
CHAPTER 14

Algebraic Independence in Algebraic Groups.
Part II: Large Transcendence Degrees

1. Introduction

This chapter is a continuation of chapter 13 on small transcendence degrees.
Our first goal is to introduce conjectures. We are not looking for the most

general ones (see [And2]): we only propose some open problems which might be
easier to prove, given the currently available methods.

Our next purpose is to present a proof of a result of algebraic independence
whioh shows that some fields have a "large transcendence degree": these fields are

02generated by numbers of the form &3, a when a and 0 are algebraic. We do
not give the proof of the best known result on this topic (due to G. Diaz [Dia2]),
but only of a weaker statement for which the arguments may look more transparent.
We shall explain how to use the transcendence criterion (chapter 8) and the zero

estimate (chapter 11) together with an auxiliary function.

2. Conjectures

2.1. Commutative Algebraic Groups. We keep the following notation al-

ready introduced in chapter 13. Let K be a subfield of C of transcendence degree
t over Q and G a commutative connected algebraic group of dimension d defined

over K. Assume G Go x G, x G2 where Go = Gdo, G, = Gd, and the dimension
a M

d2 Of G2 satisfies d do + d, + d2. Denote by TG the tangent space at the origin
of the algebraic group G. The set TG(K) of K-rational points of TG is a K-vector

space of dimension d, and the set TG(C) of complex points of TG is the Lie algebra
of the Lie group G(C). Let exPG : TG(C) ) G(C) denote the exponential map
of G(C). Let V be a subspace of TG(C) of dimension n < d such that eXPG V is

Zariski dense in G(C). Let Y = Zq, + - - - + Z?y be a finitely generated subgroup
of V of rank i > I such that exPG Y C G(K).

A C-vector subspace W of TG(C) is defined over K if it is spanned by a K-

vector subspace of TG(K).
2. 1. 1. One Parameter Subgroups. We first assume n = 1 - this is the situation

which is considered in chapter 13.

CONJECTURE 2.1. Assume & > t + d, + 2d2. Then

t >
W

i + di + 2d2
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EXAMPLE. Theorem 2.1 in chapter 13 proves the following special case of Con-

jecture 2.1 concerning small transcendence degrees:

df > 2(f + di + 2d2) ==: t > 2.

Conjecture 2.1 is related with Schneider's solution of Hilbert's seventh problem.
Here is a conjecture related with Gel'fond's solution of the same problem.

CONJECTURE 2.2. Assume further that V is defined over K. Then

t >
(d - 1) 

-

 +dl +2Z'
EXAMPLE. A consequence of Conjecture 2.2 for small transcendence degree is

(d - 1) > E + di + 2d2 ===> t > 2.

The state of the art on this question is described in chapter 13, 2: the result is

proved in the case do = 0, while for do = I the conclusion t > 2 is reached only
under the stronger assumption (d - 1)f > f + di + 2d2-

Conjectures 2.1 and 2.2 in the special case of a linear algebraic group reduce

to the following one, which includes also the Four Exponentials Conjecture:

CONJECTURE 2.3. Let x1, ... 7 Xd be complex numbers which are Q-linearly in-

dependent, yl,...'yt be also Q-1inearly independent complex numbers and K a

subfield of C which contains the & numbers ex,yj (I < i < d, I < j :5  ). Assume

d > 2 and  > 2. Denote by t the transcendence degree over Q of K. Then

t >
&

1.T+d
-

Moreover the transcendence degree t, of the field K, = K(xl,... , Xd) is bounded

from below by

tj >
(d
f + d

and the transcendence degree t2 of the field K2 = KI (yi, . . . , y ) by

t2 >
 +d*

2.1.2. Several Parameters Subgroups. We consider now the general case n >

We define

p = M(Y, V) = min
rankz (Y1Y n VI)

Vlov  dimc(V/Vl)
where V' runs over the set of C-vector subspaces of V of dimension < n. Hence

