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Multiple polylogarithms in a single variable are defined by
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whens1, ..., s; are positive integers anda complex number in the unit disk. For= 1, this is

the classical polylogarithm L{z). These multiple polylogarithms can be defined also in terms of
iterated Chen integrals and satisfyuffle relationsMultiple polylogarithms in several variables
are defined fos; > 1 and|z;| < L (1 <i <k) by
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and they satisfy not only shuffle relations, but aftaffle relations When one specializes

the shuffle relations in one variable at= 1 and the stuffle relations in several variables at
z1 = --- = zx = 1, one gets linear or quadratic dependence relations between the Multiple Zeta
Values

1
S8y vus) = Z =1 sk

ni>ng>-—>np=1"1 "

which are defined fok, s1, ..., s; positive integers withsy > 2. The Main Diophantine
Conjecturestates that one obtains in this way all algebraic relations between these MZV.

Mathematics Subject Classification:11J91, 33E30.

0. Introduction

A long term project is to determine all algebraic relations among the values

7,¢03),¢(5),...,0@n+1),...

of the Riemann zeta function

£(s) = Zni

n>1
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So far, one only knows that the first number in this list,is transcendental, that
the second ong;(3), is irrational, and that the other ones spa@-a&ector space
of infinite dimension [Ri1], [BR]. See also [Ri2], [Zul] and [Zu2].

The expected answer is disappointingly simple: it is widely believed that
there are no relations, which means that these numbers should be algebraically
independent:

(?) For anyn > 0 and any nonzero polynomid € Z[Xo, ..., X,],

P(m,¢@3),¢(05),...,¢2n+1)) £0.

If true, this property would mean that there is no interesting algebraic structure.
The situation changes drastically if we enlarge our set so as to include the so-

called Multiple Zeta Values (MZV, also called Euler-Zagier numbers or Raéyz

see [Eu], [Z] and [C]):

1
(51, ..., 8%) = Z 1 sk’
ni>np>-->n;>1 1
which are defined fok, s1, . .., s; positive integers with1 > 2. It may be hoped

that the initial goal would be reached if one could determine all algebraic relations

between the MZV. Now there are plenty of relations between them, providing a

rich algebraic structure. One type of such relations arises when one multiplies two
such series: it is easy to see that one gets a linear combination of MZV. There is
another type of algebraic relations between MZV, coming from their expressions

as integrals. Again the product of two such integrals is a linear combination of

MZV. Following [B3], we will use the nameatufflefor the relations arising from

the series, anstufflefor those arising from the integrals.

The Main Diophantine ConjecturgConjecture 5.3 below) states that these
relations are sufficient to describe all algebraic relations between MZV. One should
be careful when stating such a conjecture: it is necessary to include some relations
which are deduced from the stuffle and shuffle relations applied to divergent series
(i.e. withsy = 1).

There are several ways of dealing with the divergent case. Here, we use the
multiple polylogarithms

ni

Z
Ligpsw@= Y =

nit
ny>ny>-->n;>1 1 k

which are defined fotz| < 1 whensy, ..., s, are all> 1, and which are also
defined for|z| = 1 if 57 > 2.

These multiple polylogarithms can be expressed as iterated Chen integrals, and
from this representation one deduces shuffle relations. There is no stuffle rela-
tions for multiple polylogarithms in a single variable, but one recovers them by
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introducing the multivariables functions

ni
) Z ...Z .
ity @Leen2) = D T nﬁ,, (i >11<i<k

ni>np>->m=1 1 k

which are defined not only faei| < 1 and|z;] < 1 (2 < i < k), but also for
lzil <11 <i <k)ifsy > 2.

1. Multiple Polylogarithms in One Variable
and Multiple Zeta Values

Letk, s1, ..., sx be positive integers. Writein place of(sy, . . ., s¢). One defines
a complex function of one variable by

ni

Lo Y L

k-
ni>no>-->np>1 1 k

This function is analytic in the open unit disk, and, in the case 2, it is also
continuous on the closed unit disk. In the latter case we have

¢(s) = Lis(D).

One can also define in an equivalent way these functions by induction on the
numberp = s1 + - - - 4+ s (theweightof s) as follows. Plainly we have

d . . .
(1.1) ZELI (1rsp) (@) = Ligi—1,5p,. s (@) I 51>2
and
d . . .
(12) a- Z)d_ZLI (l,sz,...,sk)(z) =Li (52,0058, k)(Z) if k>2.

