
Recorded with the CIMPA in Nice December 2020

A course on interpolation

Third Course :
Several Points

Poritsky, Gontcharoff
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Abstract

Given two sequences (σn)n≥0 and (an)n≥0 of complex numbers
and a sequence (τn)n≥0 of nonnegative integers, the
interpolation problem asks for the existence and unicity of an
entire function f satisfying

f (τn)(σn) = an

for all n ≥ 0.

We consider special cases.
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Two interpolation problems

We are going to consider the following interpolation problems:

I (Poritsky): For m ≥ 2 and σ0, . . . , σm−1 in C,

f (mn)(σj) = anj for n ≥ 0 and j = 0, 1, . . . ,m− 1.

I (Gontcharoff): For (σn)n≥0 a sequence of complex
numbers,

f (n)(σn) = an for n ≥ 0.

Periodic sequence:

f (mn+j)(σj) = amn+j for n ≥ 0 and j = 0, 1, . . . ,m−1.
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Recall : Lidstone vs Whittaker
Let us display horizontally the points and vertically the
derivatives.
• interpolation values ◦ no condition

Lidstone interpolation

...
...

...
f (2n+1) ◦ ◦
f (2n) • •

...
...

...
f ′′ • •
f ′ ◦ ◦
f • •

s0 s1

Whittaker interpolation

...
...

...
f (2n+1) • ◦
f (2n) ◦ •

...
...

...
f ′′ ◦ •
f ′ • ◦
f ◦ •

s0 s1
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Interpolation with 3 points

Poritsky

...
...

...
...

f (3n+2) ◦ ◦ ◦
f (3n+1) ◦ ◦ ◦
f (3n) • • •

...
...

...
...

f (iv) ◦ ◦ ◦
f ′′′ • • •
f ′′ ◦ ◦ ◦
f ′ ◦ ◦ ◦
f • • •

s0 s1 s2

Gontcharoff periodic

...
...

...
...

f (3n+2) ◦ ◦ •
f (3n+1) ◦ • ◦
f (3n) • ◦ ◦

...
...

...
...

f (iv) ◦ • ◦
f ′′′ • ◦ ◦
f ′′ ◦ ◦ •
f ′ ◦ • ◦
f • ◦ ◦

s0 s1 s2
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Gontcharoff – Abel interpolation
The set of points may not be finite (or may not be distinct)

Gontcharoff

...
...

...
...

f (3n+3) • ◦ ◦
f (3n+2) ◦ ◦ •
f (3n+1) ◦ • ◦
f (3n) ◦ ◦ •

...
...

...
...

f (iv) ◦ ◦ •
f ′′′ • ◦ ◦
f ′′ ◦ • ◦
f ′ ◦ • ◦
f • ◦ ◦

s0 s1 s2

Abel

... . ..

f (n) •
... . ..

f ′′ •
f ′ •
f •

s0 s1 s2 · · · sn . . .
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Poritsky interpolation: unicity

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.
Theorem [H. Poritsky, 1932]. If

f (mn)(s0) = f (mn)(s1) = · · · = f (mn)(sm−1) = 0

for all sufficiently large n, then f is a polynomial.

For m = 2, s0 = 0, s1 = 1, this reduces Poritsky’s result on
Lidstone expansion (up to the exact bound on the exponential
type).
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Gontcharoff interpolation: unicity

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.
Theorem [W. Gontcharoff 1930, A. J. Macintyre 1954]. If

f (n)(s0)f
(n)(s1) · · · f (n)(sm−1) = 0

for all sufficiently large n, then f is a polynomial.

For m = 2, s0 = 0, s1 = 1, this implies Whittaker’s result for
f (2n+1)(0) = f (2n)(1) = 0 (up to the exact bound on the
exponential type).
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Periodic sequences
Let s0, s1, . . . , sm−1 be complex numbers, not necessarily
distinct. We write s for the tuple (s0, s1, . . . , sm−1). Let
r0, . . . , rm−1 be m nonnegative integers satisfying
0 ≤ r0 ≤ r1 ≤ · · · ≤ rm−1 ≤ m− 1.
We investigate the interpolation problem for the values

f (mn+rj)(sj) (n ≥ 0, j = 0, . . . ,m− 1).