[t < f/n with t = rankzY. On the other hand the condition p > 0 means that
V is the C-vector space spanned by Y; in this case p  ! 1. For a subgroup Y of

rank  > n of V, the condition [L(Y, V) = f/n is not a very strong assumption;
roughly speaking, it only means that no set of Q-1inearly independent points of Y

is contained in a subspace of V of too small a dimension.
Here is the extension of Conjecture 2.1 to n variables:

CONJECTURE 2.4. Assume dy > np + di + 2d2. Then

t >
d[t

1.
ny + d, +  d2
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Conjecture 2.4 corresponds to Schneider's method in several variables. We can

extend Conjecture 2.2 as follows: if V i defined over K and p > 0, then

t >
(d - n)/-t

np + di + 2d2'
This corresponds to Gel'fond's method in several variables. However there are

intermediate situations which may be compared with Baker's method:

CONJECTURE 2.5. Assume that there exists a C-vector subspace W of TG(C),
of dimension n' < d, which is defined over K and contains Y. Assume also tt > 0.

Then

t >
(d - n)ti

n/,t + di + 2d2

REMARK. Several variations are interesting. In particular one may expect re-

finements of the conjectural estimates for the transcendence degree when Y con-

tains periods of eXPG. For this purpose it is useful to introduce a new parameter
r. = rankZ (Y n ker exPG) (see [Wal7], 16).

2.2. Results: Large Transcendence Degree for the Values of the Ex-

ponential Function in One Variable. From now on we restrict the discussion

to one parameter subgroups of linear algebraic groups.
Partial results are known concerning the above conjectures, under a so, called

"Technical Hypothesis". For simplicity, we shall use only the following assumption,
which is a measure of linear independence. One should stress that most known

results actually involve a much weaker hypothesis, while much sharper estimates

are valid for concrete applications. Therefore this condition is in fact not too strong.

DEFINITION 2.6. We shall say that a set ful,... , u,,J of Q-1inearly indepen-
dent complex numbers satisfies the Technical Hypothesis (T. H. ) if, for any E >

0, there exists a positive number Ho such that, for any H > Ho and n-tuple
(hl,... , hn) of rational integers satisfying 0 < max{lhll,... , Ihnil < H, the in-

equality
Ihiu, + + h,,u,,l > exp -H'j

holds

Here is the main result of G. Diaz in [Dia2]
THEOREM 2.7. Let X1, ... 7 Xd be complex numbers which are Q-1inearly inde-

pendent and satisfy (T. H. ) and yl, . . . , yj be also complex numbers which are Q -

linearly independent and satisfy (T. H. ). Let K a subfield of C which contains the
& numbers ex,Y3 (1 :5 i < d, I < j :5  ). Assume W >  + d and denote by t the
transcendence degree over Q of K. Then

t > T-+d
- 1'

Moreover the transcendence degree ti of the field K, = K(xl.... I Xd) is bounded

from below by

tj >
(d
f +d

and the transcendence degree t2 of the field K2 K, (yi, . . . , yj) by

t2 >
 + d
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REMARK. For t c Z and x E R, we have t > x - I if and only if t > [xj. For
instance the conclusions for t and tj can be written

t >
df ] and tj  ![ +d [  +d

In some cases G. Diaz [Dial] succeeds to prove also

t2
df

that is t2 > [ & +> T-+d'  +d]
The lower bound for tj yields the following partial answer to the Gel'fond-

Schneider problem on the algebraic independence of aO, :

COROLLARY 2.8. Let ce be a non zero complex algebraic number, log a a non

zero logarithm of a and,3 an algebraic number of degree d > 2. For z E C, define
a' exp(z log a). Then

trdegQQ (aO, aod-l d+1]2

PROOF. Take f == d and define

xi =,T-1 (1 < i < d) and yj=,3j-lloga (1<j:5d). 0

As pointed out in [Nes7], A-0. Gel'fond already anounced Corollary 2.8 in
1948 [Gell], but his papers [Gel2j and [Gel3] contain a proof only of the small
transcendence degree result: for d > 3, the transcendence degree is at least 2 (see
chapter 13). Hence Corollary 2.8, claimed by Gel'fond, has been proved by Diaz

only 40 years later.

