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Errata to the first course.
Page 3, replace

When F is a field, the ring F [X] of polynomials in one vari-
able over F is a principal domain, hence an Euclidean ring, and
therefore a factorial ring.

by

When F is a field, the ring F [X] of polynomials in one variable
over F is a principal domain (since it is an Euclidean ring), and
therefore a factorial ring.

Page 3, replace

The ring Z is not an Euclidean ring

by

The ring Z[X] is not an Euclidean ring

Page 10, replace
Φn(X) =

∏

d|n

(Xn − 1)µ(n/d).

by
Φn(X) =

∏

d|n

(Xd − 1)µ(n/d).

3This text is accessible on the author’s web site
http://www.math.jussieu.fr/∼miw/coursVietnam2009.html
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3 Cyclotomic Polynomials over finite fields (con-
tinued)

Consequences of Corollary 19.
We assume that n is not divisible by the characteristic p of Fq.

1. Φn(X) splits completely in Fq[X] (into a product of polynomials all of
degree 1) if and only if q ≡ 1 (mod n). This follows from Corollary 19, but
it is also plain from the fact that the cyclic group F×q of order q−1 contains
a subgroup of order n if and only if n divides q − 1, which is the condition
q ≡ 1 (mod n).
2. Φn(X) is irreducible in Fq[X] if and only if the class of q modulo n has
order ϕ(n), which is equivalent to saying that q is a generator of the group
(Z/nZ)×. This can be true only when this multiplicative group is cyclic,
which means n is either

2, 4, "s, 2"s

where " is an odd prime and s ≥ 1.
Recall: for s ≥ 2, (Z/2sZ)× is the product of a cyclic group of order 2
by a cyclic group of order 2s−2, hence for s ≥ 3 it is not cyclic.
3. Let q be a power of a prime, s a positive integer, and n = qs − 1. Then
q has order s modulo n. Hence Φn splits in Fq[X] into irreducible factors,
all of which have degree s. Notice that the number of factors is ϕ(qs− 1)/s,
hence s divides ϕ(qs − 1).

Numerical examples
Recall that we fix an algebraic closure Fp of the prime field Fp, and for

q a power of p we denote by Fq the unique subfield of Fp with q elements.
Of course, Fp is also an algebraic closure of Fq.

Example 28. We consider the quadratic extension F4/F2. There is a
unique irreducible polynomial of degree 2 over F2, which is Φ3 = X2+X+1.
Denote by ζ one of its roots in F4. The other root is ζ2 with ζ2 = ζ +1 and

F4 = {0, 1, ζ, ζ2}.

If we set η = ζ2, then the two roots of Φ3 are η and η2, with η2 = η + 1 and

F4 = {0, 1, η, η2}.

There is no way to distinguish these two roots, they play the same role. It
is the same situation as with the two roots ±i of X2 + 1 in C.
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Example 29. We consider the cubic extension F8/F2. There are 6 elements
in F8 which are not in F2, each of them has degree 3 over F2, hence there are
two irreducible polynomials of degree 3 in F2[X]. Indeed from (16) it follows
that N2(3) = 2. The two irreducible factors of Φ7 are the only irreducible
polynomials of degree 3 over F2:

X8 −X = X(X + 1)(X3 + X + 1)(X3 + X2 + 1).

The 6 = ϕ(7) elements in F×8 of degree 3 are the six roots of Φ7, hence they
have order 7. If ζ is any of them, then

F8 = {0, 1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6}.

If ζ is a root of Q1(X) = X3 + X + 1, then the two other roots are ζ2 and
ζ4, while the roots of Q2(X) = X3 + X2 + 1 are ζ3, ζ5 and ζ6. Notice that
ζ6 = ζ−1 and Q2(X) = X3Q1(1/X). Set η = ζ−1. Then

F8 = {0, 1, η, η2, η3, η4, η5, η6}

and

Q1(X) = (X − ζ)(X − ζ2)(X − ζ4), Q2(X) = (X − η)(X − η2)(X − η4).

For transmission of data, it is not the same to work with ζ or with η = ζ−1.
For instance the map x "→ x + 1 is given by

ζ + 1 = ζ3, ζ2 + 1 = ζ6, ζ3 + 1 = ζ, ζ4 + 1 = ζ5, ζ5 + 1 = ζ4, ζ6 + 1 = ζ2

and by

η + 1 = η5, η2 + 1 = η3, η3 + 1 = η2, η4 + 1 = η6, η5 + 1 = η, η6 + 1 = η4.

Example 30. We consider the quadratic extension F9/F3. Over F3,

X9 −X = X(X − 1)(X + 1)(X2 + 1)(X2 + X − 1)(X2 −X − 1).