Together with the initial conditions
1.3) Li;(0) =0,

the differential equations (1.1) and (1.2) determine all the Li
Therefore, as observed by M. Kontsevich (cf. [Z]; see also [K] Chap. XIX,
§ 11 for an early reference to H. Poincare, 1884), an equivalent definitiongor Li
is given by integral formulae as follows. Startifigwith k = s = 1, we write
2 odt

Li1(z) = —log(1—2) = A 11—

(9 This induction could as well be started frdm= 0, provided that we set kiz) = 1.
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where the complexintegral is over any path from @ taside the unit circle. From
the differential equations (1.1) one deduces, by inductions fer2,

. 2 . dt < dt 1 dt Iy_2 dt7 te—1 dt
o= [Tl ® - [ [Pl g
0 ! 0o nJo n2 o ti-1Jo 11—t

In the last formula, the complex integral over which is written on the left (and
which is the last one to be computed), is over any path inside the unit circle from
0 to z, the second one oves is from 0O torq, ..., and the last one ovey on the
right, which is the first one to be computed, is from Gito;.

Chen iterated integralésee [K] Chap. XIX, § 11) provide a compact form for
such expressions as follows. R, .. ., ¢, differential forms andc, y complex
numbers, define inductively

y y t
/ <P1~-~<ﬂp=/ wl(t)/ @2 Pp.
X X X

Fors = (s1, - - - sx), set

s1—1 sp—1
Wy =wy w1--wy o1,

where

(t)—dt and () = dt
o = w1 =1-;

Then the differential equations (1.1) and (1.2) with initial conditions (1.3) can be
written

Zz
1.4) Lis(z) = / ws.
0
Example.Given a stringus, . . ., a; of integers, the notatiofuy, . . ., ax}, stands
for thekn-tuple
(a1, ...,ax,...,a1,...,a),
where the stringy, .. ., a is repeatea times.

For anyn > 1 and|z| < 1 we have

. 1
(1.1) Liqy, () = H(|Og(1/(1 —2))",

which can be written in terms of generating series as
o
> L, @x" =1-2)""
n=0

The constant term I, (z) is 1.
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2. Shuffle Product and the First Standard Relations

Denote byX = {xo, x1} the alphabet with two letters and B§* the set of words
on X. Aword is nothing else than a non-commutative monomial in the two letters
xp andxy. The linear combinations of such words with rational coefficients

E Cull,
u

where{c,; u € X*} is a set of rational numbers with finite support, is the non-
commutative ringh = Q(xg, x1). The product is concatenation, the unit is the
empty worde. We are interested with the sgt'x; of words which end withx1.
The linear combinations of such words is a left ideakpfvhich we denote by
NHx1. Also we denote by;l the subalgebr&®e + $Hx1 of 9.

Fors a positive integer, sef y;, = xg‘lxl. Next, for a tuples = (s1, ..., sx)
of positive integers, defing, = yy, - - - y;,. Hence the seX*x; is also the set of
wordsy,, wherek, s1, .. ., s; run over the set of all positive integers. We define
Ifiu(z) foru € X*x1 by Ifiu (z) = Lis(z) whenu = y,. By linearity we extend the
definition ofLi, (z) to $:

GL!(Z) = ZCuGu(Z) for v= Zcuu

whereu ranges over afinite subsetfe} UX*x; andc, € Q, while Ge(z) =1.The
set ofconvergent wordss the set, denoted by} U xoX*x1, of words which start
with xg and end withx; together with the empty worel TheQ-vector subspace
they span i) is the subalgebr® = Qe + xp$Hx1 of $1, and forv in H° we set

£() = Liy(D)
so that? : $H° — R is aQ-linear map and

C(ys) = ¢()
for ys in xoX*x1.

Definition. Theshuffle producbf two words inX* is the element iy which is
defined inductively as follows:

ey = uuie = u
for anyu in X*, and
(xju)m(xjv) = x; (umm(x;v)) + x; ((x;u)mv)

foru, vin X* andi, j equal to O or 1.
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This product is extended by distributivity with respect to the additiofy tmd
defines a commutative and associative law. Moregfand$* are stable under
m. We denote by:;gl C f)%u C $Hm the algebras where the underlying sets are
9% c 91 c 9 respectively and the productis. Radford’s Theorem gives the
structure of these algebras: they are (commutative) polynomials algebras on the
set of Lyndon words (see for instance [R]).

Computing the produdﬁu(z)Liu/(z) of the two associated Chen iterated inte-
grals yields (see [MPH], Th. 2):

Proposition 2.1. For u and 4 in H1,,
Li ()i (2) = Dl (2).
For instance from

x1m(xox1) = X1X0X1 + 2x0x3
we deduce

(2.2) Li1(z)Liz(z) = Li(g,2)(z) + 2Li2,1)(2).
Settingz = 1, we deduce from Proposition12

(23) CaE W) = & (umu)

for u andu’ in $9;.

These are théirst standard relationbetween multiple zeta values.

