Ho Chi Minh University of Science HCMUS

Update: April 18, 2009

Finite fields: some applications Michel Waldschmidt³

Third course

April 13, 2009

Errata to the first course.

Page 3, replace

When F is a field, the ring F[X] of polynomials in one variable over F is a principal domain, hence an Euclidean ring, and therefore a factorial ring.

by

When F is a field, the ring F[X] of polynomials in one variable over F is a principal domain (since it is an Euclidean ring), and therefore a factorial ring.

Page 3, replace

The ring \mathbf{Z} is not an Euclidean ring

by

The ring $\mathbf{Z}[X]$ is not an Euclidean ring

Page 10, replace

$$\Phi_n(X) = \prod_{d|n} (X^n - 1)^{\mu(n/d)}.$$

by

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}.$$

³This text is accessible on the author's web site

http://www.math.jussieu.fr/~miw/coursVietnam2009.html

3 Cyclotomic Polynomials over finite fields (continued)

Consequences of Corollary 19.

We assume that n is not divisible by the characteristic p of \mathbf{F}_q .

1. $\Phi_n(X)$ splits completely in $\mathbf{F}_q[X]$ (into a product of polynomials all of degree 1) if and only if $q \equiv 1 \pmod{n}$. This follows from Corollary 19, but it is also plain from the fact that the cyclic group \mathbf{F}_q^{\times} of order q-1 contains a subgroup of order n if and only if n divides q-1, which is the condition $q \equiv 1 \pmod{n}$.

2. $\Phi_n(X)$ is irreducible in $\mathbf{F}_q[X]$ if and only if the class of q modulo n has order $\varphi(n)$, which is equivalent to saying that q is a generator of the group $(\mathbf{Z}/n\mathbf{Z})^{\times}$. This can be true only when this multiplicative group is cyclic, which means n is either

2, 4,
$$\ell^s$$
, $2\ell^s$

where ℓ is an odd prime and $s \ge 1$.

Recall: for $s \ge 2$, $(\mathbb{Z}/2^s\mathbb{Z})^{\times}$ is the product of a cyclic group of order 2 by a cyclic group of order 2^{s-2} , hence for $s \ge 3$ it is not cyclic.

3. Let q be a power of a prime, s a positive integer, and $n = q^s - 1$. Then q has order s modulo n. Hence Φ_n splits in $\mathbf{F}_q[X]$ into irreducible factors, all of which have degree s. Notice that the number of factors is $\varphi(q^s - 1)/s$, hence s divides $\varphi(q^s - 1)$.

Numerical examples

Recall that we fix an algebraic closure $\overline{\mathbf{F}}_p$ of the prime field \mathbf{F}_p , and for q a power of p we denote by \mathbf{F}_q the unique subfield of $\overline{\mathbf{F}}_p$ with q elements. Of course, $\overline{\mathbf{F}}_p$ is also an algebraic closure of \mathbf{F}_q .

Example 28. We consider the quadratic extension $\mathbf{F}_4/\mathbf{F}_2$. There is a unique irreducible polynomial of degree 2 over \mathbf{F}_2 , which is $\Phi_3 = X^2 + X + 1$. Denote by ζ one of its roots in \mathbf{F}_4 . The other root is ζ^2 with $\zeta^2 = \zeta + 1$ and

$$\mathbf{F}_4 = \{0, 1, \zeta, \zeta^2\}.$$

If we set $\eta = \zeta^2$, then the two roots of Φ_3 are η and η^2 , with $\eta^2 = \eta + 1$ and

$$\mathbf{F}_4 = \{0, 1, \eta, \eta^2\}.$$

There is no way to distinguish these two roots, they play the same role. It is the same situation as with the two roots $\pm i$ of $X^2 + 1$ in **C**.

