Rigidity of graphs

Viet Hang NGUYEN, G-SCOP

February 25, 2011

Known results

Open problems

Preliminaries

Preliminaries

Known results

Open problems

Structure S: rigid rods (bars) connected at their ends (joints).

Preliminaries

Known results

Open problems

Structure S: rigid rods (bars) connected at their ends (joints).

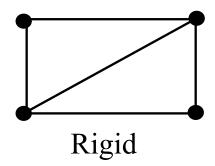
Preliminaries

Known results

Open problems

Structure S: rigid rods (bars) connected at their ends (joints).



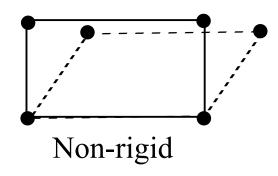


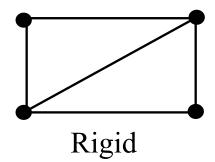
Preliminaries

Known results

Open problems

Structure S: rigid rods (bars) connected at their ends (joints).





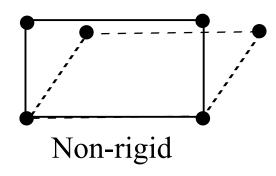
- $\mathcal{S} \sim (G, \mathbf{p})$.
 - $\diamond V$: set of joints of \mathcal{S} ; E(G): set of bars of \mathcal{S} .
 - \diamond $\mathbf{p}:V \to \mathbb{R}^d$, embedding.

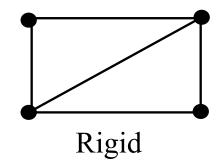
Preliminaries

Known results

Open problems

Structure S: rigid rods (bars) connected at their ends (joints).





- $\mathcal{S} \sim (G, \mathbf{p})$.
 - \diamond V: set of joints of \mathcal{S} ; E(G): set of bars of \mathcal{S} .
 - \diamond $\mathbf{p}:V \to \mathbb{R}^d$, embedding.
- (G, \mathbf{p}) : a d-dim. bar-and-joint framework.

Known results

Open problems

 $\begin{array}{l} \bullet \ \ (G,\mathbf{p}) \ \text{is congruent to} \ (G,\mathbf{q}) \\ \Leftrightarrow ||p(u)-p(v)|| = ||q(u)-q(v)||, \quad \forall u,v \in V. \end{array}$

Known results

Open problems

- (G, \mathbf{p}) is congruent to (G, \mathbf{q}) $\Leftrightarrow ||p(u) - p(v)|| = ||q(u) - q(v)||, \quad \forall u, v \in V.$
- (G, \mathbf{p}) is rigid \Leftrightarrow every continuous motion of (G, \mathbf{p}) preserving the length of edges results in a framework congruent to (G, \mathbf{p}) .

Known results

Open problems

• An infinitesimal motion of (G, \mathbf{p}) is a $\mu : V \to \mathbb{R}^d$ s.t.

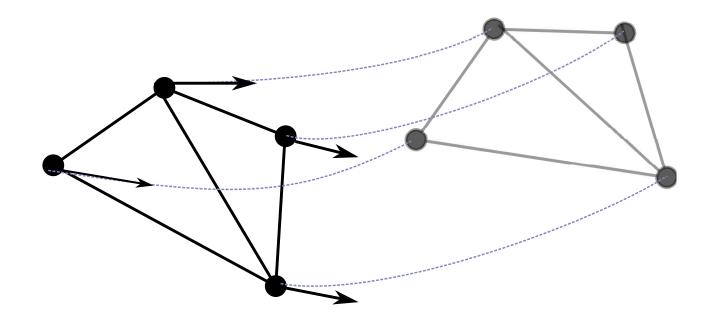
$$(\mathbf{p}(u) - \mathbf{p}(v))(\mu(u) - \mu(v)) = 0, \quad uv \in E(G).$$

Known results

Open problems

• An infinitesimal motion of (G, \mathbf{p}) is a $\mu : V \to \mathbb{R}^d$ s.t.

$$(\mathbf{p}(u) - \mathbf{p}(v))(\mu(u) - \mu(v)) = 0, \quad uv \in E(G).$$



The *instantaneous velocity* of (G, \mathbf{p}) is an infinitesimal motion.