2.3. Historical Sketch. We refer to [FN], Chapter 6 for a survey on Gel'-

fond's method for algebraic independence and its recent developments together with

plenty of references. See also [Wal5] and [Walll].
The first step is due to A.0. Gel'fond at the end of the 40's [Gell], [Gel2], who

proved results of small transcendence degree under a technical hypothesis (T. H. )
for x,.... 7 Xd as well as yl,.. -, y . This technical hypothesis was removed by R. Ti-

jdeman 1970 [Tij2], by means of a sharper analytic zero estimate for exponential
polynomials [Tijl].

Here is the state of our knowledge concerning "small transcendence degree" for
the values of the exponential function in one variable:

THEOREM 2.9. Let xi, ... Xd be complex numbers which are Q-1inearly in-

dependent and yj,...,y be also complex numbers which are Q-1inearly indepen-
dent. Denote by t the transcendence degree of the field K generated over Q by
the df numbers ex y-? (1 i < d, 1 < j <  ), by tj the transcendence degree
of the field K, = K(xl,. Xd) and by t2 the transcendence degree of the field
K2 = K, (yi, . . . , ye). Then

df > 2( + d) t > 2

& > d + V tj > 2

& > t + d t2 > 2

Moreover, if d 2, and if the two numbers exly, and eXIY2 are algebraic, then
t2 > 2.
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Further developments are described in W.D. Brownawell's survey [Bro2j. These

are the only known results which do not require a Technical Hypothesis.
The first results on large transcendence degree are due to G.V. Chudnovsky

[Chu2] who proved, under the assumptions of Theorem 2.7, the lower bound

21 > dfl(f + d). Chudnovsky's method has been worked out by P. Warkentin,
P. Philippon, E. Reyssat, R. Endell, W.D. Brownawell and Yu.V. Nesterenko (see
[WaI5]). P. Philippon introduced the trick of redundant variables (which is a vari-

ant of Landau's method, that is an homogeneity argument which we are going to

describe in 3.2). By means of a sharp criterion of his own [PPh2](cf. chapter 8),
he then succeeded to replace 2t by t + 1 in Chudnovsky's result and to prove, under

(T. H. ), the inequalities

t >
df

1, t, >
(d - 1)f

and t2 >
df

T-+d
-

f + d - f +d'

Finally G. Diaz [Dia2] obtained Theorem 2.7, which is the sharpest known result

to date, apart from a weakening of the technical hypothesis which arises from the

work of W.D. Brownawell [Bro5], and also apart from the quantitative aspect
of the subject (see [Ably], [Jab], [Del], [Cav] and [FNI). Notice also that in

[Nes7] Yu.V. Nesterenko removed the use of Philippon's criterion from the proof
of Theorem 2.7.

3. Proofs

3.1. Statement. We shall prove the following result:

THEOREM 3.1. Let a be a positive real number, a  4 1. Let 0 be a real al-

gebraic number of degree d > 2. Then the transcendence degree t of the field

(a, a,', aO"- 1) over Q satisfies
d

t > - - 1
2

REMARK. The proof of this result will involve several variables. As we shall

see, the same method restricted to functions of a single variable yields only the

weaker estimate
d I

t > - - -

4 2

The refinement to (d/2) - 1 will come from Philippon's "redundant variables".
dWe are going to use Schneider's method for the torus Grn. If we were using

deither Gel'fond's method (i.e. including derivatives) for Gm, or else Schneider's
dmethod for the product G,, x GM ,

we would get t > (d - 1)/2. In order to reach

t > (d - 1)/2, Diaz [Dia2] replaces the auxiliary polynomial P E Z[Xl) ... 7 Xdl by
a polynomial with coefficients in the ring generated over Z by the numbers e14Y.".

Finally the restrictions 0 E R and a > 0 provide a slight simplification, but is it

an easy exercise to remove them.

