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1 Irrationality Criteria

1.1 Statement of the first criterion

Proposition 1. Let ϑ be a real number. The following conditions are equiv-
alent
(i) ϑ is irrational.
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any ε > 0, there exist two linearly independent linear forms in two
variables

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,

with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

1This text is available on the internet at the address
http://www.math.jussieu.fr/∼miw/enseignements.html
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(iv) For any real number Q > 1, there exists an integer q in the range
1 ≤ q < Q and a rational integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
qQ
·

(v) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

The equivalence between (i), (ii), (iv) and (iv) is well known. See for
instance [6]. See also [7].

We shall prove Proposition 1 as follows:

(iv) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (iv) and (v) ⇒ (ii).

We do not reproduce the proof of (i) ⇒ (v), which is a well known result
due to Hurwitz. We only refer to [5]. See also [6]. Notice that an easy
consequence of (iv) is the following statement, which is weaker than (v) :

There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
q2
·

Proofs of (iv) ⇒ (ii) and (v) ⇒ (ii). Using (iv) with Q satisfying Q > 1
and Q ≥ 1/ε, we get (ii). The proof of (v) ⇒ (ii) is similar.

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p, q) ∈
Z× Z with q > 0 and gcd(p, q) = 1 such that

0 < |qϑ− p| < ε.

We use (ii) once more with ε replaced by |qϑ−p|. There exists (p′, q′) ∈ Z×Z
with q′ > 0 such that

0 < |q′ϑ− p′| < |qϑ− p|. (2)

Define L0(X0, X1) = pX0 − qX1 and L1(X0, X1) = p′X0 − q′X1. It only
remains to check that L0(X0, X1) and L1(X0, X1) are linearly independent.
Otherwise, there exists (s, t) ∈ Z2 \ (0, 0) such that sL0 = tL1. Hence
sp = tp′, sq = tq′, and p/q = p′/q′. Since gcd(p, q) = 1, we deduce t = 1,
p′ = sp, q′ = sq and q′ϑ− p′ = s(qϑ− p). This is not compatible with (2).
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Proof of (iii) ⇒ (i). Assume ϑ ∈ Q, say ϑ = a/b with gcd(a, b) = 1 and b >
0. For any non–zero linear form L ∈ ZX0 + ZX1, the condition L(1, ϑ) 6= 0
implies |L(1, ϑ)| ≥ 1/b, hence for ε = 1/b condition (i) does not hold.

Proof of (i) ⇒ (iv) using Dirichlet’s box principle. Let Q > 1 be a given
real number. Define N = dQe: this means that N is the integer such
that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

For x ∈ R write x = bxc + {x} with bxc ∈ Z (integral part of x) and
0 ≤ {x} < 1 (fractional part of x). Let ϑ ∈ R \Q. Consider the subset E
of the unit interval [0, 1] which consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N + 1 elements are pairwise distinct. Split the
interval [0, 1] into N intervals

Ij =
[
j

N
,
j + 1
N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j+ 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =
[
1− 1

N
; 1
]

contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤
N − 1. Set p = bqϑc+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p−qϑ = bqϑc+1−bqϑc−{qϑ} = 1−{qϑ}, hence 0 < p−qϑ < 1
N
≤ 1
Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = bq2ϑc − bq1ϑc.

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.
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Remark. Theorem 1.A in Chap. II of [5] states that for any real number x,
for any real number Q > 1, there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1
qQ
·

The proof given there yields strict inequality |qϑ−p| < 1/Q in case Q is not
an integer. In the case where Q is an integer and x is rational, the result
does not hold with a strict inequality in general. For instance if ϑ = a/b
with gcd(a, b) = 1 and b ≥ 3, strict inequality holds for Q = b, but not for
Q = b− 1.

However, when Q is an integer and ϑ is irrational, the number |qϑ − p|
is irrational (recall that q > 0), hence not equal to 1/Q.