Rigidity matrix

Preliminaries

Known results

Open problems

• Rigidity matrix $R(G, \mathbf{p})$: $|E| \times d|V|$ matrix.

$$uv \begin{pmatrix} \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{p}(u) - \mathbf{p}(v) & \cdots & \mathbf{p}(v) - \mathbf{p}(u) & \cdots & 0 \\ \vdots & \ddots & \vdots & \cdots & \vdots & \ddots & \vdots \end{pmatrix}.$$

Rigidity matrix

Preliminaries

Known results

Open problems

• Rigidity matrix $R(G, \mathbf{p})$: $|E| \times d|V|$ matrix.

$$uv \begin{pmatrix} \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{p}(u) - \mathbf{p}(v) & \cdots & \mathbf{p}(v) - \mathbf{p}(u) & \cdots & 0 \\ \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \end{pmatrix}.$$

- μ is an infinitesimal motion of (G, \mathbf{p}) if and only if $R(G, \mathbf{p})\mu = 0$ (i.e $\mu \in \ker R(G, \mathbf{p})$).
- The space of infinitesimal motions induced by translations and rotations is of dimension d(d+1)/2. $\Rightarrow \operatorname{rank} R(G, \mathbf{p}) \leq d|V| d(d+1)/2$.

Preliminaries

Known results

Open problems

Determine rigidity by calculating rank $R(G, \mathbf{p})$?

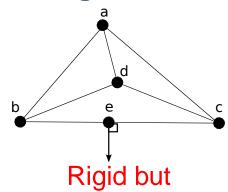
Preliminaries

Known results

Open problems

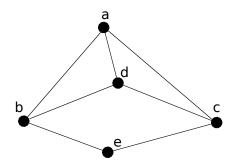
Determine rigidity by calculating rank $R(G, \mathbf{p})$?

Degenerate



 ${
m rank} R(G, {f p}) < d|V| - d(d+1)/2$ (d=2).

Generic



OK!

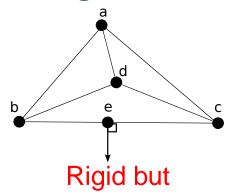
Preliminaries

Known results

Open problems

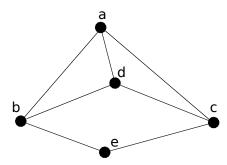
Determine rigidity by calculating rank $R(G, \mathbf{p})$?

Degenerate



$$\operatorname{rank} R(G, \mathbf{p}) < d|V| - d(d+1)/2$$
(d=2).

Generic



OK!

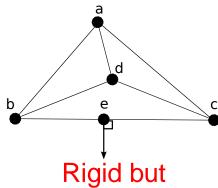
Theorem (Asimow, Roth 1979). For generic \mathbf{p} , (G, \mathbf{p}) is rigid $\Leftrightarrow \operatorname{rank} R(G, \mathbf{p}) = d|V| - d(d+1)/2$.

Preliminaries

Known results

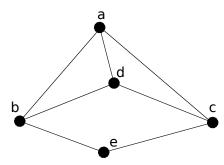
Open problems

Determine rigidity by calculating rank $R(G, \mathbf{p})$?



$${
m rank} R(G, {f p}) < d|V| - d(d+1)/2$$
 (d=2).

Generic



OK!

Theorem (Asimow, Roth 1979). For generic \mathbf{p} , (G, \mathbf{p}) is rigid $\Leftrightarrow \operatorname{rank} R(G, \mathbf{p}) = d|V| - d(d+1)/2$.

Almost all embeddings are generic and for all generic \mathbf{p} , rank $R(G, \mathbf{p})$ depends uniquely on G.

Preliminaries

Known results

Open problems

Calculating rank $R(G, \mathbf{p})$ for some generic \mathbf{p} ?

