Finite fields: some applications
 Michel Waldschmidt ${ }^{3}$

Third course
April 13, 2009
Errata to the first course.
Page 3, replace
When F is a field, the ring $F[X]$ of polynomials in one variable over F is a principal domain, hence an Euclidean ring, and therefore a factorial ring.
by
When F is a field, the ring $F[X]$ of polynomials in one variable over F is a principal domain (since it is an Euclidean ring), and therefore a factorial ring.

Page 3, replace
The ring \mathbf{Z} is not an Euclidean ring
by
The ring $\mathbf{Z}[X]$ is not an Euclidean ring
Page 10, replace

$$
\Phi_{n}(X)=\prod_{d \mid n}\left(X^{n}-1\right)^{\mu(n / d)}
$$

by

$$
\Phi_{n}(X)=\prod_{d \mid n}\left(X^{d}-1\right)^{\mu(n / d)}
$$

[^0]
3 Cyclotomic Polynomials over finite fields (continued)

Consequences of Corollary 19.
We assume that n is not divisible by the characteristic p of \mathbf{F}_{q}.

1. $\Phi_{n}(X)$ splits completely in $\mathbf{F}_{q}[X]$ (into a product of polynomials all of degree 1$)$ if and only if $q \equiv 1(\bmod n)$. This follows from Corollary 19 , but it is also plain from the fact that the cyclic group \mathbf{F}_{q}^{\times}of order $q-1$ contains a subgroup of order n if and only if n divides $q-1$, which is the condition $q \equiv 1(\bmod n)$.
2. $\Phi_{n}(X)$ is irreducible in $\mathbf{F}_{q}[X]$ if and only if the class of q modulo n has order $\varphi(n)$, which is equivalent to saying that q is a generator of the group $(\mathbf{Z} / n \mathbf{Z})^{\times}$. This can be true only when this multiplicative group is cyclic, which means n is either

$$
2,4, \ell^{s}, 2 \ell^{s}
$$

where ℓ is an odd prime and $s \geq 1$.
Recall: for $s \geq 2,\left(\mathbf{Z} / 2^{s} \mathbf{Z}\right)^{\times}$is the product of a cyclic group of order 2 by a cyclic group of order 2^{s-2}, hence for $s \geq 3$ it is not cyclic.
3 . Let q be a power of a prime, s a positive integer, and $n=q^{s}-1$. Then q has order s modulo n. Hence Φ_{n} splits in $\mathbf{F}_{q}[X]$ into irreducible factors, all of which have degree s. Notice that the number of factors is $\varphi\left(q^{s}-1\right) / s$, hence s divides $\varphi\left(q^{s}-1\right)$.

Numerical examples
Recall that we fix an algebraic closure $\overline{\mathbf{F}}_{p}$ of the prime field \mathbf{F}_{p}, and for q a power of p we denote by \mathbf{F}_{q} the unique subfield of $\overline{\mathbf{F}}_{p}$ with q elements. Of course, $\overline{\mathbf{F}}_{p}$ is also an algebraic closure of \mathbf{F}_{q}.

Example 28. We consider the quadratic extension $\mathbf{F}_{4} / \mathbf{F}_{2}$. There is a unique irreducible polynomial of degree 2 over \mathbf{F}_{2}, which is $\Phi_{3}=X^{2}+X+1$. Denote by ζ one of its roots in \mathbf{F}_{4}. The other root is ζ^{2} with $\zeta^{2}=\zeta+1$ and

$$
\mathbf{F}_{4}=\left\{0,1, \zeta, \zeta^{2}\right\} .
$$

If we set $\eta=\zeta^{2}$, then the two roots of Φ_{3} are η and η^{2}, with $\eta^{2}=\eta+1$ and

$$
\mathbf{F}_{4}=\left\{0,1, \eta, \eta^{2}\right\} .
$$

There is no way to distinguish these two roots, they play the same role. It is the same situation as with the two roots $\pm i$ of $X^{2}+1$ in \mathbf{C}.

