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Abstract

The very first interpolation problem for analytic functions is to ask
for an entire function f , the derivatives of which at the origin are
given; the solution is given by the Taylor series. There are many
other ways of interpolating analytic functions: in place of f (n)(0),
we can consider f(n), or f (n)(n) for instance. Lagrange
interpolation polynomials involve the values of the function at
several points; some derivatives may be included. The main goal of
these lectures will be to consider further examples with Lidstone,
Whittaker, Poritsky and Gontcharoff interpolation problems.

This first course includes the necessary background on entire
functions, with Cauchy’s inequalities, the order and type of an
entire function, Stirling’s and Jensen’s formulae, Schwarz Lemma,
Laplace transform, Weierstrass and Hadamard infinite products,
Newton interpolation, Hermite identity, Abel interpolation.
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Entire functions

An entire function is a function C→ C which is analytic
(= holomorphic) in C.

Examples are : polynomials, the exponential function

ez =
∑
n≥0

zn

n!
,

trigonometric functions sin z, cos z, sinh z, cosh z. . .

An entire function which is not a polynomial is transcendental.
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The interpolation problem
The graph {(z, f(z)) | z ∈ C} ⊂ C2 of an entire function has
the power of continuum.

However, such a function is uniquely determined by a
countable set; for instance by the sequence of coefficients of
its Taylor series at a given point z0:

f(z) =
∑
n≥0

f (n)(z0)
(z − z0)n

n!
·

Notation:

f (n)(z) =
dn

dzn
f(z).

There are other sequences of numbers which determine
uniquely an entire function, at least if we restrict to some
classes of entire functions.
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Interpolation data

Given complex numbers {σi}i∈I , {ai}i∈I and nonnegative
integers {ki}i∈I , the interpolation problem is to decide
whether there exists an analytic function f satisfying

f (ki)(σi) = ai for all i ∈ I.

We will consider this question for f analytic everywhere in C
(i.e. f is an entire function) and I = N.

The unicity is given by the answer to the same question with
ai = 0 for all i ∈ I and requesting f 6= 0.
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First example: Taylor series

Taylor series: data: σn = 0 and kn = n for all n ≥ 0. The
solution of the interpolation problem, if it exists, is unique and
given with

f(z) =
∑
n≥0

an
zn

n!
, f (n)(0) = an.

The polynomials zn

n!
satisfy

dm

dzm

(
zn

n!

)
(0) = δmn =

{
1 for m = n,

0 for m 6= n,

for all m,n ≥ 0.
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Calculus of finite differences
Another classical interpolation problem is given by the data
kn = 0 and σn = n for all n ≥ 0. Given complex numbers an,
does there exist an entire function f satisfying

f(n) = an for all n ≥ 0?

The answer depends on the growth of the sequence (an)n≥0.
The example of the function sin(πz) shows that the solution is
not unique in general. However we recover unicity by adding a
condition on the growth of the solution f .

For the existence, one uses interpolation formulae based on

f(z) =f(0) + zf 1(z), f 1(z) = f 1(1) + (z − 1)f 2(z),

fn(z) = fn(n) + (z − n)fn+1(z), . . .
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Lagrange interpolation

Let α1, . . . , αs be pairwise distinct complex numbers. For
1 ≤ σ0 ≤ s, the polynomial

Aσ0 =
∏

1≤σ≤s
σ 6=σ0

z − ασ
ασ0 − ασ

Joseph-Louis Lagrange

(1736 – 1813)satisfies

Aσ0(ασ) =

{
1 if σ = σ0,

0 for σ 6= σ0, 1 ≤ σ ≤ s.

Edward Waring (1779), Leonhard Euler (1783), Lagrange (1795).
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Lagrange–Hermite interpolation

Let α1, . . . , αn be pairwise
distinct complex numbers and
t1, . . . , tn be positive integers.
There exist polynomials
Aiν(z)
(1 ≤ i ≤ n, 0 ≤ ν < ti)
such that

Charles Hermite

(1822 – 1901)

(
d

dz

)τ
Aiν(αj) = δτ,νδij

for 1 ≤ i, j ≤ n, 0 ≤ τ, ν < ti.