Example 29. We consider the cubic extension $\mathbf{F}_8/\mathbf{F}_2$. There are 6 elements in \mathbf{F}_8 which are not in \mathbf{F}_2 , each of them has degree 3 over \mathbf{F}_2 , hence there are two irreducible polynomials of degree 3 in $\mathbf{F}_2[X]$. Indeed from (16) it follows that $N_2(3) = 2$. The two irreducible factors of Φ_7 are the only irreducible polynomials of degree 3 over \mathbf{F}_2 :

$$X^{8} - X = X(X+1)(X^{3} + X + 1)(X^{3} + X^{2} + 1).$$

The $6 = \varphi(7)$ elements in \mathbf{F}_8^{\times} of degree 3 are the six roots of Φ_7 , hence they have order 7. If ζ is any of them, then

$$\mathbf{F}_8 = \{0, 1, \zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5, \zeta^6\}.$$

If ζ is a root of $Q_1(X) = X^3 + X + 1$, then the two other roots are ζ^2 and ζ^4 , while the roots of $Q_2(X) = X^3 + X^2 + 1$ are ζ^3 , ζ^5 and ζ^6 . Notice that $\zeta^6 = \zeta^{-1}$ and $Q_2(X) = X^3 Q_1(1/X)$. Set $\eta = \zeta^{-1}$. Then

$$\mathbf{F}_8 = \{0, \ 1, \ \eta, \ \eta^2, \ \eta^3, \ \eta^4, \ \eta^5, \ \eta^6\}$$

and

$$Q_1(X) = (X - \zeta)(X - \zeta^2)(X - \zeta^4), \quad Q_2(X) = (X - \eta)(X - \eta^2)(X - \eta^4).$$

For transmission of data, it is not the same to work with ζ or with $\eta = \zeta^{-1}$. For instance the map $x \mapsto x + 1$ is given by

$$\zeta + 1 = \zeta^3, \ \zeta^2 + 1 = \zeta^6, \ \zeta^3 + 1 = \zeta, \ \zeta^4 + 1 = \zeta^5, \ \zeta^5 + 1 = \zeta^4, \ \zeta^6 + 1 = \zeta^2$$

and by

$$\eta + 1 = \eta^5, \ \eta^2 + 1 = \eta^3, \ \eta^3 + 1 = \eta^2, \ \eta^4 + 1 = \eta^6, \ \eta^5 + 1 = \eta, \ \eta^6 + 1 = \eta^4.$$

Example 30. We consider the quadratic extension $\mathbf{F}_9/\mathbf{F}_3$. Over \mathbf{F}_3 ,

$$X^{9} - X = X(X - 1)(X + 1)(X^{2} + 1)(X^{2} + X - 1)(X^{2} - X - 1).$$

In \mathbf{F}_{9}^{\times} , there are $4 = \varphi(8)$ elements of order 8 (the four roots of Φ_8) which have degree 2 over \mathbf{F}_3 . There are two elements of order 4, which are the roots of Φ_4 ; they are also the squares of the elements of order 8 and they have degree 2 over \mathbf{F}_3 , their square is -1. There is one element of order 2, namely -1, and one of order 1, namely 1. From (16) it follows that $N_3(2) = 3$: the three monic irreducible polynomials of degree 2 over \mathbf{F}_3 are Φ_4 and the two irreducible factors of Φ_8 . Let ζ be a root of $X^2 + X - 1$ and let $\eta = \zeta^{-1}$. Then $\eta = \zeta^7$, $\eta^3 = \zeta^5$ and

$$X^{2} + X - 1 = (X - \zeta)(X - \zeta^{3}), \quad X^{2} - X - 1 = (X - \eta)(X - \eta^{3}).$$

We have

$$\mathbf{F}_9 = \{0, 1, \zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5, \zeta^6, \zeta^7\}$$

and also

$$\mathbf{F}_9 = \{0, 1, \eta, \eta^2, \eta^3, \eta^4, \eta^5, \eta^6, \eta^7\}.$$

The element $\zeta^4 = \eta^4 = -1$ is the element of order 2 and degree 1, and the two elements of order 4 (and degree 2), roots of $X^2 + 1$, are $\zeta^2 = \eta^6$ and $\zeta^6 = \eta^2$.

