GL$_n(x)$ for x an indeterminate?

Michel Broué

Institut universitaire de France
Université Paris-Diderot Paris 7
CNRS–Institut de Mathématiques de Jussieu

February 2012
Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_q.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q, analog of the usual complex reductive Lie groups:

$GL_n(\mathbb{F}_q)$, $O_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $U_n(\mathbb{F}_q)$,...

denoted respectively $GL_n(q)$, $O_n(q)$, $Sp_n(q)$, $U_n(q)$,...

For example $U_n(q) := \{ U \in \text{Mat}_n(\mathbb{F}_q^2) \mid U \cdot t U^* = 1 \}$.

There are also groups of exceptional types G_2, F_4, E_6, E_7, E_8 over \mathbb{F}_q.

They can be viewed from the algebraic groups point of view, as follows.
Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q, analog of the usual complex reductive Lie groups:

- $GL_n(\mathbb{F}_q)$
- $O_n(\mathbb{F}_q)$
- $Sp_n(\mathbb{F}_q)$
- $U_n(\mathbb{F}_q)$

For example $U_n(\mathbb{F}_q) := \{ U \in \text{Mat}_{n \times n}(\mathbb{F}_q^2) | U^t U = 1 \}$. There are also groups of exceptional types G_2, F_4, E_6, E_7, E_8 over \mathbb{F}_q. They can be viewed from the algebraic groups point of view, as follows.
Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_q.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q, analog of the usual complex reductive Lie groups:

$$\text{GL}_n(\mathbb{F}_q), \text{O}_n(\mathbb{F}_q), \text{Sp}_n(\mathbb{F}_q), \text{U}_n(\mathbb{F}_q), \ldots$$
Finite Reductive Groups

Let \(q \) be a prime power. There is (up to \textit{non unique} isomorphism) a single field with \(q \) elements, denoted \(\mathbb{F}_q \).

Since Chevalley (1955), one knows how to construct Lie groups over \(\mathbb{F}_q \), analog of the usual complex reductive Lie groups:

\[
\text{GL}_n(\mathbb{F}_q), \text{O}_n(\mathbb{F}_q), \text{Sp}_n(\mathbb{F}_q), \text{U}_n(\mathbb{F}_q), \ldots
\]

denoted respectively

\[
\text{GL}_n(q), \text{O}_n(q), \text{Sp}_n(q), \text{U}_n(q), \ldots
\]
Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_q.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q, analog of the usual complex reductive Lie groups:

$$\GL_n(\mathbb{F}_q), \quad \mathcal{O}_n(\mathbb{F}_q), \quad \mathcal{S}p_n(\mathbb{F}_q), \quad \mathcal{U}_n(\mathbb{F}_q), \ldots$$

denoted respectively

$$\GL_n(q), \quad \mathcal{O}_n(q), \quad \mathcal{S}p_n(q), \quad \mathcal{U}_n(q), \ldots$$

For example

$$\mathcal{U}_n(q) := \left\{ U \in \Mat_n(\mathbb{F}_{q^2}) \mid U^t U^* = 1 \right\}.$$
Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_q.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q, analog of the usual complex reductive Lie groups:

$$\text{GL}_n(\mathbb{F}_q), \text{O}_n(\mathbb{F}_q), \text{Sp}_n(\mathbb{F}_q), \text{U}_n(\mathbb{F}_q), \ldots$$

denoted respectively

$$\text{GL}_n(q), \text{O}_n(q), \text{Sp}_n(q), \text{U}_n(q), \ldots$$

For example

$$\text{U}_n(q) := \left\{ U \in \text{Mat}_n(\mathbb{F}_q^2) \mid U^t U^* = 1 \right\}.$$

There are also groups of exceptional types G_2, F_4, E_6, E_7, E_8 over \mathbb{F}_q.
Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_q.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q, analog of the usual complex reductive Lie groups:

$$\text{GL}_n(\mathbb{F}_q), \text{O}_n(\mathbb{F}_q), \text{Sp}_n(\mathbb{F}_q), \text{U}_n(\mathbb{F}_q), \ldots$$

denoted respectively

$$\text{GL}_n(q), \text{O}_n(q), \text{Sp}_n(q), \text{U}_n(q), \ldots$$

For example

$$\text{U}_n(q) := \{ U \in \text{Mat}_n(\mathbb{F}_q^2) \mid U^tU^* = 1 \}.$$

There are also groups of exceptional types G_2, F_4, E_6, E_7, E_8 over \mathbb{F}_q.

They can be viewed from the algebraic groups point of view, as follows.
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure. Then the group $G := G(\overline{\mathbb{F}}_q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example: Assume $G = GL_n(\mathbb{F}_q)$. Then $G = GL_n(\overline{\mathbb{F}}_q)$. For $F: (a_{ij}) \mapsto (a_{q^i,j})$, $G = U_n(\mathbb{F}_q)$.

Let $T \sim = \mathbb{F}_q \times \mathbb{F}_q \times \cdots \mathbb{F}_q$ be an \mathbb{F}_q-stable maximal torus of G.

The Weyl group of G is $W := N_G(T) / T$.

Example: For $G = GL_n(\mathbb{F}_q)$, $T = \begin{pmatrix} \mathbb{F}_q & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbb{F}_q \end{pmatrix}$ and $W = S_n$. Michel Broué
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure. Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure. Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure.

Then the group $G := G(q) := G^F$ is a \textbf{finite reductive group} over \mathbb{F}_q.

\textbf{Example:}

Assume $G = \text{GL}_n(\mathbb{F}_q)$.

\[\begin{bmatrix}
F & \cdots & 0 \\
0 & \ddots & \vdots \\
\vdots & \ddots & F
\end{bmatrix}\]

\[W = S_n.\]
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure.

Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = \text{GL}_n(\mathbb{F}_q)$.

- For $F : (a_{i,j}) \mapsto (a_{i,j}^q)$,
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure. Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = \text{GL}_n(\overline{\mathbb{F}}_q)$.

- For $F : (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = \text{GL}_n(q)$.
Let G be a connected reductive algebraic group over \overline{F}_q, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure. Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = \text{GL}_n(\mathbb{F}_q)$.

- For $F : (a_{i,j}) \mapsto (a_{i,j}^q), \ G = \text{GL}_n(q)$.
- For $F : (a_{i,j}) \mapsto t(a_{i,j})$,

Michel Broué
Let G be a connected reductive algebraic group over \overline{F}_q, endowed with a Frobenius endomorphism F which defines an F_q-rational structure. Then the group $G := G(q) := G^F$ is a finite reductive group over F_q.

Example:
Assume $G = \text{GL}_n(\overline{F}_q)$.

- For $F : (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = \text{GL}_n(q)$.
- For $F : (a_{i,j}) \mapsto t(a_{i,j})$, $G = \text{U}_n(q)$.

Michel Broué
Let G be a connected reductive algebraic group over \overline{F}_q, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure.

Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = \text{GL}_n(\overline{F}_q)$.

- For $F : (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = \text{GL}_n(q)$.
- For $F : (a_{i,j}) \mapsto t(a_{i,j}^q)$, $G = \text{U}_n(q)$.

Let $T \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ be an F-stable maximal torus of G.

Michel Broué
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure. Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = GL_n(\overline{\mathbb{F}}_q)$.
- For $F : (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = GL_n(q)$.
- For $F : (a_{i,j}) \mapsto t(a_{i,j})^q$, $G = U_n(q)$.

