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Exercises

We fix an algebraic closure Fp of the prime field Fp of characteristic p.
When q is a power of p, we denote by Fq the unique subfield of Fp having
q elements. Hence Fp is also an algebraic closure of Fq.

Exercise 1. Let Fq be a finite field and n a positive integer prime to q.
a) Check that the polynomial Xqn−X has no multiple factors in the factorial
ring Fq[X].
b) Let f ∈ Fq[X] be an irreducible factor of Xqn−X. Check that the degree
d of f divides n.
c) Let f be an irreducible polynomial in Fq[X] of degree d where d divides
n. Show that f divides Xqn −X.
d) For d ≥ 1 denote by Ed the set of monic irreducible polynomials in Fq[X]
of degree d. Check

Xqn −X =
∏
d|n

∏
f∈Ed

f.

Exercise 2. Let Fq be a finite field and f ∈ Fq[X] be a monic irreducible
polynomial with f(X) 6= X.
a) Show that the roots α of f in Fp all have the same order in the multi-
plicative group F×p . We denote this order by p(f) and call it the period of
f .
b) For ` a positive integer, check that p(f) divides ` if and only if f(X)
divides X` − 1.
c) Check that if f has degree n, then p(f) divides qn − 1. Deduce that q
and p(f) are relatively prime.
d) A monic irreducible polynomial f is primitive if its degree n and its pe-
riod p(f) are related by p(f) = qn − 1. Explain the definition.
e) Recall that X2 +X + 1 is the unique irreducible polynomials of degree 2
over F2, that there are two irreducible polynomials of degree 3 over F2:

X3 +X + 1, X3 +X2 + 1,
1This text is accessible on the author’s web site
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three irreducible polynomials of degree 4 over F2:

X4 +X3 + 1, X4 +X + 1, X4 +X3 +X2 +X + 1

and three monic irreducible polynomials of degree 2 over F3:

X2 + 1, X2 +X − 1, X2 −X − 1.

For each of these 9 polynomials compute the period. Which ones are prim-
itive?
f) Which are the irreducible polynomials over F2 of period 15? Of period
5?

Exercise 3. Let f : F2
3 → F4

3 be the linear map

F (a, b) = (a, b, a+ b, a− b)

and C be the image of f .
a) What are the length and the dimension of the code C? How many elements
are there in C? List them.
b) What is the minimum distance d(C) of C? How many errors can the code
C detect? How many errors can the code C correct? Is it a MDS code?
c) How many elements are there in a Hamming ball of F4

3 of radius 1?
Write the list of elements in the Hamming ball of F4

3 of radius 1 centered at
(0, 0, 0, 0).
d) Check that for any element x in F4

3, there is a unique c ∈ C such that
d(c, x) ≤ 1.
What is c when x = (1, 0,−1, 1)?

Exercise 4. Let Fq be a finite field with q elements. Assume q ≡ 3 (mod 7).
How many cyclic codes of length 7 are there on Fq? For each of them describe
the code: give its dimension, the number of elements, a basis, a basis of the
space of linear forms vanishing on it, its minimum distance, the number of
errors it can detect or correct and whether it is MDS or not.

Exercise 5.
5.1. Let k be a field, K an extension of k, uij (0 ≤ i ≤ n, 1 ≤ j ≤ m)
elements in k. Assume that there exists a n–tuple (x1, . . . , xn) in Kn such
that

n∑
i=1

uijxi = u0j for 1 ≤ j ≤ m. (6)

Deduce that there exists a n–tuple (x1, . . . , xn) in kn satisfying the same
system (6).
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5.2. Let (Pi)i∈I be a set of polynomials in Z[X1, . . . , Xn] having no common
zero in Cn. Show that there is a finite set E of prime numbers such that,
for any prime p not in E and any field F of characteristic p, the polynomials
Pi have no common zero in F .
Example: Let a and b be two distinct rational integers. Take I = {1, 2},
P1(X) = X − a, P2(X) = X − b. What is the minimal finite set E in this
case?
5.3.
a) Let F be a field, E an infinite subset of F and P ∈ F [X1, . . . , Xn] a non–
zero polynomial. Prove by induction on n that there exists (m1, . . . ,mn) ∈
En such that P (m1, . . . ,mn) 6= 0.
b) Deduce that if Ω is an algebraically closed field and P ∈ Ω[X1, . . . , Xn] a
non–constant polynomial, the equation

