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Periods

M. Kontevich and D. Zagier (2000) – Periods.

A period is a complex number whose real and
imaginary parts are values of absolutely convergent
integrals of rational functions with rational coefficients
over domains of Rn given by polynomials (in)equalities
with rational coefficients.

Examples: √
2 =

∫
2x2≤1

dx,

π =
∫

x2+y2≤1
dxdy,

log 2 =
∫

1<x<2

dx

x
,

ζ(2) =
∫

1>t1>t2>0

dt1
t1

· dt2
1− t2

=
π2

6
·

Relations between periods

1 Additivity∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx

and ∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx.

2 Change of variables∫ ϕ(b)

ϕ(a)
f(t)dt =

∫ b

a
f
(
ϕ(u)

)
ϕ′(u)du.

3 Newton–Leibniz–Stokes∫ b

a
f ′(t)dt = f(b)− f(a).

Conjecture (Kontsevich–Zagier). If a period has two
representations, then one can pass from one formula
to another using only rules 1, 2 and 3 in which all
functions and domains of integrations are algebraic
with algebraic coefficients.

Example:

π =
∫

x2+y2≤1
dxdy

= 2
∫ 1

−1

√
1− x2 dx

=
∫ 1

−1

dx√
1− x2

=
∫ ∞

−∞

dx

1 + x2
·



Far reaching consequences:

No “new” algebraic dependence relation among
classical constants from analysis.

Zeta Values – Euler Numbers

ζ(s) =
∑
n≥1

1
ns

for s ≥ 2.

These are special values of the Riemann Zeta Function:
s ∈ C.

For s ∈ Z with s ≥ 2, ζ(s) is a period:

ζ(s) =
∫

1>t1>···>ts>0

dt1
t1

· · · dts−1

ts−1
· dts
1− ts

·

Zeta Values – Euler Numbers

ζ(s) =
∑
n≥1

1
ns

for s ≥ 2.

These are special values of the Riemann Zeta Function:
s ∈ C.

Euler: π−2kζ(2k) ∈ Q for k ≥ 1 (Bernoulli numbers).

Diophantine Question: Describe all the algebraic
relations among the numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

Conjecture. There is no algebraic relation at all:
these numbers

ζ(2), ζ(3), ζ(5), ζ(7), . . .

are algebraically independent.

Known:

• Hermite-Lindemann: π is transcendental, hence
ζ(2k) also for k ≥ 1.

• Apéry (1978): ζ(3) is irrational.

• Rivoal (2000) + Ball, Zudilin. . . Infinitely
many ζ(2k + 1) are irrational + lower bound for the
dimension of the Q-space they span.

T. Rivoal: Let ε > 0. For any sufficiently large odd
integer a,
the dimension of the Q-space spanned by 1, ζ(3), ζ(5), · · · , ζ(a)
is at least

1− ε

1 + log 2
log a.

W. Zudilin:
• One at least of the four numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational.
• There is an odd integer j in the range [5, 69] such that the three
numbers 1, ζ(3), ζ(j) are linearly independent over Q.



Linearization of the problem (Euler). The product of
two zeta values is a sum of multiple zeta values.

From∑
n1≥1

n−s1
1

∑
n2≥1

n2
−s2 =

∑
n1>n2≥1

n−s1
1 n2

−s2 +
∑

n2>n1≥1

n−s2
2 n1

−s1 +
∑
n≥1

n−s1−s2

one deduces, for s1 ≥ 2 and s2 ≥ 2,

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

with
ζ(s1, s2) =

∑
n1>n2≥1

n−s1
1 n2

−s2.

For instance

ζ(2)2 =
∑
n1≥1

n−2
1

∑
n2≥1

n2
−2

=
∑

n1>n2≥1

n−2
1 n2

−2 +
∑

n2>n1≥1

n−2
2 n1

−2 +
∑
n≥1

n−4

= 2ζ(2, 2) + ζ(4).

For k, s1, . . . , sk positive integers with s1 ≥ 2, define
s = (s1, . . . , sk) and

ζ(s) =
∑

n1>n2>···>nk≥1

1
ns1

1 · · ·nsk
k

·

For k = 1 one recovers Euler’s numbers ζ(s).

For k, s1, . . . , sk positive integers with s1 ≥ 2, define
s = (s1, . . . , sk) and

ζ(s) =
∑

n1>n2>···>nk≥1

1
ns1

1 · · ·nsk
k

·

Fact: These Multiple Zeta Values are periods

Example:

ζ(2, 1) =
∫

1>t1>t2>t3>0

dt1
t1

· dt2
1− t2

· dt3
1− t3

·

Notation: Define

ω0 =
dt

t
, ω1 =

dt

1− t
·

Then for s ≥ 2 write the relation

ζ(s) =
∫

1>t1>···>ts>0

dt1
t1

· · · dts−1

ts−1
· dts
1− ts

as

ζ(s) =
∫ 1

0
ωs−1

0 ω1.