Proof of (i) ⇒ (iv) using Minkowski geometry of numbers. Let ε > 0. The
subset

C =
{

(x0, x1) ∈ R2 ; |x0| < Q, |x0ϑ− x1| < (1/Q) + ε
}

or R2 is convex, symmetric and has volume > 4. By Minkowski’s Convex
Body Theorem (Theorem 7 below), it contains a non–zero element in Z2.
Since C is also bounded, the intersection C∩Z2 is finite. Consider a non–zero
element in this intersection with |x0ϑ−x1|minimal. Then |x0ϑ−x1| ≤ 1/Q+
ε for all ε > 0. Since this is true for all ε > 0, we deduce |x0ϑ− x1| ≤ 1/Q.
Finally, since ϑ is irrational, we also have |x0ϑ− x1| 6= 1/Q.

1.2 Irrationality of at least one number

Proposition 3. Let ϑ1, . . . , ϑm be real numbers. The following conditions
are equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0, there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) For any ε > 0, there exist m + 1 linearly independent linear forms
L0, . . . , Lm in m + 1 variables with coefficients in Z in m + 1 variables
X0, . . . , Xm, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε.
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(iv) For any real number Q > 1, there exists p1, . . . , pm, q in Z such that
1 ≤ q < Q and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1
qQ1/m

·

(v) There is an infinite set of q ∈ Z, q > 0, for which there there exist
p1, . . . , pm in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1
q1+1/m

·

We shall prove Proposition 3 in the following way:

(i) ⇒ (iv)
↘

⇑ (v)
↙

(iii) ⇐ (ii)

Proof of (iv) ⇒ (v). We first deduce (i) from (iv). Indeed, if (i) does not
hold and ϑi = ai/b ∈ Q for 1 ≤ i ≤ m, then the condition

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ > 0

implies

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≥ 1
bq

,

hence (iv) does not hold as soon as Q > bm.
Let {q1, . . . , qN} be a finite set of positive integers. Using (iv) again,

we show that there exists a positive integer q 6∈ {q1, . . . , qN} satisfying the
condition (v). Denote by ‖ · ‖ the distance to the nearest integer: for x ∈ R,

‖x‖ = min
a∈Z
|z − a|.

From (i) it follows that for 1 ≤ j ≤ N , the number max1≤i≤m ‖qjθi‖ is
non–zero. Let Q > 1 be sufficiently large such that

Q−1/m < min
1≤j≤N

max
1≤i≤m

‖qjθi‖.

We use (iv): there exists an integer q in the range 1 ≤ q < Q such that

0 < max
1≤i≤m

‖qθi‖ ≤ Q−1/m.
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The right hand side is< q−1−1/m, and the choice ofQ implies q 6∈ {q1, . . . , qN}.

Proof of (v) ⇒ (ii). Given ε > 0, there is a positive integer q > max{1, 1/εm}
satisfying the conclusion of (v). Then (ii) follows.

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p1, . . . , pm, q)
in Zm+1 with q > 0 such that

0 < max
1≤i≤m

|qϑi − pi| < ε.

Without loss of generality we may assume gcd(p1, . . . , pm, q) = 1. Define
L1, . . . , Lm by Li(X0, . . . , Xm) = piX0−qXi for 1 ≤ i ≤ m. Then L1, . . . , Lm
are m linearly independent linear forms in m + 1 variables with rational
integer coefficients satisfying

0 < max
1≤i≤m

|Li(1, ϑ1, . . . , ϑm)| < ε.

We use (ii) once more with ε replaced by

max
1≤i≤m

|Li(1, ϑ1, . . . , ϑm)| = max
1≤i≤m

|qϑi − pi|.

Hence there exists p′1, . . . , p
′
m, q

′ in Z with q′ > 0 such that

0 < max
1≤i≤m

|q′ϑi − p′i| < max
1≤i≤m

|qϑi − pi|. (4)

It remains to check that one at least of the m linear forms

L′i(X0, . . . , Xm) = p′iX0 − q′Xi

for 1 ≤ i ≤ m is linearly independent of L1, . . . , Lm. Otherwise, for 1 ≤ i ≤
m, there exist rational integers si, ti1, . . . , tim, with si 6= 0, such that

si(p′iX0 − q′Xi) = ti1L1 + · · ·+ timLm

= (ti1p1 + · · ·+ timpm)X0 − q(ti1X1 + · · ·+ timXm).

