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Multiple polylogarithms in a single variable are defined by

Li (s1,...,sk)(z) =
∑

n1>n2>···>nk≥1

zn1

n
s1
1 · · · nsk

k

,

whens1, . . . , sk are positive integers andz a complex number in the unit disk. Fork = 1, this is
the classical polylogarithm Lis (z). These multiple polylogarithms can be defined also in terms of
iterated Chen integrals and satisfyshuffle relations. Multiple polylogarithms in several variables
are defined forsi ≥ 1 and|zi | < 1(1 ≤ i ≤ k) by

Li (s1,...,sk)(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

z
n1
1 · · · znk

k

n
s1
1 · · · nsk

k

,

and they satisfy not only shuffle relations, but alsostuffle relations. When one specializes
the shuffle relations in one variable atz = 1 and the stuffle relations in several variables at
z1 = · · · = zk = 1, one gets linear or quadratic dependence relations between the Multiple Zeta
Values

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

n
s1
1 · · · nsk

k

which are defined fork, s1, . . . , sk positive integers withs1 ≥ 2. The Main Diophantine
Conjecturestates that one obtains in this way all algebraic relations between these MZV.

Mathematics Subject Classification:11J91, 33E30.

0. Introduction

A long term project is to determine all algebraic relations among the values

π, ζ(3), ζ(5), . . . , ζ(2n + 1), . . .

of the Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
.
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So far, one only knows that the first number in this list,π , is transcendental, that
the second one,ζ(3), is irrational, and that the other ones span aQ-vector space
of infinite dimension [Ri1], [BR]. See also [Ri2], [Zu1] and [Zu2].

The expected answer is disappointingly simple: it is widely believed that
there are no relations, which means that these numbers should be algebraically
independent:

(?) For anyn ≥ 0 and any nonzero polynomialP ∈ Z[X0, . . . ,Xn],

P(π, ζ(3), ζ(5), . . . , ζ(2n + 1)) 6= 0.

If true, this property would mean that there is no interesting algebraic structure.
The situation changes drastically if we enlarge our set so as to include the so-

called Multiple Zeta Values (MZV, also called Euler-Zagier numbers or Polyzêta–
see [Eu], [Z] and [C]):

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

n
s1
1 · · · nsk

k

,

which are defined fork, s1, . . . , sk positive integers withs1 ≥ 2. It may be hoped
that the initial goal would be reached if one could determine all algebraic relations
between the MZV. Now there are plenty of relations between them, providing a
rich algebraic structure. One type of such relations arises when one multiplies two
such series: it is easy to see that one gets a linear combination of MZV. There is
another type of algebraic relations between MZV, coming from their expressions
as integrals. Again the product of two such integrals is a linear combination of
MZV. Following [B3], we will use the namestufflefor the relations arising from
the series, andstufflefor those arising from the integrals.

The Main Diophantine Conjecture(Conjecture 5.3 below) states that these
relations are sufficient to describe all algebraic relations between MZV. One should
be careful when stating such a conjecture: it is necessary to include some relations
which are deduced from the stuffle and shuffle relations applied to divergent series
(i.e. with s1 = 1).

There are several ways of dealing with the divergent case. Here, we use the
multiple polylogarithms

Li (s1,...,sk)(z) =
∑

n1>n2>···>nk≥1

zn1

n
s1
1 · · · nsk

k

which are defined for|z| < 1 whens1, . . . , sk are all≥ 1, and which are also
defined for|z| = 1 if s1 ≥ 2.

These multiple polylogarithms can be expressed as iterated Chen integrals, and
from this representation one deduces shuffle relations. There is no stuffle rela-
tions for multiple polylogarithms in a single variable, but one recovers them by
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introducing the multivariables functions

Li (s1,...,sk)(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

z
n1
1 · · · znk

k

n
s1
1 · · · nsk

k

, (si ≥ 1, 1 ≤ i ≤ k)

which are defined not only for|z1| < 1 and|zi | ≤ 1 (2 ≤ i ≤ k), but also for
|zi | ≤ 1(1 ≤ i ≤ k) if s1 ≥ 2.

1. Multiple Polylogarithms in One Variable
and Multiple Zeta Values

Let k, s1, . . . , sk be positive integers. Writes in place of(s1, . . . , sk). One defines
a complex function of one variable by

Li s(z) =
∑

n1>n2>···>nk≥1

zn1

n
s1
1 · · · nsk

k

.