P (x1, . . . , xn) = 0

has a solution (x1, . . . , xn) in Ωn.
c) Let P ∈ Z[X1, . . . , Xn] be a non–constant polynomial. Show that for all
primes p outside a finite set, the equation P (x1, . . . , xn) = 0 has a solution
(x1, . . . , xn) ∈ Fn

p .
d) Example. For the degree one polynomial aX + b with a and b rational
integers and a 6= 0, what is the finite exceptional set of prime numbers p for
which the equation ax+ b = 0 has no solution in Fp?
5.4. Let P ∈ Z[X1, . . . , Xn] be a non–constant polynomial.
a) Show that there exists infinitely many prime numbers p such that the
congruence

P (x1, . . . , xn) ≡ 0 (mod p)

has a solution (x1, . . . , xn) in Zn.
Hint. The proof may be reduced to the one–dimensional case n = 1 by
means of Exercise 5.3.a.
b) Example. Show that for the polynomial P (X) = X2−5 there are infinitely
many p for which the congruence P (x) ≡ 0 (mod p) has a solution x ∈ Z,
and there are also infinitely many p for which the congruence P (x) ≡ 0
(mod p) has no solution x ∈ Z.
5.5 (See Serre’s paper, exercice p. 2). Let (Pi)i∈I be a family of polynomials
with coefficients in Z. Show that the following properties are equivalent.
a) The Pi ’s have a common zero in C.
b) There exists an infinite set of primes p such that the Pi ’s have a common
zero in Fp.
c) For every prime p, except a finite number, there exists a field of charac-
teristic p in which the Pi’s have a common zero.
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Solutions to the exercises

Solution to Exercice 1.
a) The derivative of Xqn −X is −1, which has no root, hence Xqn −X has
no multiple factor in characteristic p.
b) Let f be an irreducible divisor of Xqn −X of degree d and α be a root of
f in Fp. The polynomial Xqn −X is a multiple of f , therefore it vanishes
at α, hence αqn

= α which means α ∈ Fqn . From the field extensions

Fq ⊂ Fq(α) ⊂ Fqn

we deduce that the degree of α over Fq divides the degree of Fqn over Fq,
that is d divides n.
c) Let f ∈ Fq[X] be an irreducible polynomial of degree d where d divides
n. Let α be a root of f in Fp. Since d divides n, the field Fq(α) is a subfield
of Fqn , hence α ∈ Fqn satisfies αqn

= α, and therefore f divides Xqn −X.
d) In the factorial ring Fq[X], the polynomial Xqn −X having no multiple
factor is the product of the monic irreducible polynomials which divide it.

Solution to Exercice 2.
a) Two conjugate elements α and σ(α) have the same order, since αm = 1
if and only if σ(α)m = 1.
b) Let α be a root of f . Since α has order p(f) in the multiplicative group
Fq(α)× we have

p(f)|`⇐⇒ α` = 1⇐⇒ f(X)|X` − 1.

c) The n conjugates of a root α of f over Fq are its images under the iterated
Frobenius x 7→ xq, which is the generator of the cyclic Galois group of
Fq(α)/Fq. From αqn