3.2. Tools. Let xl,..., Ed be elements in C' and also y,,...,y, elements in

C'. Denote by  Kiyj the standard scalar product in C'. Let K be a subfield of C

of transcendence degree t over Q containing all numbers eX Y3-
Goal: Under "suitable assumptions", we want to prove

t >
df +f +d

(n + 1)(f + d)
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Here is how Philippon's redundant variables occur. For a positive integer k, we
take the k-th Cartesian powers and we replace n by kn, d by kd,  by W: for large
k, we deduce

t >
&

1.
n( + d)

Of course one shall need to check that the above mentioned "suitable assumptions"
are satisfied for Cartesian products.

3.2.1. Criterion of Algebraic Independence. Our first tool is the following spe-
cial case of Philippon's criterion for algebraic independence [PPh2] and chapter 8,

1. We denote by H(P) the usual height of a polynomial P with, say, complex
coefficients, that is the maximum absolute value of its coefficients.

PROPOSITION 3.2. Let a > I be a real number and 0 = (01) ... 7 Oq) an element
in Cq

.
There exists a positive number C having the following property. Assume

that for all sufficiently large integer N, there exist a positive integer m = m(N)  : I

and polynomials QNI ... i QNrn in Z[Xi, . . . , Xq] with

max deg QNj :! , N, max H(QNj) < e
N

and

-CNa(114) Max IQNj(01, ... 70j < e
1:5i<-

such that the polynomials QN1, ... 7 QNn have no common zero in the domain

Z C Cq ; max 1zj-0jj<e-3CN'
I<i<q

Then the transcendence degree t of the field Q (01, Oq) over Q satisfies

t > a - 1.

3.2.2. Auxiliary Function. For r > 0, and for an entire function  0 of n variables,
we denote by JVJ, the number

I (p 1, = Sup IV (Z1, 7 Z") E Cn
,
max Izil :5 r
I<i<n

PROPOSITION 3.3. Let M be a positive integer, r, A, U be positive real numbers
and Vj,...,  pm entire functions in Cn

.
Assume

(115) (8U)n+l < MA, A < U

and
M

UI(P/jder < e

Then there exists rational integers pl,. - .,pm in Z with

0 < maxf 1p, I,_ , Ipm I I < e
a

such that the function F = pjVj + - - - + pm(pm satisfies

IFIr < e-U-
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SKETCH OF PROOF. Let T E Z satisfy 4U < T < 4U + 1. Use Dirichlet's

pigeonhole principle to solve the following system of inequalities involving M un-

knowns pl,..., pm in Z:

r11,11 d' I _UY- -r!
.  ZTF(O) < 2e

11 11<T

for F = pj oj + + pMWM. Next use an interpolation formula

--

-T
r11,11 d'

IFI, < (I + N//T)e IFIer + E -r! dz7*
F(O)

11-11<T

(For more details, see [Wal4]).

3.2.3. Zeros Estimate.
a) Degree of hypersurfaces and condition ME.)

NOTATION. For E a finite subset of C', define w(E) as the smallest total degree
of a non zero polynomial in Cfzl,.. -, z,,] which vanishes on E:

w(E) = minjdeg P; P e C[zl,..., z,,,], P 7 0, P(o,) = 0 for any a E Ej.
DEFINITION 3.4. Let X = Z Lj + + Zj d and Y = Zy, + + Zy, be two

finitely generated subgroups of Cn of rank d and  respectively. Denote by 01,... , Oq
the distinct elements of the set

 J,2,; , < i < d, I < i < tj.
We shall say that (X, Y) satisfies the condition M E. ) if for each 'q > 0 there

exists a positive real number Ro > 0 with the following property: for any positive
integer R > Ro and any q-tuple (/-tl, ... ) Aq) of complex numbers satisfying

-R"
max 10h - Ahl < e
1<h<q

if we set I-t,j = Ah for e-'xik = Oh and

E H ,r. 0 < rj < R (1 < j :5- C (Cx)d,
%3

j=1 I<i<d

then

w(E) > (Rld)t1d

One should remark that this condition (Z.E.) is not only about (X,Y) but

rather concerns (111, . . . 21d) and (y1, y,). However in our situation the choice

of the bases of these Z-modules will be clear from the context.

