitary and symmetric,
2. \(S^2 \) is an order 2 monomial matrix with entries in \(\{\pm 1\} \),
3. there exists a special character of \(W \) (in the Rouquier block corresponding to \(\mathcal{F} \)) such that
 - the corresponding row \(i_0 \) of \(S \) has no zero entry,
 - (Verlinde type formula) for all \(i, j, k \in \mathcal{F} \), the sums
 \[
 \sum_{l} S_{l, i} S_{l, j}^* S_{l, k}^{-1} S_{l, i_0}
 \]
 are integers.
Let \mathcal{F} be a family in $\text{Un}(G)$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_0 \in \text{Irr}(W)$,

$$
\sum_{\chi \in \text{Irr}(W)} S_{\rho \chi, \rho \chi_0} \text{Feg}_\chi = \text{Deg}_{\rho \chi_0}
$$

and with the following properties.
Let \mathcal{F} be a family in $\text{Un}(G)$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_0 \in \text{Irr}(W)$,

$$\sum_{\chi \in \text{Irr}(W)} S_{\rho \chi, \rho \chi_0} \text{Feg} \chi = \text{Deg} \rho \chi_0,$$

and with the following properties.

1. S is unitary and symmetric,
Let \mathcal{F} be a family in $\text{Un}(G)$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_0 \in \text{Irr}(W)$,

$$
\sum_{\chi \in \text{Irr}(W)} S_{\rho\chi,\rho\chi_0} \text{Feg}_\chi = \text{Deg}_{\rho\chi_0},
$$

and with the following properties.

1. S is unitary and symmetric,
2. S^2 is an order 2 monomial matrix with entries in $\{\pm 1\},$
Let \mathcal{F} be a family in $\text{Un}(G)$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_0 \in \text{Irr}(W)$,

$$\sum_{\chi \in \text{Irr}(W)} S_{\rho \chi, \rho \chi_0} \text{Feg}_\chi = \text{Deg}_{\rho \chi_0},$$

and with the following properties.

1. S is unitary and symmetric,
2. S^2 is an order 2 monomial matrix with entries in $\{\pm 1\}$,
3. there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that
Let \mathcal{F} be a family in $\text{Un}(\mathbb{G})$.

The S-matrix (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_0 \in \text{Irr}(W)$,

$$\sum_{\chi \in \text{Irr}(W)} S_{\rho \chi, \rho \chi_0} \text{Feg}_\chi = \text{Deg}_{\rho \chi_0},$$

and with the following properties.

1. S is unitary and symmetric,
2. S^2 is an order 2 monomial matrix with entries in $\{\pm 1\}$,
3. there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that
 - the corresponding row i_0 of S has no zero entry,
Let \mathcal{F} be a family in $\text{Un}(G)$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_0 \in \text{Irr}(W)$,

$$\sum_{\chi \in \text{Irr}(W)} S_{\rho \chi, \rho \chi_0} \text{Feg} \chi = \text{Deg} \rho \chi_0,$$

and with the following properties.

1. S is unitary and symmetric,
2. S^2 is an order 2 monomial matrix with entries in $\{\pm 1\}$,
3. there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that
 1. the corresponding row i_0 of S has no zero entry,
 2. (Verlinde type formula) for all $i, j, k \in \mathcal{F}$, the sums $\sum_{l} S_{l, i} S_{l, j} S_{l, k}^* S_{l, i_0}^{-1}$
 are integers.
Frobenius and Shintani matrices

Let Ω be the diagonal matrix indexed by $F \times F$ whose diagonal term at $\rho \in F$ is the Frobenius eigenvalue F_r. Define $S := S \cdot \Omega \cdot S^{-1}$.

Fact: There is a proof, but so far I've not seen an explanation.

The map $s \mapsto \Omega, t \mapsto S$ induces a representation of $SL_2(\mathbb{Z})$ onto the complex vector space with basis F such that $w_0 \mapsto S$. All this makes us think of a kind of modular datum, and perhaps for the Spets of a kind of triangulated modular tensor category (?).
Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_ρ.

"There is a proof, but so far I've not seen an explanation" [JHC]

The map $s \mapsto \Omega$, $t \mapsto Sh$ induces a representation of $\text{SL}_2(\mathbb{Z})$ onto the complex vector space with basis $F_0 \mapsto S$.

All this makes us think of a kind of modular datum, and perhaps for the Spets of a kind of triangulated modular tensor category (?)
Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_ρ.
- Define $\text{Sh} := S \cdot \Omega \cdot S^{-1}$.

There is a proof, but so far I've not seen an explanation.
Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_ρ.
- Define $\text{Sh} := S \cdot \Omega \cdot S^{-1}$.

Fact

a "There is a proof, but so far I've not seen an explanation" [JHC]
Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_ρ.
- Define $\text{Sh} := S \cdot \Omega \cdot S^{-1}$.

