Finite fields: some applications
 Michel Waldschmidt ${ }^{2}$

Second course

April 10, 2009

1.4 Proof of the irreducibility of the cyclotomic polynomial Φ_{n} for any $n \geq 1$.

Proof of Theorem \%. Let $f \in \mathbf{Z}[X]$ be an irreducible factor of Φ_{n} and let g satisfy $f g=\Phi_{n}$. Our goal is to prove $f=\Phi_{n}$ and $g=1$.

Since Φ_{n} is monic, the same is true for f and g. Let ζ be a root of f in \mathbf{C} and let p be a prime number which does not divide n. Since ζ^{p} is a primitive n-th root of unity, it is a zero of Φ_{n}.

The first and main step of the proof is to check that $f\left(\zeta^{p}\right)=0$. If ζ^{p} is not a root of f, then it is a root of g. We assume $g\left(\zeta^{p}\right)=0$ and we shall reach a contradiction.

Since f is irreducible, f is the minimal polynomial of ζ, hence from $g\left(\zeta^{p}\right)=0$ we infer that $f(X)$ divides $g\left(X^{p}\right)$. Write $g\left(X^{p}\right)=f(X) h(X)$ and consider the morphism Ψ_{p} of reduction modulo p already introduced in (9):

$$
\Psi_{p}: \mathbf{Z}[X] \longrightarrow \mathbf{F}_{p}[X] .
$$

Denote by F, G, H the images of f, g, h. Recall that $f g=\Phi_{n}$ in $\mathbf{Z}[X]$, hence $F(X) G(X)$ divides $X^{n}-1$ in $\mathbf{F}_{p}[X]$. The assumption that p does not divide n implies that $X^{n}-1$ has no square factor in $\mathbf{F}_{p}[X]$.

Let $P \in \mathbf{Z}[X]$ be an irreducible factor of F. From $G\left(X^{p}\right)=F(X) H(X)$ it follows that $P(X)$ divides $G\left(X^{p}\right)$. But $G \in \mathbf{F}_{p}[X]$, hence (see Lemma 17) $G\left(X^{p}\right)=G(X)^{p}$ and therefore P divides $G(X)$. Now P^{2} divides the product $F G$, which is a contradiction.

We have checked that for any root ζ of f in \mathbf{C} and any prime number p which does not divide n, the number ζ^{p} is again a root of f. By induction on the number of prime factors of m, it follows that for any integer m with

[^0]$\operatorname{gcd}(m, n)=1$ the number ζ^{m} is a root of f. Now f vanishes at all the primitive roots of unity, hence $f=\Phi_{n}$ and $g=1$.

2 Error correcting codes

2.1 Preliminary definitions

A code of length n on a finite alphabet A with q elements is a subset \mathcal{C} of A^{n}. A word is an element of A^{n}, a codeword is an element of \mathcal{C}.

A linear code over a finite field \mathbf{F}_{q} of length n and dimension r is a \mathbf{F}_{q}-vector subspace of \mathbf{F}_{q}^{n} of dimension r (such a code is also called a $(n, r)-$ code). A subspace \mathcal{C} of \mathbf{F}_{q}^{n} of dimension r can be described by giving a basis e_{1}, \ldots, e_{r} of \mathcal{C} over \mathbf{F}_{q}, so that

$$
\mathcal{C}=\left\{m_{1} e_{1}+\cdots+m_{r} e_{r} ;\left(m_{1}, \ldots, m_{r}\right) \in \mathbf{F}_{q}^{r}\right\} .
$$

An alternative description of a subspace \mathcal{C} of \mathbf{F}_{q}^{n} of codimension $n-r$ is by giving $n-r$ linearly independent linear forms L_{1}, \ldots, L_{n-r} in n variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in \mathbf{F}_{q}, such that

$$
\mathcal{C}=\operatorname{ker} L_{1} \cap \cdots \cap \operatorname{ker} L_{n-r} .
$$

The sender replaces his message $\left(m_{1}, \ldots, m_{r}\right) \in \mathbf{F}_{q}^{r}$ of length r by the longer message $m_{1} e_{1}+\cdots+m_{r} e_{r} \in \mathcal{C} \subset \mathbf{F}_{q}^{n}$ of length n. The receiver checks whether the message $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{F}_{q}^{n}$ belongs to \mathcal{C} by computing the n-r-tuple $\underline{L}(\underline{x})=\left(L_{1}(\underline{x}), \ldots, L_{n-r}(\underline{x})\right) \in \mathbf{F}_{q}^{n-r}$. If there is no error during the transmission, then $\underline{x} \in \mathcal{C}$ and $L_{1}(\underline{x})=\cdots=L_{n-r}(\underline{x})=0$. On the opposite, if the receiver observes that some $L_{i}(\underline{x})$ is non-zero, he knows that the received message has at least one error. The message with was sent was an element \underline{c} of the code \mathcal{C}, the message received \underline{x} is not in \mathcal{C}, the error is $\underline{\epsilon}=\underline{x}-\underline{c}$. The values of $\underline{L}(\underline{x})$ may enable him to correct the errors in case there are not too many of them. We only give examples today. For simplicity we take $q=2$: we consider binary codes.