This function is analytic in the open unit disk, and, in the cases1 ≥ 2, it is also
continuous on the closed unit disk. In the latter case we have

ζ(s) = Li s(1).

One can also define in an equivalent way these functions by induction on the
numberp = s1 + · · · + sk (theweightof s) as follows. Plainly we have

z
d

dz
Li (s1,...,sk)(z) = Li (s1−1,s2,...,sk)(z) if s1 ≥ 2(1.1)

and

(1 − z)
d

dz
Li (1,s2,...,sk)(z) = Li (s2,...,sk)(z) if k ≥ 2.(1.2)

Together with the initial conditions

Li s(0) = 0,(1.3)

the differential equations (1.1) and (1.2) determine all the Lis .
Therefore, as observed by M. Kontsevich (cf. [Z]; see also [K] Chap. XIX,

§ 11 for an early reference to H. Poincaré, 1884), an equivalent definition for Lis

is given by integral formulae as follows. Starting(∗) with k = s = 1, we write

Li1(z) = −log(1 − z) =
∫ z

0

dt

1 − t
,

(∗)This induction could as well be started fromk = 0, provided that we set Li∅(z) = 1.
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where the complex integral is over any path from 0 toz inside the unit circle. From
the differential equations (1.1) one deduces, by induction, fors ≥ 2,

Li s(z) =
∫ z

0
Li s−1(t)

dt

t
=

∫ z

0

dt1
t1

∫ t1

0

dt2
t2

· · ·
∫ ts−2

0

dts−1

ts−1

∫ ts−1

0

dts
1 − ts

.

In the last formula, the complex integral overt1, which is written on the left (and
which is the last one to be computed), is over any path inside the unit circle from
0 to z, the second one overt2 is from 0 tot1, . . . , and the last one overts on the
right, which is the first one to be computed, is from 0 tots−1.

Chen iterated integrals(see [K] Chap. XIX, § 11) provide a compact form for
such expressions as follows. Forϕ1, . . . , ϕp differential forms andx, y complex
numbers, define inductively∫ y

x

ϕ1 · · · ϕp =
∫ y

x

ϕ1(t)

∫ t

x

ϕ2 · · · ϕp.

For s = (s1, · · · sk), set

ωs = ω
s1−1
0 ω1 · · · ωsk−1

0 ω1,

where

ω0(t) = dt

t
and ω1(t) = dt

1 − t
.

Then the differential equations (1.1) and (1.2) with initial conditions (1.3) can be
written

Li s(z) =
∫ z

0
ωs.(1.4)

Example.Given a stringa1, . . . , ak of integers, the notation{a1, . . . , ak}n stands
for thekn-tuple

(a1, . . . , ak, . . . , a1, . . . , ak),

where the stringa1, . . . , ak is repeatedn times.
For anyn ≥ 1 and|z| < 1 we have

Li {1}n(z) = 1

n!
(log(1/(1 − z)))n,(1.1)

which can be written in terms of generating series as

∞∑
n = 0

Li {1}n(z)xn = (1 − z)−x.

The constant term Li{1}0(z) is 1.
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2. Shuffle Product and the First Standard Relations

Denote byX = {x0, x1} the alphabet with two letters and byX∗ the set of words
onX. A word is nothing else than a non-commutative monomial in the two letters
x0 andx1. The linear combinations of such words with rational coefficients∑

u

cuu,

where{cu; u ∈ X∗} is a set of rational numbers with finite support, is the non-
commutative ringH = Q〈x0, x1〉. The product is concatenation, the unit is the
empty worde. We are interested with the setX∗x1 of words which end withx1.
The linear combinations of such words is a left ideal ofH which we denote by
Hx1. Also we denote byH1 the subalgebraQe + Hx1 of H.

For s a positive integer, setysys = xs−1
0 x1. Next, for a tuples = (s1, . . . , sk)

of positive integers, defineys = ys1 · · · ysk . Hence the setX∗x1 is also the set of
wordsys , wherek, s1, . . . , sk run over the set of all positive integers. We define
L̂iu(z) for u ∈ X∗x1 by L̂iu(z) = Li s(z) whenu = ys . By linearity we extend the
definition ofL̂iu(z) to H1:

L̂iu(z) =
∑
u

cuL̂iu(z) for v =
∑
u

cuu

whereu ranges over a finite subset of{e}∪X∗x1 andcu ∈ Q, whileL̂i e(z) = 1. The
set ofconvergent wordsis the set, denoted by{e} ∪ x0X

∗x1, of words which start
with x0 and end withx1 together with the empty worde. TheQ-vector subspace
they span inH is the subalgebraH0 = Qe + x0Hx1 of H1, and forv in H0 we set

ζ̂ (v) = L̂i v(1)

so thatζ̂ : H0 → R is aQ-linear map and

ζ̂ (ys) = ζ(s)

for ys in x0X
∗x1.