Example 29. We consider the cubic extension $\mathbf{F}_{8} / \mathbf{F}_{2}$. There are 6 elements in \mathbf{F}_{8} which are not in \mathbf{F}_{2}, each of them has degree 3 over \mathbf{F}_{2}, hence there are two irreducible polynomials of degree 3 in $\mathbf{F}_{2}[X]$. Indeed from (16) it follows that $N_{2}(3)=2$. The two irreducible factors of Φ_{7} are the only irreducible polynomials of degree 3 over \mathbf{F}_{2} :

$$
X^{8}-X=X(X+1)\left(X^{3}+X+1\right)\left(X^{3}+X^{2}+1\right) .
$$

The $6=\varphi(7)$ elements in \mathbf{F}_{8}^{\times}of degree 3 are the six roots of Φ_{7}, hence they have order 7. If ζ is any of them, then

$$
\mathbf{F}_{8}=\left\{0,1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}, \zeta^{6}\right\}
$$

If ζ is a root of $Q_{1}(X)=X^{3}+X+1$, then the two other roots are ζ^{2} and ζ^{4}, while the roots of $Q_{2}(X)=X^{3}+X^{2}+1$ are ζ^{3}, ζ^{5} and ζ^{6}. Notice that $\zeta^{6}=\zeta^{-1}$ and $Q_{2}(X)=X^{3} Q_{1}(1 / X)$. Set $\eta=\zeta^{-1}$. Then

$$
\mathbf{F}_{8}=\left\{0,1, \eta, \eta^{2}, \eta^{3}, \eta^{4}, \eta^{5}, \eta^{6}\right\}
$$

and

$$
Q_{1}(X)=(X-\zeta)\left(X-\zeta^{2}\right)\left(X-\zeta^{4}\right), \quad Q_{2}(X)=(X-\eta)\left(X-\eta^{2}\right)\left(X-\eta^{4}\right) .
$$

For transmission of data, it is not the same to work with ζ or with $\eta=\zeta^{-1}$. For instance the map $x \mapsto x+1$ is given by

$$
\zeta+1=\zeta^{3}, \zeta^{2}+1=\zeta^{6}, \zeta^{3}+1=\zeta, \zeta^{4}+1=\zeta^{5}, \zeta^{5}+1=\zeta^{4}, \zeta^{6}+1=\zeta^{2}
$$

and by
$\eta+1=\eta^{5}, \eta^{2}+1=\eta^{3}, \eta^{3}+1=\eta^{2}, \eta^{4}+1=\eta^{6}, \eta^{5}+1=\eta, \eta^{6}+1=\eta^{4}$.
Example 30. We consider the quadratic extension $\mathbf{F}_{9} / \mathbf{F}_{3}$. Over \mathbf{F}_{3},

$$
X^{9}-X=X(X-1)(X+1)\left(X^{2}+1\right)\left(X^{2}+X-1\right)\left(X^{2}-X-1\right) .
$$

In \mathbf{F}_{9}^{\times}, there are $4=\varphi(8)$ elements of order 8 (the four roots of Φ_{8}) which have degree 2 over \mathbf{F}_{3}. There are two elements of order 4, which are the roots of Φ_{4}; they are also the squares of the elements of order 8 and they have degree 2 over \mathbf{F}_{3}, their square is -1 . There is one element of order 2 , namely -1 , and one of order 1, namely 1. From (16) it follows that $N_{3}(2)=3$: the three monic irreducible polynomials of degree 2 over \mathbf{F}_{3} are Φ_{4} and the two irreducible factors of Φ_{8}.

Let ζ be a root of $X^{2}+X-1$ and let $\eta=\zeta^{-1}$. Then $\eta=\zeta^{7}, \eta^{3}=\zeta^{5}$ and

$$
X^{2}+X-1=(X-\zeta)\left(X-\zeta^{3}\right), \quad X^{2}-X-1=(X-\eta)\left(X-\eta^{3}\right) .
$$

We have

$$
\mathbf{F}_{9}=\left\{0,1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}, \zeta^{6}, \zeta^{7}\right\}
$$

and also

$$
\mathbf{F}_{9}=\left\{0,1, \eta, \eta^{2}, \eta^{3}, \eta^{4}, \eta^{5}, \eta^{6}, \eta^{7}\right\} .
$$

The element $\zeta^{4}=\eta^{4}=-1$ is the element of order 2 and degree 1 , and the two elements of order 4 (and degree 2), roots of $X^{2}+1$, are $\zeta^{2}=\eta^{6}$ and $\zeta^{6}=\eta^{2}$.