These relations imply, for 1 ≤ i ≤ m,

siq
′ = qtii, tki = 0 and sip

′
i = pitii for 1 ≤ k ≤ m, k 6= i,

meaning that the two projective points (p1 : · · · : pm : q) and (p′1 : · · · : p′m :
q′) are the same. Since gcd(p1, . . . , pm, q) = 1, it follows that (p′1, . . . , p

′
m, q

′)
is an integer multiple of (p1, . . . , pm, q). This is not compatible with (4).
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Proof of (iii) ⇒ (i). We proceed by contradiction. Assume (i) is not true:
there exists (a1, . . . , am, b) ∈ Zm+1 with b > 0 such that ϑk = ak/b for
1 ≤ k ≤ m. Use (iii) with ε = 1/b: we get m+ 1 linearly independent linear
forms L0, . . . , Lm in ZX0 + · · ·+ ZXm. One at least of them, say Lk, does
not vanish at (1, ϑ1, . . . , ϑm). Then we have

0 < |Lk(b, a1, . . . , am)| = b|Lk(1, ϑ1, . . . , ϑm)| < bε = 1.

Since Lk(b, a1, . . . , am) is a rational integer, we obtain a contradiction.

It remains to prove (i)⇒ (iv) of Proposition 3. We give a proof (compare
with [5] Chap. II § 2 p. 35) which relies Minkowski’s linear form Theorem.
Another proof of (i) ⇒ (iv) in the special case where Q1/m is an integer,
by means of Dirichlet’s box principle, can be found in [5] Chap. II Th. 1E
p. 28. A third proof (using again the geometry of numbers, but based on a
result by Blichfeldt) is given in [5] Chap. II § 2 p. 32.

We need some geometry of numbers. Recall that a discrete subgroup of
Rn of maximal rank n is called a lattice of Rn.

Let G be a lattice in Rn. For each basis e = {e1, . . . , en} of G the
parallelogram

Pe = {x1e1 + · · ·+ xnen ; 0 ≤ xi < 1 (1 ≤ i ≤ n)}

is a fundamental domain for G, which means a complete system of repre-
sentative of classes modulo G. We get a partition of Rn as

Rn =
⋃
g∈G

(Pe + g) (5)

A change of bases of G is obtained with a matrix with integer coefficients
having determinant ±1, hence the Lebesgue measure µ(Pe) of Pe does not
depend on e: this number is called the volume of the lattice G and denoted
by v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th
century as an application of his geometry of numbers.

Theorem 6 (Minkowski). Let G be a lattice in Rn and B a measurable
subset of Rn. Set µ(B) > v(G). Then there exist x 6= y in B such that
x− y ∈ G.
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Proof. From (5) we deduce that B is the disjoint union of the B ∩ (Pe + g)
with g running over G. Hence

µ(B) =
∑
g∈G

µ (B ∩ (Pe + g)) .

Since Lebesgue measure is invariant under translation

µ (B ∩ (Pe + g)) = µ ((−g +B) ∩ Pe) .

The sets (−g+B)∩Pe are all contained in Pe and the sum of their measures
is µ(B) > µ(Pe). Therefore they are not all pairwise disjoint – this is one
of the versions of the Dirichlet box principle). There exists g 6= g′ in G such
that

(−g +B) ∩ (−g′ +B) 6= ∅.

Let x and y in B satisfy −g + x = −g′ + y. Then x− y = g − g′ ∈ G \ {0}.

From Theorem 6 we deduce Minkowski’s convex body Theorem (Theo-
rem 2B, Chapter II of [5]).

Corollary 7. Let G be a lattice in Rn and let B be a measurable subset
of Rn, convex and symmetric with respect to the origin, such that µ(B) >
2nv(G). Then B ∩G 6= {0}.

Proof. We use Theorem 6 with the set

B′ =
1
2
B = {x ∈ Rn ; 2x ∈ B}.

We have µ(B′) = 2−nµ(B) > v(G), hence by Theorem 6 there exists x 6= y
in B′ such that x−y ∈ G. Now 2x and 2y are in B, and since B is symmetric
−2y ∈ B. Finally B is convex, hence (2x− 2y)/2 = x− y ∈ G ∩B \ {0}.

