A course on interpolation

Third Course : Several Points Poritsky, Gontcharoff

Professeur Émérite, Sorbonne Université, Institut de Mathématiques de Jussieu, Paris http://www.imj-prg.fr/~michel.waldschmidt/

Abstract

Given two sequences $\left(\sigma_{n}\right)_{n \geq 0}$ and $\left(a_{n}\right)_{n \geq 0}$ of complex numbers and a sequence $\left(\tau_{n}\right)_{n \geq 0}$ of nonnegative integers, the interpolation problem asks for the existence and unicity of an entire function f satisfying

$$
f^{\left(\tau_{n}\right)}\left(\sigma_{n}\right)=a_{n}
$$

for all $n \geq 0$.

We consider special cases.

Two interpolation problems

We are going to consider the following interpolation problems:

- (Poritsky): For $m \geq 2$ and $\sigma_{0}, \ldots, \sigma_{m-1}$ in \mathbb{C},
$f^{(m n)}\left(\sigma_{j}\right)=a_{n j} \quad$ for $\quad n \geq 0 \quad$ and $\quad j=0,1, \ldots, m-1$.
- (Gontcharoff): For $\left(\sigma_{n}\right)_{n \geq 0}$ a sequence of complex numbers,

$$
f^{(n)}\left(\sigma_{n}\right)=a_{n} \quad \text { for } \quad n \geq 0
$$

Periodic sequence:

$$
f^{(m n+j)}\left(\sigma_{j}\right)=a_{m n+j} \quad \text { for } \quad n \geq 0 \quad \text { and } \quad j=0,1, \ldots, m-1
$$

Recall: Lidstone vs Whittaker

Let us display horizontally the points and vertically the derivatives.

- interpolation values
- no condition

Lidstone interpolation
Whittaker interpolation

Interpolation with 3 points

Poritsky

Gontcharoff periodic

Gontcharoff - Abel interpolation

The set of points may not be finite (or may not be distinct)

Gontcharoff

$f^{(3 n+3)}$	\bullet	\bigcirc	O
$f(3 n+2)$	O	\bigcirc	-
$f^{(3 n+1)}$	\bigcirc	-	\bigcirc
$f(3 n)$	0	\bigcirc	-
:	:	:	:
$f^{\text {(iv) }}$	\bigcirc	\bigcirc	-
$f^{\prime \prime \prime}$	\bullet	\bigcirc	\bigcirc
$f^{\prime \prime}$	\bigcirc	-	O
f^{\prime}	0	-	\bigcirc
f	-	O	O
	S_{0}	s_{1}	s_{2}

Abel

Poritsky interpolation: unicity

Let $s_{0}, s_{1}, \ldots, s_{m-1}$ be distinct complex numbers and f an entire function of sufficiently small exponential type.
Theorem [H. Poritsky, 1932]. If

$$
f^{(m n)}\left(s_{0}\right)=f^{(m n)}\left(s_{1}\right)=\cdots=f^{(m n)}\left(s_{m-1}\right)=0
$$

for all sufficiently large n, then f is a polynomial.

For $m=2, s_{0}=0, s_{1}=1$, this reduces Poritsky's result on Lidstone expansion (up to the exact bound on the exponential type).

Gontcharoff interpolation: unicity

Let $s_{0}, s_{1}, \ldots, s_{m-1}$ be distinct complex numbers and f an entire function of sufficiently small exponential type.
Theorem [W. Gontcharoff 1930, A. J. Macintyre 1954]. If

$$
f^{(n)}\left(s_{0}\right) f^{(n)}\left(s_{1}\right) \cdots f^{(n)}\left(s_{m-1}\right)=0
$$

for all sufficiently large n, then f is a polynomial.

For $m=2, s_{0}=0, s_{1}=1$, this implies Whittaker's result for $f^{(2 n+1)}(0)=f^{(2 n)}(1)=0$ (up to the exact bound on the exponential type).