This defines a non-commutative product of
differential forms.

Chen Iterated Integrals

For a holomorphic 1-form ϕ,∫ z

0
ϕ

is the primitive of ϕ which vanishes at z = 0.
For 1-forms ϕ1, . . . ,ϕk, define inductively∫ z

0
ϕ1 · · ·ϕk :=

∫ z

0
ϕ1(t)

∫ t

0
ϕ2 · · ·ϕk.



Chen Iterated Integrals∫ z

0
ϕ1 · · ·ϕk :=

∫ z

0
ϕ1(t)

∫ t

0
ϕ2 · · ·ϕk.

If ϕ1(t) = ψ1(t)dt, then

d

dz

∫ z

0
ϕ1 · · ·ϕk = ψ1(z)

∫ z

0
ϕ2 · · ·ϕk.

For s = (s1, . . . , sk), define

ωs = ωs1 · · ·ωsk
= ωs1−1

0 ω1 · · ·ωsk−1
0 ω1.

Then

ζ(s) =
∫ 1

0
ωs.

Remark on ωs1−1
0 ω1 · · ·ωsk−1

0 ω1:

• Ends with ω1

• Starts with ω0 (s1 ≥ 2).

For s = (s1, . . . , sk), define

ωs = ωs1 · · ·ωsk
= ωs1−1

0 ω1 · · ·ωsk−1
0 ω1.

Then

ζ(s) =
∫ 1

0
ωs.

Example:

ζ(2, 1) =
∫

1>t1>t2>t3>0

dt1
t1

· dt2
1− t2

· dt3
1− t3

=
∫ 1

0
ω0ω

2
1·

Hence the Multiple Zeta Values ζ(s) are periods.

Main Fact: The product of two Multiple Zeta Values
is a linear combination, with integer coefficients, of
Multiple Zeta Values.

Moreover there are two kinds of such quadratic
equations: one arising from the definition as series

ζ(s) =
∑

n1>n2>···>nk≥1

1
ns1

1 · · ·nsk
k

,

the other from the integrals

ζ(s) =
∫ 1

0
ωs.

These two collections of quadratic equations are
essentially distinct. Consequently the Multiple Zeta
Values satisfy many linear relations with rational
coefficients.

Example:

Product of series: ζ(2)2 = 2ζ(2, 2) + ζ(4)

Product of integrals: ζ(2)2 = 2ζ(2, 2) + 4ζ(3, 1)

Hence ζ(4) = 4ζ(3, 1).

These two collections of quadratic equations are
essentially distinct. Consequently the Multiple Zeta
Values satisfy many linear relations with rational
coefficients.

A complete description of these relations would
in principle settle the problem of the algebraic
independence of

π, ζ(3), ζ(5), . . . , ζ(2k + 1).

Goal: Describe all linear relations among Multiple
Zeta Values.



Further example of linear relation.

Euler:
ζ(2, 1) = ζ(3).

ζ(2, 1) =
∫

1>t1>t2>t3>0

dt1
t1

· dt2
1− t2

· dt3
1− t3

·

ζ(3) =
∫

1>t1>t2>t3>0

dt1
t1

· dt2
t2

· dt3
1− t3

·

Euler’s result follows from (t1, t2, t3) )→ (1− t3, 1− t2, 1− t1).

Denote by Zp the Q-vector subspace of R
spanned by the real numbers ζ(s) with s of weight
s1 + · · · + sk = p, with Z0 = Q and Z1 = {0}.

Here is Zagier’s conjecture on the dimension dp of
Zp.

Conjecture (Zagier). For p ≥ 3 we have

dp = dp−2 + dp−3.

(d0, d1, d2, . . .) = (1, 0, 1, 1, 1, 2, 2, . . .).

Exemples

d0 = 1 ζ(s1, . . . , sk) = 1 for k = 0.

d1 = 0 {(s1, . . . , sk) ; s1 + · · · + sk = 1, s1 ≥ 2} = ∅.
d2 = 1 ζ(2) '= 0

d3 = 1 ζ(2, 1) = ζ(3) '= 0

d4 = 1 ζ(3, 1) = (1/4)ζ(4),
ζ(2, 2) = (3/4)ζ(4),
ζ(2, 1, 1) = ζ(4) = (2/5)ζ(2)2

Question: d5 = 2 ?

