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Errata to the first course.
Page 3, replace

When F is a field, the ring F[X] of polynomials in one vari-
able over F'is a principal domain, hence an Fuclidean ring, and
therefore a factorial ring.

When F is a field, the ring F[X] of polynomials in one variable
over F' is a principal domain (since it is an Euclidean ring), and
therefore a factorial ring.

Page 3, replace
The ring Z is not an Euclidean ring
by
The ring Z[X] is not an Euclidean ring

Page 10, replace

by

3This text is accessible on the author’s web site
http://www.math. jussieu.fr/~miw/coursVietnam2009.html
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3 Cyclotomic Polynomials over finite fields (con-
tinued)

Consequences of Corollary 19.

We assume that n is not divisible by the characteristic p of F,.
1. ®,(X) splits completely in F,[X] (into a product of polynomials all of
degree 1) if and only if ¢ =1 (mod n). This follows from Corollary 19, but
it is also plain from the fact that the cyclic group F;* of order ¢ — 1 contains
a subgroup of order n if and only if n divides ¢ — 1, which is the condition
g=1 (mod n).
2. ¢,(X) is irreducible in Fy[X] if and only if the class of ¢ modulo n has
order ¢(n), which is equivalent to saying that ¢ is a generator of the group
(Z/nZ)*. This can be true only when this multiplicative group is cyclic,
which means n is either

9, 4, 15, 28

where ¢ is an odd prime and s > 1.

Recall:  for s > 2, (Z/2°Z)* is the product of a cyclic group of order 2
by a cyclic group of order 2572, hence for s > 3 it is not cyclic.

3. Let g be a power of a prime, s a positive integer, and n = ¢°* — 1. Then
¢ has order s modulo n. Hence ®,, splits in F,[X] into irreducible factors,
all of which have degree s. Notice that the number of factors is ¢(¢° —1)/s,
hence s divides ¢(¢° — 1).

Numerical examples

Recall that we fix an algebraic closure Fp of the prime field F),, and for
q a power of p we denote by F, the unique subfield of F,, with ¢ elements.
Of course, F,, is also an algebraic closure of F,,.

Example 28. We consider the quadratic extension Fy/F3. There is a
unique irreducible polynomial of degree 2 over Fy, which is ®3 = X2+ X +1.
Denote by ¢ one of its roots in F4. The other root is ¢? with ¢(2 = ( 4+ 1 and

F,={0, 1, ¢, *}.

If we set 7 = (2, then the two roots of ®3 are n and n?, with n? = n+ 1 and

F4 = {07 ]-7 1, 772}

There is no way to distinguish these two roots, they play the same role. It
is the same situation as with the two roots i of X2 + 1 in C.

20



Example 29. We consider the cubic extension Fg/Fa. There are 6 elements
in Fg which are not in F, each of them has degree 3 over Fa, hence there are
two irreducible polynomials of degree 3 in Fo[X]. Indeed from (16) it follows
that N2(3) = 2. The two irreducible factors of ®7 are the only irreducible
polynomials of degree 3 over Fa:

XX =X(X+D)(XP+ X +1)(X34+ X% +1).

The 6 = (7) elements in F§ of degree 3 are the six roots of ®7, hence they
have order 7. If ¢ is any of them, then

F8 = {05 17 C? <2a C37 C47 C57 §6}

If ¢ is a root of Q1(X) = X3 + X 4 1, then the two other roots are ¢? and
¢*, while the roots of Q2(X) = X3 4+ X2 4+ 1 are ¢3, ¢° and ¢%. Notice that
¢ =¢ ' and Qo(X) = X3Q1(1/X). Set n = ¢~1. Then

Fs={0, 1, n, n*, v, n*, n°, n°}
and
QuX)= (X=X =X =¢Y, QX)=(X—n)(X —n)(X—n").

For transmission of data, it is not the same to work with ¢ or with n = (1.
For instance the map z — x 4 1 is given by

C+1=0, C+1=C FC1=¢ F+1=0 Cr1=¢ C+1=¢

and by

n+l=0" ?+l=0, P+1=0> ' +1=05 P +1=n, 10 +1=n"

Example 30. We consider the quadratic extension Fg/F3. Over Fs,
XX =XX-DX+DX*+)(X*+ X - 1)(X* - X -1).