Let $T \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ be an F-stable maximal torus of G.

The Weyl group of G is $W := N_G(T)/T$.

Michel Broué
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure.

Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = \text{GL}_n(\mathbb{F}_q)$.

- For $F : (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = \text{GL}_n(q)$.
- For $F : (a_{i,j}) \mapsto t(a_{i,j}^q)$, $G = \text{U}_n(q)$.

Let $T \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ be an F-stable maximal torus of G.

The Weyl group of G is $W := N_G(T)/T$.

Example:

For $G = \text{GL}_n(\mathbb{F}_q)$, $T = \begin{pmatrix} \mathbb{F}_q^\times & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbb{F}_q^\times \end{pmatrix}$.
Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q-rational structure.

Then the group $G := G(q) := G^F$ is a finite reductive group over \mathbb{F}_q.

Example:
Assume $G = \text{GL}_n(\mathbb{F}_q)$.

- For $F : (a_{ij}) \mapsto (a_{ij}^q)$, $G = \text{GL}_n(q)$.
- For $F : (a_{ij}) \mapsto t(a_{ij}^q)$, $G = U_n(q)$.

Let $T \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ be an F-stable maximal torus of G.

The Weyl group of G is $W := N_G(T)/T$.

Example:

For $G = \text{GL}_n(\mathbb{F}_q)$, $T = \begin{pmatrix} \overline{\mathbb{F}}_q^\times & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \overline{\mathbb{F}}_q^\times \end{pmatrix}$ and $W = S_n$.

Michel Broué
Let $Y(T) := \text{Hom}(\overline{F}_q^\times, T)$ be the group of co-characters of T, a free \mathbb{Z}-module of finite rank.
Let $Y(T) := \text{Hom}(\overline{F}_q^\times, T)$ be the group of co-characters of T, a free \mathbb{Z}-module of finite rank.

Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T)$, a finite dimensional complex vector space.
Let $Y(T) := \text{Hom}(\overline{F}_q^\times, T)$ be the group of co-characters of T, a free \mathbb{Z}-module of finite rank.

Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T)$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\text{GL}(V)}(W)$.

Example:

For $G = \text{GL}_n(q)$, its type is $G = \text{GL}_n(q) = (C_n, S_n)$.

For $G = \text{U}_n(q)$, its type is $G = \text{U}_n(q) = (C_n, -S_n)$.

Main fact: Lots of data about $G = \text{GL}_n(q)$ are values at $x = q$ of polynomials in x which depend only on the type G. As if there were an object $G(x)$ such that $G(x) |_{x = q} = G(q)$.

Michel Broué

GL_n(x) for x an indeterminate?
Let $Y(\mathbf{T}) := \text{Hom}(\overline{F}_q^\times, \mathbf{T})$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.

Set $V := \mathbb{C} \otimes_\mathbb{Z} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\text{GL}(V)}(W)$.

The type of G is $\mathcal{G} := (V, W\varphi)$.

Example:

$\text{For } G = \text{GL}_n(q)$, its type is $G = \text{GL}_n := (\mathbb{C}^n, S_n)$.

$\text{For } G = \text{U}_n(q)$, its type is $G = \text{U}_n := (\mathbb{C}^n, -S_n)$.

Main fact: Lots of data about $G = \text{GL}_n(q)$ are values at $x = q$ of polynomials in x which depend only on the type G. As if there were an object $G(x)$ such that $G(x)|_{x=q} = G(q)$.

Michel Broué $\text{GL}_n(x)$ for x an indeterminate ?
Let \(Y(T) := \text{Hom}((\overline{F}^\times_q, T) \) be the group of co-characters of \(T \), a free \(\mathbb{Z} \)-module of finite rank.

Set \(V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T) \), a finite dimensional complex vector space. Then \(W \) acts on \(V \) as a reflection group, and the Frobenius endomorphism \(F \) acts on \(V \) as \(q \varphi \), where \(\varphi \) is a finite order element of \(N_{GL(V)}(W) \).

The type of \(G \) is \(G := (V, W\varphi) \).

Example:
Let $Y(T) := \text{Hom}(\overline{F}_q^\times, T)$ be the group of co-characters of T, a free \mathbb{Z}-module of finite rank.

Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T)$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\text{GL}(V)}(W)$.

The type of G is $\mathbb{G} := (V, W\varphi)$.

Example:

- For $G = \text{GL}_n(q)$, its type is $\mathbb{G} = \text{GL}_n := (\mathbb{C}^n, \mathbb{S}_n)$.
Let \(Y(T) := \text{Hom}(\mathbb{F}_q^\times, T) \) be the group of co-characters of \(T \), a free \(\mathbb{Z} \)-module of finite rank.

Set \(V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T) \), a finite dimensional complex vector space. Then \(W \) acts on \(V \) as a reflection group, and the Frobenius endomorphism \(F \) acts on \(V \) as \(q\varphi \), where \(\varphi \) is a finite order element of \(N_{\text{GL}(V)}(W) \).

The type of \(G \) is \(\mathcal{G} := (V, W\varphi) \).

Example:

- For \(G = \text{GL}_n(q) \), its type is \(\mathcal{G} = \text{GL}_n := (\mathbb{C}^n, \mathcal{S}_n) \).
- For \(G = \text{U}_n(q) \), its type is \(\mathcal{G} = \text{U}_n := (\mathbb{C}^n, -\mathcal{S}_n) \).
Let $Y(T) := \text{Hom}((\mathbb{F}_q^\times, T)$ be the group of co-characters of T, a free \mathbb{Z}-module of finite rank.

Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T)$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{GL(V)}(W)$.

The type of G is $\mathbb{G} := (V, W\varphi)$.

Example:
- For $G = GL_n(q)$, its type is $\mathbb{G} = GL_n := (\mathbb{C}^n, \mathfrak{S}_n)$.
- For $G = U_n(q)$, its type is $\mathbb{G} = U_n := (\mathbb{C}^n, -\mathfrak{S}_n)$.

Main fact
Lots of data about $G = \mathbb{G}(q)$ are values at $x = q$ of polynomials in x which depend only on the type \mathbb{G}.
Let $Y(T) := \text{Hom}(\overline{F}_q^\times, T)$ be the group of co-characters of T, a free \mathbb{Z}-module of finite rank.

Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T)$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{GL(V)}(W)$.

The type of G is $\mathcal{G} := (V, W\varphi)$.

Example:
- For $G = GL_n(q)$, its type is $\mathcal{G} = GL_n := (\mathbb{C}^n, S_n)$.
- For $G = U_n(q)$, its type is $\mathcal{G} = U_n := (\mathbb{C}^n, -S_n)$.

Main fact

Lots of data about $G = G(q)$ are values at $x = q$ of polynomials in x which depend only on the type \mathcal{G}.

As if there were an object $G(x)$ such that $G(x)|_{x=q} = G(q)$.
Let $G = (V, W\varphi)$.

R. Steinberg (1967): There is a polynomial (element of $\mathbb{Z}[x]$) $|G|_G(x) = x \prod_{d|\varphi} \Phi_d(x)^{a(d)}$ such that $|G|_G(q) = |G(q)| = |G|$.