We shall check that the condition (Z. E. ) holds for n = 1 when the two tuples
of real numbers (XI.... i Xd) and (yj, . . . , ye) satisfy MH. ). Next we show that

this condition (Z. E. ) is stable under Cartesian products.
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b) Consequence of the Technical Hypothesis

LEMMA 3.5. Let x1 i ... 7 Id in R satisfy (T. H. ), and let yl, . . . , y in R also
satisfy (T. H. ). For each 770 > 0 there exists Lo > 0 and Ro > 0 with the following
property. Let L > Lo and R > Ro be positive integers and let 1,tij be complex
numbers (I < i < d, 1 < j satisfying

(LR)'70max ex, Yj
- /,tij < e-

1<7<d

1<j<f

Then for any A (A17 ... i Ad) Ej Zd andr E V with

0 < max JAjj < L and 0 < max jrjj ! R
1<i<d I<j< 

we have
d

ri 11
i=1 j=1

PROOF. We start the proof with the following remark. Let v and w be two

complex numbers which satisfy jwe-v - 11 ! 1/2. Set z = v + log(we-v), where
log denotes the principal branch of the logarithm. Then e' = w and Iz - vj <

21we-v - 11.
Therefore for I < i < d and 1 < j :5  we can find a complex logarithm zij of

tLij such that

max jxjyj - zj I < e- (1/2)(LR)'10
I<i<d

<

Suppose
d

A
i=1 j=1

Since the imaginary part of zij has absolute value < e-(1/2)(LR)'70, and since, for
sufficiently large L and R,

ALRe-(1/2)(LR)"O < 21r,
the absolute value of the imaginary part of the number

d  

E 1: Airjzij
i=1 j=1

is < 27r. Therefore

We deduce

d

EI: I\i*rjzij =: 0.

i=1 j=1

d d

E Aixi rjyj E 1: /\irjxiyj
i=1  j=j

-1=1 j=1

d R

 EE Airj jxjyj - zij I
i=1 j=1

 &LRe-(1/2)(LR)'70 < e- (1/3)(LR)'70
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for L and R large enough. Now, for L and R sufficiently large, the left hand side
- L'10 - R'10is bounded from below by e and we get the desired contradiction as soon

as 3(L'70 + R170) < (LR)170.

c) Single Variable: n = I

Applying Philippon's zero estimate (theorem 5.1 from chapter 11), we now

prove:

PROPOSITION 3.6. Let xl,. . Xd in R satisfy (T.H.), and let yl,.. -, yt in R

also satisfy (T.H.). Let X = ZX1 + ''' + ZXd and Y = Zy, + + Zy,. Then

(X, Y) satisfies the condition (Z. E. ).

PROOF. Let q be a positive real number, R a sufficiently large positive real

number and Ali 7 1-tq complex numbers satisfying
-R'7

max 10h - Ahl < e
I<h<q

For 1 <j < and I < i < d, definettij by/,tij =I-th whereh E qj isthe

index for which e',Y! = Oh- Moreover, for r (rl,... rt) e V and I < i < d,
define

A*171 = ri /-0.
Z3

Let

IL, & 0 < rj < R (1 < j ! ,  )j C (Cx)d.
 /dAssurnew(E)<(R/d) there exists anon zero polynomial P E C[X,,. - -'Xd] Of

total degree D < (Rld) ld such that the Rt numbers

P(Alr, - - - , (0 < rj < R, 1 < j :5 E)

vanish. We use theorem 5.1 from chapter I I with G Gd
,
W = 0, C = 1,M

EO (Alr, ttdr); 0 < rj < Rld(l < j f)j C E C (Cx)d.
Since P vanishes on the set

E D Eo(d) = fal 9d; (91) ... 7 O'd) C Edl,
we deduce that there exists a connected algebraic subgroup H of G, of dimension

< d, such that
Card((Eo + H)1H)R(H, D) :5 R(G, D).