Facta

a “There is a proof, but so far I’ve not seen an explanation” [JHC]

The map

$$s \mapsto \Omega, \quad t \mapsto \text{Sh}$$

induces a representation of $\text{SL}_2(\mathbb{Z})$ onto the complex vector space with basis \mathcal{F} such that $w_0 \mapsto S$.
Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_ρ.
- Define $\text{Sh} := S \cdot \Omega \cdot S^{-1}$.

Fact

"There is a proof, but so far I've not seen an explanation" [JHC]

The map

$$s \mapsto \Omega, \quad t \mapsto \text{Sh}$$

induces a representation of $\text{SL}_2(\mathbb{Z})$ onto the complex vector space with basis \mathcal{F} such that $w_0 \mapsto S$.

All this makes us think of a kind of *modular datum*, and perhaps for the Spets of a kind of *triangulated modular tensor category* (?).
The Fourier matrix for G_4

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>12</th>
<th>01</th>
<th>34</th>
<th>04</th>
<th>25</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>02</td>
<td>.</td>
<td>$1 + \frac{1}{\sqrt{-3}}$</td>
<td>$1 - \frac{1}{\sqrt{-3}}$</td>
<td>-1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>.</td>
<td>$1 - \frac{1}{\sqrt{-3}}$</td>
<td>$1 + \frac{1}{\sqrt{-3}}$</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{1}{2\sqrt{-3}}$</td>
<td>$\frac{1}{2\sqrt{-3}}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$-\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
</tr>
<tr>
<td>25</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{1}{\sqrt{-3}}$</td>
<td>$\frac{1}{\sqrt{-3}}$</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

In red = the Φ'_6–series.
• = the Φ_4–series.

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>3</td>
<td>$-\sqrt{-3}/6$</td>
<td>$q\Phi'_3\Phi_4\Phi''_6$</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$3+\sqrt{-3}/6$</td>
<td>$q\Phi'_3\Phi_4\Phi''_6$</td>
<td>$X_3.02$</td>
<td></td>
</tr>
<tr>
<td>$\phi_{3,2}$</td>
<td>2</td>
<td>$q^{1/2}\Phi_3\Phi_6$</td>
<td>C_1</td>
<td></td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>4</td>
<td>$-\sqrt{-3}/6$</td>
<td>$q\Phi'_3\Phi_4\Phi''_6$</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>8</td>
<td>$\sqrt{-3}/6$</td>
<td>$q\Phi'_3\Phi_4\Phi''_6$</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\phi_{2,5}$</td>
<td>2</td>
<td>$q^{1/2}\Phi_2\Phi_6$</td>
<td>$Z_3:2$</td>
<td></td>
</tr>
<tr>
<td>$\phi_{3,4}$</td>
<td>4</td>
<td>$-\sqrt{-3}/3$</td>
<td>$q\Phi_1\Phi_2\Phi_4$</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$\phi_{2,7}$</td>
<td>7</td>
<td>$q^{1/2}\Phi_2\Phi_6$</td>
<td>$Z_3:11$</td>
<td></td>
</tr>
<tr>
<td>Φ'_3, Φ'_6</td>
<td>(resp. Φ''_3, Φ''_6)</td>
<td>are factors of Φ_3 (resp Φ_6) in $\mathbb{Q}(\zeta_3)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unipotent characters for G_4

In red = the Φ_6'–series.
• = the Φ_4–series.

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bullet \phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{3-\sqrt{-3}}{6} q \Phi_3 \Phi_4 \Phi_6''$</td>
<td>$q\Phi_4$</td>
<td>1</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$\frac{3+\sqrt{-3}}{6} q \Phi_3'' \Phi_4 \Phi_6'$</td>
<td>$q^3\Phi_4$</td>
<td>1</td>
<td>$X_3.02$</td>
</tr>
<tr>
<td>$Z_3 : 2$</td>
<td>$\sqrt{-\frac{3}{3}} q \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_3.12$</td>
</tr>
<tr>
<td>$\bullet \phi_{3,2}$</td>
<td>$q^2\Phi_3 \Phi_6$</td>
<td>$q^2\Phi_3 \Phi_6$</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>$-\frac{\sqrt{-3}}{6} q^4 \Phi_3'' \Phi_4 \Phi_6'$</td>
<td>q^4</td>
<td>1</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>$\frac{\sqrt{-3}}{6} q^4 \Phi_3 \Phi_4 \Phi_6'$</td>
<td>q^8</td>
<td>1</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\bullet \phi_{2,5}$</td>
<td>$\frac{1}{2} q^4 \Phi_2^2 \Phi_6$</td>
<td>$q^5\Phi_4$</td>
<td>1</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$Z_3 : 11$</td>
<td>$\sqrt{-\frac{3}{3}} q^4 \Phi_1 \Phi_2 \Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_5.4$</td>
</tr>
<tr>
<td>$\bullet G_4$</td>
<td>$\frac{1}{2} q^4 \Phi_1^2 \Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$X_5.5$</td>
</tr>
</tbody>
</table>

Φ_3', Φ_3'' (resp. Φ_6', Φ_6'') are factors of Φ_3 (resp Φ_6) in $\mathbb{Q}(\zeta_3)$