Since

ζ(2, 1, 1, 1)= ζ(5),
ζ(3, 1, 1) =ζ(4, 1)= 2ζ(5)− ζ(2)ζ(3),

ζ(2, 1, 2) =ζ(2, 3)=
9
2
ζ(5)− 2ζ(2)ζ(3),

ζ(2, 2, 1) =ζ(3, 2)=3ζ(2)ζ(3)− 11
2

ζ(5),

we have d5 ∈ {1, 2}.
Further, d5 = 2 if and only if the number ζ(2)ζ(3)/ζ(5)
is irrational.

Zagier’s conjecture can be written∑
p≥0

dpX
p =

1
1−X2 −X3

·

M. Hoffman conjectures: a basis of Zp over Q is given
by the numbers ζ(s1, . . . , sk), s1 + · · · + sk = p, where
each si is either 2 or 3.

True for p ≤ 16 (Hoang Ngoc Minh)

A.G. Goncharov (2000) – Multiple ζ-values, Galois
groups and Geometry of Modular Varieties.
T. Terasoma (2002) – Mixed Tate motives and Multiple
Zeta Values.
The numbers defined by the recurrence relation of
Zagier’s Conjecture

dp = dp−2 + dp−3.

with initial values d0 = 1, d1 = 0 are actual upper
bounds for the actual dimension of Zp.
To prove a lower bound is the main Diophantine
conjecture!
Nothing is known, even dp ≥ 2 for a single p!



Algebraic description of the quadratic relations
among MZV

1 Integrals:

Shuffle product of differential forms

ϕ1 · · ·ϕn x ψ1 · · ·ψk = ϕ1(ϕ2 · · ·ϕnxψ1 · · ·ψk)

+ ψ1(ϕ1 · · ·ϕnxψ2 · · ·ψk).

ϕ1xψ1 = ϕ1ψ1 + ψ1ϕ1.

Product of iterated integrals:

Let ϕ1, . . . ,ϕn, ψ1, . . . ,ψk be differential forms with
n ≥ 0 and k ≥ 0. Then∫ z

0
ϕ1 · · ·ϕn

∫ z

0
ψ1 · · ·ψk =

∫ z

0
ϕ1 · · ·ϕnxψ1 · · ·ψk.

Proof. Assume z > 0. Decompose the Cartesian product

{t ∈ Rn ; z ≥ t1 ≥ · · · ≥ tn ≥ 0}× {u ∈ Rk ; z ≥ u1 ≥ · · · ≥ uk ≥ 0}
into a disjoint union of simplices (up to sets of zero measure)

{v ∈ Rn+k ; z ≥ v1 ≥ · · · ≥ vn+k ≥ 0}.

Example.

abxcd = abcd + acbd + acdb + cabd + cadb + cdab

ω0ω1xω0ω1 = 4ω2
0ω

2
1 + 2ω0ω1ω0ω1

∫ 1

0
ω0ω1 ·

∫ 1

0
ω0ω1 = 4

∫ 1

0
ω2

0ω
2
1 + 2

∫ 1

0
ω0ω1ω0ω1

ζ(2)2 = 4ζ(3, 1) + 2ζ(2, 2).

Next goal: Extend the definition of Multiple Zeta Values
to linear combinations of ωs, so that the product of two
Multiple Zeta Values is a Multiple Zeta Value.

Write ζ̂(ωs) in place of ζ(s) and define more generally

ζ̂
(∑

csωs

)
=

∑
csζ(s)

so that
ζ(s)ζ(s′) = ζ̂

(
ωsxωs′

)
.

Tool: Free algebra on {ω0,ω1}.

The free monoid X∗

Let X = {x0, x1} denote the alphabet with two letters
x0, x1 and X∗ the free monoid on X. The elements of
X∗ are words. A word can be written

xε1 · · ·xεk

with k ≥ 0 and where each εj is 0 or 1.
This law is called concatenation. It is not commutative:

x0x1 '= x1x0.
Its unit is the empty word e ∈ X∗: the word for which
k = 0.

The Algebra H = Q〈x0, x1〉
The free Q-vector space with basis X∗ is the free
algebra on X, denoted by H = Q〈X〉. Its elements
are non commutative polynomials in the two variables
x0, x1.

Its unit is the empty word e.



The words which end with x1 are the elements of X∗x1.

Let w ∈ X∗x1. Write w = xε1 · · ·xεp where each εi

is 0 or 1 and εp = 1.
If k is the number of x1, we define positive integers
s1, . . . , sk by

w = xs1−1
0 x1 · · ·xsk−1

0 x1.