Exercise 31. Check that 3 has order 5 modulo 11 and that

$$
X^{11}-1=(X-1)\left(X^{5}-X^{3}+X^{2}-X-1\right)\left(X^{5}+X^{4}-X^{3}+X^{2}-1\right)
$$

is the decomposition of $X^{11}-1$ into irreducible factors over \mathbf{F}_{3}.
Exercise 32. Check that 2 has order 11 modulo 23 and that $X^{23}-1$ over \mathbf{F}_{2} is the product of three irreducible polynomials, namely $X-1$,

$$
X^{11}+X^{10}+X^{6}+X^{5}+X^{4}+X^{2}+1
$$

and

$$
X^{11}+X^{9}+X^{7}+X^{6}+X^{5}+X+1 .
$$

Example 33. Assume that q is odd and consider the polynomial $\Phi_{4}(X)=$ $X^{2}+1$.

- If $q \equiv 1(\bmod 4)$, then $X^{2}+1$ has two roots in \mathbf{F}_{q}.
- If $q \equiv-1(\bmod 4)$, then $X^{2}+1$ is irreducible over \mathbf{F}_{q}.

Example 34. Assume again that q is odd and consider the polynomial $\Phi_{8}(X)=X^{4}+1$.

- If $q \equiv 1(\bmod 8)$, then $X^{4}+1$ has four roots in \mathbf{F}_{q}.
- Otherwise $X^{4}+1$ is a product of two irreducible polynomials of degree 2 in $\mathbf{F}_{q}[X]$.

For instance Example 30 gives over \mathbf{F}_{3}

$$
X^{4}+1=\left(X^{2}+X-1\right)\left(X^{2}-X-1\right) .
$$

Using the result in the previous example 33, one deduces that in the decomposition of $X^{8}-1$ over \mathbf{F}_{q}, there are

8 factors of degree 1 if $q \equiv 1 \quad(\bmod 8)$,
4 factors of degree 1 and 2 factors of degree 2 if $q \equiv 5(\bmod 8)$,
2 factors of degree 1 and 3 factors of degree 2 if $q \equiv-1(\bmod 4)$.
Example 35. The group $(\mathbf{Z} / 5 \mathbf{Z})^{\times}$is cyclic of order 4 , there are $\varphi(4)=2$ generators which are the classes of 2 and 3 . Hence

- If $q \equiv 2$ or $3(\bmod 5)$, then Φ_{5} is irreducible in $\mathbf{F}_{q}[X]$,
- If $q \equiv 1(\bmod 5)$, then Φ_{5} has 4 roots in \mathbf{F}_{q},
- If $q \equiv-1(\bmod 5)$, then Φ_{5} splits as a product of two irreducible polynomials of degree 2 in $\mathbf{F}_{q}[X]$.

Decomposition of Φ_{n} into irreducible factors over \mathbf{F}_{q}
As usual, we assume $\operatorname{gcd}(n, q)=1$. Corollary 19 tells us that Φ_{n} is product of irreducible polynomials over \mathbf{F}_{q} all of the same degree d. Denote by G the multiplicative group $(\mathbf{Z} / n \mathbf{Z})^{\times}$. Then d is the order of q in G. Let H be the subgroup of G generated by q :

$$
H=\left\{1, q, q^{2}, \ldots, q^{d-1}\right\} .
$$

Let ζ be any root of Φ_{n} (in an algebraic closure of \mathbf{F}_{q}, or if you prefer in the splitting field of $\Phi_{n}(X)$ over $\left.\mathbf{F}_{q}\right)$. Then the conjugates of ζ over \mathbf{F}_{q} are its images under the iterated Frobenius σ_{q} which maps x to x^{q}. Hence the minimal polynomial of ζ over \mathbf{F}_{q} is

$$
P_{H}(X)=\prod_{i=0}^{d-1}\left(X-\zeta^{q^{i}}\right)=\prod_{h \in H}\left(X-\zeta^{h}\right) .
$$