Here 'H(G, D) = Dd. Moreover H is contained in a hypersurface of equation

X-1 ... XAd = 1,I d

where (A,,.. Ad) z Zd satisfies 0 < maxl<i<d jAjj :5 D.

Define qo = qdl(f + d) and L = D, so that

(LR)"O < R7.

Using the condition (T. H. ), we may apply Lemma 3.5: we get an injective mapping
from the set

f (ri, ...' re); 0 < rj < Rld (1 < j :5

into (Eo + H)1H by mapping (r 1, . . . , re) onto the image of (y Md,) in (Eo +
H) 1H. Therefore

Card((Eo + H)IH) > (Rld)t > Dd
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which yields the desired contradiction. 0

d) Cartesian Products
The next lemma is well known (but we include the easy proof).

LEMMA 3.7. Let Ell ... 7 Ek be finite subsets of C'. Then

W(El X X Elk)  : min W(rh)-
1<h<k

PROOF. The lower bound

W(El X x Ek) :5 min W(Flh)-
1<h<k

is easy: if ho G f 1,... , kj satisfies W(Eho) = minl<h<k W(Eh) and if PCk] is a

non zero polynomial in n variables of total degree W(Eho) which vanishes on Eho)
then the image of P in C 1117 - - - I Zk I under the morphism C [K] ) Ckl--) Kkl
which maps z onto Zho is a non zero polynomial in nk variables of total degree
W(Eho) which v nishes on El x X Ek-

We prove the upper bound

W(El X X Elk)   ' Min W(Eh)-
1<h<k

by induction on k. For k = I there is nothing to prove. Let k > 2. Assume that
the result is true for k - 1. Let P E Ckl ' 1  J be a polynomial of total degree
< minl<h<k W(Eh) which vanishes on El x - X Ek. For each z E C', the polynomial
Pz = P(Zl, - - - 7 Zk-17 z) E C[ ,) ... , k-l] has total degree < Mi11l<h<k-lW(Eh)
a d vanishes on Ej x ' - X Ek-l. By the induction hypothesis Pz =-07 Hence for
each (z, , ... , zk-,) ECn(k-1) the polynomial P(,K,,. - *)  k-l).:  ) E C[,K] has total
degree < W(Ek) and vanishes on Ek. From the definition Of W(Ek) it follows that
this polynomial is 0, hence P 0. 0

PROPOSITION 3.8. Let X Zxl + + Zjjd and Y = Zyl + + Zy. be two

finitely generated subgroups of Cn of rank d and  respectively such that (X, Y)
satisfies the condition (Z. E. ). Let k be a positive integer. Define Xk and yk in
Cnk by

k d k t

Xk = Zlhi and yk Z-Yhj
h=li=l h=lj=l

where, for 1 < h < k,

Xhi = (4117, 6hkKi) C Cnk (I < i < d)

and

Yhj = (6hlyji ... 7 6hkkj) ECnk (1 < j :5

Oh,m is Kronecker's symbol). Then (Xk, yk) satisfies (Z. E.

PROOF. This is a consequence of Lemma 3.7.
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3.3. Proof of Theorem 3.1. We proceed in four steps.
*.Step 0: Data We start with two finitely generated subgroups X = ZXI + + Z-Xd
and Y = Zy

1
+ - - - + Zy, of C', of rank d and  respectively, such that (X, Y) satisfies

ME.). We denote by f0j,...,0,,j the set je-x'Y.,, , < i < d, I < j -5  J, by K
the field Q(01, ... I Oq) and by t be the transcendence degree of K over Q.

Define
df +f +d

(n + 1)(f + d)
Our first goal is to check

t > 71 - 1.