Periodic sequences

Let $s_{0}, s_{1}, \ldots, s_{m-1}$ be complex numbers, not necessarily distinct. We write s for the tuple $\left(s_{0}, s_{1}, \ldots, s_{m-1}\right)$. Let r_{0}, \ldots, r_{m-1} be m nonnegative integers satisfying
$0 \leq r_{0} \leq r_{1} \leq \cdots \leq r_{m-1} \leq m-1$.
We investigate the interpolation problem for the values

$$
f^{\left(m n+r_{j}\right)}\left(s_{j}\right) \quad(n \geq 0, j=0, \ldots, m-1)
$$

Examples
(1) Poritsky:

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0
$$

(2) Gontcharoff periodic:

$$
r_{j}=j \quad \text { for } \quad j=0,1, \ldots, m-1
$$

Periodic sequences: $f^{\left(m n+r_{j}\right)}\left(s_{j}\right)$

Let $\mathbb{C}[z]_{\leq m-1}$ be the space of polynomials of degree $\leq m-1$.
If there is a nonzero polynomial $f \in \mathbb{C}[z]_{\leq m-1}$ such that

$$
f^{\left(r_{j}\right)}\left(s_{j}\right)=0 \quad(j=0, \ldots, m-1)
$$

then there is no unicity. So we assume that the linear map

$$
\begin{array}{rlc}
\mathbb{C}[z]_{\leq m-1} & \longrightarrow & \mathbb{C}^{m} \\
f(z) & \longmapsto\left(f^{\left(r_{j}\right)}\left(s_{j}\right)\right)_{0 \leq j \leq m-1}
\end{array}
$$

is an isomorphism of \mathbb{C}-vector spaces.

The determinant $\mathrm{D}(\mathbf{s})$

In other words we assume that the determinant

$$
\mathrm{D}(\mathbf{s})=\operatorname{det}\left(\frac{k!}{\left(k-r_{j}\right)!} s_{j}^{k-r_{j}}\right)_{0 \leq j, k \leq m-1}
$$

does not vanish.
It follows that $r_{j} \leq j$ for all $j=0,1, \ldots, m-1$.

Proposition.

Assume $\mathrm{D}(\mathrm{s}) \neq 0$. Then there exists a unique family of polynomials $\left(\Lambda_{n j}(z)\right)_{n \geq 0,0 \leq j \leq m-1}$ satisfying
$\Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \delta_{n k}, \quad$ for $\quad n, k \geq 0 \quad$ and $\quad 0 \leq j, \ell \leq m-1$.
For $n \geq 0$ and $0 \leq j \leq m-1$ the polynomial $\Lambda_{n j}$ has degree $\leq m n+m-1$.

Recurrence relations

Under the assumption $\mathrm{D}(\mathbf{s}) \neq 0$, the polynomials $\Lambda_{n j}(z)$, ($n \geq 0, j=0, \ldots, m-1$), are the unique solution of the recurrence relations $\Lambda_{n j}^{(m)}=\Lambda_{n-1, j}$ with initial conditions

$$
\left\{\begin{array}{l}
\Lambda_{n j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=0 \quad \text { for } \quad n \geq 1 \\
\Lambda_{0 j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \quad \text { for } \quad 0 \leq j, \ell \leq m-1
\end{array}\right.
$$

with $\Lambda_{n j}$ of degree $\leq m n+m-1$.

Expansion of polynomials into interpolation series

Proposition.

Assume $\mathrm{D}(\mathbf{s}) \neq 0$. Then any polynomial f has a finite expansion

$$
f(z)=\sum_{j=0}^{m-1} \sum_{n \geq 0} f^{\left(m n+r_{j}\right)}\left(s_{j}\right) \Lambda_{n j}(z)
$$

where only finitely many terms on the right hand side are nonzero.
Goal: to extend this expansion to entire functions of sufficiently small exponential type.

Expansion of entire functions

We will produce a number $\tau>0$ such that the following holds.
Theorem.
Assume $\mathrm{D}(\mathrm{s}) \neq 0$. Then any entire function f of exponential type $<\tau$ has an expansion of the form

$$
f(z)=\sum_{j=0}^{m-1} \sum_{n \geq 0} f^{\left(m n+r_{j}\right)}\left(s_{j}\right) \Lambda_{n j}(z)
$$

where the series in the right hand side is absolutely and uniformly convergent for z on any compact space in \mathbb{C}.

Unicity of the expansion

Corollary.

