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4 Cyclic codes

4.1 Definitions

A cyclic code C of length n over an alphabet with q elements is a Fq–vector
subspace of Fn

q such that, for any (a1, a2, . . . , an−1, an) ∈ C, the element
(an, a1, a2, . . . , an−1) also belongs to C. We speak of a q-ary code as a ref-
erence to the number of elements of the alphabet; it is a binary code for
q = 2, a ternary code for q = 3.

We denote by T : Fn
q −→ Fn

q the linear map (right shift)

(a1, a2, . . . , an−1, an) $−→ (an, a1, a2, . . . , an−1).

In the group of automorphism of the Fq–vector space Fn
q , this element T

satisfies Tn = I (the unit of AutFq(Fn
q ), namely the identity map). This is

how the polynomial Xn − 1 comes into the picture.
Assume gcd(n, q) = 1. A natural basis of the Fq–space Fq[X]/(Xn − 1)

is given by the classes modulo Xn − 1 of 1, X, . . . , Xn−1. This gives a Fq–
isomorphism

Ψ : Fn
q −→ Fq[X]/(Xn − 1)

(a0, a1, . . . , an−1) $−→ a0 + a1X + · · · + an−1Xn−1.

Rewrite the definition of T with the indices {0, . . . , n − 1} in place of
{1, . . . , n}:

T (a0, a1, . . . , an−1) = (an−1, a0, . . . , an−2);

hence

Ψ ◦T (a0, a1, . . . , an−1) = X(a0 + a1X + · · ·+ an−1X
n−1) (mod Xn− 1).

4This text is accessible on the author’s web site
http://www.math.jussieu.fr/∼miw/coursVietnam2009.html
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As a consequence, a subset C of Fn
q is stable under the shift T if and only if

Ψ(C) is stable under multiplication by X in Fq[X]/(Xn − 1).
A vector subspace I of Fq[X]/(Xn − 1) is stable under multiplication

by X if and only if I is an ideal of the quotient ring Fq[X]/(Xn − 1).
Furthermore, there is a bijective map between the ideals of Fq[X]/(Xn− 1)
and the ideals of Fq[X] which contain Xn − 1. Since the ring Fq[X] is
principal, the ideals containing Xn − 1 are the ideals (Q) generated by a
divisor Q of Xn − 1. Given such an ideal, there is a single generator Q
which is monic. If d is the degree of Q, then the ideal of Fq[X]/(Xn − 1)
generated by the class of Q modulo Xn−1 is a Fq–vector space of dimension
r = n− d: a basis is Q, XQ, . . . ,Xr−1Q. Also the following sequence of Fq–
linear maps is exact:

0 −→ (Q)
(Xn − 1)

−→ Fq[X]
(Xn − 1)

−→ Fq[X]
(Q)

−→ 0.

The dimensions of these three vector spaces are r, n and d with n = r + d,
as it should. Combining these results with Proposition 36, we deduce

Proposition 39. Given a finite field Fq and an integer n with gcd(n, q) = 1,
there are bijective maps between the following subsets.
(i) The codes C of length n over Fq.
(ii) The ideals I of Fq[X]/(Xn − 1).
(iii) The monic divisors Q of Xn − 1 in Fq[X].
(iv) The subsets I of Z/nZ which are stable under multiplication by q.
Under this correspondence, the dimension d of the code is the dimension of
the Fq–vector space I, the degree of Q is r = n − d, and the number of
elements in I is also r.

The trivial code {0} of length n and dimension 0 corresponds to the ideal
(0) of Fq[X]/(Xn − 1), to the divisor Xn − 1 of Xn − 1 and to the empty
subset of Z/nZ.

The full code Fn
q of length n and dimension n corresponds to the ideal

(1) of Fq[X]/(Xn − 1), to the divisor 1 of Xn − 1 and to the set I = Z/nZ
itself.

The repetition code {(a, a, . . . , a) ; a ∈ Fq} ⊂ Fn
q of length n and

dimension 1 corresponds to the ideal (1+X+· · ·+Xn−1) of Fq[X]/(Xn−1),
to the divisor (Xn − 1)/(X − 1) of Xn − 1 and to the set I = (Z/nZ) \ {0}.