= α we deduce that f divides the polynomial Xqn−X
(see also Exercise 1). Since f(X) 6= X we deduce α 6= 0, hence f divides
the polynomial Xqn−1 − 1. As we have seen in question b), it implies that
p(f) divides qn − 1. The fact that the characteristic p does not divide p(f)
is then obvious.
d) An irreducible monic polynomial f ∈ Fq[X] is primitive if and only if any
root α of f in Fp is a generator of the cyclic group Fq(α)×.
e) Here is the answer:
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q d f(X) p(f) primitive
2 2 X2 +X + 1 3 yes
2 3 X3 +X + 1 7 yes
2 3 X3 +X2 + 1 7 yes
2 4 X4 +X3 + 1 15 yes
2 4 X4 +X + 1 15 yes
2 4 X4 +X3 +X2 +X + 1 5 no
3 2 X2 + 1 4 no
3 2 X2 +X − 1 8 yes
3 2 X2 −X − 1 8 yes

f) The two irreducible polynomials of period 15 over F2 are the two factors
X4 + X3 + 1 and X4 + X + 1 of Φ15. The only irreducible polynomial of
period 5 over F2 is Φ5(X) = X4 +X3 +X2 +X + 1.

Solution to Exercice 3.
a) This ternary code has length 4, dimension 2, the number of elements is
32 = 9, the elements are

(0, 0, 0, 0) (0, 1, 1,−1) (0,−1,−1, 1)
(1, 0, 1, 1) (1, 1,−1, 0) (1,−1, 0,−1)

(−1, 0,−1,−1) (−1, 1, 0, 1) (−1,−1, 1, 0)

b) Any non–zero element in C has three non–zero coordinates, which means
that the minimum weight of a non–zero element in C is 3. Since the code is
linear, its minimum distance is 3. Hence it can detect two errors and correct
one error. The Hamming balls of radius 1 centered at the elements in C are
pairwise disjoint.

Recall that a MDS code is a linear code C of length n and dimension d
for which d(C) = n+ 1−d. Here n = 4, d = 2 and d(C) = 3, hence this code
C is MDS.
c) The elements at Hamming distance ≤ 1 from (0, 0, 0, 0) are the elements
of weight ≤ 1. There are 9 such elements, namely the center (0, 0, 0, 0) plus
2× 4 = 8 elements having three coordinates 0 and the other one 1 or −1:

(1, 0, 0, 0), (−1, 0, 0, 0), (0, 1, 0, 0), (0,−1, 0, 0),
(0, 0, 1, 0), (0, 0,−1, 0), (0, 0, 0, 1), (0, 0, 0,−1).

A Hamming ball B(x, 1) of center x ∈ F4
3 and radius 1 is nothing but the

translate x + B(0, 1) of the Hamming ball B(0, 1) by x, hence the number
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of elements in B(x, 1) is also 9.
d) The 9 Hamming balls of radius 1 centered at the elements of C are pairwise
disjoint, each of them has 9 elements, and the total number of elements in
the space F4

3 is 81. Hence these balls give a perfect packing: each element
in F4

3 belongs to one and only one Hamming ball centered at C and radius
1.
For instance the unique element in the code at distance ≤ 1 from x =
(1, 0,−1, 1) is (1, 0, 1, 1).

Solution to Exercice 4. The class of 3 in (Z/7Z)× is a generator of this cyclic
group of order 6 = φ(7):

(Z/7Z)× = {30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5}.

The condition q ≡ 3 (mod 7) implies that q has order 6 in (Z/7Z)×, hence
Φ7 is irreducible in Fq[X]. The polynomial X7− 1 = (X − 1)Φ7 has exactly
4 monic divisors in F3[X], namely

Q0(X) = 1, Q1(X) = X − 1,

Q2(X) = Φ7(X) = X6 +X5 +X4 +X3 +X2 +X + 1, Q3(X) = X7 − 1.

Hence there are exactly 4 cyclic codes of length 7 over Fq.
The code C0 associated to the factor Q0 = 1 has dimension 7, it is the

full code F7
q with q7 elements. A basis of C0 is any basis of F7

q , for instance
the canonical basis. The space of linear forms vanishing on C has dimension
0 (a basis is the empty set). The minimum distance is 1. It cannot detect
any error. Since d(C) = 1 = n+ 1− d, the code C0 is MDS.