Examples
(1) Poritsky:

r0 = r1 = · · · = rm−1 = 0.

(2) Gontcharoff periodic:

rj = j for j = 0, 1, . . . ,m− 1.
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Periodic sequences: f (mn+rj)(sj)

Let C[z]≤m−1 be the space of polynomials of degree ≤ m− 1.

If there is a nonzero polynomial f ∈ C[z]≤m−1 such that

f (rj)(sj) = 0 (j = 0, . . . ,m− 1),

then there is no unicity. So we assume that the linear map

C[z]≤m−1 −→ Cm

f(z) 7−→
(
f (rj)(sj)

)
0≤j≤m−1

is an isomorphism of C–vector spaces.
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The determinant D(s)
In other words we assume that the determinant

D(s) = det

(
k!

(k − rj)!
sj
k−rj

)
0≤j,k≤m−1

does not vanish.
It follows that rj ≤ j for all j = 0, 1, . . . ,m− 1.

Proposition.
Assume D(s) 6= 0. Then there exists a unique family of
polynomials (Λnj(z))n≥0,0≤j≤m−1 satisfying

Λ
(mk+r`)
nj (s`) = δj`δnk, for n, k ≥ 0 and 0 ≤ j, ` ≤ m−1.

For n ≥ 0 and 0 ≤ j ≤ m− 1 the polynomial Λnj has degree
≤ mn+m− 1.
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Recurrence relations

Under the assumption D(s) 6= 0, the polynomials Λnj(z),
(n ≥ 0, j = 0, . . . ,m− 1), are the unique solution of the

recurrence relations Λ
(m)
nj = Λn−1,j with initial conditions{

Λ
(r`)
nj (s`) = 0 for n ≥ 1,

Λ
(r`)
0j (s`) = δj` for 0 ≤ j, ` ≤ m− 1,

with Λnj of degree ≤ mn+m− 1.
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Expansion of polynomials into interpolation series

Proposition.
Assume D(s) 6= 0. Then any polynomial f has a finite
expansion

f(z) =
m−1∑
j=0

∑
n≥0

f (mn+rj)(sj)Λnj(z),

where only finitely many terms on the right hand side are
nonzero.

Goal: to extend this expansion to entire functions of
sufficiently small exponential type.
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Expansion of entire functions

We will produce a number τ > 0 such that the following holds.

Theorem.
Assume D(s) 6= 0. Then any entire function f of exponential
type < τ has an expansion of the form

f(z) =
m−1∑
j=0

∑
n≥0

f (mn+rj)(sj)Λnj(z),

where the series in the right hand side is absolutely and
uniformly convergent for z on any compact space in C.
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Unicity of the expansion

Corollary.
Assume D(s) 6= 0. If an entire function f has exponential type
< τ and satisfies

f (mn+rj)(sj) = 0

for j = 0, . . . ,m− 1 and all sufficiently large n, then f is a
polynomial.
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The main examples

Examples

(1) Lidstone polynomials: τ = π,
m = 2, s0 = 0, s1 = 1, r0 = r1 = 0,
Λn0(z) = Λn(1− z), Λn1(z) = Λn(z).

(2) Whittaker polynomials: τ = π/2,
m = 2, s0 = 1, s1 = 0, r0 = 0, r1 = 1,
Λn0(z) = Mn(z), Λn1(z) = M ′

n+1(z − 1).

(3) Poritsky: assuming s0, s1, . . . , sm−1 are pairwise distinct,
r0 = r1 = · · · = rm−1 = 0.

(4) Gontcharoff periodic:
rj = j for j = 0, 1, . . . ,m− 1.
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Strategy of proof of the Theorem

Goal: for f of exponential type < τ ,

f(z) =
m−1∑
j=0

∑
n≥0

f (mn+rj)(sj)Λnj(z),

First prove it for etz for sufficiently small |t|, say |t| < τ , next
use Laplace transform to deduce it for f entire of type < τ .