Assume $\mathrm{D}(\mathrm{s}) \neq 0$. If an entire function f has exponential type $<\tau$ and satisfies

$$
f^{\left(m n+r_{j}\right)}\left(s_{j}\right)=0
$$

for $j=0, \ldots, m-1$ and all sufficiently large n, then f is a polynomial.

The main examples

Examples

(1) Lidstone polynomials: $\tau=\pi$,

$$
\begin{aligned}
& m=2, s_{0}=0, s_{1}=1, r_{0}=r_{1}=0 \\
& \Lambda_{n 0}(z)=\Lambda_{n}(1-z), \Lambda_{n 1}(z)=\Lambda_{n}(z)
\end{aligned}
$$

(2) Whittaker polynomials: $\tau=\pi / 2$,

$$
\begin{aligned}
& m=2, s_{0}=1, s_{1}=0, r_{0}=0, r_{1}=1 \\
& \Lambda_{n 0}(z)=M_{n}(z), \Lambda_{n 1}(z)=M_{n+1}^{\prime}(z-1)
\end{aligned}
$$

(3) Poritsky: assuming $s_{0}, s_{1}, \ldots, s_{m-1}$ are pairwise distinct,

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0
$$

(4) Gontcharoff periodic:

$$
r_{j}=j \quad \text { for } \quad j=0,1, \ldots, m-1
$$

Strategy of proof of the Theorem

Goal: for f of exponential type $<\tau$,

$$
f(z)=\sum_{j=0}^{m-1} \sum_{n \geq 0} f^{\left(m n+r_{j}\right)}\left(s_{j}\right) \Lambda_{n j}(z)
$$

First prove it for $\mathrm{e}^{t z}$ for sufficiently small $|t|$, say $|t|<\tau$, next use Laplace transform to deduce it for f entire of type $<\tau$.

Special case $f_{t}(z)=\mathrm{e}^{t z}, f_{t}\left(m n+r_{j}\right)\left(s_{j}\right)=t^{m n+r_{j}} \mathrm{e}^{t s_{j}}$

$$
\mathrm{e}^{t z}=\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)
$$

Exponential sums

For $j=0,1, \ldots, m-1$ and $z \in \mathbb{C}$, consider the power series $\varphi_{j}(t, z) \in \mathbb{C}[[t]]$ defined by

$$
\varphi_{j}(t, z):=\sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)
$$

Goal: there exists $\Theta>0$ such that, for $|t|<1 / \Theta$ and $z \in \mathbb{C}$, we have

$$
\mathrm{e}^{t z}=\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \varphi_{j}(t, z)
$$

Examples

(1) Lidstone : $m=2, s_{0}=0, s_{1}=1, r_{0}=r_{1}=0$,

$$
\varphi_{0}(t, z)=\frac{\sinh ((1-z) t)}{\sinh (t)}, \quad \varphi_{1}(t, z)=\frac{\sinh (t z)}{\sinh (t)}
$$

(2) Whittaker: $m=2, s_{0}=1, s_{1}=0, r_{0}=0, r_{1}=1$,

$$
\varphi_{0}(t, z)=\frac{\cosh (t z)}{\cosh (t)}, \quad \varphi_{1}(t, z)=\frac{\sinh ((z-1) t)}{\cosh (t)}
$$

Upper bound for the interpolation polynomials

Given complex numbers a_{0}, a_{1}, \cdots and non negative real numbers c_{0}, c_{1}, \ldots, we write

$$
\sum_{i \geq 0} a_{i} z^{i} \preceq z \sum_{i \geq 0} c_{i} z^{i}
$$

if $\left|a_{i}\right| \leq c_{i}$ for all $i \geq 0$.

Lemma (D. Roy).

There exists a constant $\Theta>0$ such that

$$
\Lambda_{n j}(z) \preceq_{z} \sum_{i=0}^{m(n+1)-1} \frac{\Theta^{m(n+1)-i}}{i!} z^{i}
$$

for all $n \geq 0$ and $j=0,1, \ldots, m-1$.