Example | $|GL_n|_G(x) = x^{n^2} \prod_{d|n} \Phi_d(x)^{n/d}$ | $|U_n|_G(x) = \pm |GL_n|_{-x}$ (well, precisely $(-1)^{n^2/2} |GL_n|_{-x}$).
Polynomial order

Let $G = (V, W_\varphi)$.

R. Steinberg (1967): There is a polynomial (element of $\mathbb{Z}[x]$)

$$|G|(x) = x^N \prod_{d} \Phi_d(x)^{a(d)}$$

such that $|G|(q) = |G(q)| = |G|$.

Example $|GL_n(x)| = x^{n^2} \prod_{d} (x^d - 1)^{\lfloor n/d \rfloor}$
Polynomial order

Let $\mathcal{G} = (V, W \varphi)$.

R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$|\mathcal{G}|(x) = x^N \prod_{d} \Phi_d(x)^{a(d)}$$

such that

$$|\mathcal{G}|(q) = |\mathcal{G}(q)| = |\mathcal{G}|.$$
Let $\mathbb{G} = (V, W \varphi)$.

R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$|\mathbb{G}|(x) = x^N \prod_{d} \Phi_d(x)^{a(d)}$$

such that

$$|\mathbb{G}|(q) = |\mathbb{G}(q)| = |\mathbb{G}|.$$
Let $G = (V, W_\varphi)$.

R. Steinberg (1967): There is a polynomial (element of $\mathbb{Z}[x]$)

\[|G|(x) = x^N \prod_d \Phi_d(x)^{a(d)} \]

such that

\[|G|(q) = |G(q)| = |G|. \]

Example

- $|GL_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n}(x^d - 1) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$
Polynomial order

Let $G = (V, W \varphi)$.

R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

\[
|G|(x) = x^N \prod_{d} \Phi_d(x)^{a(d)}
\]

such that

\[
|G|(q) = |G(q)| = |G|.
\]

Example

\begin{itemize}
 \item $|GL_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{\lfloor n/d \rfloor} (x^d - 1) = x^{\binom{n}{2}} \prod_{d=1}^{\lfloor n/d \rfloor} \Phi_d(x)^{[n/d]}
 \item $|U_n|(x) = \pm |GL_n|(-x)$
\end{itemize}
Let $G = (V, W_\varphi)$.

R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$\left| G \right|(x) = x^N \prod_{d} \Phi_d(x)^{a(d)}$$

such that

$$\left| G \right|(q) = \left| G(q) \right| = \left| G \right|.$$

Example

- $\left| GL_n \right|(x) = x^\binom{n}{2} \prod_{d=1}^{d=n} (x^d - 1) = x^\binom{n}{2} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$

- $\left| U_n \right|(x) = \pm \left| GL_n \right|(-x)$ (well, precisely $(-1)^{\binom{n}{2}} \left| GL_n \right|(-x)$).
Remarks

The prime divisors of $|G|$ are x and cyclotomic polynomials $\Phi_d(x)$.

N is the number of reflecting hyperplanes of the Weyl group of G.

Hence G has a trivial Weyl group, i.e., $G \cong F \times q \times \cdots \times F \times q$ if and only if its (polynomial) order is not divisible by x.

Michel Broué
Remarks

- The prime divisors of $|G|(x)$ are x and cyclotomic polynomials $\Phi_d(x)$.

N is the number of reflecting hyperplanes of the Weyl group of G. Hence G has a trivial Weyl group, i.e., $G \cong F \times q \times \cdots \times F \times q$ if and only if its (polynomial) order is not divisible by x.

Michel Broué
Remarks

- The prime divisors of $|G|(x)$ are x and cyclotomic polynomials $\Phi_d(x)$.
- N is the number of reflecting hyperplanes of the Weyl group of G.
Remarks

- The prime divisors of $|G|(x)$ are x and cyclotomic polynomials $\Phi_d(x)$.

- N is the number of reflecting hyperplanes of the Weyl group of G. Hence G has a trivial Weyl group, i.e., G is a torus $G \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ if and only if its (polynomial) order is not divisible by x.

Michel Broué

$GL_n(x)$ for x an indeterminate?
Admissible subgroups

The tori of G are the subgroups of the shape $T = T(q) = T_F \times T_F \times \cdots \times T_F \times q \times \cdots$ where T_F is an F–stable torus of G.

The Levi subgroups of G are the subgroups of the shape $L = L(q) = L_F$ where $L = C_G(T)$ is the centralizer of an F–stable torus in G.

Examples for $GL_n(q)$:

- The split maximal torus $T_1 = (F \times q)^n$ of order $(q^n - 1)^n$.
- The Coxeter torus $T_c = GL_1(F_q^n)$ of order $q^n - 1$.
- Levi subgroups have shape $GL_n(q_{a_1}) \times \cdots \times GL_n(q_{a_s})$.
Admissible subgroups

- The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ is an F–stable torus of G.

Examples for $\text{GL}_n(q)$

- The split maximal torus $T_1 = (\mathbb{F}_q \times q)$ of order $(q^n - 1)$.
- The Coxeter torus $T_c = \text{GL}_1(q^n)$ of order $q^n - 1$.
- Levi subgroups have shape $\text{GL}_n(1^{a_1}) \times \cdots \times \text{GL}_n(1^{a_s})$.

Michel Broué
Admissible subgroups

- The tori of G are the subgroups of the shape $T = T(q) = T^F$ where $T \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ is an F–stable torus of G.

- The Levi subgroups of G are the subgroups of the shape $L = L(q) = L^F$ where $L = C_G(T)$ is the centralizer of an F–stable torus in G.

Examples for $GL_n(q)$

- The split maximal torus $T_1 = (\mathbb{F}_q \times \mathbb{F}_q \times \cdots)$ of order $(q^n-1)^n$.

- The Coxeter torus $T_c = GL_1(q^n)$ of order $q^n - 1$.

- Levi subgroups have shape $GL_n^1(q^{a_1}) \times \cdots \times GL_n^{s}(q^{a_s})$ for x an indeterminate.
Admissible subgroups

- The tori of G are the subgroups of the shape $T = T(q) = T^F$ where $T \cong \overline{F}_q^\times \times \cdots \times \overline{F}_q^\times$ is an F–stable torus of G.

- The Levi subgroups of G are the subgroups of the shape $L = L(q) = L^F$ where $L = C_G(T)$ is the centralizer of an F–stable torus in G.

Examples for $GL_n(q)$
Admissible subgroups

The tori of G are the subgroups of the shape $T = T(q) = T^F$ where $T \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ is an F–stable torus of G.

The Levi subgroups of G are the subgroups of the shape $L = L(q) = L^F$ where $L = C_G(T)$ is the centralizer of an F–stable torus in G.

Examples for $\text{GL}_n(q)$

- The split maximal torus $T_1 = (\mathbb{F}_q^\times)^n$ of order $(q - 1)^n$

$$T_1 = \begin{pmatrix} \mathbb{F}_q^\times & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbb{F}_q^\times \end{pmatrix}$$
The tori of G are the subgroups of the shape $T = T(q) = T^F$ where $T \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ is an F–stable torus of G.

The Levi subgroups of G are the subgroups of the shape $L = L(q) = L^F$ where $L = C_G(T)$ is the centralizer of an F–stable torus in G.