Integral formulae by Hermite:
Reference: S. Lang, Complex analysis, Chap. XII § 4.

9 / 48

https://mathshistory.st-andrews.ac.uk/Biographies/Hermite/


Abel interpolation

Given a sequence (an)n≥0 of complex numbers, is there an
entire function f such that f (n)(n) = an for all n ≥ 0?

Solution: start with an = δmn
for all m ≥ 0:
for each n ≥ 0, ask for a
polynomial P n satisfying

P (m)
n (m) = δmn for m ≥ 0. Niels Henrik Abel

(1802 – 1829)

Answer:
f(z) =

∑
n≥0

f (n)(n)P n(z).
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Further interpolation problems
We are going to consider the following interpolation problems:

I (Lidstone):

f (2n)(0) = an, f (2n)(1) = bn for n ≥ 0.

I (Whittaker):

f (2n+1)(0) = an, f (2n)(1) = bn for n ≥ 0.

I (Poritsky): For m ≥ 2 and σ0, . . . , σm−1 in C,

f (mn)(σj) = anj for n ≥ 0 and j = 0, 1, . . . ,m− 1.

I (Gontcharoff): For (σn)n≥0 a sequence of complex
numbers,

f (n)(σn) = an for n ≥ 0.
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Applications of interpolation

• Numerical analysis: numerical integration, differential
equations, approximation of functions, boundary value
problem, scientific calculus.

• Actuariat, statistics, electrical engineering, physics,
computer science.

• Cryptography, Shamir’s Secret Sharing.

• Number theory; integer valued entire functions of finite
exponential type, transcendence theory.
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Entire functions
Analytic functions, Taylor series

f(z) =
∑
n≥0

anz
n,

an =
1

n!
f (n)(0) =

1

2iπ

∫
|z|=r

f(z)
dz

zn+1
·

The zeroes of a nonzero entire function are isolated.
Multiplicity of a zero.
Number of zeroes in a compact counting multiplicities.

An entire function f has no zero if and only if f(z) = eg(z) :

g(z) = log f(0) +

∫
0

z f ′(ζ)

f(ζ)
dζ.
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Order and type of entire functions

For % ∈ Z, % ≥ 0, the function ez
%

is an entire function of
order %.
For τ ∈ C, τ 6= 0, the function eτz is an entire function of
order 1 and exponential type |τ |.

For t ∈ C, t 6= 0, the function

sin(tz/π) =
eitz − e−itz

2i

has order 1 and exponential type |t|.
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Order and type of entire functions

Maximum modulus principle:

|f |r := sup
|z|=r
|f(z)| = sup

|z|≤r
|f(z)|.

The order of an entire function f is

%(f) := lim sup
r→∞

log log |f |r
log r

,

while the exponential type of an entire function is

τ(f) := lim sup
r→∞

log |f |r
r
·
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Order and type of entire functions

If the exponential type is finite, then f has order ≤ 1.
If f has order < 1, then the exponential type is 0.

Examples:
A polynomial has order 0, hence exponential type 0.
The function ez

2
has order 2, hence infinite exponential type.

The function eez has infinite order, hence infinite exponential
type.
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Entire functions of finite exponential type

Proposition.
The exponential type of an entire function is also given by

τ(f) = lim sup
n→∞

|f (n)(z0)|1/n (z0 ∈ C).

The proof rests on Cauchy’s estimate for the coefficients of
the Taylor series and on Stirling’s formula for n!.

Example:

(eτz)(n) = τneτz, lim
n→∞

|τneτz|1/n = |τ |.