Special case f t(z) = etz, f t
(mn+rj)(sj) = tmn+rjetsj

etz =
m−1∑
j=0

etsj
∑
n≥0

tmn+rjΛnj(z).
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Exponential sums

For j = 0, 1, . . . ,m− 1 and z ∈ C, consider the power series
ϕj(t, z) ∈ C[[t]] defined by

ϕj(t, z) :=
∑
n≥0

tmn+rjΛnj(z).

Goal: there exists Θ > 0 such that, for |t| < 1/Θ and z ∈ C,
we have

etz =
m−1∑
j=0

etsjϕj(t, z).
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Examples

(1) Lidstone : m = 2, s0 = 0, s1 = 1, r0 = r1 = 0,

ϕ0(t, z) =
sinh((1− z)t)

sinh(t)
, ϕ1(t, z) =

sinh(tz)

sinh(t)
·

(2) Whittaker : m = 2, s0 = 1, s1 = 0, r0 = 0, r1 = 1,

ϕ0(t, z) =
cosh(tz)

cosh(t)
, ϕ1(t, z) =

sinh((z − 1)t)

cosh(t)
·
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Upper bound for the interpolation polynomials

Given complex numbers a0, a1, · · · and non negative real
numbers c0, c1, . . . , we write∑

i≥0

aiz
i �z

∑
i≥0

ciz
i

if |ai| ≤ ci for all i ≥ 0.

Lemma (D. Roy).
There exists a constant Θ > 0 such that

Λnj(z) �z
m(n+1)−1∑

i=0

Θm(n+1)−i

i!
zi

for all n ≥ 0 and j = 0, 1, . . . ,m− 1.
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Expansion of etz for |t| < 1/Θ
The functions

ϕj(t, z) :=
∑
n≥0

tmn+rjΛnj(z)

are analytic in the disc |t| < 1/Θ.
Let us prove, for |t| < 1/Θ and z ∈ C,

etz =
m−1∑
j=0

etsjϕj(t, z).

Proof. Define, for |t| < 1/Θ and z ∈ C,

F (t, z) =
m−1∑
j=0

etsjϕj(t, z)− etz.
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Proof of the expansion of etz

We have

F (t, z) =
m−1∑
j=0

etsjϕj(t, z)− etz.

=
m−1∑
j=0

etsj
∑
n≥0

tmn+rjΛnj(z)− etz

=
∑
n≥0

an(z)tn,

where an(z) ∈ C[z]≤n+m−1 for all n ≥ 0.
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Proof of the expansion of etz

F (t, z) =
m−1∑
j=0

etsj
∑
n≥0

tmn+rjΛnj(z)− etz =
∑
n≥0

an(z)tn.

We obtain, for all k ≥ 0 and ` = 0, 1, . . . ,m− 1,(
∂

∂z

)mk+r`
F (t, z)|z=s` =

∑
n≥0

a(mk+r`)n (s`)t
n

=
m−1∑
j=0

etsj
∑
n≥0

tmn+rjΛ
(mk+r`)
nj (s`)− tmk+r`ets` = 0.

Therefore a
(mk+r`)
n (s`) = 0 for all k ≥ 0, n ≥ 0 and

` = 0, 1, . . . ,m− 1. We conclude an(z) = 0 for all n ≥ 0.
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Differential equations for ϕj(t, z)
Recall, for |t| < 1/Θ,

ϕj(t, z) :=
∑
n≥0

tmn+rjΛnj(z)

and Λ
(m)
nj = Λn−1,j, with initial conditions

Λ
(r`)
nj (s`) = 0 for n ≥ 1, Λ

(r`)
0j (s`) = δj` for 0 ≤ j, ` ≤ m−1.