Examples for $GL_n(q)$

- The split maximal torus $T_1 = (\mathbb{F}_q^\times)^n$ of order $(q - 1)^n$

 $$T_1 = \begin{pmatrix}
 \mathbb{F}_q^\times & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & \mathbb{F}_q^\times
\end{pmatrix}$$

- The Coxeter torus $T_c = GL_1(\mathbb{F}_q^n)$ of order $q^n - 1$.

Admissible subgroups

The tori of G are the subgroups of the shape $T = T(q) = T^F$ where $T \cong \mathbb{F}_q^\times \times \cdots \times \mathbb{F}_q^\times$ is an F–stable torus of G.

The Levi subgroups of G are the subgroups of the shape $L = L(q) = L^F$ where $L = C_G(T)$ is the centralizer of an F–stable torus in G.

Examples for $GL_n(q)$

- The split maximal torus $T_1 = (\mathbb{F}_q^\times)^n$ of order $(q - 1)^n$

 $$T_1 = \begin{pmatrix} \mathbb{F}_q^\times & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \mathbb{F}_q^\times \end{pmatrix}$$

- The Coxeter torus $T_c = GL_1(\mathbb{F}_q^n)$ of order $q^n - 1$.

- Levi subgroups have shape $GL_{n_1}(q^{a_1}) \times \cdots \times GL_{n_s}(q^{a_s})$
Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$–groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$.

A $\Phi_d(x)$–group is a torus.

Examples for $GL_n(x)$

The split torus T_1 is a $\Phi_1(x)$-subgroup.

The Coxeter torus T_c (a cyclic group of order q^n-1) contains a $\Phi_n(x)$-subgroup.

Michel Broué
Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

Lagrange theorem

For Φ₁(x) a cyclotomic polynomial, a Φ₁(x)-group is a finite reductive group whose (polynomial) order is a power of Φ₁(x).

Examples for \(GL_n(x) \) for \(x \) an indeterminate?
Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

Examples for $\text{GL}_n(x)$ for x an indeterminate ?
Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$–groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$.
Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$–groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$–group is a torus.
Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$–groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$–group is a torus.

Examples for GL_n

Michel Broué
Lagrange theorem, generic \(p \)-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of \(p \)-subgroups of \(G \).

\(\Phi_d(x) \)-groups

For \(\Phi_d(x) \) a cyclotomic polynomial, a \(\Phi_d(x) \)-group is a finite reductive group whose (polynomial) order is a power of \(\Phi_d(x) \). A \(\Phi_d(x) \)-group is a torus.

Examples for \(\text{GL}_n \)

- The split torus \(T_1 \) is a \(\Phi_1(x) \)-subgroup.
Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$–groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$–group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$–group is a torus.

Examples for GL_n

- The split torus T_1 is a $\Phi_1(x)$-subgroup.
- The Coxeter torus T_c (a cyclic group of order $q^n - 1$) contains a $\Phi_n(x)$-subgroup.
Sylow theorems

Maximal $\Phi_d(x)$-subgroups ("Sylow $\Phi_d(x)$-subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |S_d(q)| = \Phi_d(q) a(d).$$

Notation: Set $L_d := C_G(S_d)$ and $N_d := N_G(S_d) = N_G(L_d)$.

Sylow $\Phi_d(x)$-subgroups are all conjugate by G.

The (polynomial) index $|G:N_d|$ is congruent to 1 modulo $\Phi_d(x)$.

$W_d := N_d/L_d$ is a true finite group, a complex reflection group in its action on $V_d := \mathbb{C} \otimes Y(S_d)$.

The group W_d is the d–cyclotomic Weyl group of the finite reductive group G.

Note that, for $d = 1$ and $\phi = \pm 1$, one has $W_1 = W$.
Sylow theorems

1. Maximal \(\Phi_d(x) \)-subgroups ("Sylow \(\Phi_d(x) \)-subgroups") \(S_d \) of \(G \) have as (polynomial) order the contribution of \(\Phi_d(x) \) to the (polynomial) order of \(G \):

\[
|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.
\]
Sylow theorems

Maximal $\Phi_d(x)$–subgroups ("Sylow $\Phi_d(x)$–subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.$$

Notation: Set $L_d := C_G(S_d)$ and
Sylow theorems

Maximal $\Phi_d(x)$–subgroups ("Sylow $\Phi_d(x)$–subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |S_d(q)| = \Phi_d(q)^a(d).$$

Notation: Set $L_d := C_G(S_d)$ and $N_d := N_G(S_d) = N_G(L_d)$.
Sylow theorems

1. Maximal $\Phi_d(x)$–subgroups ("Sylow $\Phi_d(x)$–subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.$$

Notation: Set $L_d := C_G(S_d)$ and $N_d := N_G(S_d) = N_G(L_d)$

2. Sylow $\Phi_d(x)$–subgroups are all conjugate by G.
Sylow theorems

1. Maximal \(\Phi_d(x) \)-subgroups ("Sylow \(\Phi_d(x) \)-subgroups") \(S_d \) of \(G \) have as (polynomial) order the contribution of \(\Phi_d(x) \) to the (polynomial) order of \(G \):

\[
|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.
\]

Notation: Set \(L_d := C_G(S_d) \) and \(N_d := N_G(S_d) = N_G(L_d) \).

2. Sylow \(\Phi_d(x) \)-subgroups are all conjugate by \(G \).

3. The (polynomial) index \(|G : N_d| \) is congruent to 1 modulo \(\Phi_d(x) \).
Sylow theorems

1. Maximal $\Phi_d(x)$–subgroups (“Sylow $\Phi_d(x)$–subgroups”) S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.$$

Notation: Set $L_d := C_G(S_d)$ and $N_d := N_G(S_d) = N_G(L_d)$.

2. Sylow $\Phi_d(x)$–subgroups are all conjugate by G.

3. The (polynomial) index $|G : N_d|$ is congruent to 1 modulo $\Phi_d(x)$.

4. $W_d := N_d/L_d$ is a true finite group, a complex reflection group in its action on $V_d := \mathbb{C} \otimes Y(S_d)$.

Note that, for $d = 1$ and $\phi = \pm 1$, one has $W_1 = W$.

Michel Broué
Sylow theorems

1. Maximal $\Phi_d(x)$–subgroups ("Sylow $\Phi_d(x)$–subgroups") of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.$$

Notation: Set $L_d := C_G(S_d)$ and $N_d := N_G(S_d) = N_G(L_d)$.

2. Sylow $\Phi_d(x)$–subgroups are all conjugate by G.

3. The (polynomial) index $|G : N_d|$ is congruent to 1 modulo $\Phi_d(x)$.

4. $W_d := N_d/L_d$ is a true finite group, a complex reflection group in its action on $V_d := \mathbb{C} \otimes Y(S_d)$.

The group W_d is the d–cyclotomic Weyl group of the finite reductive group G.
Sylow theorems

1. Maximal \(\Phi_d(x) \)-subgroups ("Sylow \(\Phi_d(x) \)-subgroups") \(S_d \) of \(G \) have as (polynomial) order the contribution of \(\Phi_d(x) \) to the (polynomial) order of \(G \):

\[
|S_d| = |S_d(q)| = \Phi_d(q)^{a(d)}.
\]

Notation: Set \(L_d := C_G(S_d) \) and \(N_d := N_G(S_d) = N_G(L_d) \).