The hyperplane of equation x1 + · · ·+ xn = 0 in Fn
q is a parity bit check

code of length n and dimension n− 1. It corresponds to the ideal (X− 1) of
Fq[X]/(Xn − 1), to the divisor X − 1 of Xn − 1 and to the subset I = {0}
of Z/nZ.
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4.2 Hamming codes

From http://en.wikipedia.org/wiki/Hamming−code

In telecommunication, a Hamming code is a linear error-correcting
code named after its inventor, Richard Hamming. Hamming
codes can detect up to two simultaneous bit errors, and correct
single-bit errors; thus, reliable communication is possible when
the Hamming distance between the transmitted and received bit
patterns is less than or equal to one. By contrast, the simple
parity code cannot correct errors, and can only detect an odd
number of errors.

Hamming worked at Bell Labs in the 1940s on the Bell Model
V computer, an electromechanical relay-based machine with cy-
cle times in seconds. Input was fed in on punch cards, which
would invariably have read errors. During weekdays, special code
would find errors and flash lights so the operators could correct
the problem. During after-hours periods and on weekends, when
there were no operators, the machine simply moved on to the
next job.

Hamming worked on weekends, and grew increasingly frustrated
with having to restart his programs from scratch due to the un-
reliability of the card reader. Over the next few years he worked
on the problem of error-correction, developing an increasingly
powerful array of algorithms. In 1950 he published what is now
known as Hamming Code, which remains in use in some appli-
cations today.

Let Fq be a finite field with q elements and let r be a positive integer.
Define

n =
qr − 1
q − 1

= 1 + q + q2 + · · · + qr−1.

Therefore q is prime to n and the class of q in (Z/nZ)× has order r. The
subset I = {1, q, q2, . . . , qr−1} of Z/nZ is stable under multiplication by q.
This defines a code of length n and dimension d = n− r over Fq.

We first develop the special case already considered in example 27, where
r = 3, q = 2, hence n = 7 and d = 4. We have seen in example 29 that the
decomposition of Φ7 over F2 is

Φ7(X) = (X3 + X + 1)(X3 + X2 + 1).

29



We choose Q(X) = 1 + X + X3. The vector of its coordinates in the basis
1, X,X2, X3, X4, X5, X6 is e0 = (1, 1, 0, 1, 0, 0, 0) ∈ F7

2. Next define e1, e2

and e3 by taking the coordinates in the same basis of XQ, X2Q, X3Q:

Q(X) = 1 + X + X3 e0 = (1, 1, 0, 1, 0, 0, 0),
XQ(X) = X + X2 + X4, e1 = (0, 1, 1, 0, 1, 0, 0) = Te0,

X2Q(X) = X2 + X3 + X5, e2 = (0, 0, 1, 1, 0, 1, 0) = Te1,
X3Q(X) = X3 + X4 + X6, e3 = (0, 0, 0, 1, 1, 0, 1) = Te2.

The components of e0, e1, e2, e3 in F7
2 are the rows of the following matrix

G =





1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1



 .

The elements in the code C are the 16 elements

m0e0 + m1e1 + m2e2 + m3e3

with (m0, m1, m2, m3) ∈ F4
2. This subspace C of F7

2 has dimension 4, hence
it is an intersection of 3 hyperplanes. Let us recall how to find a basis of
the Fq–vector space of linear forms vanishing on a subspace V of Fn given
by a basis with d elements. We write the d × n matrix whose rows are the
coordinates of the given basis. We add one further row with the variables
x1, . . . , xn. By elementary columns operations (replacing a column by its
sum with a linear combination of the other columns, which corresponds to
the multiplication on the right by a regular n× n matrix), we get a matrix
of the form (

Id 0 . . . 0
y1 y2 . . . yd yd+1 . . . yn

)

where Id is the identity d×d matrix and y1, . . . , yn are linearly independent
linear forms in x1, . . . , xn. Then the (n− d)–tuple yd+1, . . . , yn is a basis of
the space of linear forms vanishing on V . This can be checked by reducing
to the simple case of a hyperplane xn = t1x1 + · · ·+ tn−1xn−1 with d = n−1
and the matrix 



t1

In−1
...

tn−1

x1 x2 . . . xn−1 xn
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We perform this process with the matrix G: therefore we introduce




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
x0 x1 x2 x3 x4 x5 x6




.