Exercise 31. Check that 3 has order 5 modulo 11 and that

$$X^{11} - 1 = (X - 1)(X^5 - X^3 + X^2 - X - 1)(X^5 + X^4 - X^3 + X^2 - 1)$$

is the decomposition of $X^{11} - 1$ into irreducible factors over \mathbf{F}_3 .

Exercise 32. Check that 2 has order 11 modulo 23 and that $X^{23} - 1$ over \mathbf{F}_2 is the product of three irreducible polynomials, namely X - 1,

$$X^{11} + X^{10} + X^6 + X^5 + X^4 + X^2 + 1$$

and

$$X^{11} + X^9 + X^7 + X^6 + X^5 + X + 1.$$

Example 33. Assume that q is odd and consider the polynomial $\Phi_4(X) = X^2 + 1$.

- If $q \equiv 1 \pmod{4}$, then $X^2 + 1$ has two roots in \mathbf{F}_q .
- If $q \equiv -1 \pmod{4}$, then $X^2 + 1$ is irreducible over \mathbf{F}_q .

Example 34. Assume again that q is odd and consider the polynomial $\Phi_8(X) = X^4 + 1$.

- If $q \equiv 1 \pmod{8}$, then $X^4 + 1$ has four roots in \mathbf{F}_q .
- Otherwise $X^4 + 1$ is a product of two irreducible polynomials of degree 2 in $\mathbf{F}_q[X]$.

For instance Example 30 gives over \mathbf{F}_3

$$X^{4} + 1 = (X^{2} + X - 1)(X^{2} - X - 1).$$

Using the result in the previous example 33, one deduces that in the decomposition of $X^8 - 1$ over \mathbf{F}_q , there are

```
8 factors of degree 1 if q \equiv 1 \pmod{8},
4 factors of degree 1 and 2 factors of degree 2 if q \equiv 5 \pmod{8},
2 factors of degree 1 and 3 factors of degree 2 if q \equiv -1 \pmod{4}.
```

Example 35. The group $(\mathbf{Z}/5\mathbf{Z})^{\times}$ is cyclic of order 4, there are $\varphi(4) = 2$ generators which are the classes of 2 and 3. Hence

- If $q \equiv 2 \text{ or } 3 \pmod{5}$, then Φ_5 is irreducible in $\mathbf{F}_q[X]$,
- If $q \equiv 1 \pmod{5}$, then Φ_5 has 4 roots in \mathbf{F}_q ,
- If $q \equiv -1 \pmod{5}$, then Φ_5 splits as a product of two irreducible polynomials of degree 2 in $\mathbf{F}_q[X]$.

Decomposition of Φ_n into irreducible factors over \mathbf{F}_q

As usual, we assume gcd(n,q) = 1. Corollary 19 tells us that Φ_n is product of irreducible polynomials over \mathbf{F}_q all of the same degree d. Denote by G the multiplicative group $(\mathbf{Z}/n\mathbf{Z})^{\times}$. Then d is the order of q in G. Let H be the subgroup of G generated by q:

$$H = \{1, q, q^2, \dots, q^{d-1}\}.$$

Let ζ be any root of Φ_n (in an algebraic closure of \mathbf{F}_q , or if you prefer in the splitting field of $\Phi_n(X)$ over \mathbf{F}_q). Then the conjugates of ζ over \mathbf{F}_q are its images under the iterated Frobenius σ_q which maps x to x^q . Hence the minimal polynomial of ζ over \mathbf{F}_q is

$$P_H(X) = \prod_{i=0}^{d-1} (X - \zeta^{q^i}) = \prod_{h \in H} (X - \zeta^h).$$