2. Sylow \(\Phi_d(x) \)-subgroups are all conjugate by \(G \).

3. The (polynomial) index \(|G : N_d| \) is congruent to 1 modulo \(\Phi_d(x) \).

4. \(W_d := N_d/L_d \) is a true finite group, a complex reflection group in its action on \(V_d := \mathbb{C} \otimes Y(S_d) \).

= The group \(W_d \) is the \(d \)-cyclotomic Weyl group of the finite reductive group \(G \).

Note that, for \(d = 1 \) and \(\varphi = \pm 1 \), one has \(W_1 = W \).
Example for GL_n

Recall that

$$|\text{GL}_n(x)| = x^\left(\begin{array}{c} n \\ 2 \end{array}\right) \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d ($1 \leq d \leq n$), $\text{GL}_n(q^d)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{[n/d]}$.

Assume $n = md + r$ with $r < d$. Then

$$L_d = \text{GL}_1(q^d)^m \times \text{GL}_r(q)$$

and

$$W_d = \mu_d \wr S_m$$

where μ_d denotes the cyclic group of all d-th roots of unity.
Example for GL_n

Recall that

$$|\text{GL}_n(x)| = x^{(n)^2} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d ($1 \leq d \leq n$), $\text{GL}_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{[n/d]}$.
Example for GL_n

Recall that

$$|\text{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{\lfloor n/d \rfloor}$$

For each d ($1 \leq d \leq n$), $\text{GL}_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\lfloor n/d \rfloor}$

Assume $n = md + r$ with $r < d$. Then
Example for GL_n

Recall that

$$|\text{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d ($1 \leq d \leq n$), $\text{GL}_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{[n/d]}$

Assume $n = md + r$ with $r < d$. Then

$$L_d = \text{GL}_1(q^d)^m \times \text{GL}_r(q)$$
Example for GL_n

Recall that

$$|\text{GL}_n|(x) = x^{n\choose 2} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d $(1 \leq d \leq n)$, $\text{GL}_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{[n/d]}$.

Assume $n = md + r$ with $r < d$. Then

$$L_d = \text{GL}_1(q^d)^m \times \text{GL}_r(q) \text{ and } W_d = \mu_d \wr \mathfrak{S}_m$$
Example for GL_n

Recall that

$$|\text{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)[n/d]$$

For each d ($1 \leq d \leq n$), $\text{GL}_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)[n/d]$

Assume $n = md + r$ with $r < d$. Then

$$L_d = \text{GL}_1(q^d)^m \times \text{GL}_r(q) \quad \text{and} \quad W_d = \mu_d \wr \mathfrak{S}_m$$

where μ_d denotes the cyclic group of all d-th roots of unity.
Generic and ordinary Sylow subgroups

Let \(\ell \) be a prime number.

If \(\ell \) divides \(|G| = |G^q| \), let \(d \) be the order of \(q \) modulo \(\ell \) (so \(\ell \) divides \(\Phi_d(q) \)).

Let \(S_d \) be a Sylow \(\Phi_d(x) \)-subgroup of \(G \), and let \(S_\ell \) be the Sylow \(\ell \)-subgroup of \(S_d \).

Let \(W_\ell \) be a Sylow \(\ell \)-subgroup of the \(d \)-cyclotomic Weyl group \(W_d \).

(M. Enguehard)

1. A Sylow \(\ell \)-subgroup of \(N_d = N_{G}(S_d) \) is a Sylow \(\ell \)-subgroup of \(G \).

2. In general, such a Sylow is an extension of \(S_\ell \) by \(W_\ell \).

If "not general", then a Sylow \(\ell \)-subgroup of \(G \) an extension of \(\mathbb{Z}_\ell \) by \(W_\ell \).
Generic and ordinary Sylow subgroups

Let ℓ be a prime number.
Generic and ordinary Sylow subgroups

Let \(\ell \) be a prime number.

- If \(\ell \) divides \(|G| = |G|(q) \), let \(d \) be the order of \(q \) modulo \(\ell \) (so \(\ell \) divides \(\Phi_d(q) \)).
Generic and ordinary Sylow subgroups

Let \(\ell \) be a prime number.

- If \(\ell \) divides \(|G| = |G|(q) \), let \(d \) be the order of \(q \) modulo \(\ell \) (so \(\ell \) divides \(\Phi_d(q) \)).
- Let \(S_d \) be a Sylow \(\Phi_d(x) \)-subgroup of \(G \), and let \(S_\ell \) be the Sylow \(\ell \)-subgroup of \(S_d(q) \).

\[W_\ell \] is a Sylow \(\ell \)-subgroup of the \(d \)-cyclotomic Weyl group \(W_d \). (M. Enguehard)
Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let S_d be a Sylow $\Phi_d(x)$–subgroup of G, and let S_ℓ be the Sylow ℓ–subgroup of $S_d(q)$.
- Let W_ℓ be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_d.
Generic and ordinary Sylow subgroups

Let \(\ell \) be a prime number.

- If \(\ell \) divides \(|G| = |G|_q(q) \), let \(d \) be the order of \(q \) modulo \(\ell \) (so \(\ell \) divides \(\Phi_d(q) \)).
- Let \(S_d \) be a Sylow \(\Phi_d(x) \)-subgroup of \(G \), and let \(S_\ell \) be the Sylow \(\ell \)-subgroup of \(S_d(q) \).
- Let \(W_\ell \) be a Sylow \(\ell \)-subgroup of the \(d \)-cyclotomic Weyl group \(W_d \).

(M. Enguehard)
Generic and ordinary Sylow subgroups

Let \(\ell \) be a prime number.

- If \(\ell \) divides \(|G| = |G|(q) \), let \(d \) be the order of \(q \) modulo \(\ell \) (so \(\ell \) divides \(\Phi_d(q) \)).
- Let \(S_d \) be a Sylow \(\Phi_d(x) \)-subgroup of \(G \), and let \(S_\ell \) be the Sylow \(\ell \)-subgroup of \(S_d(q) \).
- Let \(W_\ell \) be a Sylow \(\ell \)-subgroup of the \(d \)-cyclotomic Weyl group \(W_d \).

(M. Enguehard)

1. A Sylow \(\ell \)-subgroup of \(N_d = N_G(S_d) \) is a Sylow \(\ell \)-subgroup of \(G \).
Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G| = |G|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).

- Let S_d be a Sylow $\Phi_d(x)$–subgroup of G, and let S_ℓ be the Sylow ℓ–subgroup of $S_d(q)$.

- Let W_ℓ be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_d.

(M. Enguehard)

1. A Sylow ℓ-subgroup of $N_d = N_G(S_d)$ is a Sylow ℓ-subgroup of G.
2. In general, such a Sylow is an extension of S_ℓ by W_ℓ.
Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G| = |G|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let S_d be a Sylow $\Phi_d(x)$–subgroup of G, and let S_ℓ be the Sylow ℓ–subgroup of $S_d(q)$.
- Let W_ℓ be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_d.

(M. Enguehard)

1. A Sylow ℓ-subgroup of $N_d = N_G(S_d)$ is a Sylow ℓ-subgroup of G.
2. In general, such a Sylow is an extension of S_ℓ by W_ℓ.

If “not general”, then a Sylow ℓ-subgroup of G an extension of $Z^0(L_d)_\ell$ by W_ℓ.