This is true for any root ζ of Φ_{n}. Now fix one of them. Then the others are ζ^{m} where $\operatorname{gcd}(m, n)=1$. The minimal polynomial of ζ^{m} is therefore

$$
\prod_{i=0}^{d-1}\left(X-\zeta^{m q^{i}}\right)
$$

This polynomial can be written

$$
P_{m H}(X)=\prod_{h \in m H}\left(X-\zeta^{h}\right)
$$

where $m H$ is the class $\left\{m q^{i} ; 0 \leq i \leq d-1\right\}$ of m modulo H in G. There are $\varphi(n) / d$ classes of G modulo H, and the decomposition of $\Phi_{d}(X)$ into irreducible factors over \mathbf{F}_{q} is

$$
\Phi_{d}(X)=\prod_{m H \in G / H} P_{m H}(X) .
$$

Factors of $X^{n}-1$ in $\mathbf{F}_{q}[X]$
Again we assume $\operatorname{gcd}(n, q)=1$. We just studied the decomposition over \mathbf{F}_{q} of the cyclotomic polynomials, and $X^{n}-1$ is the product of the $\Phi_{d}(X)$ for d dividing n. This gives all the information on the decomposition of $X^{n}-1$ in $\mathbf{F}_{q}[X]$. Proposition 36 below follows from these results, but is also easy to prove directly.

Let ζ be a primitive n-th root of unity in an extension F of \mathbf{F}_{q}. Recall that for j in \mathbf{Z}, ζ^{j} depends only on the classe of j modulo n. Hence ζ^{i} makes sense when i is an element of $\mathbf{Z} / n \mathbf{Z}$:

$$
X^{n}-1=\prod_{i \in \mathbf{Z} / n \mathbf{Z}}\left(X-\zeta^{i}\right) .
$$

For each subset I of $\mathbf{Z} / n \mathbf{Z}$, define

$$
Q_{I}(X)=\prod_{i \in I}\left(X-\zeta^{i}\right)
$$

For I ranging over the 2^{n} subsets of $\mathbf{Z} / n \mathbf{Z}$, we obtain all the monic divisors of $X^{n}-1$ in $F[X]$. Lemma 17 implies that Q_{I} belongs to $\mathbf{F}_{q}[X]$ if and only if $Q_{I}\left(X^{q}\right)=Q_{I}(X)^{q}$.

Since q and n are relatively prime, the multiplication by q, which we denote by $[q]$, defines a permutation of the cyclic group $\mathbf{Z} / n \mathbf{Z}$:

The condition $Q_{I}\left(X^{q}\right)=Q_{I}(X)^{q}$ is equivalent to saying that $[q](I)=I$, which means that multiplication by q induces a permutation of the elements in I. We shall say for brevity that a subset I of $\mathbf{Z} / n \mathbf{Z}$ with this property is stable under multiplication by q. Therefore:

Proposition 36. The map $I \mapsto Q_{I}$ is a bijective map between the subsets I of $\mathbf{Z} / n \mathbf{Z}$ which are stable under multiplication by q on the one hand, and the monic divisors of $X^{n}-1$ in $\mathbf{F}_{q}[X]$ on the other hand.

An irreducible factor of $X^{n}-1$ over \mathbf{F}_{q} is a factor Q such that no proper divisor of Q has coefficients in \mathbf{F}_{q}. Hence

Corollary 37. Under this bijective map, the irreducible factors of $X^{n}-1$ correspond to the minimal subsets I of $\mathbf{Z} / n \mathbf{Z}$ which are stable under multiplication by q.

Here are some examples:

- For $I=\emptyset, Q_{\emptyset}=1$.
- For $I=\mathbf{Z} / n \mathbf{Z}, Q_{\mathbf{Z} / n \mathbf{Z}}=\Phi_{n}$.
- For $I=\{0\}, Q_{0}(X)=X-1$.
- If n is even (and q odd, of course), then for $I=\{n / 2\}, Q_{n / 2}(X)=$ $X+1$.
- Let d be a divisor of n. There is a unique subgroup C_{d} of order d in the cyclic group $\mathbf{Z} / n \mathbf{Z}$. This subgroup is generated by the class of n / d, it is the set of $k \in \mathbf{Z} / n \mathbf{Z}$ such that $d k=0$, it is stable under multiplication by any element prime to n. Then $Q_{C_{d}}(X)=X^{d}-1$.
- Let again d be a divisor of n and let E_{d} be the set of generators of C_{d} : this set has $\varphi(d)$ elements which are the elements of order d in the cyclic group $\mathbf{Z} / n \mathbf{Z}$. Again this subset of $\mathbf{Z} / n \mathbf{Z}$ is stable under multiplication by any element prime to n. Then $Q_{E_{d}}$ is the cyclotomic polynomial Φ_{d} of degree $\varphi(d)$.