The derivative of f has the same exponential type as f .
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Cauchy’s inequalities

Augustin-Louis Cauchy

(1789 – 1857)

Write

f(z) =
∑
n≥0

f (n)(z0)

n!
(z − z0)n.

For all r > 0, we have (Parseval)

1

2π

∫
0

2π

|f(z0 + reiθ)|2dθ =
∑
n≥0

|f (n)(z0)|2

n!2
r2n.

From the upper bound

1

2π

∫
0

2π

|f(z0 + reiθ)|2dθ ≤ |f |2r+|z0|

we deduce, for all n ≥ 0 and r > 0 (Cauchy’s inequalities)

|f (n)(z0)|
n!

rn ≤ |f |r+|z0|.
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Stirling formula

James Stirling

(1692 – 1770)

n! ' nne−n
√

2πn as n→∞.

Stirling’s approximation can be extended to the double
inequality

√
2πnn+1/2e−n+ 1

12n+1 < n! <
√

2πnn+1/2e−n+ 1
12n .

Robbins, H. “A Remark of Stirling’s Formula.” Amer. Math.
Monthly 62, 26-29, 1955.
Feller, W. “Stirling’s Formula.” § 2.9 in: An Introduction to
Probability Theory and Its Applications, Vol. 1, 3rd ed. New
York: Wiley, pp. 50-53, 1968.
http://mathworld.wolfram.com/StirlingsApproximation.html
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Proof of the result on the type

Recall: the type of an entire function f is defined as

τ(f) = lim sup
r→∞

log |f |r
r
·

Proposition.
For each z0 ∈ C, we have

lim sup
n→∞

|f (n)(z0)|1/n = τ(f).
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Zeros of a nonzero entire function

The set of zeros of a nonzero entire function f is a discrete
subset of C (zeros are isolated).
If α1, . . . , αN are zeroes of f (counting multiplicities), then

f(z)
N∏
n=1

(z − αn)−1

is an entire function.
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Schwarz Lemma

Let f be analytic in an open set containing the closed disc
|z| ≤ R, with at least N zeroes (counting multiplicities) in a
disc |z| ≤ r with r ≤ R. Then

|f |r ≤
(
R

3r

)−N
|f |R.

Herman Schwarz

(1843 - 1921)

Corollary.
There is no nonzero entire function of exponential type
< 1/3e vanishing on N.
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Schwarz Lemma with Blaschke products

Exercise. Prove the stronger
estimate

|f |r ≤
(
R2 + r2

2rR

)−N
|f |R

Wilhelm Blaschke

(1885 - 1962)

https://mathshistory.st-andrews.ac.uk/Biographies/Blaschke/

Corollary.
There is no nonzero entire function of exponential type
≤ 1/2e vanishing on N.

23 / 48

https://mathshistory.st-andrews.ac.uk/Biographies/Blaschke/
https://mathshistory.st-andrews.ac.uk/Biographies/Blaschke/


Blaschke products
Exercise. Let a ∈ C and R > 0 satisfy |a| ≤ R. For z ∈ C
satisfying az 6= R2, define

ϕa(z) =
z − a
R2 − az

.

Then

|ϕa(z)| = 1

R
for |z| = R.

Further, for r in the range |a| ≤ r < R, we have

sup
|z|=r
|ϕa(z)| = |ϕa(−ar/|a|)| =

r + |a|
R2 + r|a|

≤ 2r

R2 + r2
·

Furthermore, for |a| ≤ r ≤ R and |z| = r with z 6= −ar/|a|,
we have

|ϕa(z)| < r + |a|
R2 + r|a|

·
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Jensen’s Formula

Johan Jensen

(1859 – 1925)

For an analytic function in an open set
containing the disc |z| ≤ r, assuming
f(0) 6= 0, we have

log |f(0)| = −
∑

f(αk)=0

log
r

|αk|
+

1

2π

∫
0

2π

log |f(reiθ)|dθ.

Corollary.
There is no nonzero entire function of exponential type < 1
vanishing on N.