For s ≥ 1 define ys = xs−1
0 x1. For s = (s1, . . . , sk)

with si ≥ 1, set

ys = ys1 · · · ysk
= xs1−1

0 x1 · · ·xsk−1
0 x1.

ys is a word on the alphabet

Y = {y1, y2, . . . , ys, . . .}.

The free monoid Y ∗ on Y

Y ∗ = {ys ; s = (s1, . . . , sk), k ≥ 0, sj ≥ 1 (1 ≤ j ≤ k)}

is the set {e} ∪X∗x1 of words which do not end with
x0, hence Y ∗ is a submonoid of X∗.

Any message can be coded with only two letters.

The Subalgebra H1 = Qe + Hx1 of H

The free Q-vector space with basis Y ∗ is the free algebra

H1 = Q〈Y 〉

on Y . Its elements are non commutative polynomials in
the variables {y1, . . . , ys, . . .}. It is a subalgebra of H.

The Subalgebra H0 = Qe + x0Hx1 of H

The set of words in X∗ which start with x0 and end
with x1 is x0X∗x1.

The set of words in X∗ which do not start with x1 and
do not end with x0 is {e} ∪ x0X∗x1.

This is NOT the same as the free monoid on the infinite
alphabet {y2, y3, . . .}.
Example: y2y1 ∈ x0X∗x1.

The Subalgebra H0 = Qe + x0Hx1 of H

The set of words in X∗ which start with x0 and end
with x1 is x0X∗x1.

The set of words in X∗ which do not start with x1 and
do not end with x0 is {e} ∪ x0X∗x1.

The Q-vector subspace of H1 spanned by {e} ∪ x0X∗x1

is the sub-algebra

H0 = Qe + x0Hx1 ⊂ H1 ⊂ H.

Multizeta values associated to words

For w ∈ x0X∗x1, write w = ys with s = (s1, . . . , sk)
and s1 ≥ 1, and define

ζ̂(w) = ζ(s).

Define also ζ̂(e) = 1 and extend by Q-linearity the
definition of ζ̂ to H0. Hence we get a mapping

ζ̂ : H0 −→ R.



Shuffle relations among MZV

For w and w′ in H0, the shuffle product wxw′ belongs
to H0. Furthermore,

ζ̂(w)ζ̂(w′) = ζ̂(wxw′)

for any w and w′ in H0.

Proposition. The map ζ̂ : H0 → R is a morphism of
algebras of H0

x into R.

2 Series:

The Harmonic Algebra

The product ζ(s) · ζ(s′):∑
n1>n2>···>nk≥1

1
ns1

1 · · ·nsk
k

·
∑

n′1>n′2>···>n′
k′≥1

1

n′s
′
1

1 · · ·n′s′k′k′

is a linear combination of MZV.
Shuffle like product (stuffle) on the alphabet Y .

The map ' : Y ∗ × Y ∗→ H is defined by induction

ysu ' ytv = ys(u ' ytv) + yt(ysu ' v) + ys+t(u ' v)

for u and v in Y ∗, s and t positive integers.

This defines Hoffman’s harmonic algebra denoted by
H#.

Examples.
y#2
2 = y2 ' y2 = 2y2

2 + y4.

y#3
2 = y2 ' y2 ' y2 = 6y3

2 + 3y2y4 + 3y4y2 + y6.

Quadratic relations arising from the product of
series

The map ζ̂ : H0 → R is a morphism of algebras of H0
#

into R:
ζ̂(u ' v) = ζ̂(u)ζ̂(v).

for u and v in H0.

Consequence of the two sets of quadratic
relations:

ζ̂(uxv − u ' v) = 0
for u and v in H0.

Hoffman Third Standard Relations

For any w ∈ H0, we have x1xw − x1 ' w ∈ H0 and

ζ̂(x1xw − x1 ' w) = 0.

Example. For w = x0x1,

x1xx0x1 = x1x0x1 + 2x0x
2
1 = y1y2 + 2y2y1,

x1 ' x0x1 = y1 ' y2 = y1y2 + y2y1 + y3,

hence
y2y1 − y3 ∈ ker ζ̂

and (Euler) ζ(2, 1) = ζ(3).

Euler’s proof with divergent series:

Product of series: ζ(1)ζ(2) = ζ(1, 2) + ζ(2, 1) + ζ(3)

Product of integrals: ζ(1)ζ(2) = ζ(1, 2) + 2ζ(2, 1)

Hence ζ(3) = ζ(2, 1).