Example 38. Take $n=15, q=2$. The minimal subsets of $\mathbf{Z} / 15 \mathbf{Z}$ which are stable under multiplication by 2 modulo 15 are the classes of

$$
\{0\},\{5,10\},\{3,6,9,12\},\{1,2,4,8\},\{7,11,13,14\} .
$$

We recover the fact that in the decomposition

$$
X^{15}-1=\Phi_{1}(X) \Phi_{3}(X) \Phi_{5}(X) \Phi_{15}(X)
$$

over \mathbf{F}_{2}, the factor Φ_{1} is irreducible of degree 1, the factors Φ_{3} and Φ_{5} are irreducible of degree 2 and 4 respectively, while Φ_{15} splits into two factors of degree 4 (use the fact that 2 has order 2 modulo 3 , order 4 modulo 5 and also order 4 modulo 15).

It is easy to find the two factors of Φ_{15} of degree 4 over \mathbf{F}_{2}. There are four polynomials of degree 4 over \mathbf{F}_{2} without roots in \mathbf{F}_{2} (the number of monomials with coefficient 1 should be odd, hence 3 or 5) and $\Phi_{3}^{2}=$ $X^{4}+X^{2}+1$ is reducible; hence there are three irreducible polynomials of degree 4 over \mathbf{F}_{2} :

$$
X^{4}+X^{3}+1, \quad X^{4}+X+1, \quad \Phi_{5}(X)=X^{4}+X^{3}+X^{2}+X+1
$$

Therefore, in $\mathbf{F}_{2}[X]$,

$$
\Phi_{15}(X)=\left(X^{4}+X^{3}+1\right)\left(X^{4}+X+1\right)
$$

We check the result by computing Φ_{15} : we divide $\left(X^{15}-1\right) /\left(X^{5}-1\right)=$ $X^{10}+X^{5}+1$ by $\Phi_{3}(X)=X^{2}+X+1$ and get in $\mathbf{Z}[X]:$

$$
\Phi_{15}(X)=X^{8}-X^{7}+X^{5}-X^{4}+X^{3}-X+1
$$

Let ζ is a primitive 15 -th root of unity (that is, a root of Φ_{15}). Then $\zeta^{15}=1$ is the root of Φ_{1}, ζ^{5} and ζ^{10} are the roots of Φ_{3} (these are the primitive cube roots of unity, they belong to \mathbf{F}_{4}), while $\zeta^{3}, \zeta^{6}, \zeta^{9}, \zeta^{12}$ are the roots of Φ_{5} (these are the primitive 5 -th roots of unity). One of the two irreducible factors of Φ_{15} has the roots $\zeta, \zeta^{2}, \zeta^{4}, \zeta^{8}$, the other has the roots $\zeta^{7}, \zeta^{11}, \zeta^{13}, \zeta^{14}$. Also we have

$$
\left\{\zeta^{7}, \zeta^{11}, \zeta^{13}, \zeta^{14}\right\}=\left\{\zeta^{-1}, \zeta^{-2}, \zeta^{-4}, \zeta^{-8}\right\}
$$

The splitting field over \mathbf{F}_{2} of any of the three irreducible factors of degree 4 of $X^{15}-1$ is the field F_{16} with 2^{4} elements, but for one of them (namely Φ_{5}) the 4 roots have order 5 in F_{16}^{\times}, while for the two others the roots have order 15.

Hence we have checked that in \mathbf{F}_{16}^{\times}, there are

- 1 element of order 1 and degree 1 over \mathbf{F}_{2}, namely $\{1\} \subset \mathbf{F}_{2}$,
- 2 elements of order 3 and degree 2 over \mathbf{F}_{2}, namely $\left\{\zeta^{5}, \zeta^{10}\right\} \subset \mathbf{F}_{4}$,
- 4 elements of order 5 and degree 4 over \mathbf{F}_{2}, namely $\left\{\zeta^{3}, \zeta^{6}, \zeta^{9}, \zeta^{12}\right\}$,
- 8 elements of order 15 and degree 4 over \mathbf{F}_{2}.

[^0]: ${ }^{3}$ This text is accessible on the author's web site
 http://www.math.jussieu.fr/~miw/coursVietnam2009.html