Hint : an upper bound for the integral is log |f |r. Take r = N ,
αk = k, translate with ε so that f(0) 6= 0. The sum of log r gives
N logN , the sum of log |αk| gives logN !.
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Laplace Borel Transform

Pierre-Simon Laplace

(1749 – 1827)

Émile Borel

(1871 – 1956)

Fritz Carlson

(1888 – 1952)

Theorem (Carlson, 1914).
There is no nonzero entire function of exponential type < π
vanishing on N.

The function sin(πz) has exponential type π and vanishes on
N.

Classical proof: rests on Phragmén–Lindelöf theorem.
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Laplace Borel Transform
There is no nonzero entire function of exponential type < π
vanishing on N.
Sketch of proof: assume let f be an entire function of
exponential type τ(f) = τ with τ < π. Let Γ be the circle
|z| = r with r in the interval τ < r < π. Then

g(w) =
∑
n≥0

f(n)w−n−1

define a holomorphic function outside exp{|w| ≤ τ} which
satisfies

f(z) =
1

2iπ

∫
exp Γ

wzg(w)dw.

J. Dufresnoy & Ch. Pisot Prolongement analytique de la série de
Taylor. Ann. sci. É.N.S. 3e série, 68 (1951), 105–124.
http://www.numdam.org/item?id=ASENS_1951_3_68__105_0
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Entire functions vanishing on N of finite

exponential type

An entire function f vanishing on N of finite exponential type
τ(f) can be written as a trigonometric sum

f(z) = a1(z) sin(πz) + a2(z) sin(2πz) + · · ·+ an(z) sin(nπz)

with a1, . . . , an in C[z] and n ≤ τ(f)/π.

If τ(f) < π, then f = 0.

If τ(f) < 2π, then f = a1(z) sin(πz).

If an 6= 0, then τ(f) = nπ.
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Laplace transform

Bijective map between the sets of entire function of finite
exponential type ≤ τ and analytic functions on |t| > τ
vanishing at infinity.

Let
f(z) =

∑
n≥0

an
n!
zn

be an entire function of exponential type τ(f).

The Laplace transform of f , viz.

F (t) =
∑
n≥0

ant
−n−1,

is analytic in the domain |t| > τ(f).
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Laplace transform and inverse Laplace transform

From Cauchy’s residue Theorem, it follows that for r > τ(f)
we have

1

2πi

∫
|t|=r

tnF (t)dt = an.

Hence (inverse Laplace transform)

f(z) =
1

2πi

∫
|t|=r

etzF (t)dt

and

f (n)(z) =
1

2πi

∫
|t|=r

tnetzF (t)dt.
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Weierstrass and Hadamard infinite products
Weierstrass products:

zm
∏
j

(
1− z

zj

)
epnj (z/zj),

pn(z) = z +
z2

2
+
z3

3
+ · · ·+ zn

n
·

Canonical product:

f(z) = eg(z)zm
∏
j

(
1− z

zj

)
epn(z/zj)

with g an entire function and with a uniform n minimal.
Hadamard: for f of finite order %, g is a polynomial with

%− 1 ≤ max{deg g, n} ≤ %.

http://www-users.math.umn.edu/~garrett/m/complex/hadamard_products.pdf
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Hadamard canonical products

Jacques Hadamard

(1865 – 1963)

• For N = {0, 1, 2, . . . }:

z
∏
n≥1

(
1− z

n

)
ez/n =

−eγz

Γ(−z)
,

where

Γ(z) =

∫
0

∞
e−ttz

dt

t
·

The function 1/Γ(z) is entire of order 1 and infinite type.
• For Z = {0,±1,±2, . . . }:

z
∏
n∈Z
n 6=0

(
1− z

n

)
e−z/n = z

∏
n≥1

(
1− z2

n2

)
=

−1

zΓ(z)Γ(−z)
=

sin πz

π
·
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Weierstrass sigma function