Here is the last row of the successive matrices obtained by the triangulation
process (we work over F2)

x0 x1 x2 x3 x4 x5 x6

x0 x1 + x0 x2 x3 + x0 x4 + x0 + x1 x5 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x0 x4 + x0 + x1 x5 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x1 + x2 x4 + x0 + x1 x5 + x0 + x1 + x2 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x1 + x2 x4 + x0 + x2 + x3 x5 + x0 + x1 + x2 x6

x0 x1 + x0 x2 + x0 + x1 x3 + x1 + x2 x4 + x0 + x2 + x3 x5 + x0 + x1 + x2 x6 + x1 + x2 + x3

Therefore we introduce the three linear forms

L0(x) = x0 + x2 + x3 + x4

L1(x) = x0 + x1 + x2 + x5

L2(x) = x1 + x2 + x3 + x6.

H =




1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1



 (40)

The 7 column vectors are all the non–zero elements in F3
2. The product

G · tH of G with the transpose of H is the zero 4× 3 matrix.
The same construction can be performed in the general case of Fn

q with
n = (qr − 1)/(q − 1). In Fr

q, there are qr − 1 non–zero elements, each of
them defines a line (Fq–subspace of dimension 1) having q − 1 non–zero
elements, and therefore there are n lines: on each of them we select one
element. We take for H the r×n matrix whose columns are the coordinates
of these elements. Any two rows of H are linearly independent over Fq.
The intersection of the r hyperplanes Fn

q defined by the rows of H is a code
which is Hamming code of length n and dimension d = n− r over Fq. The
corresponding subset I of Z/nZ is {1, q, q2, . . . , qr−1}. Let ζ be a primitive
n–th root of unity. Given a message (mr, . . . ,mn−1) ∈ Fd

q , one computes
(m0, . . . ,mr−1) ∈ Fr

q, so that

m0 + m1ζ + · · · + mr−1ζ
r−1 = −mrζ

r − · · ·−mn−1ζ
n−1
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and the associated codeword is c = (m0, . . . ,mn−1) ∈ Fn
q . For x ∈ Fn

q , we
have

x = (x0, . . . , xn) ∈ C if and only if
n−1∑

i=0

xiζ
i = 0.

If this sum is nonzero and if there exists c ∈ C with d(x, c) ≤ 1, then the
error ε = x − c = (0, . . . , 0, εk, 0, . . . , 0) ∈ Fn

q has its nonzero component in
position k with

εkζ
k = −

n−1∑

i=0

xiζ
i.

4.3 Generator matrix and check matrix

Among many others, a reference for this section is [2], Chapter 3.
Given a linear code C of dimension d and length n over Fq, a generator

matrix is a d×n matrix G with coefficients in Fq, the rows of which are the
components of a basis of C. The code is the set of elements mG where m
ranges over Fd

q (viewed as a 1×d row vector). From the definition it follows
that G has rank d.

A check matrix is a (n−d)×n matrix H with coefficients in Fq, the rows
of which are the components of a basis of the space of linear forms vanishing
on C. The code C is the set of elements c in Fn

q such that H · tc = 0,
where t denotes the transposition, so that tc is a n× 1 column vector in Fn

q .
Therefore

G · tH = 0

where G is a d×n matrix of rank d and H a r×n matrix of rank r = n−d.
The code is said to be in systematic form if H =

(
A Ir

)
, where Ir is the

identity r × r matrix and A is a r × d matrix. .
Two codes are isomorphic if they have the same check matrix in suitable

bases - for instance the two descriptions that we gave of the Hamming code
of length 7 and dimension 4 in example 27 and § 4.2 are isomorphic but not
identical.

5 Error correcting codes: further definitions.

From http://en.wikipedia.org/wiki/Coding−theory

Coding theory is an approach to various science disciplines –
such as information theory, electrical engineering, digital com-
munication, mathematics, and computer science – which helps
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design efficient and reliable data transmission methods so that
redundancy can be removed and errors corrected.