Remark. With the notations of Corollary 7, if B is also compact in Rn,
then the weaker inequality µ(B) ≥ 2nv(G) suffices to reach the conclusion.
This is obtained by applying Corollary 7 with (1 + ε)B for ε→ 0.

Minkowski’s Linear Forms Theorem (see for instance [5] Chap. II § 2
Th. 2C) is the following result.
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Theorem 8 (Minkowski’s Linear Forms Theorem). Suppose that ϑij (1 ≤
i, j ≤ n) are real numbers with determinant ±1 . Suppose that A1, . . . , An
are positive numbers with A1 · · ·An = 1. Then there exists an integer point
x = (x1, . . . , xn) 6= 0 such that

|θi1x1 + · · ·+ θinxn| < Ai (1 ≤ i ≤ n− 1)

and
|θn1x1 + · · ·+ θnnxn| ≤ An.

Proof. We apply Corollary 7 with An replaced with An + ε for a sequence
of ε which tends to 0.

Here is a consequence of Theorem 8

Corollary 9. Let ϑ1, . . . , ϑm be real numbers. For any real number Q > 1,
there exists p1, . . . , pm, q in Z such that 1 ≤ q < Q and

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1
qQ1/m

·

Proof of Corollary 9. We apply Theorem 8 to the n × n matrix (with n =
m+ 1) 

1 0 0 · · · 0
−ϑ1 1 0 · · · 0
−ϑ2 0 1 · · · 0

...
...

...
. . .

...
−ϑm 0 0 · · · 1


corresponding to the linear forms X0 and −ϑmX0 + Xi (1 ≤ i ≤ m), and
with A0 = Q, A1 = · · · = Am = Q−1/m.

Proof of (i) ⇒ (iv) in Proposition 3. Use Corollary 9. From the assumption
(i) we deduce

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ 6= 0.
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2 Criteria for linear independence

2.1 Hermite’ method

Let ϑ1, . . . , ϑm be real numbers and a0, a1, . . . , am rational integers, not all
of which are 0. The goal is to prove that the number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.
Hermite’s idea (see [2] and [1] Chap. 2 § 1.3) is to approximate simul-

taneously ϑ1, . . . , ϑm by rational numbers p1/q, . . . , pm/q with the same de-
nominator q > 0.

Let q, p1, . . . , pm be rational integers with q > 0. For 1 ≤ k ≤ m set

εk = qϑk − pk.

Then qL = M +R with

M = a0q + a1p1 + · · ·+ ampm ∈ Z

and
R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.
One of the main difficulties is often to check M 6= 0. This question

gives rise to the so-called zero estimates or non-vanishing lemmas. In the
present situation, we wish to find a m + 1–tuple (q, p1, . . . , pm) such that
(p1/q, . . . , pm/q) is a simultaneous rational approximation to (ϑ1, . . . , ϑm),
but we also require that it lies outside the hyperplane a0X0 + a1X1 + · · ·+
amXm = 0 of Qm+1. Our goal is to prove the linear independence over Q
of 1, ϑ1, . . . , ϑm; hence this needs to be checked for all hyperplanes. The
solution to this problem is to construct not only one tuple (q, p1, . . . , pm)
in Zm+1 \ {0}, but m+ 1 such tuples which are linearly independent. This
yields m+ 1 pairs (Mk, Rk) (k = 0, . . . ,m) in place of a single pair (M,R).
From (a0, . . . , am) 6= (0, . . . , 0), one deduces that one at least of M0, . . . ,Mm

is not 0.
It turns out (Proposition 10 below) that nothing is lossed by using such

arguments: existence of linearly independent simultaneous rational approx-
imations for ϑ1, . . . , ϑm are characteristic of linearly independent real num-
bers 1, ϑ1, . . . , ϑm.
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2.2 Rational approximations

The following criterion is due to M. Laurent [3].

Proposition 10. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Then the following condi-
tions are equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0, there exist m+1 linearly independent elements u0,u1, . . . ,um
in Zm+1, say

ui = (qi, p1i, . . . , pmi) (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
(0 ≤ i ≤ m). (11)

The condition on linear independence of the elements u0,u1, . . . ,um
means that the determinant∣∣∣∣∣∣∣

q0 p10 · · · pm0
...