Preliminaries

Known results

Open problems

Calculating rank $R(G, \mathbf{p})$ for some generic \mathbf{p} ?

Not efficient!

Preliminaries

Known results

Open problems

Calculating rank $R(G, \mathbf{p})$ for some generic \mathbf{p} ?

Not efficient!

How to generate generic embedding?

Preliminaries

Known results

Open problems

Calculating rank $R(G, \mathbf{p})$ for some generic \mathbf{p} ?

Not efficient!

How to generate generic embedding?

Solution:

Using combinatorial structure of the rigidity matrix \Leftrightarrow a matroid on E(G) (linear matroid defined on the rows of $R(G,\mathbf{p})$).

Known results

Open problems

- G is rigid (in dimension d) if (G, \mathbf{p}) is rigid for some generic \mathbf{p} (and hence for all generic \mathbf{p}).
- G (or E) is independent (in dimension d) if the rows of $R(G, \mathbf{p})$ is independent for some generic \mathbf{p} (and hence for all generic \mathbf{p}).

• Minimally rigid graphs = Maximally independent graphs.

Known results

Open problems

Known results

Preliminaries

Known results

Open problems

Theorem (Laman 1970). *Graph* (V, E) *is rigid in dimension* 2 *if and only if there exists* $E' \subseteq E$ *s.t.*

•
$$|E'| = 2|V| - 3$$
,

•
$$|F| \le 2|V(F)| - 3$$
, $\emptyset \ne F \subseteq E'$.

Preliminaries

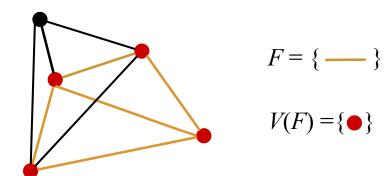
Known results

Open problems

Theorem (Laman 1970). *Graph* (V, E) is rigid in dimension 2 if and only if there exists $E' \subseteq E$ s.t.

•
$$|E'| = 2|V| - 3$$
,

•
$$|F| \le 2|V(F)| - 3$$
, $\emptyset \ne F \subseteq E'$.



Preliminaries

Known results

Open problems

Theorem (Laman 1970). *Graph* (V, E) *is rigid in dimension* 2 *if and only if there exists* $E' \subseteq E$ *s.t.*

•
$$|E'| = 2|V| - 3$$
,

•
$$|F| \le 2|V(F)| - 3$$
, $\emptyset \ne F \subseteq E'$.

Preliminaries

Known results

Open problems

Theorem (Laman 1970). *Graph* (V, E) is rigid in dimension 2 if and only if there exists $E' \subseteq E$ s.t.

- |E'| = 2|V| 3,
- $|F| \le 2|V(F)| 3$, $\emptyset \ne F \subseteq E'$.

Equivalently,

A graph G is independent in dim. 2 if and only if it satisfies $|F| \le 2|V(F)| - 3$ for all $\emptyset \ne F \subseteq E$.

Preliminaries

Known results

Open problems

Theorem (Lovász&Yemini 1982). A graph G is independent in dim. 2 if and only if G + e is the union of two forests for every $e \in E$.

Preliminaries

Known results

Open problems

Theorem (Lovász&Yemini 1982). A graph G is independent in dim. 2 if and only if G + e is the union of two forests for every $e \in E$.

Theorem (Lovász&Yemini 1982). G is rigid in dim. 2 if and only if

$$\sum_{i=1}^{t} (2|V(G_i)| - 3) \ge 2|V| - 3,$$

for every G_1, \ldots, G_t $(E(G_i) \neq \emptyset)$ s.t. $G_1 \cup G_2 \cup \cdots \cup G_t = G$.

Preliminaries

Known results

Open problems

Theorem (Lovász&Yemini 1982). Every 6-connected graph is rigid in dim. 2.

Preliminaries

Known results

Open problems

Theorem (Lovász&Yemini 1982). Every 6-connected graph is rigid in dim. 2.

6 is the best possible!