Michel Broué
The set $\text{Un}(G)$ of \textit{unipotent characters} of G is parametrized by a “generic” (\textit{i.e.}, independant of q) set $\text{Un}(\mathbb{G})$. We denote by

$$\text{Un}(\mathbb{G}) \rightarrow \text{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.
The set \(\text{Un}(G) \) of unipotent characters of \(G \) is parametrized by a “generic” (i.e., independant of \(q \)) set \(\text{Un}(G_{\mathbb{F}}) \). We denote by

\[
\text{Un}(G_{\mathbb{F}}) \to \text{Un}(G) \ , \ \rho \mapsto \rho_q
\]

that parametrization.

Example for \(GL_n \): \(\text{Un}(GL_n) \) is the set of all partitions of \(n \).

Michel Broué
Unipotent characters, generic degrees

1. The set $\text{Un}(G)$ of unipotent characters of G is parametrized by a “generic” (i.e., independent of q) set $\text{Un}(\mathbb{G})$. We denote by

$$\text{Un}(\mathbb{G}) \to \text{Un}(G), \; \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n: $\text{Un}(\text{GL}_n)$ is the set of all partitions of n.

2. Generic degree: For $\rho \in \text{Un}(\mathbb{G})$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \big|_{x=q} = \rho_q(1).$$
Unipotent characters, generic degrees

1. The set $\text{Un}(G)$ of unipotent characters of G is parametrized by a “generic” \textit{(i.e., independant of q)} set $\text{Un}(\mathbb{G})$. We denote by

$$\text{Un}(\mathbb{G}) \to \text{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n : $\text{Un}(\text{GL}_n)$ is the set of all partitions of n.

2. Generic degree : For $\rho \in \text{Un}(\mathbb{G})$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \mid_{x=q} = \rho_q(1).$$

Example for GL_n :

Michel Broué
The set $\text{Un}(G)$ of **unipotent characters** of G is parametrized by a "generic" (i.e., independant of q) set $\text{Un}(G_q)$. We denote by

$$\text{Un}(G_q) \to \text{Un}(G), \quad \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n: $\text{Un}(\text{GL}_n)$ is the set of all partitions of n.

Generic degree: For $\rho \in \text{Un}(G_q)$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \big|_{x=q} = \rho_q(1).$$

Example for GL_n: For $\lambda = (\lambda_1 \leq \cdots \leq \lambda_m)$ a partition of n, let $\beta_i : \lambda_i + i - 1$.
Unipotent characters, generic degrees

1. The set $\text{Un}(G)$ of unipotent characters of G is parametrized by a “generic” (i.e., independant of q) set $\text{Un}(\mathbb{G})$. We denote by

$$\text{Un}(\mathbb{G}) \rightarrow \text{Un}(G), \quad \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n: $\text{Un}(\text{GL}_n)$ is the set of all partitions of n.

2. Generic degree: For $\rho \in \text{Un}(\mathbb{G})$, there exists $\text{Deg}_\rho(x) \in \mathbb{Q}[x]$ such that

$$\text{Deg}_\rho(x) \mid_{x=q} = \rho_q(1).$$

Example for GL_n: For $\lambda = (\lambda_1 \leq \cdots \leq \lambda_m)$ a partition of n, let $\beta_i : \lambda_i + i - 1$. Then

$$\text{Deg}_\lambda(x) = \frac{(x - 1) \cdots (x^n - 1) \prod_{j>i}(x^{\beta_j} - x^{\beta_i})}{x^{(m_2-1)+(m_2-2)+\cdots} \prod_i \prod_{j=1}^{\beta_i} (x^j - 1)}.$$
The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|G|(x)$.

For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u^μ_q be a unipotent element of $\text{GL}_n(q)$ of type μ. There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u^\mu_q) = V_{\lambda,\mu}(x) |x= q$.

In $\text{U}_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n}(q)$ be the corresponding unipotent character, and let $u^\mu_{U_n}(q)$ be a unipotent element of type μ. Ennola: $\lambda_{U_n}(q)(u^\mu_{U_n}(q)) = \pm V_{\lambda,\mu}(x) |x= -q$.
The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|G|(x)$.

More: character values!
The (polynomial) degree \(\text{Deg}_\rho(x) \) of a unipotent character divides the (polynomial) order \(|G|(x) \).

More: character values! In \(\text{GL}_n(q) \), unipotent classes are also parametrized by partitions of \(n \).
The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|G|(x)$.

More: character values! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$,
3. The (polynomial) degree $\operatorname{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.

4. More: character values! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u^μ_q be a unipotent element of $\text{GL}_n(q)$ of type μ. There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u^\mu_q) = V_{\lambda,\mu}(x) |_{x=q}$.

More: $\text{U}_n(q) = \text{GL}_n(-q)$!

In $\text{U}_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n}(q)$ be the corresponding unipotent character, and let $u^\mu_{U_n}(q)$ be a unipotent element of $\text{GL}_n(q)$ of type μ. Ennola: $\lambda_{U_n}(q)(u^\mu_{U_n}(q)) = \pm V_{\lambda,\mu}(x) |_{x=-q}$.

Michel Broué

$\text{GL}_n(x)$ for x an indeterminate?
The (polynomial) degree $\operatorname{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|G|(x)$.

More: character values! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u^μ_q be a unipotent element of $\text{GL}_n(q)$ of type μ.

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u^\mu_q) = V_{\lambda,\mu}(x)|_{x=q}$.
3 The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|G|(x)$.

4 More: character values! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u^μ_q be a unipotent element of $\text{GL}_n(q)$ of type μ.

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u^\mu_q) = V_{\lambda,\mu}(x)|_{x=q}$.

5 More: $U_n(q) = \text{GL}_n(-q)$!
The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.

More: character values! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u'^μ_q be a unipotent element of $\text{GL}_n(q)$ of type μ.

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u'^\mu_q) = V_{\lambda,\mu}(x)|_{x=q}$.

More: $U_n(q) = \text{GL}_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well.
3 The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.

4 More : character values ! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u_{q}^{μ} be a unipotent element of $\text{GL}_n(q)$ of type μ.

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_{q}^{\mu}) = V_{\lambda,\mu}(x)|_{x=q}$.

5 More : $U_n(q) = \text{GL}_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n(q)}$ be the corresponding unipotent character,
The (polynomial) degree \(\text{Deg}_\rho(x) \) of a unipotent character divides the (polynomial) order \(|G|(x)|\).

More: character values! In \(GL_n(q) \), unipotent classes are also parametrized by partitions of \(n \). For \(\lambda \) and \(\mu \) partitions of \(n \), let \(\lambda_q \) be the corresponding unipotent character of \(GL_n(q) \), and let \(u_\mu^\mu \) be a unipotent element of \(GL_n(q) \) of type \(\mu \).

There exists a polynomial \(V_{\lambda,\mu}(x) \) such that \(\lambda_q(u_\mu^\mu) = V_{\lambda,\mu}(x)|_{x=q} \).

More: \(U_n(q) = GL_n(-q) \)! In \(U_n(q) \), unipotent classes and unipotent characters are parametrized by partitions of \(n \) as well. For \(\lambda \) and \(\mu \) partitions of \(n \), let \(\lambda_{U_n(q)} \) be the corresponding unipotent character, and let \(u_\mu^{\mu} \) be a unipotent element of type \(\mu \).
3. The (polynomial) degree $\text{Deg}_\rho(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.

4. More: character values! In $\text{GL}_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $\text{GL}_n(q)$, and let u_{q}^μ be a unipotent element of $\text{GL}_n(q)$ of type μ.