Hence the functions ϕ0(t, z), ϕ1(t, z), . . . , ϕm−1(t, z) satisfy
the differential equation(

∂

∂z

)m
ϕj(t, z) = tmϕj(t, z) for j = 0, . . . ,m− 1

with the initial conditions(
∂

∂z

)r`
ϕj(t, s`) = tr`δj` for 0 ≤ j, ` ≤ m− 1.
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Differential equations
Let ζ be a primitive m-th root of unity. For t 6= 0 , the
general solution of the differential equation

f (m)(z) = tmf(z)

is a linear combination of the functions

eζ
ktz (k = 0, 1, . . . ,m− 1)

with coefficients depending on t.

Hence for 0 < |t| < 1/Θ there exist complex numbers cjk(t)
(j, k = 0, 1 . . . ,m− 1) such that

ϕj(t, z) =
m−1∑
k=0

cjk(t)e
ζktz.
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The coefficients cjk(t)
Recall

ϕj(t, z) =
∑
n≥0

tmn+rjΛnj(z) =
m−1∑
k=0

cjk(t)e
ζktz

and (
∂

∂z

)r`
ϕj(t, s`) = tr`δj` for 0 ≤ j, ` ≤ m− 1.

Hence, for 0 ≤ j, ` ≤ m− 1 and 0 < |t| < 1/Θ , we have

m−1∑
k=0

cjk(t)ζ
kr`eζ

kts` = δj`.
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Product of matrices

For 0 ≤ j, ` ≤ m− 1 and 0 < |t| < 1/Θ , we have

m−1∑
k=0

cjk(t)ζ
kr`eζ

kts` = δj`.

This means that the product

(cjk(t))0≤j,k≤m−1

(
ζkr`eζ

kts`
)
0≤k,`≤m−1

is the identity m×m matrix.
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A matrix and its determinant

When you have a matrix, you consider its determinant
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The determinant ∆(t)

For t ∈ C, consider the m×m matrix

M(t) =
(
ζkr`eζ

kts`
)
0≤k,`≤m−1

and its determinant ∆(t) =

det


ets0 ets1 · · · etsm−1

ζr0eζts0 ζr1eζts1 · · · ζrm−1eζtsm−1

...
...

. . .
...

ζ(m−1)r0eζ
m−1ts0 ζ(m−1)r1eζ

m−1ts1 · · · ζ(m−1)rm−1eζ
m−1tsm−1

 .

Therefore the determinant ∆(t) does not vanish for
0 < |t| < 1/Θ·
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The value of τ
Let τ be the least positive number such that ∆(t) does not
vanish for 0 < |t| < τ .
For |t| < 1/Θ the matrix

(
cjk(t)

)
0≤j,k≤m−1 is the inverse of

the matrix M(t). We deduce that the functions cjk(t) are
analytic in the domain 0 < |t| < τ .
The functions ϕj(t, z) are now defined by

ϕj(t, z) =
m−1∑
k=0

cjk(t)e
ζktz

for all z ∈ C and for all t with ∆(t) 6= 0. In particular the
function of two variables (t, z) 7→ ϕj(t, z) is analytic in the
domain |t| < τ , z ∈ C , and the equations

ϕj(t, z) =
∑
n≥0

tmn+rjΛnj(z).

are valid in this domain.
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Poritsky interpolation

r0 = r1 = · · · = rm−1 = 0.

The condition D(s) = 0 means that s0, s1, . . . , sm−1 are
pairwise distinct.

The function ∆(t) has a zero at the origin of multiplicity
m(m− 1)/2. The coefficient of tm(m−1)/2 in the Taylor
expansion at the origin of ∆(t) is given by a product of two
Vandermonde determinants.
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Gontcharoff interpolation (periodic)

rj = j for j = 0, 1, . . . ,m− 1.

In this case ∆(0) is the Vandermonde determinant

det


1 1 · · · 1
1 ζ · · · ζm−1

1 ζ2 · · · ζ2(m−1)

...
...

. . .
...

1 ζm−1 · · · ζ(m−1)
2

 ,

and hence is not zero.
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Recall Laplace transform
Let

f(z) =
∑
n≥0

an
n!
zn

be an entire function of exponential type τ(f). The Laplace
transform of f ,

F (t) =
∑
n≥0

ant
−n−1,

is analytic in the domain |t| > τ(f). For % > τ(f) we have

f(z) =
1

2πi

∫
|t|=%

etzF (t)dt.