This is true for any root ζ of Φ_n . Now fix one of them. Then the others are ζ^m where gcd(m, n) = 1. The minimal polynomial of ζ^m is therefore

$$\prod_{i=0}^{d-1} (X - \zeta^{mq^i}).$$

This polynomial can be written

$$P_{mH}(X) = \prod_{h \in mH} (X - \zeta^h)$$

where mH is the class $\{mq^i ; 0 \le i \le d-1\}$ of m modulo H in G. There are $\varphi(n)/d$ classes of G modulo H, and the decomposition of $\Phi_d(X)$ into irreducible factors over \mathbf{F}_q is

$$\Phi_d(X) = \prod_{mH \in G/H} P_{mH}(X).$$

Factors of $X^n - 1$ in $\mathbf{F}_q[X]$

Again we assume gcd(n,q) = 1. We just studied the decomposition over \mathbf{F}_q of the cyclotomic polynomials, and $X^n - 1$ is the product of the $\Phi_d(X)$ for d dividing n. This gives all the information on the decomposition of $X^n - 1$ in $\mathbf{F}_q[X]$. Proposition 36 below follows from these results, but is also easy to prove directly.

Let ζ be a primitive *n*-th root of unity in an extension F of \mathbf{F}_q . Recall that for j in \mathbf{Z} , ζ^j depends only on the classe of j modulo n. Hence ζ^i makes sense when i is an element of $\mathbf{Z}/n\mathbf{Z}$:

$$X^n - 1 = \prod_{i \in \mathbf{Z}/n\mathbf{Z}} (X - \zeta^i).$$

For each subset I of $\mathbf{Z}/n\mathbf{Z}$, define

$$Q_I(X) = \prod_{i \in I} (X - \zeta^i).$$

For I ranging over the 2^n subsets of $\mathbb{Z}/n\mathbb{Z}$, we obtain all the monic divisors of $X^n - 1$ in F[X]. Lemma 17 implies that Q_I belongs to $\mathbb{F}_q[X]$ if and only if $Q_I(X^q) = Q_I(X)^q$.

Since q and n are relatively prime, the multiplication by q, which we denote by [q], defines a permutation of the cyclic group $\mathbf{Z}/n\mathbf{Z}$:

The condition $Q_I(X^q) = Q_I(X)^q$ is equivalent to saying that [q](I) = I, which means that multiplication by q induces a permutation of the elements in I. We shall say for brevity that a subset I of $\mathbf{Z}/n\mathbf{Z}$ with this property is stable under multiplication by q. Therefore:

Proposition 36. The map $I \mapsto Q_I$ is a bijective map between the subsets I of $\mathbb{Z}/n\mathbb{Z}$ which are stable under multiplication by q on the one hand, and the monic divisors of $X^n - 1$ in $\mathbb{F}_q[X]$ on the other hand.

An irreducible factor of $X^n - 1$ over \mathbf{F}_q is a factor Q such that no proper divisor of Q has coefficients in \mathbf{F}_q . Hence

Corollary 37. Under this bijective map, the irreducible factors of $X^n - 1$ correspond to the minimal subsets I of $\mathbf{Z}/n\mathbf{Z}$ which are stable under multiplication by q.

Here are some examples:

- For $I = \emptyset$, $Q_{\emptyset} = 1$.
- For $I = \mathbf{Z}/n\mathbf{Z}, Q_{\mathbf{Z}/n\mathbf{Z}} = \Phi_n$.
- For $I = \{0\}, Q_0(X) = X 1$.
- If n is even (and q odd, of course), then for $I = \{n/2\}, Q_{n/2}(X) = X + 1$.
- Let d be a divisor of n. There is a unique subgroup C_d of order d in the cyclic group $\mathbf{Z}/n\mathbf{Z}$. This subgroup is generated by the class of n/d, it is the set of $k \in \mathbf{Z}/n\mathbf{Z}$ such that dk = 0, it is stable under multiplication by any element prime to n. Then $Q_{C_d}(X) = X^d 1$.
- Let again d be a divisor of n and let E_d be the set of generators of C_d : this set has $\varphi(d)$ elements which are the elements of order d in the cyclic group $\mathbf{Z}/n\mathbf{Z}$. Again this subset of $\mathbf{Z}/n\mathbf{Z}$ is stable under multiplication by any element prime to n. Then Q_{E_d} is the cyclotomic polynomial Φ_d of degree $\varphi(d)$.