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_{q}^\mu) = V_{\lambda,\mu}(x)|_{x=q}$.

5. More: $U_n(q) = \text{GL}_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n(q)}$ be the corresponding unipotent character, and let $u_{U_n(q)}^\mu$ be a unipotent element of type μ.

Ennola: $\lambda_{U_n(q)}(u_{U_n(q)}^\mu) = \pm V_{\lambda,\mu}(x)|_{x=-q}$.
More generic evidence

Lots of other behaviors or data for GL_n may be viewed as obtained from its type GL_n evaluated at $x = q$.

The ℓ–modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory).

Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ–blocks:

1. For $GL_n(q)$, set $x = q$.
2. For $U_n(q)$, set $x = -q$.

For each element $w \in W$, one may define the Deligne–Lusztig variety X_w, a subvariety of G/B, acted on by G.

Then, for $\ell \nmid q$, the ℓ–adic cohomology $Q_\ell G$–modules $H^i_{c}(X_w, Q_\ell)$ should also come from a generic... ?? $H^i_{c}(X_w(x))$??
More generic evidence

Lots of other behaviors or data for \(\text{GL}_n(q) \) may be viewed as obtained from its type \(\text{GL}_n \) evaluated at \(x = q \).
More generic evidence

Lots of other behaviors or data for $\text{GL}_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- The ℓ–modular representation theory of G (here for simplicity we only consider the type GL_n).
More generic evidence

Lots of other behaviors or data for $\text{GL}_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- The ℓ–modular representation theory of G (here for simplicity we only consider the type GL_n).

 One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n.
More generic evidence

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- The ℓ–modular representation theory of G (here for simplicity we only consider the type GL_n).

 One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory).
More generic evidence

Lots of other behaviors or data for $\text{GL}_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- **The ℓ–modular representation theory of G** (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ–blocks:

1. For $\text{GL}_n(q)$, set $x = q$.
2. For $\text{U}_n(q)$, set $x = -q$.

For each element $w \in W$, one may define the Deligne–Lusztig variety X_w, a subvariety of G/B, acted on by G.

Then, for $\ell \nmid q$, the ℓ–adic cohomology $Q_\ell G$–modules $H^i_c(X_w, Q_\ell)$ should also come from a generic...
More generic evidence

Lots of other behaviors or data for $\text{GL}_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- The ℓ–modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ–blocks:

- for $\text{GL}_n(q)$, set $x = q$,
More generic evidence

Lots of other behaviors or data for $\text{GL}_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- The \mathbb{F}–modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory). Now, given \mathbb{F} which divides $\Phi_d(q)$, in order to find the \mathbb{F}–blocks:
 - for $\text{GL}_n(q)$, set $x = q$,
 - for $\text{U}_n(q)$, set $x = -q$.
More generic evidence

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- **The ℓ–modular representation theory of G** (here for simplicity we only consider the type GL_n).

 One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ–blocks:

 - for $GL_n(q)$, set $x = q$,
 - for $U_n(q)$, set $x = -q$.

- For each element $w \in W$, one may define the Deligne–Lusztig variety X_w, a subvariety of G/B, acted on by G.

Michel Broué
More generic evidence

Lots of other behaviors or data for $\text{GL}_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- **The ℓ–modular representation theory of G** (here for simplicity we only consider the type GL_n).

 One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ–blocks:

 - for $\text{GL}_n(q)$, set $x = q$,
 - for $U_n(q)$, set $x = -q$.

- For each element $w \in W$, one may define the Deligne–Lusztig variety X_w, a subvariety of G/B, acted on by G.

Then, for $\ell \nmid q$, the ℓ–adic cohomology $\mathbb{Q}_\ell G$–modules $H_c^i(X_w, \mathbb{Q}_\ell)$...
More generic evidence

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at $x = q$.

- **The ℓ–modular representation theory of G** (here for simplicity we only consider the type GL_n).

 One may define a notion of $\Phi_d(x)$–blocks of characters of GL_n (the so-called $\Phi_d(x)$–Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ–blocks:
 - for $GL_n(q)$, set $x = q$,
 - for $U_n(q)$, set $x = -q$.

- For each element $w \in W$, one may define the **Deligne–Lusztig variety X_w**, a subvariety of G/B, acted on by G.

 Then, for $\ell \nmid q$, the ℓ–adic cohomology $\mathbb{Q}_\ell G$–modules $H_c^i(X_w, \mathbb{Q}_\ell)$ should also come from a generic... ?? $H_c^i(X_w)(x)$??
Complex reflection groups

A finite reflection group on a field K is a finite subgroup of $\text{GL}_k(V)$, where V is a finite-dimensional K–vector space, generated by reflections, i.e., linear maps represented by
\[
\begin{pmatrix}
\zeta & \cdots & 0 \\
0 & \ddots & \vdots \\
\vdots & \ddots & \zeta \\
0 & \cdots & 1
\end{pmatrix}
\]

A finite reflection group on \mathbb{R} is called a Coxeter group. A finite reflection group on \mathbb{Q} is called a Weyl group.

Irreducible finite reflection groups over \mathbb{C} have been classified (Shephard–Todd, 1954).
A finite reflection group on a field \(K \) is a finite subgroup of \(\text{GL}_K(V) \) (\(V \) a finite dimensional \(K \)-vector space) generated by reflections, i.e., linear maps represented by

\[
\begin{pmatrix}
\zeta & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{pmatrix}
\]
A finite reflection group on a field \(K \) is a finite subgroup of \(\text{GL}_K(V) \) (\(V \) a finite dimensional \(K \)-vector space) generated by reflections, i.e., linear maps represented by

\[
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

A finite reflection group on \(\mathbb{R} \) is called a Coxeter group.
A finite reflection group on a field K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by reflections, i.e., linear maps represented by

$$
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
& & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on \mathbb{Q} is called a Weyl group.
A finite reflection group on a field K is a finite subgroup of $\text{GL}_K(V)$ (V a finite dimensional K–vector space) generated by *reflections*, i.e., linear maps represented by

\[
\begin{pmatrix}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

A finite reflection group on \mathbb{R} is called a Coxeter group.

A finite reflection group on \mathbb{Q} is called a Weyl group.

Irreducible finite reflection groups over \mathbb{C} have been classified (Shephard–Todd, 1954).
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type G associated with a complex reflection group... “like” the finite reductive groups are associated with their Weyl group. Try at least to build unipotent characters of G, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices... Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994). Malle gave a solution for imprimitive spetsial complex reflection groups in 1995. Stating now a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive spetsial complex reflection groups.
Try to treat a complex reflection group as a Weyl group:
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type G associated with a complex reflection group...
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type G associated with a complex reflection group... “like” the finite reductive groups are associated with their Weyl group.
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... “like” the finite reductive groups are associated with their Weyl group.

Try at least to build unipotent characters of \mathbb{G}, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type G associated with a complex reflection group... “like” the finite reductive groups are associated with their Weyl group.

Try at least to build unipotent characters of G, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type G associated with a complex reflection group... “like” the finite reductive groups are associated with their Weyl group.

Try at least to build unipotent characters of G, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.
Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type G associated with a complex reflection group... “like” the finite reductive groups are associated with their Weyl group.