Expansion of $e^{t z}$ for $|t|<1 / \Theta$

The functions

$$
\varphi_{j}(t, z):=\sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)
$$

are analytic in the disc $|t|<1 / \Theta$.
Let us prove, for $|t|<1 / \Theta$ and $z \in \mathbb{C}$,

$$
\mathrm{e}^{t z}=\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \varphi_{j}(t, z)
$$

Proof. Define, for $|t|<1 / \Theta$ and $z \in \mathbb{C}$,

$$
F(t, z)=\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \varphi_{j}(t, z)-\mathrm{e}^{t z} .
$$

Proof of the expansion of $e^{t z}$

We have

$$
\begin{aligned}
F(t, z) & =\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \varphi_{j}(t, z)-\mathrm{e}^{t z} \\
& =\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)-\mathrm{e}^{t z} \\
& =\sum_{n \geq 0} a_{n}(z) t^{n}
\end{aligned}
$$

where $a_{n}(z) \in \mathbb{C}[z]_{\leq n+m-1}$ for all $n \geq 0$.

Proof of the expansion of $e^{t z}$

$$
F(t, z)=\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)-\mathrm{e}^{t z}=\sum_{n \geq 0} a_{n}(z) t^{n}
$$

We obtain, for all $k \geq 0$ and $\ell=0,1, \ldots, m-1$,

$$
\begin{aligned}
\left(\frac{\partial}{\partial z}\right)^{m k+r_{\ell}} & \left.F(t, z)\right|_{z=s_{\ell}}=\sum_{n \geq 0} a_{n}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right) t^{n} \\
& =\sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} \sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)-t^{m k+r_{\ell}} \mathrm{e}^{t s_{\ell}}=0
\end{aligned}
$$

Therefore $a_{n}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=0$ for all $k \geq 0, n \geq 0$ and $\ell=0,1, \ldots, m-1$. We conclude $a_{n}(z)=0$ for all $n \geq 0$.

Differential equations for $\varphi_{j}(t, z)$

Recall, for $|t|<1 / \Theta$,

$$
\varphi_{j}(t, z):=\sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)
$$

and $\Lambda_{n j}^{(m)}=\Lambda_{n-1, j}$, with initial conditions
$\Lambda_{n j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=0 \quad$ for $\quad n \geq 1, \quad \Lambda_{0 j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \quad$ for $\quad 0 \leq j, \ell \leq m-1$.

Hence the functions $\varphi_{0}(t, z), \varphi_{1}(t, z), \ldots, \varphi_{m-1}(t, z)$ satisfy the differential equation

$$
\left(\frac{\partial}{\partial z}\right)^{m} \varphi_{j}(t, z)=t^{m} \varphi_{j}(t, z) \quad \text { for } \quad j=0, \ldots, m-1
$$

with the initial conditions

$$
\left(\frac{\partial}{\partial z}\right)^{r_{\ell}} \varphi_{j}\left(t, s_{\ell}\right)=t^{r_{\ell}} \delta_{j \ell} \quad \text { for } \quad 0 \leq j, \ell \leq m-1
$$

Differential equations

Let ζ be a primitive m-th root of unity. For $t \neq 0$, the general solution of the differential equation

$$
f^{(m)}(z)=t^{m} f(z)
$$

is a linear combination of the functions

$$
\mathrm{e}^{\zeta^{k} t z} \quad(k=0,1, \ldots, m-1)
$$

with coefficients depending on t. Hence for $0<|t|<1 / \Theta$ there exist complex numbers $c_{j k}(t)$ $(j, k=0,1 \ldots, m-1)$ such that

$$
\varphi_{j}(t, z)=\sum_{k=0}^{m-1} c_{j k}(t) \mathrm{e}^{\zeta^{k} t z}
$$

The coefficients $c_{j k}(t)$

Recall

$$
\varphi_{j}(t, z)=\sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)=\sum_{k=0}^{m-1} c_{j k}(t) \mathrm{e}^{\zeta^{k} t z}
$$

and

$$
\left(\frac{\partial}{\partial z}\right)^{r_{\ell}} \varphi_{j}\left(t, s_{\ell}\right)=t^{r_{\ell}} \delta_{j \ell} \quad \text { for } \quad 0 \leq j, \ell \leq m-1 .
$$

Hence, for $0 \leq j, \ell \leq m-1$ and $0<|t|<1 / \Theta$, we have

$$
\sum_{k=0}^{m-1} c_{j k}(t) \zeta^{k r} \mathrm{e}^{\zeta^{k} t s_{\ell}}=\delta_{j \ell}
$$