3. Shuffle Product for Multiple Polylogarithms
in Several Variables

The functions ok complex variableg

Zat gk
_ L,
TSI S S s

Sk
ny>ny>-->n;>1 1 k

have been considered as early as 1904 by N. Nielsen, and rediscovered later by
A.B. Goncharov [G1, G2]. Recently, Bcalle [E] used them for; roots of unity

(*)Our notation for
Li (sl....,sk)(zl ----- Zk)
is the same as in [H], [W] or [C], but for Goncharov’s [G2] it corresponds to
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(in cases; > 2): these are thdecorated multiple polylogarithm®f course one
recovers the one variable functions (4) by specializing; = - - - = z; = 1. For
simplicity we write Li(z), wherez stands fornzy, ..., zx). There is an integral
formula which extends (1.4). Define

2dr if 0,
w, (1) = { 1= e

d .
g if z=0.

From the differential equations

d . . .
<1 ng(g) = Li (sl—l,sz,...,sk)(é) if s1>2
021
and
J . .
a- 21)3—le (Ls2,.os0) (@) = Ly, 50 (2122, 23, ..., 2k)

generalizing (1.1) and (1.2), we deduce

1
B _ s1—1 so—1 sp—1
Lis(2) —/O Wy W0y Wrizpc Oy Wrplgg-

Because of the occurrence of the produgts..z; (1 < j < k), itis convenient
(see for instance [G1] and fB]) to perform the change of variables

y,~=z[1~-~z;l 1=<j=<k andz.,‘z% 1=<j<k
J

with yg = 1, and to introduce the differential forms
b ot
wy (1) = —wy_1(t) = m,
so thatw, = wp andw] = —w1. Also define

A(sl,...,sk>
Y1, .-+ Yk

k k
—v;
IR NI Rl DX
v1>1 v>1j=1 i=j

— (_1\P s1—1 L sk—1
= (-1 /A wy Wy Wy Wy
p

-8

With this notation some formulae are simpler. For instance the shuffle relation is
easier to write with.: the shuffle is defined on words on the aIpha(bgt; y € C},
(includingy = 0), inductively by

(a);,u)m(a)’y/v) = w’} (um(a)/y/v)) + a)’y/((a);u)mv).
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4. Stuffle Product and the Second Standard Relations

The functions Lj(z) satisfy not only shuffle relations, but alstuffle relations
arising from the product of two series:

(4.) Lis@)Liy(z) =Y Liy @,

£//
where the notation is as follows:” runs over the tupless?, .. ., s;,) obtained
froms = (s1,...,s) and s' = (s}, ..., s;,) by inserting, in all possible ways,
some 0 in the strings1, ..., sx) as well as in the strings1, . . ., s;{,) (including

in front and at the end), so that the new strings have the same lgfigthith
max {k,k'} < k” < k + K/, and by adding the two sequences term by term.
For each suck”, the component of z is z; if the corresponding;” is justs;
(correspondingd a 0 ins’), it is z;, if the corresponding;’ is s, (corresponding to
a0inys), and finally itisz;z; if the corresponding;’ is s; 4 s,. For instance

s s1 52 0 s3 sS4 ... O
s 0 s sh 0 S s
o ! ’ ; 3 ;o K
N s1 S22+ S1 S, S3 S4 + §3 ... Sy
" m zezy 7, w3 zazy ... 7y

Of course the 0’s are inserted so thatsfias zero.
Examples. Fork = k' = 1 the stuffle relation (4.1) yields
(4.2) Lis(2)Liy(z") = Li(s,5)(z, 2) 4 Liy 5(z, 2) + Ligyy(z2),
while for k = 1 andk’ = 2 we have

Lis (2)Li ;5 (21, 22) = Li(5,5) (2: 210 20) + L .50 (21, 2, 25)
(4.3) HLi (57,555 (21 222 2) F L5759 (221, 22) + Li 5 5455 (21, 229).-
The stuffle produck is defined onX* inductively by

exU =Uxe=1u

foru e X*,
n _ n __ n
xo*w—w*xo—a)xo

foranyn > 1 andw € X*, and

(ysu) * (yeu') = ys(u x (yeu")) + e ((su) * u') + yope(u x ')

foru andu’ in X*,s > 1,t > 1.
This product is extended by distributivity with respect to the additiomto
and defines a commutative and associative law. Moreg%eand 5! are stable
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underx. We denote byj? C 5’_)1 C 9. the correspondingarmonicalgebras. Their
structure has been investigated by M. Hoffman [H]: again they are (commutative)
polynomials algebras over Lyndon words.