Karl Weierstrass

(1815 – 1897)Let Ω = Zω1 + Zω2 be a lattice in C.
The canonical product of Weierstraß associated with Ω is the
sigma function σΩ defined by

σΩ(z) = z
∏

ω∈Ω\{0}

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)

This function has a simple zero at each point of Ω. It is an
entire function of order 2: for ω ∈ Ω,

σΩ(z + ω) = χ(ω)σΩ(z)eη(ω)(z+(ω/2)), χ(ω) = ±1.
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Newton interpolation

Isaac Newton

(1643 – 1727)

Let f be an entire function and
α1, α2, . . . be complex numbers. From

f(z) = f(α1)+(z−α1)f 1(z), f 1(z) = f 1(α2)+(z−α2)f 2(z), . . .

we deduce

f(z) = b0 + b1(z − α1) + b2(z − α1)(z − α2) + · · ·

with

b0 = f(α1), b1 = f 1(α2), . . . , an = fn(αn+1).
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Divided differences

Given variables x0, x1, . . . , xn and a function f of a single
variable, we have

f(xn) = f(x0) + (xn − x0)f [x0, x1] + (xn − x0)(xn − x1)f [x0, x1, x2]

+ · · ·+ (xn − x0)(xn − x1) · · · (xn − xn−1)f [x0, x1, . . . , xn]

with

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
·
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Divided differences

Hint :

f [x0, x1, . . . , xn] =
n∑
j=0

f(xj)∏
0≤k≤n
k 6=j

(xj − xk)
·

Consequence : Given distinct points x0, x1, . . . , xn, a
polynomial f of degree ≤ n has an expansion

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+ · · ·+ (x− x0)(x− x1) · · · (x− xn−1)f [x0, x1, . . . , xn]
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Calculus of finite differences (arithmetic progressions)

Given an arithmetic function f : N→ C, define another
arithmetic function ∆f by

∆f(n) = f(n+ 1)− f(n).

If f is a polynomial of degree d ≥ 1, then ∆f is a polynomial
of degree d− 1. Hence for the d–th iterate ∆d the polynomial
∆df is constant, and ∆d+1f = 0 (the zero function).
Set z(n) = z(z − 1) · · · (z − n+ 1). Then ∆z(n) = nz(n−1).
Newton expansion of a polynomial f of degree d:

f(z) = f(0)+(∆f)(0)z(1)+(∆2f)(0)
z(2)

2!
+· · ·+(∆df)(0)

z(d)

d!
·

http://nonagon.org/ExLibris/calculus-finite-differences
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Hermite formula
Following C. Hermite, starting from

1

x− z
=

1

x− α
+
z − α
x− α

· 1

x− z
·

and repeating yields

1

x− z
=

1

x− α1

+
z − α1

x− α1

·
(

1

x− α2

+
z − α2

x− α2

· 1

x− z

)
·

Inductively, we deduce the next formula due to Hermite:

1

x− z
=

n−1∑
j=0

(z − α1)(z − α2) · · · (z − αj)
(x− α1)(x− α2) · · · (x− αj+1)

+
(z − α1)(z − α2) · · · (z − αn)

(x− α1)(x− α2) · · · (x− αn)
· 1

x− z
·
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Newton interpolation formula
Multiplying by (1/2iπ)f(z) and integrating yields Newton’s
interpolation formula:

f(z) =
n−1∑
j=0

bj(z − α1) · · · (z − αj) +Rn(z)

with

bj =
1

2iπ

∫
C

f(x)dx

(x− α1)(x− α2) · · · (x− αj+1)
(0 ≤ j ≤ n−1)

and

Rn(z) = (z − α1)(z − α2) · · · (z − αn)·
1

2iπ

∫
C

f(x)dx

(x− α1)(x− α2) · · · (x− αn)(x− z)
·
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Abel series

Niels Abel

(1802 – 1829)