In F{, there are 4 = ¢(8) elements of order 8 (the four roots of ®g) which
have degree 2 over F3. There are two elements of order 4, which are the
roots of ®4; they are also the squares of the elements of order 8 and they
have degree 2 over Fj, their square is —1. There is one element of order
2, namely —1, and one of order 1, namely 1. From (16) it follows that
N3(2) = 3: the three monic irreducible polynomials of degree 2 over F3 are
®,4 and the two irreducible factors of ®g.
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Let ¢ be a root of X2+ X —1 and let n = ¢~'. Thenn = (7, 3 = ¢°
and

X4 X 1= (X=X =¢Y), X2=X—1=(X-n)(X 7).

We have

Fo={0, 1, ¢ ¢ ¢ ¢4 5 ¢85 ¢
and also

F9 - {07 17 m, 7727 7737 7747 TISa 7767 777}

The element ¢* = n* = —1 is the element of order 2 and degree 1, and the
two elements of order 4 (and degree 2), roots of X2 + 1, are ¢? = 1% and

6 =2,
Exercise 31. Check that 3 has order 5 modulo 11 and that

X =X -1DX" - X34+ X2 - X - )(X°+ X - X34+ X2 1)
is the decomposition of X! — 1 into irreducible factors over Fs.

Exercise 32. Check that 2 has order 11 modulo 23 and that X23 — 1 over
F5 is the product of three irreducible polynomials, namely X — 1,

X11+X10+X6+X5+X4+X2+1

and
XM X2+ X7+ X0+ X5+ X +1.

Example 33. Assume that ¢ is odd and consider the polynomial ®4(X) =
X2+ 1.

e If =1 (mod 4), then X? + 1 has two roots in F.
e If = —1 (mod 4), then X? + 1 is irreducible over F,,.

Example 34. Assume again that ¢ is odd and consider the polynomial
Pg(X) = X+ 4+ 1.

e If =1 (mod 8), then X+ 1 has four roots in F,.

e Otherwise X% +1 is a product of two irreducible polynomials of degree
2 in F,[X].
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For instance Example 30 gives over Fg3
X' +1=(X2+ X -1)(X2-X —1).

Using the result in the previous example 33, one deduces that in the decom-
position of X® — 1 over F,, there are

8 factors of degree 1 if g =1 (mod 8),
4 factors of degree 1 and 2 factors of degree 2 if ¢ =5 (mod 8),
2 factors of degree 1 and 3 factors of degree 2 if g = —1 (mod 4).

Example 35. The group (Z/5Z)* is cyclic of order 4, there are p(4) = 2
generators which are the classes of 2 and 3. Hence

e If ¢ =2 or 3 (mod 5), then ®s5 is irreducible in F,[X],
e If g=1 (mod 5), then ®5 has 4 roots in Fy,

e If ¢ = —1 (mod 5), then &5 splits as a product of two irreducible
polynomials of degree 2 in F,[X].

Decomposition of ®,, into irreducible factors over F

As usual, we assume ged(n,q) = 1. Corollary 19 tells us that ®,, is
product of irreducible polynomials over F, all of the same degree d. Denote
by G the multiplicative group (Z/nZ)*. Then d is the order of ¢ in G. Let
H be the subgroup of G generated by ¢:

H={1,9,¢*...,¢" '}

Let ¢ be any root of ®,, (in an algebraic closure of Fy, or if you prefer in
the splitting field of ®,(X) over F,;). Then the conjugates of ¢ over F, are
its images under the iterated Frobenius o, which maps = to 2. Hence the
minimal polynomial of ¢ over Fy is

d—1 _
Py(X) =[x -¢") =[] (x—-¢M.
=0 heH

This is true for any root ¢ of ®,. Now fix one of them. Then the others are
¢™ where ged(m,n) = 1. The minimal polynomial of (" is therefore

d—1

[T —¢m).

=0
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This polynomial can be written

Pur(X)= [ (X ~¢"

hemH

where mH is the class {mq' ; 0 <i < d — 1} of m modulo H in G. There
are @(n)/d classes of G modulo H, and the decomposition of ®4(X) into
irreducible factors over F is

Factors of X" — 1 in Fy[X]
Again we assume ged(n,q) = 1. We just studied the decomposition over F,
of the cyclotomic polynomials, and X™ — 1 is the product of the ®4(X) for
d dividing n. This gives all the information on the decomposition of X™ —1
in F,[X]. Proposition 36 below follows from these results, but is also easy
to prove directly.

Let ¢ be a primitive n-th root of unity in an extension F' of F,. Recall
that for j in Z, ¢/ depends only on the classe of 7 modulo n. Hence ¢* makes
sense when ¢ is an element of Z/nZ:

xt—1= ][] x-¢).

i€Z/nZ

For each subset I of Z/nZ, define

Qrx) =[x -¢).

i€l

For I ranging over the 2" subsets of Z/nZ, we obtain all the monic divisors
of X" —1in F[X]. Lemma 17 implies that @ belongs to F,[X] if and only
if Q7(X9) = Qr(X)e.

