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1 Abstract

Among the unexpected features of recent developments in technology are the
connections between classical arithmetic on the one hand, and new methods for
reaching a better security of data transmission on the other. We will illustrate
this aspect of the subject by showing how modern cryptography is related to
our knowledge of some properties of natural numbers. As an example, we ex-
plain how prime numbers play a key role in the process which enables you to
withdraw safely your money from your bank account using ATM (Automated
Teller Machines) with your secret PIN (Personal Identification Number) code.

2 Short history

Old cryptography methods relied on elementary operations on the symbols of
the initial text, a simple example being to replace each letter by another one
following a given rule which was supposed to be known only by the sender and
the receiver. Julius Caesar is often quoted as using the code which consists in
shifting each letter of the alphabet by a given number of places. Many variants
have been introduced, but now it is known that none of them is really reliable:
it is easy to decipher such messages without knowing the key, and one can even
recover the key from an encoded message.

To break such a code, one efficient process is to perform a statistical study of
occurrences of the different letters. This idea was used as early as IX-th century
by Abu Youssouf Ya qub Ishaq Al Kindi who checked the authenticity of sacred
Islamic texts.
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During the XIII-th century, in his Letter concerning the Marvelous Power of
Art and Nature and the Nullity of Magic, Roger Bacon described seven methods
to encrypt messages.

In the XVI-th century, the French diplomat Blaise de Vigenère was also a
cryptographer.

C. Babbage (1791-1871), who invented the computer, pointed out the use-
fulness of statistics for deciphering encrypted messages. At the same period
a remarkable breakthrough was achieved by J-F. Champollion who pioneered
decipherment of the previously unreadable ancient scripts of Egypt involving
hieroglyphs.

After the war in 1870 between France and Germany, the French Government
realized that one strong point of the German army was communication; it was
decided to create military centres for the study of carrier-pigeons. At the same
time, James C. Maxwell was developing electromagnetism theory which, thanks
to the works of H.H. Herz and Acharya J.C. Bose, was going to give rise to radio
and modern means of transmitting data.

In a visionary paper on the military cryptography published in the Journal of
Military Sciences in 1883, A. Kerckhoffs proposed a number of principles which
are still valid. One of the most important principles emphasises that it should
be assumed that any cryptographic method is known to the enemy; and thus,
the security of the system must rely only on the choice of the keys, which should
be renewed on a regular basis.

The red phone (which was a fax) between White House and Kremlin during
the cold war used the disposable mask technique which had been invented by
G. Vernam in 1917.

During World War 2, most German communications were enciphered on the
Enigma cipher machine. It was based on rotors whose movement produced
ever-changing alphabetic substitutions. The mathematician A. Turing invented
a codebreaking machine, the Bomb, which gave birth to the first electronic pro-
gramable computer by Max Newman. The work done by him and his colleagues
at Bletchley Park brought cryptology into the modern world. It required inge-
nious logic, statistical theory, the beginnings of information theory, advanced
technology, and superb organisation.

C. Shannon, an American electrical engineer and mathematician, has been
called “the father of information theory”: he pioneered the modern mathemat-
ical theory of data transmission.

The principles of using public keys for enciphering messages was suggested by
W. Diffie and M.E. Hellman in 1976; its first realization in 1978 by R.L. Rivest,
A. Shamir and L.M. Adleman produced the RSA system which is nowadays the
most efficient. We shall outline below the basic ideas behind the RSA crypto-
system.
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3 The exchange of suitcases protocol

An elementary example of secured data transmission is the following one. Alice
wishes to send a suitcase to Bob. She does not want Charlie, who is going
to carry the suitcase, to know what is inside. Alice has a lock and the key
of the lock. Bob also has a lock and the corresponding key, but they are not
compatible with the ones of Alice (otherwise it would be straightforward). How
can they proceed? Given the minimal amount of information, it is not difficult
to find the following solution. Alice wants to send the suitcase whose content
is confidential, so she needs to close it with her lock. Then she asks Charlie to
carry it. When Bob receives it, he is not able to open it. Now he remembers
he also owns a lock: so he uses it and gives back to Charlie the suitcase closed
with two locks. When Alice receives the suitcase from Charlie, she is not able
to open it (anyway she knows the content), what she can do is to remove her
own lock since she has the key, and to give once more the suitcase to Charlie.
Finally when Bob receives for the second time the suitcase, there is only one
lock, of which he has the key, so he is able to open it.