Channel encoding adds extra data bits to make the transmission
of data more robust to disturbances present on the transmission
channel.

Definitions of error detection and error correction:
Error detection is the ability to detect the presence of errors caused by
noise or other impairments during transmission from the transmitter to the
receiver.
Error correction is the additional ability to reconstruct the original, error–
free data.

The Hamming distance on the set Fn
q is

d(x, y) = #{i ; 1 ≤ i ≤ n, xi )= yi}

for x = (x1, . . . , xn) and y = (y1, . . . , yn). It satisfies, as it should with the
name distance (see for instance [1], Prop. 10.D),

d(x, y) = 0⇐⇒ x = y

and
d(y, x) = d(x, y)

for x and y in Fn
q , as well as the triangle inequality for x, y and z in Fn

q ,

d(x, z) ≤ d(x, y) + d(y, z).

We define the minimum distance d(C) of a code C ⊂ Fn
q by

d(C) = min{d(x, y) ; x, y ∈ C, x )= y}.

The Hamming weight w(x) of an element of Fn
q is its Hamming distance

with 0: for x = (x1, . . . , xn) :

w(x) = #{i ; 1 ≤ i ≤ n, xi )= 0}.

Hence, for x and y in Fn
q ,

d(x, y) = w(x− y).

For a linear code, d(C) is the minimal weight of a non–zero element in C.
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For t a non–negative integer, the Hamming ball B(c, t) of center c ∈ Fn
q

and radius t is the set of elements of Fn
q having Hamming distance to c at

most t:
B(c, t) = {x ∈ Fn

q ; d(x, c) ≤ t}.

The number of elements in B(c, t) is 1 for t = 0, it is 1 + n(q − 1) for t = 1,
and more generally

#B(c, t) = 1 +
(

n

1

)
(q − 1) + · · · +

(
n

t

)
(q − 1)t for t ≥ 0. (41)

A transmission with at most t errors is a mapping f : C −→ Fn
q such

that for all c ∈ C,
d
(
f(c), c

)
≤ t.

The error is ε(c) = f(c) − c. The message which is sent is c, a codeword,
the message which is received is f(c).

The first question is to detect if an error occurred, that means to detect
whether ε(c) is zero ot not. A code C can detect t errors if for all c ∈ C,

B(c, t) ∩ C = {c}.

This means that for a transmission f : C −→ Fn
q with at most t errors,

f(c) ∈ C if and only if ε(c) = 0. The receiver checks whether f(c) is in C
or not (for instance by using a check matrix H). If f(c) ∈ C, if the code is
t–error detecting and if the transmission had at most t errors, then ε(c) = 0:
there was no error.

A code C of length n over Fq can correct t errors (one also says that it
is t–error correcting) if for all x ∈ Fn

q ,

#B(x, t) ∩ C ≤ 1.

This means that any transmission f : C −→ Fn
q with at most t errors is

injective: for all y ∈ f(C) there is a single c such that y = f(c). After
receiving y = f(c), knowing that the transmission had at most t errors, the
receiver computes the unique c for which d(y; c) ≤ t. Then he knows that
f(c) = y and he also knows the error ε(c) = f(c)− y.

Lemma 42. A code C of length n over Fq can detect t errors if and only if
d(C) ≥ t + 1. The code C can correct t errors if and only if d(C) ≥ 2t + 1.

Proof. The condition d(C) ≥ t + 1 means that a message at Hamming dis-
tance at most t from an element c of C and distinct from c does not belong
to C. This is equivalent to saying that C can detect t errors.
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For the second part of the lemma, assume first that d(C) ≥ 2t + 1. Let
x ∈ Fn

q and let c1 and c2 in C satisfy d(x1, c1) ≤ t and d(x2, c2) ≤ t. Then
by the triangle inequality

d(c1, c2) ≤ 2t < d(C).

Therefore c1 = c2.
Conversely, assume d(C) ≤ 2t: there is a non–zero element c in C with
w(c) ≤ 2t, hence c has at most 2t non–zero components. Split the set of
indices of the non–zero components of c into two disjoint subsets I1 and I2

having each at most t elements. Next define x ∈ Fn
q as the point having

the same components xi as c for i ∈ I1 and 0 for i not in I1. Then in the
Hamming ball of center x and radius t there are at least two points of C,
namely 0 and c. Hence C is not t–error correcting.