In F×9 , there are 4 = ϕ(8) elements of order 8 (the four roots of Φ8) which
have degree 2 over F3. There are two elements of order 4, which are the
roots of Φ4; they are also the squares of the elements of order 8 and they
have degree 2 over F3, their square is −1. There is one element of order
2, namely −1, and one of order 1, namely 1. From (16) it follows that
N3(2) = 3: the three monic irreducible polynomials of degree 2 over F3 are
Φ4 and the two irreducible factors of Φ8.
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Let ζ be a root of X2 + X − 1 and let η = ζ−1. Then η = ζ7, η3 = ζ5

and

X2 + X − 1 = (X − ζ)(X − ζ3), X2 −X − 1 = (X − η)(X − η3).

We have
F9 = {0, 1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7}

and also
F9 = {0, 1, η, η2, η3, η4, η5, η6, η7}.

The element ζ4 = η4 = −1 is the element of order 2 and degree 1, and the
two elements of order 4 (and degree 2), roots of X2 + 1, are ζ2 = η6 and
ζ6 = η2.

Exercise 31. Check that 3 has order 5 modulo 11 and that

X11 − 1 = (X − 1)(X5 −X3 + X2 −X − 1)(X5 + X4 −X3 + X2 − 1)

is the decomposition of X11 − 1 into irreducible factors over F3.

Exercise 32. Check that 2 has order 11 modulo 23 and that X23 − 1 over
F2 is the product of three irreducible polynomials, namely X − 1,

X11 + X10 + X6 + X5 + X4 + X2 + 1

and
X11 + X9 + X7 + X6 + X5 + X + 1.

Example 33. Assume that q is odd and consider the polynomial Φ4(X) =
X2 + 1.

• If q ≡ 1 (mod 4), then X2 + 1 has two roots in Fq.

• If q ≡ −1 (mod 4), then X2 + 1 is irreducible over Fq.

Example 34. Assume again that q is odd and consider the polynomial
Φ8(X) = X4 + 1.

• If q ≡ 1 (mod 8), then X4 + 1 has four roots in Fq.

• Otherwise X4 +1 is a product of two irreducible polynomials of degree
2 in Fq[X].
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For instance Example 30 gives over F3

X4 + 1 = (X2 + X − 1)(X2 −X − 1).

Using the result in the previous example 33, one deduces that in the decom-
position of X8 − 1 over Fq, there are

8 factors of degree 1 if q ≡ 1 (mod 8),
4 factors of degree 1 and 2 factors of degree 2 if q ≡ 5 (mod 8),
2 factors of degree 1 and 3 factors of degree 2 if q ≡ −1 (mod 4).

Example 35. The group (Z/5Z)× is cyclic of order 4, there are ϕ(4) = 2
generators which are the classes of 2 and 3. Hence

• If q ≡ 2 or 3 (mod 5), then Φ5 is irreducible in Fq[X],

• If q ≡ 1 (mod 5), then Φ5 has 4 roots in Fq,

• If q ≡ −1 (mod 5), then Φ5 splits as a product of two irreducible
polynomials of degree 2 in Fq[X].

Decomposition of Φn into irreducible factors over Fq

As usual, we assume gcd(n, q) = 1. Corollary 19 tells us that Φn is
product of irreducible polynomials over Fq all of the same degree d. Denote
by G the multiplicative group (Z/nZ)×. Then d is the order of q in G. Let
H be the subgroup of G generated by q:

H = {1, q, q2, . . . , qd−1}.

Let ζ be any root of Φn (in an algebraic closure of Fq, or if you prefer in
the splitting field of Φn(X) over Fq). Then the conjugates of ζ over Fq are
its images under the iterated Frobenius σq which maps x to xq. Hence the
minimal polynomial of ζ over Fq is

PH(X) =
d−1∏

i=0

(X − ζqi
) =

∏

h∈H

(X − ζh).

This is true for any root ζ of Φn. Now fix one of them. Then the others are
ζm where gcd(m, n) = 1. The minimal polynomial of ζm is therefore

d−1∏

i=0

(X − ζmqi
).
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This polynomial can be written

PmH(X) =
∏

h∈mH

(X − ζh)

where mH is the class {mqi ; 0 ≤ i ≤ d − 1} of m modulo H in G. There
are ϕ(n)/d classes of G modulo H, and the decomposition of Φd(X) into
irreducible factors over Fq is

Φd(X) =
∏

mH∈G/H

PmH(X).

Factors of Xn − 1 in Fq[X]
Again we assume gcd(n, q) = 1. We just studied the decomposition over Fq

of the cyclotomic polynomials, and Xn − 1 is the product of the Φd(X) for
d dividing n. This gives all the information on the decomposition of Xn− 1
in Fq[X]. Proposition 36 below follows from these results, but is also easy
to prove directly.

Let ζ be a primitive n-th root of unity in an extension F of Fq. Recall
that for j in Z, ζj depends only on the classe of j modulo n. Hence ζi makes
sense when i is an element of Z/nZ:

Xn − 1 =
∏

i∈Z/nZ

(X − ζi).

For each subset I of Z/nZ, define

QI(X) =
∏

i∈I

(X − ζi).