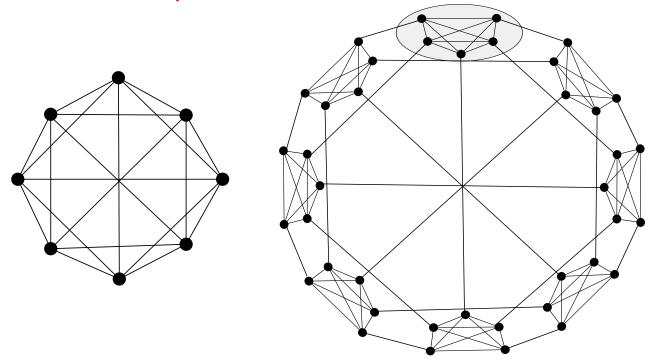
Preliminaries

Known results

Open problems

Theorem (Lovász&Yemini 1982). Every 6-connected graph is rigid in dim. 2.

6 is the best possible!



$$\sum (2|V(G_i)| - 3) = 7n + \frac{5n}{2} = \frac{19n}{2} < 10n - 3 = 2|V| - 3.$$

Preliminaries

Known results

Open problems

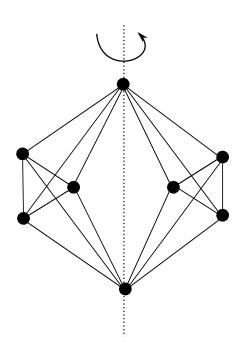
No simple counting condition!

Preliminaries

Known results

Open problems

No simple counting condition!



The "double banana" satisfies

$$|F| \le 3|V(F)|-6$$
 for all $F \subseteq E, |F| \ge 2$,

and

$$E = 3|V| - 6$$

but is not rigid.

Preliminaries

Known results

Open problems

Decidable for special classes?

Yes, for square graphs!

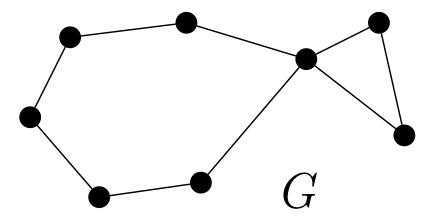
Preliminaries

Known results

Open problems

Decidable for special classes?

Yes, for square graphs!



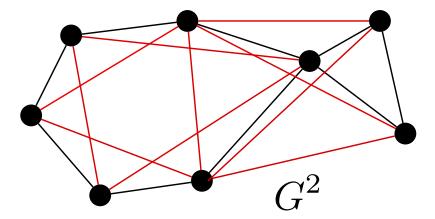
Preliminaries

Known results

Open problems

Decidable for special classes?

Yes, for square graphs!



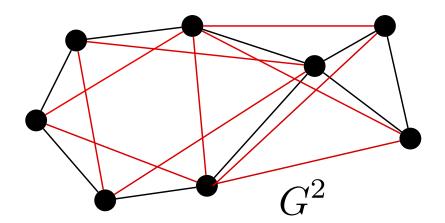
Preliminaries

Known results

Open problems

Decidable for special classes?

Yes, for square graphs!



Theorem (Kato&Tanigawa 2009). Let G be a graph of minimum degree at least 2. Then the graph G^2 is rigid in dim. 3 if and only if 5G contains 6 disjoint spanning trees.

Known results

Open problems

Open problems

Characterization

Preliminaries

Known results

Open problems

Open problem

Characterize rigid/independent graphs in dimension $d \geq 3$.

Preliminaries

Known results

Open problems

Are highly connected graphs rigid?

Conjecture (Lovász & Yemini 1982):

There is a constant k_d such that every k_d -connected graph is rigid in dimension d. ($k_d = d(d+1)$?)

Preliminaries

Known results

Open problems

Are highly connected graphs rigid?

Conjecture (Lovász & Yemini 1982):

There is a constant k_d such that every k_d -connected graph is rigid in dimension d. ($k_d = d(d+1)$?)

Theorem (Jordán 2010). Every 7-connected square graph is rigid in dim. 3.