Proposition 43. For a code C of length n and dimension d, the minimum
distance is bounded by

d(C) ≤ n + 1− d.

Proof. The subspace

V = {(x1, . . . , xn+1−d, 0, . . . , 0) ; (x1, . . . , xn+1−d) ∈ Fn+1−d
q }

of Fn
q has dimension n+1−d, the sum of this dimension with the dimension

d of C exceeds the dimension n of the ambient space Fn
q , hence there is a

non–zero element in the intersection. This is a non–zero element of C with
weight ≤ n + 1− d.

A code C of length n and dimension d for which d(C) = n+1−d is called
MDS (Maximal Distance Separable).

Hamming code of length 7 and dimension 4 has minimum distance 3,
hence is not MDS.

From (41) we deduce Hamming’s bound on the error correcting capacity
of a code of length n and dimension r over Fq (see [2] Theorem 3.3.1).

Theorem 44. For a linear code C in Fn
q of dimension r which is t–error

correcting,

1 +
(

n

1

)
(q − 1) + · · · +

(
n

t

)
(q − 1)t ≤ qn−r.
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A t–error correcting code over Fq of length n is perfect if Fn
q is the disjoint

union of the balls of radius t around the codewords in C.
For a perfect 1–error correcting code over Fq of length n and dimension

d, the union of the qd Hamming balls of radius 1 gives a packing of the set
Fn

q with qn elements, hence

qd
(
1 + n(q − 1)

)
= qn.

We set d = n − r, so that n = (qr − 1)/(q − 1). As we have observed, for
these parameters the polynomial Φn splits into irreducible factors of degree
r. Each of these factors gives a cyclic code which is Hamming q-ary code of
length n and dimension d.

For instance take q = 2. For r = 2 we have n = 3, d = 1 and this is the
repetition code {(0, 0, 0) , (1, 1, 1)}. For r = 3 we have n = 7, d = 4 which
are the parameters of Hamming code considered in example 27 and § 4.2.

The binary Golay code of length 23, dimension 12
A perfect code with q = 2, n = 23, d = 12 and minimal distance 7

(hence it is 3–error correcting but not MDS) has been constructed by Golay
as follows.

We have 211 − 1 = 23 × 89 = 2047, which is the smallest integer of the
form Mp = 2p − 1 with p prime but which is not itself a prime (primes of
the form Mp = 2p− 1 are called Mersenne primes). We take the subset I of
(Z/23Z)× generated by 2, which is

I = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}.

The decomposition of Φ23 over F2 has been given in exercise 32.
There are 212 codewords, for each of them the Hamming ball of radius

3 has
(

23
0

)
+

(
23
1

)
+

(
23
2

)
+

(
23
3

)
= 1 + 23 + 253 + 1771 = 2048 = 211

elements, these balls are disjoint and the total number of elements in their
union is 221212 = 223.

The ternary Golay code of length 11, dimension 6
An other perfect code constructed by Golay has the parameters q = 3,

n = 11, d = 6 and minimal distance 5 (it is 2–error correcting not MDS).
We have 35 − 1 = 11× 23. We take the subset I of (Z/11Z)× generated by
3, which is I = {1, 3, 4, 5, 9}. The decomposition of Φ11 over F3 has been
given in exercise 31.
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There are 36 codewords, for each of them the Hamming ball of radius 2
has (

11
0

)
+ 2

(
11
1

)
+ 22

(
11
2

)
= 1 + 22 + 220 = 243 = 35

elements, they are disjoint the total number of elements in F11
3 is 3635 = 311.

BCH (Bose–Chaudhuri–Hocenghem) codes
Given a finite field Fq and an integer r, let n be a divisor of qr−1. Hence

the order of q modulo n divides r. Let ζ ∈ Fr
q be a primitive n-th root of

unity and let δ ≥ 2 be an integer. Consider the morphism of rings

Fq[X]/(Xn − 1) −→ Fδ−1
q

P $−→
(
P (ζj)

)
1≤j≤δ−1

The kernel is a cyclic q–ary code of length n and minimal distance δ, the
generating polynomial is the lcm of the minimal polynomials over Fq of the
elements ζj , 1 ≤ j ≤ δ − 1: the subset I of Z/nZ is the smallest subset
containing {1, . . . , q} and stable under multiplication by q.