Try at least to build unipotent characters of G, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
- Malle gave a solution for imprimitive \textit{spetsial} complex reflection groups in 1995.
- Stating now a long series of precise axioms — many of technical nature — we can now show that there is a unique solution for all primitive \textit{spetsial} complex reflection groups.
Spetsial groups

Spetsial groups in red.

\(G(e, 1, r), G(e, e, r)\), and

<table>
<thead>
<tr>
<th>Group (G_n)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group (G_n)</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Remark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H(_3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group (G_n)</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Remark</td>
<td>(F_4)</td>
<td>(H_4)</td>
<td>(E_6)</td>
<td>(E_7)</td>
<td>(E_8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The case of the cyclic group of order $3 : \{1, \zeta, \zeta^2\}$

Unipotent degrees and Frobenius eigenvalues
The case of the cyclic group of order 3: \(\{1, \zeta, \zeta^2\} \)

Unipotent degrees and Frobenius eigenvalues

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\text{Deg}(\rho))</th>
<th>(\text{Fr}(\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_a)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_b)</td>
<td>(\frac{1}{1 - \zeta^2} x(x - \zeta^2))</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_c)</td>
<td>(\frac{1}{1 - \zeta} x(x - \zeta))</td>
<td>1</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(\frac{\zeta}{1 - \zeta^2} x(x - 1))</td>
<td>(\zeta^2)</td>
</tr>
</tbody>
</table>
The case of the cyclic group of order 3: \(\{1, \zeta, \zeta^2\} \)

Unipotent degrees and Frobenius eigenvalues

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\text{Deg}(\rho))</th>
<th>(\text{Fr}(\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_a)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_b)</td>
<td>(\frac{1}{1 - \zeta^2} x(x - \zeta^2))</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_c)</td>
<td>(\frac{1}{1 - \zeta} x(x - \zeta))</td>
<td>1</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(\frac{\zeta}{1 - \zeta^2} x(x - 1))</td>
<td>(\zeta^2)</td>
</tr>
</tbody>
</table>

Two families: \(\{\chi_a\} \), \(\{\chi_b, \chi_c, \gamma\} \)
The case of the cyclic group of order 3: \{1, \zeta, \zeta^2\}

Unipotent degrees and Frobenius eigenvalues

<table>
<thead>
<tr>
<th>ρ</th>
<th>Deg(ρ)</th>
<th>Fr(ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_b</td>
<td>\frac{1}{1-\zeta^2}x(x - \zeta^2)</td>
<td>1</td>
</tr>
<tr>
<td>χ_c</td>
<td>\frac{1}{1-\zeta}x(x - \zeta)</td>
<td>1</td>
</tr>
<tr>
<td>γ</td>
<td>\frac{\zeta}{1-\zeta^2}x(x - 1)</td>
<td>\zeta^2</td>
</tr>
</tbody>
</table>

Two families: \{χ_a\}, \{χ_b, χ_c, γ\}

Where is the Steinberg character?
Unipotent characters for G_4

In red = the Φ'_6–series.
• = the Φ_4–series.

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_1,0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\Phi_2,1$</td>
<td>3</td>
<td>$-\sqrt{-3}/6$</td>
<td>$q \Phi'_3 \Phi_4 \Phi''_6$</td>
<td>$\Phi_4^1 X_3.1$</td>
</tr>
<tr>
<td>$\Phi_2,3$</td>
<td>3+</td>
<td>$\sqrt{-3}/6$</td>
<td>$q \Phi'_3 \Phi_4 \Phi''_6$</td>
<td>$\Phi_4^1 X_3.2$</td>
</tr>
<tr>
<td>$\Phi_3,2$</td>
<td>2</td>
<td>$q^2 \Phi_3 \Phi_6$</td>
<td>$q^2 \Phi_3 \Phi_6$</td>
<td>C_1</td>
</tr>
<tr>
<td>$\Phi_1,4$</td>
<td>4</td>
<td>$-\sqrt{-3}/4$</td>
<td>$q \Phi'_3 \Phi_4 \Phi''_6$</td>
<td>$\Phi_4^1 X_5.1$</td>
</tr>
<tr>
<td>$\Phi_1,8$</td>
<td>8</td>
<td>$\sqrt{-3}/4$</td>
<td>$q \Phi'_3 \Phi_4 \Phi''_6$</td>
<td>$\Phi_4^1 X_5.2$</td>
</tr>
<tr>
<td>$\Phi_2,5$</td>
<td>5</td>
<td>$1/2 q^4 \Phi_2 \Phi_6$</td>
<td>$1/2 q^4 \Phi_2 \Phi_6$</td>
<td>$\Phi_4^1 X_5.3$</td>
</tr>
</tbody>
</table>

$\Phi'_3, \Phi_4, \Phi''_6$ (resp. $\Phi'_6, \Phi_4, \Phi''_6$) are factors of Φ_3 (resp Φ_6) in $Q(\zeta_3)$.

Michel Broué
Unipotent characters for G_4

In red = the Φ'_6–series.
• = the Φ_4–series.

<table>
<thead>
<tr>
<th>Character</th>
<th>Degree</th>
<th>FakeDegree</th>
<th>Eigenvalue</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{1,0}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{2,1}$</td>
<td>$\frac{3-\sqrt{-3}}{6}q\Phi'_3\Phi_4\Phi''_6$</td>
<td>$q\Phi_4$</td>
<td>1</td>
<td>$X_3.01$</td>
</tr>
<tr>
<td>$\phi_{2,3}$</td>
<td>$\frac{3+\sqrt{-3}}{6}q\Phi''_3\Phi_4\Phi'_6$</td>
<td>$q^3\Phi_4$</td>
<td>1</td>
<td>$X_3.02$</td>
</tr>
<tr>
<td>$Z_3 : 2$</td>
<td>$\sqrt{-3}q\Phi_1\Phi_2\Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_3.12$</td>
</tr>
<tr>
<td>$\phi_{3,2}$</td>
<td>$q^2\Phi_3\Phi_6$</td>
<td>$q^2\Phi_3\Phi_6$</td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td>$\phi_{1,4}$</td>
<td>$\frac{-\sqrt{-3}}{6}q^4\Phi'_3\Phi_4\Phi''_6$</td>
<td>q^4</td>
<td>1</td>
<td>$X_5.1$</td>
</tr>
<tr>
<td>$\phi_{1,8}$</td>
<td>$\frac{\sqrt{-3}}{6}q^4\Phi'_3\Phi_4\Phi'_6$</td>
<td>q^8</td>
<td>1</td>
<td>$X_5.2$</td>
</tr>
<tr>
<td>$\phi_{2,5}$</td>
<td>$\frac{1}{2}q^4\Phi_2^2\Phi_6$</td>
<td>$q^5\Phi_4$</td>
<td>1</td>
<td>$X_5.3$</td>
</tr>
<tr>
<td>$Z_3 : 11$</td>
<td>$\sqrt{-3}q^4\Phi_1\Phi_2\Phi_4$</td>
<td>0</td>
<td>ζ_3^2</td>
<td>$X_5.4$</td>
</tr>
<tr>
<td>G_4</td>
<td>$\frac{1}{2}q^4\Phi_1^2\Phi_3$</td>
<td>0</td>
<td>-1</td>
<td>$X_5.5$</td>
</tr>
</tbody>
</table>

Φ'_3, Φ''_3 (resp. Φ'_6, Φ''_6) are factors of Φ_3 (resp Φ_6) in $\mathbb{Q}(\zeta_3)$