We shall explain how to translate this protocol in arithmetic terms. Charlie
will be replaced by electronic connections, and the substitute for the suitcase
will be a digital message, hence a sequence of 0 and 1. This message will be
split in pieces all of the same length: hence the message to be sent will be a
number given by its binary expansion, and this number will lie between 0 and a
given bound. The lock and the key will also be replaced by numbers. To close
the suitcase with the lock or to remove the lock with the key will be replaced
by arithmetical operations, involving the corresponding numbers (those of the
message and the lock or the key). Applying successively the lock and the key
should give back the initial message. Moreover, someone who does not have the
key should not be able to open the lock.

4 Checking the identity

In many circumstances one needs to prove one’s own identity, or at least to
prove that one knows a secret code or password that is supposed to be known
only to him. Take the example of someone who wishes to use an Automated
Teller Machine ATM to withdraw money from his bank account using his plastic
smart-card with a chip. He knows his personal identification number (PIN). In
a secured transaction, the bank does not know the PIN: it would be too risky to
store this information in a computer. How could the bank check that the user
knows his PIN? One should assume that other people are able to listen to all
messages which are sent during this transaction. So the user should prove to
the bank that he knows his PIN without giving any information which would
enable anyone to discover this PIN: at the end of the transaction the bank still
does not know it, the bank only checks that the user knows his PIN.

No solution to this problem is known by means of classic enciphering meth-
ods. In order to complete this program, one requires to use the recent develop-
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ments of the subject.
We shall explain how it works in practice, but let us start by telling the first

step: the bank will ask a question to the user, and each time the question will
be different. Knowing the right answer to one such question will not give hints
to guess the answer to another one. In other terms the first message sent by
the bank will be selected randomly. Once more it will be a number (given by
its digital representation) between 0 and a given bound. The chip will make
some computation using this number (message) together with the PIN (which
is another number), and the result will be sent to the bank. Hence one needs
to find a process which enables to compute the outgoing message using the
incoming message if one knows the PIN, and which enables to check that the
users knows his PIN if one knows both the incoming and outgoing messages.

In the cryptosystems used before Diffie and Hellmann, there was a symme-
try: Alice and Bob were exchanging information using each a secret key that
they shared. These keys enabled each of them to write to the other and to
decypher the messages they received. The basic feature of public key cryptogra-
phy, introduced by Diffie and Hellmann in 1976, is that any user has two keys,
a public one and a secret one. The public key is known by everybody, and ev-
erybody is able to send a message to any user, by means of its public key. Only
the receiver having the private or secret key is able to understand the message.
The public key is a substitute for the lock and the private key for the key of the
lock.

5 A trapdoor oneway function

To find the right path in a maze may be very complicated. However, if someone
gives you the solution, it is much easier to check whether it works or not. A
similar situation occurs in arithmetics: if I give you two numbers and ask for
their product, it is not a too difficult task, provided that the numbers are not
too large. On the other side if I give you their product only, it may be harder to
find the two numbers. For instance if I tell you that the product I get is 2 047,
it takes more time to find that the two numbers I multiplied are 23 and 89 than
to check the result.

Modern cryptographic methods rely on mathematical questions for which no
efficient solution is known. The factorisation problem, which is the problem of
decomposing an integer into a product of primes, like we did for 2 047, can be
solved by modern computers for numbers with no more than 150 or 200 decimal
digits. For larger numbers the required computing time is prohibitive.

In cryptography, a trapdoor oneway function is a function that is easy to
compute in one direction, yet believed to be difficult to compute in the opposite
direction; however, given some extra information (called the trapdoor infor-
mation), it becomes feasible to compute the inverse function. We shall give a
simplified example using the ideas which are involved in RSA.

We are going to work with numbers of three decimal digits only, which means
that one considers the integers between 000 and 999. We shall perform some
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computations, when the result exceeds 1 000 one keeps only the last three digits.
This amounts to divide by 1 000 and to keep the remainder, if you prefer.

We shall take powers of numbers. The square of a number (second power)
is the product of this number with itself. For instance the square of 471 is
471 × 471, namely 221 841. The cube, or third power, is the product of the
square with the initial number: so the cube of 471 is the product of 221 841
with 471, the result being 471 × 471 × 471 = 104 487 111. If we continue and
multiply this last number by 471 we get the fourth power, and so on.

It will be convenient to introduce the exponential notation with an upper
exponent: the successive powers of 2 will be denoted by 21 = 2, 22 = 4, 23 = 8,
24 = 16, 25 = 32, 26 = 64. . .