Since ¢ and n are relatively prime, the multiplication by ¢, which we
denote by [g], defines a permutation of the cyclic group Z/nZ:

a]

Z Z

72/nZ —4 . 7/nz

T — qr.
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The condition Q7(X?) = Q(X)? is equivalent to saying that [¢](]) = I,
which means that multiplication by ¢ induces a permutation of the elements
in I. We shall say for brevity that a subset I of Z/nZ with this property is
stable under multiplication by q. Therefore:

Proposition 36. The map I — Qg is a bijective map between the subsets
I of Z/nZ which are stable under multiplication by q on the one hand, and
the monic divisors of X™ — 1 in Fy[X| on the other hand.

An irreducible factor of X™ —1 over F is a factor @) such that no proper
divisor of ) has coefficients in F,. Hence

Corollary 37. Under this bijective map, the irreducible factors of X™ — 1
correspond to the minimal subsets I of Z/nZ which are stable under multi-
plication by q.

Here are some examples:

e ForI=0,Qy=1.

e For I = Z/nZ, Qz/nz = Pn.
e For I = {0}, Qo(X) =X —1.

e If n is even (and ¢ odd, of course), then for I = {n/2}, @, ,2(X) =
X +1.

e Let d be a divisor of n. There is a unique subgroup C, of order d
in the cyclic group Z/nZ. This subgroup is generated by the class of
n/d, it is the set of k € Z/nZ such that dk = 0, it is stable under
multiplication by any element prime to n. Then Q¢,(X) =X d_1.

e Let again d be a divisor of n and let F; be the set of generators of
Cy: this set has ¢(d) elements which are the elements of order d in
the cyclic group Z/nZ. Again this subset of Z/nZ is stable under
multiplication by any element prime to n. Then Qg, is the cyclotomic
polynomial ®, of degree ¢(d).

Example 38. Take n = 15, ¢ = 2. The minimal subsets of Z/15Z which
are stable under multiplication by 2 modulo 15 are the classes of

{0}, {5,10}, {3,6,9,12}, {1,2,4,8}, {7,11,13,14}.
We recover the fact that in the decomposition

X1 1 =3 (X)D3(X)D5(X)P15(X)
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over Fy, the factor ®; is irreducible of degree 1, the factors ®3 and ®5 are
irreducible of degree 2 and 4 respectively, while ®15 splits into two factors
of degree 4 (use the fact that 2 has order 2 modulo 3, order 4 modulo 5 and
also order 4 modulo 15).

It is easy to find the two factors of ®15 of degree 4 over Fy. There
are four polynomials of degree 4 over Fy without roots in Fg (the number
of monomials with coefficient 1 should be odd, hence 3 or 5) and ®3 =
X% 4+ X? +1 is reducible; hence there are three irreducible polynomials of
degree 4 over Fo:

X4 X341, X4 X+1, X)) =X'"+X34+ X2+ X +1.
Therefore, in Fa[X],
Pi5(X) = (X' + X3+ )X+ X +1).

We check the result by computing ®15: we divide (X1 —1)/(X5 — 1) =
X104+ X%+ 1 by ®3(X) = X?+ X + 1 and get in Z[X]:

Pis(X) =X - X"+ X5 - X4 X3 - X +1.

Let ¢ is a primitive 15-th root of unity (that is, a root of ®;5). Then
¢ = 1 is the root of ®1, ¢° and (!0 are the roots of ®3 (these are the
primitive cube roots of unity, they belong to Fy), while ¢3,¢%,¢?, (12 are the
roots of ®5 (these are the primitive 5-th roots of unity). One of the two
irreducible factors of ®;5 has the roots ¢, (2, ¢4, (%, the other has the roots
¢7 ¢, ¢3¢ Also we have

{¢ ¢ P A = {Th AR

The splitting field over Fo of any of the three irreducible factors of degree
4 of X1° — 1 is the field Fyg with 2% elements, but for one of them (namely
®5) the 4 roots have order 5 in Fyg, while for the two others the roots have
order 15.

Hence we have checked that in Fiy, there are

e 1 clement of order 1 and degree 1 over Fg, namely {1} C Fa,
e 2 clements of order 3 and degree 2 over Fa, namely {¢®, ¢!°} C Fy,
e 4 clements of order 5 and degree 4 over Fo, namely {¢3, ¢5, ¢?, ¢'?},

e 8 elements of order 15 and degree 4 over F.
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