Definition. Theshuffle productof two words inX∗ is the element inH which is
defined inductively as follows:

exu = uxe = u

for anyu in X∗, and

(xiu)x(xj v) = xi(ux(xj v)) + xj ((xiu)xv)

for u, v in X∗ andi, j equal to 0 or 1.
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This product is extended by distributivity with respect to the addition toH and
defines a commutative and associative law. MoreoverH0 andH1 are stable under
x. We denote byH0

x ⊂ H1
x ⊂ Hx the algebras where the underlying sets are

H0 ⊂ H1 ⊂ H respectively and the product isx. Radford’s Theorem gives the
structure of these algebras: they are (commutative) polynomials algebras on the
set of Lyndon words (see for instance [R]).

Computing the product̂Liu(z)L̂iu′(z) of the two associated Chen iterated inte-
grals yields (see [MPH], Th. 2):

Proposition 2.1.For u and u′ in H1
x,

L̂iu(z)L̂iu′(z) = L̂iuxu′(z).

For instance from

x1x(x0x1) = x1x0x1 + 2x0x
2
1

we deduce

Li1(z)Li2(z) = Li (1,2)(z) + 2Li(2,1)(z).(2.2)

Settingz = 1, we deduce from Proposition 2.1:

ζ̂ (u)ζ̂ (u′) = ζ̂ (uxu′)(2.3)

for u andu′ in H0
x.

These are thefirst standard relationsbetween multiple zeta values.

3. Shuffle Product for Multiple Polylogarithms
in Several Variables

The functions ofk complex variables(∗)

Li s(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

z
n1
1 · · · znk

k

n
s1
1 . . . n

sk
k

have been considered as early as 1904 by N. Nielsen, and rediscovered later by
A.B. Goncharov [G1, G2]. Recently, J.Écalle [É] used them forzi roots of unity

(∗)Our notation for
Li (s1,...,sk)(z1, . . . , zk)

is the same as in [H], [W] or [C], but for Goncharov’s [G2] it corresponds to

Li (s1,...,sk)(zk, . . . , z1).
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(in cases1 ≥ 2): these are thedecorated multiple polylogarithms. Of course one
recovers the one variable functions Lis(z) by specializingz2 = · · · = zk = 1. For
simplicity we write Lis(z), wherez stands for(z1, . . . , zk). There is an integral
formula which extends (1.4). Define

ωz(t) =
{

zdt
1−zt

if z 6= 0,
dt
t

if z = 0.

From the differential equations

z1
∂

∂z1
Li s(z) = Li (s1−1,s2,...,sk)(z) if s1 ≥ 2

and

(1 − z1)
∂

∂z1
Li (1,s2,...,sk)(z) = Li (s2,...,sk)(z1z2, z3, . . . , zk)

generalizing (1.1) and (1.2), we deduce

Li s(z) =
∫ 1

0
ω

s1−1
0 ωz1ω

s2−1
0 ωz1z2 · · · ωsk−1

0 ωz1...zk
.

Because of the occurrence of the productsz1 . . . zj (1 ≤ j ≤ k), it is convenient
(see for instance [G1] and [B3L]) to perform the change of variables

yj = z−1
1 · · · z−1

j (1 ≤ j ≤ k) and zj = yj−1

yj

(1 ≤ j ≤ k)

with y0 = 1, and to introduce the differential forms

ω′
y(t) = −ωy−1(t) = dt

t − y
,

so thatω′
0 = ω0 andω′

1 = −ω1. Also define

λ

(
s1, . . . , sk
y1, . . . , yk

)
= Li s(1/y1, y1/y2, . . . , yk−1/yk)

=
∑
ν1≥1

· · ·
∑
νk≥1

k∏
j=1

y
−νj

j

 k∑
i=j

νi

−sj

= (−1)p
∫

1p

ω
s1−1
0 ω′

y1
· · · ωsk−1

0 ω′
yk

.