The secret key will be 3, and the operation will be to raise to the third power
and keep only the last three digits. For instance starting with 471 we consider
the last three digits of its cube 4713 = 471 × 471 × 471 = 104 487 111 and we
get 111. Notice that it is more clever to keep only the last three digits after
each step, for instance after computing the square 471 × 471 we keep only the
last three digits, namely 841, which we multiply with 471 and get 396 111. The
last three digits are obviously the same, but this way leads us to work only with
numbers having no more than 6 decimal digits.

If I tell you that the operation which I just describe (raise to the cube and
keep the last three digits) produces 631, will you be able to tell me which is the
three digits number I started with?

The brute force solution is to try one after the other all 999 possibilities: for
each of them you perform the operation and you compare with 631. Of course
you will find the solution, which is 111, but this so-called greedy method is a
bit long to implement, and in practice it will not be possible to perform it in a
reasonable time because the numbers to be considered will involve hundreds of
digits, not just 3. But let us forget it for a while.

Now I give you the secret key (which is the trapdoor information here): it
is 67. This means that if you compute the last three digits of the 67-th power
of 631, you find the initial number 111. It is much faster to compute a 67-th
power than to perform the above mentioned exhaustive search. To compute a
square requires one multiplication. For a cube you need one more. You might
expect that a 67-th power requires altogether 66 multiplications, but one may
improve the process by means of the square-and-multiply algorithm. Indeed, if
you multiply the square of a number by itself, you find the 4-th power, with
only two multiplications. The product of the 4-th power by itself yields the
8-th power, with only 3 multiplications altogether. So to compute the last three
digits of 63167, first write 67 = 64 + 2 + 1, and then take successive squares
(keeping only the last three digits): 6312, 6314, 6318, 63116, 63132, 63164. Now
you multiply the values of 63164, 6312, and 631 (keeping always the last three
digits only, the other ones are useless here). The final result is 111, as we
announced. This is how 3 plays the role of the lock and 67 of the key: if you
put the lock 3, you remove it with the key 67. Here is the scheme:

111 3−−−−−→ 631 67−−−−−→ 111
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More generally the lock and the key interact as follows:

original message lock−−−−−→ encoded message
key−−−−−→ decoded message

Of course the decoded message should be identical with the initial one!
Here, it turns out that we could permute the process: if you take 67 as a

lock, then 3 is a key: the last digits of 11167 are 471 while the last digits of 4713

are 111
111 67−−−−−→ 471 3−−−−−→ 111

You will check that for the lock 7 one may use the key 43. For instance the last
three digits of 1117 are 871, and the last three digits of 87143 are 111:

111 7−−−−−→ 871 43−−−−−→ 111

We always selected the same initial message, 111. Any number between 0 and
999 could be selected, provided that its last digit is 1, 3, 7 or 9 (see section 6).

Now we are able to produce the analogue of the protocol of exchanges of
suitcases. We replace the suitcase by 111, Alice’s lock by 7, the key of her lock
by 43, the lock of Bob by 3, the key of his lock by 67, and of course each time
we consider the last three digits of the corresponding power.

So Alice first puts her lock 7 on the suitcase 111: this means that she sends
to Bob the last three digits of 1117, wich are 871.

Hence Bob receives 871, which corresponds to the suitcase closed with Alice’s
lock. He puts his own lock 3, which means that he sends back to Alice the last
three digits of 8713, which are 311.

Now Alice uses her key 43 to remove her lock: she sends the last three digits
of 31143, namely 631. Therefore 631 corresponds to the suitcase closed only
with Bob’s lock.

And now Bob is able to open the suitcase thanks to his key 67: the last three
digits of 63167 are indeed 111, as we already saw.

111 7−−−−−→ 871 3−−−−−→ 311 43−−−−−→ 631 67−−−−−→ 111

Hence 7 closes the suitcase while 43 removes this lock, while 3 puts another lock
and 67 opens it.

Next let us go to the bank. Assume that the key 3 of Bob is public, but
that he is the only one to know the secret key 67. When he goes to an ATM to
withdraw cash, the bank will send him (or rather send to the chip of his credit
card) a random message; say that this message is 111. Using his secret key 67
he computes the last three digits of 11167, he finds 471, and this is what he
replies to the bank. Now the bank checks that the last three digits of the cube
of 471 are the initial message 111 (the cube, since the public key is 3).

111 67−−−−−→ 471 3−−−−−→ 111
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6 Arithmetic

We should insist that we gave only an outline of the method: a number of ques-
tions arise, some of them are well understood, while others are being investigated
right now.