Specializing (4.1) aty = --- =z =) = --- = z;, = 1, we deduce
(4.4) CE W) = Eunu)

for u andu’ in $°.
These are thesecond standard relationsetween multiple zeta values. For
instance (4.3) with = 2} = z, = 1 gives

C()C (s, 85) = £(s, 87, 55) + (57, 8, 55) + £(s7, 55, 5)
+(s + 57, 55) + (51,5 + 55)

fors > 2,5; > 2ands;, > 1.

5. The Third Standard Relations and the Main
Diophantine Conjectures

We start with an example. Combining the stuffle relation (4.2) fers’ = 1 with
the shuffle relation (2.2) far’ = z, we deduce

(51) Lig2( 1) +2Lliyz D) =Ligy(z 2) + Liey(z, 2) + LiaEd).

The two sides are analytic inside the unit circle, but not convergentatl.
We claim that

. . 7"(1—-z7"?)
F(z) =Lia2(z, 1) —Ligy(z,2) = E —
nin
ni>npy>1 2

tends to 0 as tends to 1 inside the unit circle. Indeed fof < 1 we have

M-z =|1—2)A+z+---+2"2 Y] <nall—z|,

hence
-1 -1
ni |1_ Zn2| ni 1
2T <-ad)
np=1 n3 no=1 2

From (1.5) withn = 2 we deduce

. 1
|F(2)] = [1—z|Lign(zD) = E'l — z|(log(1/(1 — z)))%.
Therefore, taking the limit of the relation (5.1) as> 1 yields Euler’s formula

£(2,1) =¢@3).
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This argument works in a quite general setting and yields the relations

(5.2) f(xl * v —xqmv) =0

for eachv € H°.

These are ththird standard relationdetween multiple zeta values.

The Main Diophantine Conjectures below arose after the works of several mathe-
maticians, including D. Zagier, A.B. Goncharov, M. Kontsevich, M. Hoffman,
M. Petitot and Hoang Ngoc Minh, K. lhara and M. Kaneko (see [C]). They imply
that the three standard relations (2.3), (4.4) and (5.2) generate the ideal of algebraic
relations between all numberss). Here are precise statements.

We introduce independent variablgg, whereu ranges over the s¢#} U X7, .

Forv =3, c,uin $, we set
Zy =Y cuZu.
u

In particular foru; andus in xole, Zy,mu, and Zy,,,,, are linear forms in
Zy,u € xoX*x1. Also, forv € xoX*x1, Zymv—xxv 1S @ linear form inZz,,
u € xoX*x1.

Denote byR the ring of polynomials with coefficients i@ in the variablesZ,
whereu ranges over the sepX*x1, and byJ the ideal of R consisting of all
polynomials which vanish under the specialization map

Zu > C(u) (u € xoX*x1).
Conjecture 5.3. The polynomials
ZuyZuy — Zuyiiugs  Zuy Zuy — Zugsup AN Zyjsy—xymmo,
whereu1, u2 andv range over the set of elementsifX *x1, generate the idegl

This statement is slightly different from the conjectunesi 3 of [IK], where
Ihara and Kaneko suggest that all linear relations between MZV's are supplied by
theregularized double shuffle relations

E(reg(u * v — umv)) = 0,

whereu ranges ovef® andv over °. Here, reg is th&-linear maps) — §°
which mapsw to the constant term of the expressiomfas a (commutative)
polynomial inxg andxy with coefficients inﬁ%l. Itis provedin [IK] that the linear
polynomialsZrequ«w—ummv) associated to the regularized double shuffle relations
belong to the ideal. On the other hand, at least for the small weights, one can
check that the regularized double shuffle relations follow from the three standard
relations. Hence our Conjecture 5.3 seems stronger than the conjecture of [IK],
but we expect they are in fact equivalent.
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Denote by3, the Q-vector subspace d& spanned by the real numberé)
with s of weightp, with 30 = Q and31 = {0}. Using any of the first two standard
relations (2.3) or (4.4), one deducgs - 3,» C 3,4,/ This means that th@-
vector subspacg of R spanned by al,, p > 0, is a subalgebra dk overQ
which is graded by the weight. From Conjecture 5.3 one deduces the following
conjecture of Goncharov [G1]:

Conjecture 5.4. As aQ-algebra, 3 is the direct sum 0, for p > 0.

Conjecture 5.4 reduces the problem of determining all algebraic relations be-
tween MZV to the problem of determining éihear such relations. The dimension
d, of 3, satisfiesdp = 1,d1 = 0,d> = d3 = 1. The expected value fat, is
given by a conjecture of Zagier [Z]:

Conjecture 5.5. For p > 3we have
dp=dp2+dp3.

An interesting question is whether Conjecture 5.3 implies Conjecture 5.5. For
this question as well as other related problems, E¢arid [C].
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