Example 38. Take n = 15, q = 2. The minimal subsets of $\mathbb{Z}/15\mathbb{Z}$ which are stable under multiplication by 2 modulo 15 are the classes of

 $\{0\}, \{5, 10\}, \{3, 6, 9, 12\}, \{1, 2, 4, 8\}, \{7, 11, 13, 14\}.$

We recover the fact that in the decomposition

$$X^{15} - 1 = \Phi_1(X)\Phi_3(X)\Phi_5(X)\Phi_{15}(X)$$

over \mathbf{F}_2 , the factor Φ_1 is irreducible of degree 1, the factors Φ_3 and Φ_5 are irreducible of degree 2 and 4 respectively, while Φ_{15} splits into two factors of degree 4 (use the fact that 2 has order 2 modulo 3, order 4 modulo 5 and also order 4 modulo 15).

It is easy to find the two factors of Φ_{15} of degree 4 over \mathbf{F}_2 . There are four polynomials of degree 4 over \mathbf{F}_2 without roots in \mathbf{F}_2 (the number of monomials with coefficient 1 should be odd, hence 3 or 5) and $\Phi_3^2 = X^4 + X^2 + 1$ is reducible; hence there are three irreducible polynomials of degree 4 over \mathbf{F}_2 :

$$X^4 + X^3 + 1$$
, $X^4 + X + 1$, $\Phi_5(X) = X^4 + X^3 + X^2 + X + 1$.

Therefore, in $\mathbf{F}_2[X]$,

$$\Phi_{15}(X) = (X^4 + X^3 + 1)(X^4 + X + 1)$$

We check the result by computing Φ_{15} : we divide $(X^{15} - 1)/(X^5 - 1) = X^{10} + X^5 + 1$ by $\Phi_3(X) = X^2 + X + 1$ and get in $\mathbf{Z}[X]$:

$$\Phi_{15}(X) = X^8 - X^7 + X^5 - X^4 + X^3 - X + 1.$$

Let ζ is a primitive 15-th root of unity (that is, a root of Φ_{15}). Then $\zeta^{15} = 1$ is the root of Φ_1 , ζ^5 and ζ^{10} are the roots of Φ_3 (these are the primitive cube roots of unity, they belong to \mathbf{F}_4), while $\zeta^3, \zeta^6, \zeta^9, \zeta^{12}$ are the roots of Φ_5 (these are the primitive 5-th roots of unity). One of the two irreducible factors of Φ_{15} has the roots $\zeta, \zeta^2, \zeta^4, \zeta^8$, the other has the roots $\zeta^7, \zeta^{11}, \zeta^{13}, \zeta^{14}$. Also we have

$$\{\zeta^7,\zeta^{11},\zeta^{13},\zeta^{14}\}=\{\zeta^{-1},\zeta^{-2},\zeta^{-4},\zeta^{-8}\}.$$

The splitting field over \mathbf{F}_2 of any of the three irreducible factors of degree 4 of $X^{15} - 1$ is the field F_{16} with 2^4 elements, but for one of them (namely Φ_5) the 4 roots have order 5 in F_{16}^{\times} , while for the two others the roots have order 15.

Hence we have checked that in \mathbf{F}_{16}^{\times} , there are

- 1 element of order 1 and degree 1 over \mathbf{F}_2 , namely $\{1\} \subset \mathbf{F}_2$,
- 2 elements of order 3 and degree 2 over \mathbf{F}_2 , namely $\{\zeta^5, \zeta^{10}\} \subset \mathbf{F}_4$,
- 4 elements of order 5 and degree 4 over \mathbf{F}_2 , namely $\{\zeta^3, \zeta^6, \zeta^9, \zeta^{12}\}$,
- 8 elements of order 15 and degree 4 over \mathbf{F}_2 .