The code C1 associated to the factor Q1 = X − 1 has dimension 6, it is
the hyperplane of equation x0 + · · ·+ x6 = 0 in Fq, it has q6 elements. Let
T : F7

q → F7
q denote the right shift

T (a0, a1, a2, a3, a4, a5, a6) = (a6, a0, a1, a2, a3, a4, a5).

A basis (with 6 elements, as it should) of C1 is

e0 = (1, −1, 0, 0, 0, 0, 0),
e1 = Te0 = (0, 1, −1, 0, 0, 0, 0),
e2 = T 2e0 = (0, 0, 1, −1, 0, 0, 0),
e3 = T 3e0 = (0, 0, 0, 1, −1, 0, 0),
e4 = T 4e0 = (0, 0, 0, 0, 1, −1, 0),
e5 = T 5e0 = (0, 0, 0, 0, 0, 1, −1).
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Notice that T 6e0 = (−1, 0, 0, 0, 0, 0, 1) and

e0 + Te0 + T 2e0 + T 3e0 + T 4e0 + T 5e0 + T 6e0 = 0.

This is related to

1 +X +X2 +X3 +X4 +X5 +X6 = Φ7(X) =
X7 − 1
X − 1

·

The minimum distance of C1 is 2, it is a MDS code. It can detect one error
(it is a parity bit check) but cannot correct any error.

The code C2 associated to the factor Q2 has dimension 1 and q elements:

C2 = {(a, a, a, a, a, a, a) ; a ∈ Fq} ⊂ F7
q .

It is the repetition code of length 7, which is the line of equation spanned by
(1, 1, 1, 1, 1, 1, 1) in Fq, there are q elements in the code. It has dimension 1,
its minimum distance is 7, hence is MDS. It can detect 6 errors and correct
3 errors.

The code C3 associated to the factor Q3 is the trivial code of dimension 0,
it contains only one element, a basis is the empty set, a basis of the space of
linear forms vanishing on C3 is x0, x1, x2, x3, x4, x5, x6. Its minimum distance
is not defined, it is not considered as a MDS code.

Solution to Exercice 5.1. Write Cramer’s formulae: a solution to a linear
system of equations is explicitly given by formulae which give a solution in
the field generated by the coefficients of the system.

Solution to Exercice 5.2. From Hilbert Nustellensatz and the assumption
that the polynomials (Pi)i∈I have no common zero in Cn, it follows that
in the ring C[X1, . . . , Xn], they generate the ideal (1): there exists a finite
subset I0 of I and a family of polynomials (Ai)i∈I0 with complex coefficients
such that ∑

i∈I0

AiPi = 1.

This is a linear system of equations with rational coefficients (the coeffi-
cients of the polynomials Pi for i ∈ I0) which has a solution (given by the
coefficients of Ai) in C. According to Exercise 5.1, this system has a solu-
tion in Qn; hence there exists a family of polynomials (Bi)i∈I0 with rational
coefficients such that ∑

i∈I0

BiPi = 1.
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Letm be a positive integer such that the polynomials Ci = mBi have integral
coefficients. Let E be the set of prime divisors of m. From the relation∑

i∈I0

CiPi = m,

we deduce that for any prime p not in E and any field F of characteristic p,
the polynomials Pi have no common zero in F .
Example: For a prime number p, the two polynomials P1(X) = X − a,
P2(X) = X − b have no common zero in the algebraic closure of Fp if and
only if a is not congruent to b modulo p. Hence E can be chosen as any
finite set of primes containing all prime divisors of a− b. The minimal finite
set E in this case is just the set of all prime divisors of a− b.