Hence

f (mn+rj)(z) =
1

2πi

∫
|t|=%

tmn+rjetzF (t)dt.
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End of the proof
Assume τ(f) < τ . Let % satisfy τ(f) < % < τ . For |t| = %, we
have

etz =
∑
n≥0

m−1∑
j=0

etsj tmn+rjΛnj(z),

hence

f(z) =
1

2πi

∫
|t|=%

etzF (t)dt

=
∑
n≥0

m−1∑
j=0

(
1

2πi

∫
|t|=%

tmn+rjetsjF (t)dt

)
Λnj(z)

=
∑
n≥0

f (mn+rj)(sj)Λnj(z).

The last series is absolutely and uniformly convergent for z on
any compact space in C.
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Abel – Gontcharoff interpolation
Let w = (wn)n≥0 be a sequence of complex numbers. There
exists a sequence of polynomials (Ωn;w)n≥0 in C[z] such that
any polynomial f can be written as a finite sum

f(z) =
∑
n≥0

f (n)(wn)Ωn;w(z).

We define Ωn;w = Ωw0,w1,...,wn−1 ∈ C[z] by induction on n so
that

Ω(k)
n;w(wk) = δkn for n ≥ 0 and k ≥ 0.

We set Ω0,w = Ω∅ = 1, Ω1,w = Ωw0(z) = z − w0.

For n ≥ 1, we define Ωw0,w1,w2,...,wn(z) as the polynomial of
degree n+ 1 which is the primitive of Ωw1,w2,...,wn vanishing at
w0.
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The polynomials Ωn;w = Ωw0,w1,...,wn−1

For n ≥ 0, Ωn;w is a polynomial of degree n which depends
only on the first n terms of the sequence w.
The leading term of Ωn;w is (1/n!)zn.
For N ≥ 0 we have

zN

N !
=

N∑
n=0

1

(N − n)!
wN−nn Ωn;w(z).

This gives an inductive formula defining ΩN ;w: for N ≥ 0,

ΩN ;w(z) =
zN

N !
−

N−1∑
n=0

1

(N − n)!
wN−nn Ωn;w(z).
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The polynomials Ωn;w
From the definition we deduce the following formula, involving
iterated integrals

Ωw0,w1,...,wn−1(z) =

∫ z

w0

dt1

∫ t1

w1

dt2 · · ·
∫ tn−1

wn−1

dtn.

Examples: since

Ωw0,w1,...,wn(z) = Ω0,w1−w0,w2−w0,...,wn−w0(z − w0),

it suffices to consider the case w0 = 0.

2!Ω0,w1(z) = (z − w1)
2 − w1

2,

3!Ω0,w1,w2(z) = (z − w2)
3 − 3(w1 − w2)

2z + w2
3,

4!Ω0,w1,w2,w3(z) = (z − w3)
4 − 6(w2 − w3)

2(z − w1)
2

− 4(w1 − w3)
3z + 6w1

2(w2 − w3)
2 − w3

4.
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Gontcharoff determinant for Ωw0,w1,...,wn−1(z)

Ωw0,w1,...,wn−1(z) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
z

1!

z2

2!
· · · zn−1

(n− 1)!

zn

n!

1
w0

1!

w0
2

2!
· · · w0

n−1

(n− 1)!

w0
n

n!

0 1
w1

1!
· · · w1

n−2

(n− 2)!

w1
n−1

(n− 1)!

0 0 1 · · · w2
n−3

(n− 3)!

w2
n−2

(n− 2)!
...

...
...

. . .
...

...

0 0 0 · · · 1
wn−1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Two examples
• For w = (1, 0, 1, 0, . . . , 0, 1, . . . ), we recover the Whittaker
polynomials

Ω2n;w(z) = Mn(z), Ω2n+1,w(z) = M ′
n+1(z − 1).