With this notation some formulae are simpler. For instance the shuffle relation is
easier to write withλ: the shuffle is defined on words on the alphabet{ω′

y ; y ∈ C},
(includingy = 0), inductively by

(ω′
yu)x(ω′

y′v) = ω′
y(ux(ω′

y′v)) + ω′
y′((ω′

yu)xv).
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4. Stuffle Product and the Second Standard Relations

The functions Lis(z) satisfy not only shuffle relations, but alsostuffle relations
arising from the product of two series:

Li s(z)Li s′(z′) =
∑
s′′

Li s′′(z′′),(4.1)

where the notation is as follows:s′′ runs over the tuples(s′′
1, . . . , s

′′
k′′) obtained

from s = (s1, . . . , sk) and s′ = (s′
1, . . . , s

′
k′) by inserting, in all possible ways,

some 0 in the string(s1, . . . , sk) as well as in the string(s′
1, . . . , s

′
k′) (including

in front and at the end), so that the new strings have the same lengthk′′, with
max {k, k′} ≤ k′′ ≤ k + k′, and by adding the two sequences term by term.
For each suchs′′, the componentz′′

i of z is zj if the correspondings′′
i is just sj

(corresponding to a 0 ins′), it is z′̀ if the correspondings′′
i is s ′̀ (corresponding to

a 0 ins), and finally it iszj z
′̀ if the correspondings′′

i is sj + s ′̀ . For instance

s s1 s2 0 s3 s4 . . . 0
s′ 0 s′

1 s′
2 0 s′

3 . . . s′
k′

s′′ s1 s2 + s′
1 s′

2 s3 s4 + s′
3 . . . s′

k′
z′′ z1 z2z

′
1 z′

2 z3 z4z
′
3 . . . z′

k′ .

Of course the 0’s are inserted so that nos′′
i is zero.

Examples. Fork = k′ = 1 the stuffle relation (4.1) yields

Li s(z)Li s′(z′) = Li (s,s′)(z, z
′) + Li s′,s(z

′, z) + Li s+s′(zz′),(4.2)

while for k = 1 andk′ = 2 we have

Li s(z)Li (s′
1,s

′
2)

(z′
1, z

′
2) = Li (s,s′

1,s
′
2)

(z, z′
1, z

′
2) + Li (s′

1,s,s
′
2)

(z′
1, z, z

′
2)

+Li (s′
1,s

′
2,s)

(z′
1, z

′
2, z) + Li (s+s′

1,s
′
2)

(zz′
1, z

′
2) + Li (s′

1,s+s′
2)

(z′
1, zz

′
2).(4.3)

Thestuffle product? is defined onX∗ inductively by

e ? u = u ? e = u

for u ∈ X∗,
xn

0 ? w = w ? xn
0 = ωxn

0

for anyn ≥ 1 andw ∈ X∗, and

(ysu) ? (ytu
′) = ys(u ? (ytu

′)) + yt ((ysu) ? u′) + ys+t (u ? u′)

for u andu′ in X∗, s ≥ 1, t ≥ 1.
This product is extended by distributivity with respect to the addition toH

and defines a commutative and associative law. MoreoverH0 andH1 are stable
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under?. We denote byH0
? ⊂ H1

? ⊂ H? the correspondingharmonicalgebras. Their
structure has been investigated by M. Hoffman [H]: again they are (commutative)
polynomials algebras over Lyndon words.

Specializing (4.1) atz1 = · · · = zk = z′
1 = · · · = z′

k′ = 1, we deduce

ζ̂ (u)ζ̂ (u′) = ζ̂ (u ? u′)(4.4)

for u andu′ in H0
?.

These are thesecond standard relationsbetween multiple zeta values. For
instance (4.3) withz = z′

1 = z′
2 = 1 gives

ζ(s)ζ(s′
1, s

′
2) = ζ(s, s′

1, s
′
2) + ζ(s′

1, s, s
′
2) + ζ(s′

1, s
′
2, s)

+ζ(s + s′
1, s

′
2) + ζ(s′

1, s + s′
2)

for s ≥ 2, s′
1 ≥ 2 ands′

2 ≥ 1.