Product of matrices

For $0 \leq j, \ell \leq m-1$ and $0<|t|<1 / \Theta$, we have

$$
\sum_{k=0}^{m-1} c_{j k}(t) \zeta^{k r_{\ell}} \mathrm{e}^{\zeta^{k} t s_{\ell}}=\delta_{j \ell}
$$

This means that the product

$$
\left(c_{j k}(t)\right)_{0 \leq j, k \leq m-1}\left(\zeta^{k r_{\ell}} \mathrm{e}^{\xi^{k} t s_{\ell}}\right)_{0 \leq k, \ell \leq m-1}
$$

is the identity $m \times m$ matrix.

A matrix and its determinant

When you have a matrix, you consider its determinant

The determinant $\Delta(t)$

For $t \in \mathbb{C}$, consider the $m \times m$ matrix

$$
M(t)=\left(\zeta^{k r_{\ell}} \mathrm{e}^{\zeta^{k} t s_{\ell}}\right)_{0 \leq k, \ell \leq m-1}
$$

and its determinant $\Delta(t)=$
$\operatorname{det}\left(\begin{array}{cccc}\mathrm{e}^{t s_{0}} & \mathrm{e}^{t s_{1}} & \cdots & \mathrm{e}^{t s_{m-1}} \\ \zeta^{r 0} \mathrm{e}^{\zeta t s_{0}} & \zeta^{r_{1}} \mathrm{e}^{\zeta t s_{1}} & \cdots & \zeta^{r_{m-1}} \mathrm{e}^{\zeta t s_{m-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta^{(m-1) r_{0}} \mathrm{e}^{\mathrm{C}^{m-1} t s_{0}} & \zeta^{(m-1) r_{1}} \mathrm{e}^{\mathrm{S}^{m-1} t s_{1}} & \cdots & \zeta^{(m-1) r_{m-1}} \mathrm{e}^{\zeta^{m-1} t s_{m-1}}\end{array}\right)$

Therefore the determinant $\Delta(t)$ does not vanish for $0<|t|<1 / \Theta$.

The value of τ

Let τ be the least positive number such that $\Delta(t)$ does not vanish for $0<|t|<\tau$.
For $|t|<1 / \Theta$ the matrix $\left(c_{j k}(t)\right)_{0 \leq j, k \leq m-1}$ is the inverse of the matrix $M(t)$. We deduce that the functions $c_{j k}(t)$ are analytic in the domain $0<|t|<\tau$.
The functions $\varphi_{j}(t, z)$ are now defined by

$$
\varphi_{j}(t, z)=\sum_{k=0}^{m-1} c_{j k}(t) \mathrm{e}^{\zeta^{k} t z}
$$

for all $z \in \mathbb{C}$ and for all t with $\Delta(t) \neq 0$. In particular the function of two variables $(t, z) \mapsto \varphi_{j}(t, z)$ is analytic in the domain $|t|<\tau, z \in \mathbb{C}$, and the equations

$$
\varphi_{j}(t, z)=\sum_{n \geq 0} t^{m n+r_{j}} \Lambda_{n j}(z)
$$

are valid in this domain.

Poritsky interpolation

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0
$$

The condition $\mathrm{D}(\mathbf{s})=0$ means that $s_{0}, s_{1}, \ldots, s_{m-1}$ are pairwise distinct.

The function $\Delta(t)$ has a zero at the origin of multiplicity $m(m-1) / 2$. The coefficient of $t^{m(m-1) / 2}$ in the Taylor expansion at the origin of $\Delta(t)$ is given by a product of two Vandermonde determinants.

Gontcharoff interpolation (periodic)

$r_{j}=j$ for $j=0,1, \ldots, m-1$.

In this case $\Delta(0)$ is the Vandermonde determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \zeta & \cdots & \zeta^{m-1} \\
1 & \zeta^{2} & \cdots & \zeta^{2(m-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \zeta^{m-1} & \cdots & \zeta^{(m-1)^{2}}
\end{array}\right)
$$

and hence is not zero.