...
. . .

...
qm p1m · · · pmm

∣∣∣∣∣∣∣
is not 0.

For 0 ≤ i ≤ m, set

ri =
(
p1i

qi
, . . . ,

pmi
qi

)
∈ Qm.

Further define, for x = (x1, . . . , xm) ∈ Rm

|x| = max
1≤i≤m

|xi|.

Also for x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , ym) ∈ Rm set

x− y = (x1 − y1, . . . , xm − ym),

so that
|x− y| = max

1≤i≤m
|xi − yi|.

Then the relation (11) in Proposition 10 can be written

|ϑ− ri| ≤
ε

qi
, (0 ≤ i ≤ m).
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The easy implication (which is also the useful one for Diophantine appli-
cations: linear independence, transcendence and algebraic independence) is
(ii)⇒(i). We shall prove a more explicit version of it by checking that any tu-
ple (q, p1, . . . , pm) ∈ Zm+1, with q > 0, producing a tuple (p1/q, . . . , pm/q) ∈
Qm of sufficiently good rational approximations to ϑ satisfies the same linear
dependence relations as 1, ϑ1, . . . , ϑm.

Lemma 12. Let ϑ1, . . . , ϑm be real numbers. Assume that the numbers
1, ϑ1, . . . , ϑm are linearly dependent over Q: let a, b1, . . . , bm be rational in-
tegers, not all of which are zero, satisfying

a+ b1ϑ1 + · · ·+ bmϑm = 0.

Let ε be a real number satisfying

0 < ε <

(
m∑
k=1

|bk|

)−1

.

Assume further that (q, p1, . . . , pm) ∈ Zm+1 satisfies q > 0 and

max
1≤k≤m

|qϑk − pk| ≤ ε.

Then
aq + b1p1 + · · ·+ bmpm = 0.

Proof. In the relation

qa+
m∑
k=1

bkpk =
m∑
k=1

bk(qϑk − pk),

the right hand side has absolute value less than 1 and the left hand side is
a rational integer, so it is 0.

Proof of (ii)⇒(i) in Proposition 10. Let

aX0 + b1X1 + · · ·+ bmXm

be a non–zero linear form with integer coefficients. For sufficiently small ε,
assumption (ii) show that there exist m + 1 linearly independent elements
ui ∈ Zm+1 such that the corresponding rational approximation satisfy the
assumptions of Lemma 12. Since u0, . . . ,um is a basis of Qm+1, one at least
of the L(ui) is not 0. Hence Lemma 12 implies

a+ b1ϑ1 + · · ·+ bmϑm 6= 0.
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Proof of (i)⇒(ii) in Proposition 10. Let ε > 0. By Corollary 9, there exists
u = (q, p1, . . . , pm) ∈ Zm+1 with q > 0 such that

max
1≤k≤m

∣∣∣∣ϑk − pk
q

∣∣∣∣ ≤ ε

q
·

Consider the subset Eε ⊂ Zm+1 of these tuples. Let Vε be the Q-vector
subspace of Qm+1 spanned by Eε.

If Vε 6= Qm+1, then there is a hyperplane a0x0 + a1x1 + · · ·+ amxm = 0
containing Eε. Any u = (q, p1, . . . , pm) in Eε has

a0q + a1p1 + · · ·+ ampm = 0.

For each n ≥ 1/ε, let u = (qn, p1n, . . . , pmn) ∈ Eε satisfy

max
1≤k≤m

∣∣∣∣ϑk − pkn
qn

∣∣∣∣ ≤ 1
nqn
·

Then

a0 + a1ϑ1 + · · ·+ amϑm =
m∑
k=1

ak

(
ϑk −

pkn
qn

)
.

Hence

|a0 + a1ϑ1 + · · ·+ amϑm| ≤
1
nqn

m∑
k=1

|ak|.

The right hand side tends to 0 as n tends to infinity, hence the left hand side
vanishes, and 1, ϑ1, . . . , ϑm are Q–linearly dependent, which means that (i)
does not hold.

Therefore, if (i) holds, then Vε = Qm+1, hence there are m + 1 linearly
independent elements in Eε.
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