For I ranging over the 2n subsets of Z/nZ, we obtain all the monic divisors
of Xn− 1 in F [X]. Lemma 17 implies that QI belongs to Fq[X] if and only
if QI(Xq) = QI(X)q.

Since q and n are relatively prime, the multiplication by q, which we
denote by [q], defines a permutation of the cyclic group Z/nZ:

Z
[q]−−−−→ Z#

#
Z/nZ

[q]−−−−→ Z/nZ
x $−→ qx.
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The condition QI(Xq) = QI(X)q is equivalent to saying that [q](I) = I,
which means that multiplication by q induces a permutation of the elements
in I. We shall say for brevity that a subset I of Z/nZ with this property is
stable under multiplication by q. Therefore:

Proposition 36. The map I !→ QI is a bijective map between the subsets
I of Z/nZ which are stable under multiplication by q on the one hand, and
the monic divisors of Xn − 1 in Fq[X] on the other hand.

An irreducible factor of Xn−1 over Fq is a factor Q such that no proper
divisor of Q has coefficients in Fq. Hence

Corollary 37. Under this bijective map, the irreducible factors of Xn − 1
correspond to the minimal subsets I of Z/nZ which are stable under multi-
plication by q.

Here are some examples:

• For I = ∅, Q∅ = 1.

• For I = Z/nZ, QZ/nZ = Φn.

• For I = {0}, Q0(X) = X − 1.

• If n is even (and q odd, of course), then for I = {n/2}, Qn/2(X) =
X + 1.

• Let d be a divisor of n. There is a unique subgroup Cd of order d
in the cyclic group Z/nZ. This subgroup is generated by the class of
n/d, it is the set of k ∈ Z/nZ such that dk = 0, it is stable under
multiplication by any element prime to n. Then QCd(X) = Xd − 1.

• Let again d be a divisor of n and let Ed be the set of generators of
Cd: this set has ϕ(d) elements which are the elements of order d in
the cyclic group Z/nZ. Again this subset of Z/nZ is stable under
multiplication by any element prime to n. Then QEd is the cyclotomic
polynomial Φd of degree ϕ(d).

Example 38. Take n = 15, q = 2. The minimal subsets of Z/15Z which
are stable under multiplication by 2 modulo 15 are the classes of

{0}, {5, 10}, {3, 6, 9, 12}, {1, 2, 4, 8}, {7, 11, 13, 14}.

We recover the fact that in the decomposition

X15 − 1 = Φ1(X)Φ3(X)Φ5(X)Φ15(X)
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over F2, the factor Φ1 is irreducible of degree 1, the factors Φ3 and Φ5 are
irreducible of degree 2 and 4 respectively, while Φ15 splits into two factors
of degree 4 (use the fact that 2 has order 2 modulo 3, order 4 modulo 5 and
also order 4 modulo 15).

It is easy to find the two factors of Φ15 of degree 4 over F2. There
are four polynomials of degree 4 over F2 without roots in F2 (the number
of monomials with coefficient 1 should be odd, hence 3 or 5) and Φ2

3 =
X4 + X2 + 1 is reducible; hence there are three irreducible polynomials of
degree 4 over F2:

X4 + X3 + 1, X4 + X + 1, Φ5(X) = X4 + X3 + X2 + X + 1.

Therefore, in F2[X],

Φ15(X) = (X4 + X3 + 1)(X4 + X + 1).

We check the result by computing Φ15: we divide (X15 − 1)/(X5 − 1) =
X10 + X5 + 1 by Φ3(X) = X2 + X + 1 and get in Z[X]:

Φ15(X) = X8 −X7 + X5 −X4 + X3 −X + 1.

Let ζ is a primitive 15-th root of unity (that is, a root of Φ15). Then
ζ15 = 1 is the root of Φ1, ζ5 and ζ10 are the roots of Φ3 (these are the
primitive cube roots of unity, they belong to F4), while ζ3, ζ6, ζ9, ζ12 are the
roots of Φ5 (these are the primitive 5-th roots of unity). One of the two
irreducible factors of Φ15 has the roots ζ, ζ2, ζ4, ζ8, the other has the roots
ζ7, ζ11, ζ13, ζ14. Also we have

{ζ7, ζ11, ζ13, ζ14} = {ζ−1, ζ−2, ζ−4, ζ−8}.

The splitting field over F2 of any of the three irreducible factors of degree
4 of X15 − 1 is the field F16 with 24 elements, but for one of them (namely
Φ5) the 4 roots have order 5 in F×16, while for the two others the roots have
order 15.

Hence we have checked that in F×16, there are

• 1 element of order 1 and degree 1 over F2, namely {1} ⊂ F2,

• 2 elements of order 3 and degree 2 over F2, namely {ζ5, ζ10} ⊂ F4,

• 4 elements of order 5 and degree 4 over F2, namely {ζ3, ζ6, ζ9, ζ12},

• 8 elements of order 15 and degree 4 over F2.
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