Recall Laplace transform

Let

$$
f(z)=\sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}
$$

be an entire function of exponential type $\tau(f)$. The Laplace transform of f,

$$
F(t)=\sum_{n \geq 0} a_{n} t^{-n-1}
$$

is analytic in the domain $|t|>\tau(f)$. For $\varrho>\tau(f)$ we have

$$
f(z)=\frac{1}{2 \pi i} \int_{|t|=\varrho} \mathrm{e}^{t z} F(t) \mathrm{d} t
$$

Hence

$$
f^{\left(m n+r_{j}\right)}(z)=\frac{1}{2 \pi i} \int_{|t|=\varrho} t^{m n+r_{j}} \mathrm{e}^{t z} F(t) \mathrm{d} t
$$

End of the proof

Assume $\tau(f)<\tau$. Let ϱ satisfy $\tau(f)<\varrho<\tau$. For $|t|=\varrho$, we have

$$
\mathrm{e}^{t z}=\sum_{n \geq 0} \sum_{j=0}^{m-1} \mathrm{e}^{t s_{j}} t^{m n+r_{j}} \Lambda_{n j}(z)
$$

hence

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{|t|=\varrho} \mathrm{e}^{t z} F(t) \mathrm{d} t \\
& =\sum_{n \geq 0} \sum_{j=0}^{m-1}\left(\frac{1}{2 \pi i} \int_{|t|=\varrho} t^{m n+r_{j}} \mathrm{e}^{t s_{j}} F(t) \mathrm{d} t\right) \Lambda_{n j}(z) \\
& =\sum_{n \geq 0} f^{\left(m n+r_{j}\right)}\left(s_{j}\right) \Lambda_{n j}(z)
\end{aligned}
$$

The last series is absolutely and uniformly convergent for z on any compact space in \mathbb{C}.

Abel - Gontcharoff interpolation

Let $\mathbf{w}=\left(w_{n}\right)_{n \geq 0}$ be a sequence of complex numbers. There exists a sequence of polynomials $\left(\Omega_{n ; \mathbf{w}}\right)_{n \geq 0}$ in $\mathbb{C}[z]$ such that any polynomial f can be written as a finite sum

$$
f(z)=\sum_{n \geq 0} f^{(n)}\left(w_{n}\right) \Omega_{n ; \mathbf{w}}(z)
$$

We define $\Omega_{n ; \mathbf{w}}=\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}} \in \mathbb{C}[z]$ by induction on n so that

$$
\Omega_{n ; \mathbf{w}}^{(k)}\left(w_{k}\right)=\delta_{k n} \quad \text { for } \quad n \geq 0 \quad \text { and } \quad k \geq 0
$$

We set $\Omega_{0, \mathbf{w}}=\Omega_{\emptyset}=1, \Omega_{1, \mathbf{w}}=\Omega_{w_{0}}(z)=z-w_{0}$.
For $n \geq 1$, we define $\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}(z)$ as the polynomial of degree $n+1$ which is the primitive of $\Omega_{w_{1}, w_{2}, \ldots, w_{n}}$ vanishing at w_{0}.

The polynomials $\Omega_{n ; \mathbf{w}}=\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}$

For $n \geq 0, \Omega_{n ; \mathbf{w}}$ is a polynomial of degree n which depends only on the first n terms of the sequence \mathbf{w}.
The leading term of $\Omega_{n ; \mathbf{w}}$ is $(1 / n!) z^{n}$.
For $N \geq 0$ we have

$$
\frac{z^{N}}{N!}=\sum_{n=0}^{N} \frac{1}{(N-n)!} w_{n}^{N-n} \Omega_{n ; \mathbf{w}}(z) .
$$

This gives an inductive formula defining $\Omega_{N ; \mathbf{w}}$: for $N \geq 0$,

$$
\Omega_{N ; \mathbf{w}}(z)=\frac{z^{N}}{N!}-\sum_{n=0}^{N-1} \frac{1}{(N-n)!} w_{n}^{N-n} \Omega_{n ; \mathbf{w}}(z) .
$$

The polynomials $\Omega_{n ; \mathbf{w}}$

From the definition we deduce the following formula, involving iterated integrals