Let us explain why (3, 67) and (7, 43) are admissible pairs of (key, lock). The
point is that the last two digits of both products 3× 67 and 7× 43 are 01, while
all numbers corresponding to messages have for last digit 1, 3, 7 or 9. We need
some more arithmetic to explain what is going on.

For an integer m, the following statements are equivalent:
• the last decimal digit of m is 1, 3, 7 or 9,
• m is neither divisible by 2 nor by 5,
• m is relatively prime to 10,
• m is relatively prime to 103 = 1 000,
• the residue class of m modulo 103 is a unit (invertible element) in the quotient
ring Z/103Z.

It will be convenient to work with the residue class ring Z/103Z. This
amounts to keeping the last three decimal digits, namely the remainder of the
Euclidean division by 1 000.

By the Chinese Remainder Theorem, this ring Z/103Z is isomorphic to the
direct product of the ring Z/23Z having 23 = 8 elements with the ring Z/53Z
having 53 = 125 elements.

The multiplicative group of the units in Z/103Z , which we denote by
(Z/103Z)×, is the direct product of the group (Z/23Z)× having 23 − 22 = 4
elements with the group (Z/53Z)× having 53 − 52 = 100 elements. Hence
(Z/103Z)× has 400 elements; its exponent is the lcm (least common multiple) of
4 and 100, which is 100: this means that any element x in (Z/103Z)× satisfies
x100 = 1. In other terms, if you take the 100-th power of an integer m with
last digit 1, 3, 5 or 9, then the last three digits of the result m100 are 001.
Obviously, any power of m100 has the same property, because any power of a
number ending with 001 has also 001 as last three digits. This means that if b
is a multiple of 100 and m is relatively prime to 10, then the last three digits of
mb are 001. As a consequence, if we multiply such a mb with m, the last three
digits of the product mb+1 are the same as the last three digits of m itself. And
now, b is a multiple of 100 if and only if the last two digits of b+ 1 are 01.

So we have proved the following

Proposition. Let m be a positive integer with last decimal digit 1, 3, 7 or 9.
Let a be a positive integer with last two decimal digits 01. Then ma and m have
the same last three digits:

gcd(m, 10) = 1, a ≡ 1 (mod 100) =⇒ ma ≡ m (mod 1 000).

Denote by λ(m) the exponent of the multiplicative group (Z/mZ)×. For
instance λ(1 000) = 100 and λ(100) = 20. For ` ∈ Z having gcd(`, 10) =
1, we have `20 ≡ 1 (mod 100), so that the inverse k of ` modulo 100 is `19

(mod 100). This gives an algorithm to compute the secret key k when one
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knows the public key `, provided that one knows also the number λ(λ(N)) for
messages in (Z/NZ)×. Examples with N = 1 000 are ` = 3, k = 67 and ` = 7,
k = 43:

319 ≡ 67 (mod 100) and 719 ≡ 43 (mod 100).

Of course with such small numbers the cryptosystem is not secured! For
actual implementation of the RSA cryptosystem one replaces 103 = 1 000 by
the product of two distinct large prime numbers p and q. Each of them has
some 150 decimal digits, so the product pq has about 300 decimal digits. Since
210 = 1 024 is close to 103, a number with 300 decimal digits has about 1 000
binary digits. Exhaustive searches are not feasible with such large numbers, even
with very powerful computers. One basic point is that the product N = pq is
public but p and q are kept secret. Nowadays, given a number with 300 decimal
digits which is the product of two large prime numbers p and q, computers are
not able to find the factors p and q within a reasonable time. The security of
the RSA protocol relies heavily on this fact.

The multiplicative group (Z/pqZ)× of the residue class ring Z/pqZ modulo
the product pq is a group of order n with n = (p− 1)(q − 1). The condition in
the previous example with 103 that the message m should not be divisible by 2
nor by 5 is replaced by the condition that m should not be divisible by p nor
by q - now only a very tiny percentage of messages are excluded (while with
103 only 40% of the 1 000 possible messages were allowed). Next we consider
the condition on the lock ` and the key k: in the case of 103 in place of pq the
condition was that their product a = `k had its last two decimal digits 01 (this
means that the remainder of the division by 100 is 1). Now the condition is that
the remainder of the division by λ(N) of this product is 1. Since λ(N) divides
n, it suffices to require

`k ≡ 1 (mod n) with n = (p− 1)(q − 1).

Given ` which is prime to n, there is a single k modulo n satisfying this condition,
namely

k ≡ `λ(n)−1 (mod n).