2.2 Examples

Trivial codes of length n are $\mathcal{C}=\{0\}$ of dimension 0 and $\mathcal{C}=\mathbf{F}_{q}^{n}$ of dimension n.

The two first examples below are repetition codes. The next one is a parity bit code detecting one error. The following ones use the parity bit idea but are 1 -error correcting codes.

Example 22. $n=2, r=1$, rate $=1 / 2$, detects one error.

$$
\mathcal{C}=\{(0,0),(1,1)\}, \quad e_{1}=(1,1), \quad L_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}
$$

Example 23. $n=3, r=1$, rate $=1 / 3$, corrects one error.

$$
\begin{gathered}
\mathcal{C}=\{(0,0,0),(1,1,1)\}, \quad e_{1}=(1,1,1), \\
L_{1}(\underline{x})=x_{1}+x_{3}, L_{2}(\underline{x})=x_{2}+x_{3}
\end{gathered}
$$

If the message which is received is correct, it is either $(0,0,0)$ or $(1,1,1)$, and the two numbers $L_{1}(\underline{x})$ and $L_{2}(\underline{x})$ are $0\left(\right.$ in $\left.\mathbf{F}_{2}\right)$. If there is exactly one mistake, then the message which is received is either one of

$$
(0,0,1),(0,1,0),(1,0,0)
$$

or else one of

$$
(1,1,0),(1,0,1),(0,1,1)
$$

In the first case the message which was sent was $(0,0,0)$, in the second case it was $(1,1,1)$.

A message with a single error is obtained by adding to a codeword one of the three possible errors

$$
(1,0,0),(0,1,0),(0,0,1)
$$

If the mistake was on x_{1}, which means that $\underline{x}=\underline{c}+\underline{\epsilon}$ with $\underline{\epsilon}=(1,0,0)$ and $\underline{c} \in \mathcal{C}$ a codeword, then $L_{1}(\underline{x})=1$ and $L_{2}(\underline{x})=0$. If the mistake was on x_{2}, then $\underline{\epsilon}=(0,1,0)$ and $L_{1}(\underline{x})=0$ and $L_{2}(\underline{x})=1$. Finally if the mistake was on x_{3}, then $\underline{\epsilon}=(0,0,1)$ and $L_{1}(\underline{x})=L_{2}(\underline{x})=1$. Therefore the three possible values for the pair $\underline{L}(\underline{x})=\left(L_{1}(\underline{x}), L_{2}(\underline{x})\right)$ other than $(0,0)$ correspond to the three possible positions for a mistake. We shall see that this is a perfect one error correcting code.

Example 24. $n=3, r=2$, rate $=2 / 3$, detects one error.

$$
\begin{gathered}
\mathcal{C}=\left\{\left(m_{1}, m_{2}, m_{1}+m_{2}\right) ;\left(m_{1}, m_{2}\right) \in \mathbf{F}_{2}^{2}\right\} \\
e_{1}=(1,0,1), e_{2}=(0,1,1), \quad L_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}
\end{gathered}
$$

This is the easiest example of the bit parity check.

Example 25. $n=5, r=2$, rate $=2 / 5$, corrects one error.

$$
\begin{gathered}
\mathcal{C}=\left\{\left(m_{1}, m_{2}, m_{1}, m_{2}, m_{1}+m_{2}\right) ;\left(m_{1}, m_{2}\right) \in \mathbf{F}_{2}^{2}\right\} \\
e_{1}=(1,0,1,0,1), e_{2}=(0,1,0,1,1) \\
L_{1}(\underline{x})=x_{1}+x_{3}, L_{2}(\underline{x})=x_{2}+x_{4}, L_{3}(\underline{x})=x_{1}+x_{2}+x_{5}
\end{gathered}
$$

The possible values for the triple $\underline{L}(\underline{x})$ corresponding to a single error are displayed in the following table.