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)=\int_{w_{0}}^{z} \mathrm{~d} t_{1} \int_{w_{1}}^{t_{1}} \mathrm{~d} t_{2} \cdots \int_{w_{n-1}}^{t_{n-1}} \mathrm{~d} t_{n}
$$

Examples: since

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n}}(z)=\Omega_{0, w_{1}-w_{0}, w_{2}-w_{0}, \ldots, w_{n}-w_{0}}\left(z-w_{0}\right)
$$

it suffices to consider the case $w_{0}=0$.

$$
\begin{aligned}
2!\Omega_{0, w_{1}}(z)= & \left(z-w_{1}\right)^{2}-w_{1}^{2} \\
3!\Omega_{0, w_{1}, w_{2}}(z)= & \left(z-w_{2}\right)^{3}-3\left(w_{1}-w_{2}\right)^{2} z+w_{2}^{3} \\
4!\Omega_{0, w_{1}, w_{2}, w_{3}}(z)= & \left(z-w_{3}\right)^{4}-6\left(w_{2}-w_{3}\right)^{2}\left(z-w_{1}\right)^{2} \\
& -4\left(w_{1}-w_{3}\right)^{3} z+6 w_{1}{ }^{2}\left(w_{2}-w_{3}\right)^{2}-w_{3}{ }^{4} .
\end{aligned}
$$

Gontcharoff determinant for $\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)$

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)=(-1)^{n}\left|\begin{array}{cccccc}
1 & \frac{z}{1!} & \frac{z^{2}}{2!} & \cdots & \frac{z^{n-1}}{(n-1)!} & \frac{z^{n}}{n!} \\
1 & \frac{w_{0}}{1!} & \frac{w_{0}{ }^{2}}{2!} & \cdots & \frac{w_{0}{ }^{n-1}}{(n-1)!} & \frac{w_{0}{ }^{n}}{n!} \\
0 & 1 & \frac{w_{1}}{1!} & \cdots & \frac{w_{1}{ }^{n-2}}{(n-2)!} & \frac{w_{1}{ }^{n-1}}{(n-1)!} \\
0 & 0 & 1 & \cdots & \frac{w_{2}{ }^{n-3}}{(n-3)!} & \frac{w_{2}{ }^{n-2}}{(n-2)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \frac{w_{n-1}}{1!}
\end{array}\right|
$$

Two examples

- For $\mathbf{w}=(1,0,1,0, \ldots, 0,1, \ldots)$, we recover the Whittaker polynomials

$$
\Omega_{2 n ; \mathbf{w}}(z)=M_{n}(z), \quad \Omega_{2 n+1, \mathbf{w}}(z)=M_{n+1}^{\prime}(z-1)
$$

- For the arithmetic progression $\mathbf{w}=(a+n t)_{n \geq 0}$ with a in \mathbb{C} and t in $\mathbb{C} \backslash\{0\}$, we obtain Abel's polynomials

$$
\Omega_{n ; \mathbf{w}}(z)=\frac{1}{n!}(z-a)(z-a-n t)^{n-1}
$$

for $n \geq 1$, which satisfy

$$
\Omega_{n ; \mathbf{w}}^{\prime}(z)=\Omega_{n-1 ; \mathbf{w}}(z-t)
$$

Estimate for $\left|\Omega_{n ; \mathbf{w}}\right|$ when $\sup _{n \geq 0}\left|w_{n}\right|<\infty$

Assume that the sequence $\left(\left|w_{n}\right|\right)_{n \geq 0}$ is bounded. Let $A>\sup _{n \geq 0}\left|w_{n}\right|$.
Proposition.
Let $\kappa>1 / \log 2$. For n sufficiently large, we have, for all $r \geq|A|$,

$$
\left|\Omega_{n ; \mathbf{w}}\right|_{r} \leq(\kappa r)^{n}
$$

Expansion in a disc containing $|z| \leq A$

Recall $\sup _{n \geq 0}\left|w_{n}\right|<A$.

Proposition.

Let f be an entire function of exponential type $\tau(f)$ satisfying $\tau(f)<\log 2 / A$. Then

$$
f(z)=\sum_{n \geq 0} f^{(n)}\left(w_{n}\right) \Omega_{n ; \mathbf{w}}(z)
$$

where the series on the right hand side is absolutely and uniformly convergent in any disk $|z| \leq r$ with $r<\log 2 / \tau(f)$.