Solution to Exercice 5.3. .
a) The result is clear for n = 1, since P ∈ F [X1] has only finitely many
roots. We assume the result is proved for a polynomial in n − 1 variable.
Write

P (X1, . . . , Xn) = ad(X1, . . . , Xn−1)Xd
n + · · ·+ a0(X1, . . . , Xn−1)

where d ≥ 0 and ad ∈ F [X1, . . . , Xn−1] is not the zero polynomial. By
the induction hypothesis there exists (m1, . . . ,mn−1) ∈ En−1 such that
ad(m1, . . . ,mn−1) 6= 0. Then the one variable polynomial P (m1, . . . ,mn−1, X) ∈
F [X] is non–zero, hence has only finitely many roots. Therefore not all
P (m1, . . . ,mn) with (m1, . . . ,mn) ∈ En can vanish.
b) Let P ∈ Ω[X1, . . . , Xn] be non–constant with Ω algebraically closed.
There exists at least one variable, say Xn, such that P has degree d ≥ 1 in
Xn. Write

P (X1, . . . , Xn) = ad(X1, . . . , Xn−1)Xd
n + · · ·+ a0(X1, . . . , Xn−1)

where ad ∈ Ω[X1, . . . , Xn−1] is not zero. By a), there exists (x1, . . . , xn−1) ∈
Zn−1 such that ad(x1, . . . , xn−1) 6= 0. Since Ω is algebraically closed the
non–constant polynomial P (x1, . . . , xn−1, Xn) ∈ Ω[Xn] has a root xn in Ω,
and then (x1, . . . , xn) is a solution in Ωn to the equation P (x1, . . . , xn) = 0.
c) Given a non–constant polynomial P ∈ Z[X1, . . . , Xn], select one mono-
mial with a non–zero coefficient a, then for any p which does not divide a
the polynomial P is non–constant in Fp[X1, . . . , Xn].
d) For the polynomial aX + b, the primes p to be excluded are the prime
divisors of a which do not divide b.
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Solution to Exercice 5.4.
a) We first prove that for any non–constant polynomial P ∈ Z[X], there
exists infinitely many prime numbers p such that the congruence

P (x) ≡ 0 (mod p)

has a solution x in Z.
If P (0) = 0, then P (0) ≡ 0 (mod p) for any prime p. Assume now

P (0) 6= 0. Let {p1, . . . , ps} be a finite set of primes which do not divide P (0).
Let m be an integer which is composed only of the primes in {p1, . . . , ps}.
We assume further that P (m) is neither 0, 1 nor −1 (for instance take m
sufficiently large). Then the number P (m) is not divisible by any of the
primes in {p1, . . . , ps}, hence there is a prime p 6∈ {p1, . . . , ps} such that
P (m) ≡ 0 (mod p).

Next we prove that for any non–constant polynomial P ∈ Z[X1, . . . , Xn],
there exists infinitely many prime numbers p such that the congruence

P (x1, . . . , xn) ≡ 0 (mod p)

has a solution (x1, . . . , xn) in Zn. Since P is non–constant there exists a
variable, say Xn, such that P has degree d ≥ 1 in Xn. Write

P (X1, . . . , Xn) = ad(X1, . . . , Xn−1)Xd
n + · · ·+ a0(X1, . . . , Xn−1)

where ad ∈ Z[X1, . . . , Xn−1] is not the zero polynomial. According to Exer-
cice 5.3.a, there exists (x1, . . . , xn−1) in Zn−1 such that ad(x1, . . . , xn−1) 6= 0.
Then we apply the one dimensional result to the non–constant polynomial
P (x1, . . . , xn−1, X) ∈ Z[X].
b) From the quadratic reciprocity law it follows that the congruence x2 ≡ 5
(mod p) has a solution x ∈ Z if and only if p ≡ ±1 (mod 5).

Solution to Exercice 5.5. Assume a) is true. In the decompositions of the
polynomials Pi as a product of irreducible polynomials in the factorial ring
Z[X1, . . . , Xn], there is at least one non–constant common factor P . From
Exercice 5.4.a we deduce b), and from Exercice 5.3.c we deduce c).

Now assume that a) does not hold. From Exercice 5.2 it follows that
neither b) nor c) can hold.
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