\underline{x}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$\underline{L}(\underline{x})$	$(1,0,1)$	$(0,1,1)$	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$

Therefore when there is a single error, the value of $\underline{L}(\underline{x})$ enables one to correct the error.

One may observe that a single error will never produce the triple $(1,1,0)$ nor $(1,1,1)$ for $\underline{L}(\underline{x})$: there are 8 elements $\underline{x} \in \mathbf{F}_{2}^{5}$ which cannot be received starting from a codeword and adding at most one mistake, namely $\left(x_{1}, x_{2}, x_{1}+1, x_{2}+1, x_{5}\right)$, with $\left(x_{1}, x_{2}, x_{5}\right) \in \mathbf{F}_{2}^{3}$.

Example 26. $n=6, r=3$, rate $=1 / 2$, corrects one error.

$$
\begin{gathered}
\mathcal{C}=\left\{\left(m_{1}, m_{2}, m_{3}, m_{2}+m_{3}, m_{1}+m_{3}, m_{1}+m_{2}\right) ;\left(m_{1}, m_{2}, m_{3}\right) \in \mathbf{F}_{2}^{3}\right\} \\
e_{1}=(1,0,0,0,1,1), e_{2}=(0,1,0,1,0,1), e_{3}=(0,0,1,1,1,0) \\
L_{1}(\underline{x})=x_{2}+x_{3}+x_{4}, L_{2}(\underline{x})=x_{1}+x_{3}+x_{5}, L_{3}(\underline{x})=x_{1}+x_{2}+x_{6}
\end{gathered}
$$

The possible values for the triple $\underline{L}(\underline{x})$ corresponding to a single error are displayed in the following table.

\underline{x}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
$\underline{L}(\underline{x})$	$(0,1,1)$	$(1,0,1)$	$(1,1,0)$	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$

Therefore when there is a single error, the value of $\underline{L}(\underline{x})$ enables one to correct the error.

One may observe that a single error will never produce the triple $(1,1,1)$ for $\underline{L}(\underline{x})$: there are 8 elements $\underline{x} \in \mathbf{F}_{2}^{5}$ which cannot be received starting from a codeword and adding at most one mistake, namely:

$$
\left(x_{1}, x_{2}, x_{3}, x_{2}+x_{3}+1, x_{1}+x_{3}+1, x_{1}+x_{2}+1\right) \quad \text { with } \quad\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}_{2}^{3}
$$

Example 27 (Hamming Code of dimension 4 and length 7 over \mathbf{F}_{2}). $n=7, r=4$, rate $=7 / 4$, corrects one error.
\mathcal{C} is the set of

$$
\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{1}+m_{2}+m_{4}, m_{1}+m_{3}+m_{4}, m_{2}+m_{3}+m_{4}\right) \in \mathbf{F}_{2}^{7}
$$

where $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ ranges over \mathbf{F}_{2}^{4}. A basis of \mathcal{C} is

$$
\begin{array}{ll}
e_{1}=(1,0,0,0,1,1,0), & e_{2}=(0,1,0,0,1,0,1), \\
e_{3}=(0,0,1,0,0,1,1), & e_{4}=(0,0,0,1,1,1,1)
\end{array}
$$

and \mathcal{C} is also the intersection of the hyperplanes defined as the kernels of the linear forms
$L_{1}(\underline{x})=x_{1}+x_{2}+x_{4}+x_{5}, L_{2}(\underline{x})=x_{1}+x_{3}+x_{4}+x_{6}, L_{3}(\underline{x})=x_{2}+x_{3}+x_{4}+x_{7}$.
This corresponds to the next picture from
http://en.wikipedia.org/wiki/Hamming_code

Hamming $(7,4)$ code

The possible values for the triple $\underline{L}(\underline{x})$ corresponding to a single error are displayed in the following table.

\underline{x}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
$\underline{L}(\underline{x})$	$(1,1,0)$	$(1,0,1)$	$(0,1,1)$	$(1,1,1)$	$(1,0,0)$	$(0,1,0)$	$(0,0,1)$

This table gives a bijective map between the set $\{1,2,3,4,5,6,7\}$ of indices of the unique wrong letter in the word \underline{x} which is received with a single mistake on the one hand, the set of values of the triple

$$
\underline{L}(\underline{x})=\left(L_{1}(\underline{x}), L_{2}(\underline{x}), L_{3}(\underline{x})\right) \in \mathbf{F}_{2}^{3} \backslash\{0\}
$$

on the second hand. This is a perfect 1 -error correcting code.

[^0]: ${ }^{2}$ This text is accessible on the author's web site
 http://www.math.jussieu.fr/~miw/coursVietnam2009.html