To compute k is easy, provided that one knows n: however, to know both pq
and n amounts to know both p and q, since n = pq + 1− (p+ q). For someone
who knows p and q, it is easy to compute the key k associated with a given lock
`. For someone who knows ` and N but not the individual factors p and q of
N , there is no efficient known way so far to deduce k.

Conclusion

Cryptography and coding theory, which use advanced number theory, teach us
an important lesson: mathematical research (research on prime numbers, in
particular), which seems to be completely unrelated to practical matters, may
turn out to be crucial for some applications many years, or decades later, in
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a completely unpredictable way. In his book A mathematician’s apology 1, the
great British analyst G. H. Hardy (1877-1947), who was a fervent pacifist, took
immense pride in working in number theory, an absolutely pure field, and at
never having done anything which could be considered “useful”:

“I have never done anything “useful”. No discovery of mine has
made, or is likely to make, directly or indirectly, for good or ill,
the least difference to the amenity of the world. . . . Judged by all
practical standards, the value of my mathematical life is nil”.

It was perhaps “useless” at the time. That is no longer the case today.
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Research in France and in India

Tuning up these ideas and implementing the process in a concrete way involves
high level research activities in a number of laboratories all around the world,
including France and India. Interaction between arithmetic and cryptology is
a research subject in several places around the world. Among the laboratories
where scientists pursue their investigations on this topic are the following French
and Indian ones.
• The Computer Science Laboratory at X in the École Polytechnique (Palaiseau,
near Paris)
http://www.lix.polytechnique.fr/cryptologie/english-index.html,
• the National Research Institute in Computer Science and Automatic INRIA
(Institut National de Recherche en Informatique et en Automatique) in Roc-
quencourt, again near Paris, with the Project CODES dealing not only with
coding theory but also with cryptography
http://www-rocq.inria.fr/codes/CODES/ENGLISH/index.html,
• the Mathematics Department of the ENS (École Normale Supérieure) rue
d’Ulm, Paris
http://www.di.ens.fr/CryptoRecherche.html,
• in Caen the consortium Cryptologie et Algorithmique En Normandie (CAEN)
including the Groupe de Recherche en Informatique, Image, Automatique et In-
strumentation de Caen GREYC
http://www.greyc.unicaen.fr/,
• the Laboratoire de Mathématiques Nicolas Oresme of the University Caen
Basse Normandie
http://www.math.unicaen.fr/lmno/
and France Telecom R& D Caen,
• in Grenoble the University Joseph Fourier
http://www-fourier.ujf-grenoble.fr/,
in Limoges the Institut de Recherche XLim of the University
http://www.xlim.fr/,
• in Toulon the Groupe de Recherche en Informatique et Mathématiques GRIM
of the University Sud Toulon-Var
http://grim.univ-tln.fr,
• in Toulouse the Laboratoire d’Analyse et d’Architecture des Systèmes LAAS
http://www.laas.fr/laas/,
with the team LILAC (Logic, Interaction, Language, and Computation)
http://www.irit.fr/recherches/LILAC/Pers/
and Toulouse Mathematical Institute
http://www.univ-tlse2.fr/grimm/algo.

Number Theory and Cryptography is also a research topic in a number of
institutions all around India. We only quote a few of them:
• in Kolkata The Indian Statistical Institute, with its Statistics and Mathemat-
ics Unit as well as its Applied Statistic Division
http://www.isical.ac.in/,
• in Chennai the Institute of Mathematical Sciences studying both Mathematics
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and Theoretical Computer Science
http://www.imsc.res.in/,
• in Kanpur the Indian Institute of Technology IIT
http://www.iitk.ac.in/
with the Prabhu Goel Research Centre for Computer and Internet Security
http://www.security.iitk.ac.in/,
• in Bangalore the Indian Institute of Science where the section Computer
Science and Automation Cryptography studies Computational Number Theory,
Computational Combinatorics, Arithmetical, Algebraic and Geometric Algo-
rithms
http:/www.csa.iisc.ernet.in/,
•Again in Chennai the Society for Electronic Transactions and Security S.E.T.S.
which is specialized in Cryptography algorithms, Cryptology protocols, Secure
Information Systems and Security Policy and Cryptanalysis
http:/www.setsindia.org/.

We complete this list with the Cryptology Research Society of India
http:/www.crsind.com/
which organizes the annual International Conference on Cryptology in India
Indocrypt:
http://www.crsind.com/indocrpt.asp

On each of these web pages one may find a number of further references and
resources.
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