Reed–Solomon code
The Reed–Solomon codes are special cases of BCH codes. Let q = 2m,

n = q − 1 and let ζ be a primitive n–th–th root of unity, that means a
generator of F×

q . For 1 ≤ d ≤ n the code associated with the subset I =
{1, 2, 3, . . . , n− d} of Z/nZ and to the polynomial

n−d∏

i=1

(X − ζi)

has dimension d and minimal distance q − d. This code is MDS; it is used
in CD’s.

It is known that the only perfect codes are

• The trivial code with a single element 0.

• The full code Fn
q .

• A binary repetition code with odd length (see [2] Exercise 3.12).

• For r ≥ 2, the q-ary Hamming code of length n = (qr − 1)/(q − 1),
dimension n− r, and minimal distance 3.

• The ternary Golay code over F3 of length 11, dimension 6 and minimal
distance 5.
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• The binary Golay code over F2 of length 23, dimension 12 and minimal
distance 7.

We state two results which are useful tools to compute the minimum
distance of a code. For the first one, see [1], Prop. 11C.

Proposition 45. Let C be a linear code over Fq of length n with check
matrix H and let s be a positive integer. Then C has minimum distance
≥ s + 1 if and only if any s columns of H are linearly independent over Fq.

As a consequence, if any s columns of H are linearly independent over Fq,
and if further there exists s + 1 columns of H which are linearly dependent
over Fq, then d(C) = s + 1. This enables one to check that Hamming code
has minimum distance 3. Indeed in the matrix (40) all rows are non–zero
and distinct (hence any two rows are linearly independent over F2), but
there are sets of three rows which are linearly dependent. If we add a row
with 1’s, then for the new matrix any sum of an odd number of rows is
non–zero, hence any three rows are linearly independent. This means that
we extend the code of Hamming of lenth 7 to a code of length 8 by adding
a parity check bit.

G =





1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1



 . H =





1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 1 1 1 1 1 1





This code has therefore minimum distance 4, it cannot correct more than
one error, but it can detect up to 3 errors.
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Hamming extended (8,4) code

To any code C ⊂ Fn
q we can associate an extended code C̃ ⊂ Fn+1

q by
adding a parity bit:

C̃ = {(x1, . . . , xn+1) ∈ C×Fq ; (x1, . . . , xn) ∈ C, x1+· · ·+xn+1 = 0} ⊂ Fn+1
q .

One can check d(C) ≤ d(C̃) ≤ d(C).
A variant is to take the even subcode

C′ = {(x1, . . . , xn) ∈ C ; x1 + · · · + xn = 0} ⊂ Fn
q .

Then d(C) ≤ d(C′).

Proposition 46. Let C be a cyclic linear code of length n over Fq associated
with a subset I of Z/nZ stable under multiplication by q. Assume that there
exist i and s such that {i + 1, i + 2, . . . , i + s} ⊂ I. Then d(C) ≥ s + 1.

For instance Hamming code is associated with the subset I = {1, 2, 4, . . . , 2r−1}
of Z/nZ, with two consecutive elements, hence its distance is at least 3 (and
here it is just 3).
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5.1 Some historical dates

Among important dates are the following
• 1949: Marcel Golay (specialist of radars): produced two remarkably effi-
cient codes.
• 1950: Richard W. Hamming, Error detecting and error correcting codes,
The Bell System Technical Journal 26 (April 1950), N◦ 2, 147–160.
• 1955: Convolutional codes.
• 1959: Bose Chaudhuri Hocquenghem codes (BCH codes).
• 1960: Reed Solomon codes.
• 1963 John Leech uses Golay’s ideas for sphere packing in dimension 24 -
classification of finite simple groups
• 1971: no other perfect code than the two found by Golay.
• 1970: Goppa codes.
• 1981: Algebraic geometry codes.
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