5. The Third Standard Relations and the Main
Diophantine Conjectures

We start with an example. Combining the stuffle relation (4.2) fors = s′ = 1 with
the shuffle relation (2.2) forz′ = z, we deduce

Li (1,2)(z, 1) + 2Li(2,1)(z, 1) = Li (1,2)(z, z) + Li (2,1)(z, z) + Li3(z
2).(5.1)

The two sides are analytic inside the unit circle, but not convergent atz = 1.
We claim that

F(z) = Li (1,2)(z, 1) − Li (1,2)(z, z) =
∑

n1>n2≥1

zn1(1 − zn2)

n1n
2
2

tends to 0 asz tends to 1 inside the unit circle. Indeed for|z| < 1 we have

|1 − zn2| = |(1 − z)(1 + z + · · · + zn2−1)| < n2|1 − z|,
hence

n1−1∑
n2=1

|1 − zn2|
n2

2

< |1 − z|
n1−1∑
n2=1

1

n2
.

From (1.5) withn = 2 we deduce

|F(z)| ≤ |1 − z|Li (1,1)(|z|) = 1

2
|1 − z|(log(1/(1 − |z|)))2.

Therefore, taking the limit of the relation (5.1) asz → 1 yields Euler’s formula

ζ(2, 1) = ζ(3).



66 M. Waldschmidt

This argument works in a quite general setting and yields the relations

ζ̂ (x1 ? v − x1xv) = 0(5.2)

for eachv ∈ H0.
These are thethird standard relationsbetween multiple zeta values.
The Main Diophantine Conjectures below arose after the works of several mathe-

maticians, including D. Zagier, A.B. Goncharov, M. Kontsevich, M. Hoffman,
M. Petitot and Hoang Ngoc Minh, K. Ihara and M. Kaneko (see [C]). They imply
that the three standard relations (2.3), (4.4) and (5.2) generate the ideal of algebraic
relations between all numbersζ(s). Here are precise statements.

We introduce independent variablesZu, whereu ranges over the set{e} ∪ X∗
x1

.

Forv = ∑
u cuu in H1, we set

Zv =
∑
u

cuZu.

In particular foru1 and u2 in x0X
∗
x1

, Zu1xu2 and Zu1?u2 are linear forms in
Zu, u ∈ x0X

∗x1. Also, for v ∈ x0X
∗x1, Zx1xv−x1?v is a linear form inZu,

u ∈ x0X
∗x1.

Denote byR the ring of polynomials with coefficients inQ in the variablesZu

whereu ranges over the setx0X
∗x1, and byJ the ideal ofR consisting of all

polynomials which vanish under the specialization map

Zu 7→ ζ̂ (u) (u ∈ x0X
∗x1).

Conjecture 5.3. The polynomials

Zu1Zu2 − Zu1xu2, Zu1Zu2 − Zu1?u2 and Zx1?v−x1xv,

whereu1, u2 andv range over the set of elements inx0X
∗x1, generate the idealJ.

This statement is slightly different from the conjecture in § 3 of [IK], where
Ihara and Kaneko suggest that all linear relations between MZV’s are supplied by
theregularized double shuffle relations

ζ̂ (reg(u ? v − uxv)) = 0,

whereu ranges overH1 andv overH0. Here, reg is theQ-linear mapH → H0

which mapsw to the constant term of the expression ofw as a (commutative)
polynomial inx0 andx1 with coefficients inH0

x. It is proved in [IK] that the linear
polynomialsZreg(u?v−uxv) associated to the regularized double shuffle relations
belong to the idealJ. On the other hand, at least for the small weights, one can
check that the regularized double shuffle relations follow from the three standard
relations. Hence our Conjecture 5.3 seems stronger than the conjecture of [IK],
but we expect they are in fact equivalent.
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Denote byZp the Q-vector subspace ofR spanned by the real numbersζ(s)

with s of weightp, with Z0 = Q andZ1 = {0}. Using any of the first two standard
relations (2.3) or (4.4), one deducesZp · Zp′ ⊂ Zp+p′ . This means that theQ-
vector subspaceZ of R spanned by allZp, p ≥ 0, is a subalgebra ofR over Q

which is graded by the weight. From Conjecture 5.3 one deduces the following
conjecture of Goncharov [G1]:

Conjecture 5.4. As aQ-algebra,Z is the direct sum ofZp for p ≥ 0.

Conjecture 5.4 reduces the problem of determining all algebraic relations be-
tween MZV to the problem of determining alllinearsuch relations. The dimension
dp of Zp satisfiesd0 = 1, d1 = 0, d2 = d3 = 1. The expected value fordp is
given by a conjecture of Zagier [Z]:

Conjecture 5.5. For p ≥ 3 we have

dp = dp−2 + dp−3.

An interesting question is whether Conjecture 5.3 implies Conjecture 5.5. For
this question as well as other related problems, see [É] and [C].
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