G.H. Halphén
(1844 – 1889)

V. Pareto
(1848 – 1923)

Abel’s interpolation problem is to find an entire function f for
which the values f (n)(n) are prescribed. It was studied by
G. Halphén (1882), V. Pareto (1892), W. Gontcharoff (1930),
R.C. Buck (1946).

https://www-history.mcs.st-andrews.ac.uk/Biographies/Halphen.html

https://fr.wikipedia.org/wiki/Vilfredo_Pareto
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Abel’s interpolation problem

The lack of unicity arises from nonzero entire functions f , like
sin(πz/2), satisfying f (n)(n) = 0 for n ≥ 0.

Let us start with polynomials. Given a polynomial f , we are
looking for a finite expansion

f(z) =
∑
n≥0

f (n)(n)P n(z).

We need a sequence of polynomials (P n)n≥0 satisfying

P (k)
n (k) = δkn for k ≥ 0 and n ≥ 0.
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Abel polynomials
Looking for a sequence of polynomials (P n)n≥0 satisfying

P (k)
n (k) = δkn for k ≥ 0 and n ≥ 0.

n = 0: P 0 = 1.
n = 1: P 1(z) = z.
n = 2: P 2(0) = P ′2(1) = 0, P ′′2(2) = 1,

P 2(z) =
1

2
z(z − 2).

These polynomials are defined inductively by P 0 = 1,

P ′n(z) = P n−1(z − 1) (n ≥ 1).
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Abel polynomials

P ′n(z) = P n−1(z − 1) (n ≥ 1), P 0 = 1.

Solution (N. Abel, 1881)

P n(z) =
1

n!
z(z − n)n−1 (n ≥ 1).

Using Stirling’s formula one deduces, for n ≥ 0,

|P n|r ≤
(

1 +
r

n

)n
en.
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Abel interpolation of entire functions

Let ω be the positive real
number defined by
ωeω+1 = 1. The numerical
value is ω = 0.278 464 542 . . .

George Henri Halphen

(1844 – 1889)

Proposition (Halphén, 1882).
If f is an entire function of finite exponential type < ω, then

f(z) =
∑
n≥0

f (n)(n)P n(z)

where the series in the right hand side is absolutely and
uniformly convergent on any compact of C.
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Generating series for P n(z)

For |t| < ω and z ∈ C, we have (Legendre, Abel)

etz =
∑
n≥0

tnentP n(z).

Corollary.
Let λ ∈ C satisfy |λ| < 1/e. Then the only solutions f of the
equation

f ′(z) = λf(z − 1)

which are entire functions of exponential type < ω are given by

f(z) = f(0)etz where tet = λ.
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Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1935).
Interpolatory function
theory, volume 33.
Cambridge University
Press, Cambridge.

Chap. III. Properties of successive derivatives.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html
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Historical survey and annotated references

Aleksandr Osipovich Gelfond

(1906 – 1968)

Chapitre 3: construction
d’une fonction entière à partir
d’éléments donnés.

Gel’fond, A. O. (1952).
Calculus of finite
differences. Authorized
English translation of the
3rd Russian edition.
International Monographs
on Advanced
Mathematics and Physics.
Delhi, India: Hindustan
Publishing Corporation.
VI,451 p. (1971).

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Gelfond.html
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Historical survey and annotated references

Ralph Philip Boas Jr

(1912 – 1992)

Robert Creighton Buck
(1920− 1998)

Boas, Jr., R. P. and Buck,
R. C. (1964).
Polynomial expansions of
analytic functions.
Second printing,
corrected. Ergebnisse der
Mathematik und ihrer
Grenzgebiete, N.F., Bd.
19. Academic Press, Inc.,
Publishers, New York;
Springer-Verlag, Berlin.

Chap. I § 3: the method of the kernel expansion.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Boas.html

https://en.wikipedia.org/wiki/Robert_Creighton_Buck
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