Two examples

Corollary.

If an entire function f of exponential type $\tau(f)<\log 2 / A$ satisfies $f^{(n)}\left(w_{n}\right)=0$ for all sufficiently large n, then f is a polynomial.
Special case where the set $\left\{w_{0}, w_{1}, w_{2}, \ldots\right\}$ is finite, say $\left\{s_{0}, s_{1}, \ldots, s_{m-1}\right\}$, with

$$
\max \left\{\left|s_{0}\right|,\left|s_{1}\right|, \ldots,\left|s_{m-1}\right|\right\}<A
$$

Corollary.

If an entire function f of exponential type $\tau(f)<\log 2 / A$ satisfies

$$
\prod_{j=0}^{m-1} f^{(n)}\left(s_{j}\right)=0
$$

for all sufficiently large n, then f is a polynomial.

Historical survey and annotated references

anNaLES

SCIENTIFIQUES
DE

L'ÉCOLE NORUALE SUPÉRIEURE

RECIHERGOLES
sunt t.es
dérivées successives des fonctions analytiques
generralisation de la serie dabel
Pal M. W. GONTCHAROFF
\qquad

周 Gontcharoff, W. (1930). Recherches sur les dérivées successives des fonctions analytiques. Généralisation de la série d'Abel.
Ann. Sci. Éc. Norm.
Supér. (3), 47:1-78.

Interpolation problem for

$$
f^{(n)}\left(\sigma_{n}\right), \quad n \geq 0
$$

Example:

$$
f^{(n m+j)}\left(s_{j}\right), \quad n \geq 0, \quad 0 \leq j \leq m-1 .
$$

Historical survey and annotated references

Hillel Poritsky
(1898 - 1990)
Ph.D. Cornell University 1927
Topics in Potential Theory. Wallie Abraham Hurwitz (student of David Hilbert)

䍰 Poritsky, H. (1932).
On certain polynomial and other approximations to analytic functions.
Trans. Amer. Math. Soc., 34(2):274-331.

Interpolation problem for

$$
f^{(n m)}\left(s_{j}\right), \quad n \geq 0, \quad 0 \leq j \leq m-1
$$

```
https://pt.wikipedia.org/wiki/Hillel_Poritsky
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41924
```

Historical survey and annotated references

John Macnaghten Whittaker

$$
(1905-1984)
$$

目 Whittaker, J. M. (1933). On Lidstone's series and two-point expansions of analytic functions. Proc. Lond. Math. Soc. (2), 36:451-469.

Standard sets of polynomials: complete, indeterminate, redundant.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html

Historical survey and annotated references

John Macnaghten Whittaker (1905-1984)

圊 Whittaker, J. M. (1935). Interpolatory function theory, volume 33. Cambridge University Press, Cambridge.

Chap. III. Properties of successive derivatives.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html

Historical survey and annotated references

Archibald James Macintyre

$$
(1908-1967)
$$

© Macintyre, A. J. (1954).
Interpolation series for integral functions of exponential type. Trans. Amer. Math. Soc., 76:1-13.

Interpolation problem for

$$
f^{\left(n m+b_{j}\right)}\left(s_{j}\right), \quad n \geq 0, \quad 0 \leq j \leq m-1
$$

Historical survey and annotated references

Chap. I § 3: the method of the kernel expansion.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Boas.html https://en.wikipedia.org/wiki/Robert_Creighton_Buck

Main reference

國 M. Waldschmidt. On transcendental entire functions with infinitely many derivatives taking integer values at finitely many points.
Moscow Journal of Combinatorics and Number Theory, 9-4 (2020), 371-388.
DOI 10.2140/moscow.2020.9.371
arXiv: 1912.00174 [math.NT].
http://www.imj-prg.fr/~michel.waldschmidt/articles/pdf/IntegerValuedDerivativesSeveralPoints.pdf

A course on interpolation

Third Course : Several Points Poritsky, Gontcharoff

Professeur Émérite, Sorbonne Université, Institut de Mathématiques de Jussieu, Paris http://www.imj-prg.fr/~michel.waldschmidt/