• For the arithmetic progression w = (a+ nt)n≥0 with a in C
and t in C \ {0}, we obtain Abel’s polynomials

Ωn;w(z) =
1

n!
(z − a)(z − a− nt)n−1

for n ≥ 1, which satisfy

Ω′n;w(z) = Ωn−1;w(z − t).
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Estimate for |Ωn;w| when supn≥0 |wn| <∞

Assume that the sequence (|wn|)n≥0 is bounded. Let
A > supn≥0 |wn|.

Proposition.
Let κ > 1/ log 2. For n sufficiently large, we have, for all
r ≥ |A|,

|Ωn;w|r ≤ (κr)n.
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Expansion in a disc containing |z| ≤ A

Recall supn≥0 |wn| < A.

Proposition.
Let f be an entire function of exponential type τ(f) satisfying
τ(f) < log 2/A. Then

f(z) =
∑
n≥0

f (n)(wn)Ωn;w(z),

where the series on the right hand side is absolutely and
uniformly convergent in any disk |z| ≤ r with r < log 2/τ(f).
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Two examples
Corollary.
If an entire function f of exponential type τ(f) < log 2/A
satisfies f (n)(wn) = 0 for all sufficiently large n, then f is a
polynomial.

Special case where the set {w0, w1, w2, . . . } is finite, say
{s0, s1, . . . , sm−1}, with

max{|s0|, |s1|, . . . , |sm−1|} < A.

Corollary.
If an entire function f of exponential type τ(f) < log 2/A
satisfies

m−1∏
j=0

f (n)(sj) = 0

for all sufficiently large n, then f is a polynomial.
42 / 50



Historical survey and annotated references

Gontcharoff, W. (1930).
Recherches sur les
dérivées successives des
fonctions analytiques.
Généralisation de la série
d’Abel.
Ann. Sci. Éc. Norm.
Supér. (3), 47:1–78.

Interpolation problem for

f (n)(σn), n ≥ 0.

Example:

f (nm+j)(sj), n ≥ 0, 0 ≤ j ≤ m− 1.
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Historical survey and annotated references

Hillel Poritsky
(1898 — 1990)

Ph.D. Cornell University 1927
Topics in Potential Theory.
Wallie Abraham Hurwitz
(student of David Hilbert)

Poritsky, H. (1932).
On certain polynomial
and other approximations
to analytic functions.
Trans. Amer. Math. Soc.,
34(2):274–331.

Interpolation problem for

f (nm)(sj), n ≥ 0, 0 ≤ j ≤ m− 1.

https://pt.wikipedia.org/wiki/Hillel_Poritsky

https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41924
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Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1933).
On Lidstone’s series and
two-point expansions of
analytic functions.
Proc. Lond. Math. Soc.
(2), 36:451–469.

Standard sets of polynomials: complete, indeterminate,
redundant.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html
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Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1935).
Interpolatory function
theory, volume 33.
Cambridge University
Press, Cambridge.

Chap. III. Properties of successive derivatives.
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Historical survey and annotated references

Archibald James Macintyre

(1908 – 1967)

Macintyre, A. J. (1954).
Interpolation series for
integral functions of
exponential type.
Trans. Amer. Math. Soc.,
76:1–13.

Interpolation problem for

f (nm+bj)(sj), n ≥ 0, 0 ≤ j ≤ m− 1.
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Historical survey and annotated references

Ralph Philip Boas Jr

(1912 – 1992)

Robert Creighton Buck
(1920− 1998)

Boas, Jr., R. P. and Buck,
R. C. (1964).
Polynomial expansions of
analytic functions.
Second printing,
corrected. Ergebnisse der
Mathematik und ihrer
Grenzgebiete, N.F., Bd.
19. Academic Press, Inc.,
Publishers, New York;
Springer-Verlag, Berlin.

Chap. I § 3: the method of the kernel expansion.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Boas.html
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Main reference

M. Waldschmidt. On transcendental entire functions
with infinitely many derivatives taking integer values at
finitely many points.
Moscow Journal of Combinatorics and Number Theory,
9-4 (2020), 371–388.
DOI 10.2140/moscow.2020.9.371
arXiv: 1912.00174 [math.NT].

http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/IntegerValuedDerivativesSeveralPoints.pdf
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