Diophantine Conjecture (simple form)

Conjecture (Petitot, Hoang Ngoc Minh. . . ). The
kernel of ζ̂ is spanned by the standard relations

ζ̂(uxv − u ' v) = 0 and ζ̂(x1xw − x1 ' w) = 0

for u, v and w in x0X∗x1.

Minh, H.N, Jacob, G., Oussous, N. E., Petitot, M. –

Aspects combinatoires des polylogarithmes et des sommes d’Euler-

Zagier.

J. Électr. Sém. Lothar. Combin. 43 (2000), Art. B43e, 29 pp.

Regularized Double Shuffle Relations

The map ζ̂ : H0 → R is a morphism of algebras for x
and for ':

ζ̂(uxv) = ζ̂(u)ζ̂(v) and ζ̂(u ' v) = ζ̂(u)ζ̂(v).

Question: Is-it possible to extend ζ̂ to H1 into a

morphism of algebras both for x and '?

Answer: NO!

x1xx1 = 2x2
1, x1 ' x1 = y1 ' y1 = 2x2

1 + y2

ζ̂(y2) = ζ(2) '= 0.

Radford’s Theorem:

Hx = H1
x[x0]x = H0

x[x0, x1]x and H1
x = H0

x[x1]x.

Hoffman’s Theorem:

H# = H1
#[x0]# = H0

#[x0, x1]# and H1
# = H0

#[x1]#.

From H1
x = H0

x[x1]x and H1
# = H0

#[x1]# we deduce that
there are two uniquely determined algebra morphisms

Ẑx : H1
x −→ R[T ] and Ẑ# : H1

# −→ R[T ]

which extend ζ̂ and map x1 to T .

Theorem (Boutet de Monvel, Zagier). There is a
R-linear isomorphism ( : R[T ] → R[X] which makes
commutative the following diagram:

R[X]
Ẑx ↗

H1 ↑ $

Ẑ#
↘

R[T ]

An explicit formula for ( is given by means of the
generating series

∑
%≥0

((T %)
t%

*!
= exp

(
Xt +

∞∑
n=2

(−1)nζ(n)
n

tn
)

.

Compare with the formula giving the expansion of the
logarithm of Euler Gamma function:

Γ(1 + t) = exp

(
−γt +

∞∑
n=2

(−1)nζ(n)
n

tn
)

.

One may see ( as the differential operator of infinite
order

exp

( ∞∑
n=2

(−1)nζ(n)
n

(
∂

∂T

)n
)

(just consider the image of etT ).



Denote by regx the Q-linear map H → H0 which maps
w ∈ H onto its constant term when w is written as a
polynomial in x0, x1 in the shuffle algebra H0[x0, x1]x.
Then regx is a morphism of algebras Hx → H0

x.

Theorem.(Regularized Double Shuffle Relations –
Ihara and Kaneko). For w ∈ H1 and w0 ∈ H0,

regx(wxw0 − w ' w0) ∈ ker ζ̂.

Example. Take w = x1. Since x1xw0 − x1 ' w0 ∈ H0

for any w0 ∈ H0, one recovers the third standard
relations of Hoffman.

Diophantine Conjectures

Conjecture (Zagier, Cartier, Ihara-Kaneko,. . . ).
All existing algebraic relations between the real
numbers ζ(s) are in the ideal generated by the ones
described above.

Petitot and Hoang Ngoc Minh: up to weight
s1 + · · · sk ≤ 16, the three standard relations for u, v
and w in x0X∗x1

ζ̂(u)ζ̂(v) = ζ̂(uxv), ζ̂(u)ζ̂(v) = ζ̂(u ' v),

ζ̂(x1xw − x1 ' w) = 0
suffice.

Goncharov’s Conjecture

Let Z denote the Q-vector space spanned in C by the
numbers

(2iπ)−|s|ζ(s)
s = (s1, . . . , sk) ∈ Nk with k ≥ 1, s1 ≥ 2, si ≥ 1
(2 ≤ i ≤ k).

Hence Z is a Q-subalgebra of C bifiltered by the weight
and by the depth.

For a graded Lie algebra C• denote by UC• its universal
envelopping algebra and by

UC∨
• =

⊕
n≥0

(UC)∨n

its graded dual, which is a commutative Hopf algebra.

Conjecture (Goncharov). There exists a free graded
Lie algebra C• and an isomorphism of algebras

Z 3 UC∨
•

filtered by the weight on the left and by the degree on
the right.

References:

Goncharov A.B. – Multiple polylogarithms, cyclotomy
and modular complexes. Math. Research Letter 5
(1998), 497–516.

References on Multiple Zeta Values and Euler
sums

compiled by Michael Hoffman

http://www.usna.edu/Users/math/meh/biblio.html