We shall prove that the inequality t > a - I holds for any a < 77, which will yield
the desired conclusion. There is obviously no loss of generality to assume 77 >

that is df > n(f + d).
o.Ste-p 1: Choice of parameters

We fix I < a < 77 and we denote by CI i C2 7 C3 suitable positive real numbers.
An admissible choice is to select first a "large constant" co (sufficiently large with

respect to the previous data), and then to define cl = 1, C2 = 11CO, C3 = IlCod-
Next let N be a sufficiently large positive integer (that is, large with respect to

co). Define

R = [cjNd/( +fl ,
L = [C2MI(e+d) U == [C3NI].

SteD 2: Construction of an auxiliary function
We show that there exists a non zero polynomial P E Z[XI, . . Xd] of degree

< L in each Xi (I < i < d) and usual height < eN12, such that the exponential
sum in n variables

fl  ) = P(e!1!,. - - , eld!) (Z C Cn)
satisfies

IF(rlyl + + r y ) I < e-U

f6rall(rj,...,r )EVwith0<r,<R (15j<4
The construction of this auxiliary function rests on Proposition 3.3: set

r R(jy1j + + jy j), A=N

and

 (Pi ......PM1 0 < Ai < L (1 < i < d)j,
so that M = Ld. The main condition (3.2) follows from the bound

(8U)n+l < LdN12,
which holds as soon as

Notice also that the inequality
)n+1 < cd.2 (8C3 2

L

E IV41e, < eu
A=1

is satisfied, since the condition  7 > I implies

log L + C4LR < U,

where

C4 = e(jj jj + + kKdD(IYjI + + IYel),
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Ste-D 3: Using the criterion for algebraic independence and the zero estimate
For each r c- V with 0 < rj < R (1 < j < t) we define

E t

X = P 11 xrj,... XrJQNr(Xll) ... ) df) ij dj
j=l j=1

This is a polynomial in & variables, with rational integer coefficients, total degree
< LR and usual height < eN/2

,
which satisfies

QN.(ex-lyl, ... ,
eXd2 , F(rlyl + + rey

This number can be written as

QN.(6x'21, ... ) e1dyi) =: QNr(0))

for some polynomial QNr E Z[XlI ... I X.] of total degree <- N and usual height
< eN. We are going to use Proposition 3.2 with n == & for these polynomials and
the point 0 = (01, . . . , Oq). The required upper bound (3. 1), which reads

-CN'
Max IQNr (0) 1 < e

r

where C is the constant in Proposition 3.2 associated to 0 and a, follows from step
2.

We now check that the polynomials QNr have no common zero in the domain

q . 10h - 1-thl < e-3CN'A = (Ali ... ; Aq) E C max
1.5h<q

Choose /-t = (/-tl) ... ) Aq) E C" with

max 10h 1,Ihj < e-3CN'
I<h<q

Since cl and C2 satisfy
de+dCdc 27

we have

R de+dLd'
and the total degree of P is < dL < (Rld) ld .

From condition ME.) we deduce
that there exists r E Ze with 0 < rj < R (1 < j < t) such that, if we set

/2 (I < i < d),
j=l

then the number

QNr( ) =- P(Plri ... i Adr)
does not vanish.

Step 4: Conclusion of the proof
Since we have checked all hypotheses of Proposition 3.2, we deduce

t >
& +  + d

(n + 1)(i + d)
As explained before, using redundant variables together with Proposition 3.8, we
obtain

t >
&

n( + d)
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We apply this result to the case n = 1, writing x for -x and y for y. In order to

complete the proof of Theorem 3.1, we take f = d,

x, = 3'- 1 (1 < i < d), Yj = )3j - 1 log a (1 < i < 0,

so that
eX Ce

)3, +.j2 for I < i < d and I < j <

In this case (T. H. ) for x 11 ... I Xd as well as for yi, . . . , y is satisfied by Liouville's

inequality: there exists Lo > 0 so that, for any (Al.... i Ad) E Zd \ 101, we have

JAI + A2)3 + - + Adod-11 > L-c > e-L''
where L stands for maxf I A 1 1, 1 Ad 1, Lo 1. El
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