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Abstract

Given two sequences (0,,),>0 and (a,,)n>o of complex numbers
and a sequence (7,,),>0 of nonnegative integers, the
interpolation problem asks for the existence and unicity of an
entire function f satisfying

f0 (o) = an

for all n > 0.

We consider special cases.
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Two interpolation problems

We are going to consider the following interpolation problems:

» (Poritsky): For m > 2 and og,...,0,_1 in C,

f(mn)(aj):anj for n>0 and j=0,1,...,m—1

» (Gontcharoff): For (0,),>0 a sequence of complex

numbers,
f™(o,) =a, for n>0.

Periodic sequence:

f(mn+j)(0j):amn+j for n>0 and ;=0,1,...



Recall : Lidstone vs Whittaker
Let us display horizontally the points and vertically the

derivatives.
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Interpolation with 3 points

Poritsky Gontcharoff periodic
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Gontcharoff — Abel interpolation

The set of points may not be finite (or may not be distinct)

Gontcharoff Abel
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Poritsky interpolation: unicity

Let sg,S1,..., 8,1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.
Theorem [H. Poritsky, 1932]. If

Fmm (sg) = fmm(s)) = ... = fM (5, 1) =0
for all sufficiently large n, then f is a polynomial.

For m =2, s =0, s; = 1, this reduces Poritsky's result on
Lidstone expansion (up to the exact bound on the exponential

type).
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Gontcharoff interpolation: unicity

Let sg,S1,..., 8,1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.
Theorem [W. Gontcharoff 1930, A. J. Macintyre 1954]. If

f(")(so)f(”)(sl) . "f(”)(smq) -0
for all sufficiently large n, then f is a polynomial.
For m = 2, s =0, s; = 1, this implies Whittaker's result for

f@H(0) = f@7(1) = 0 (up to the exact bound on the
exponential type).



Periodic sequences

Let sg, S1,...,8,_1 be complex numbers, not necessarily
distinct. We write s for the tuple (so, s1,...,Sm—1). Let
To,- .., m—1 be m nonnegative integers satisfying
OSTOSTIS"'Srmflgm_l'

We investigate the interpolation problem for the values

f(7nn+rj)(sj) (nZO’ j:(),,m—l)

Examples
(1) Poritsky:
rozrlz---zrm_1:0.
(2) Gontcharoff periodic:
ri=17] for j=0,1,...,m— 1.
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Penodk:sequences:lf“””+7”(8j)

Let C[z]<,,—1 be the space of polynomials of degree < m — 1.

If there is a nonzero polynomial f € C[z]<,,—; such that
fl(s) =0 (j=0,....,m—1),

then there is no unicity. So we assume that the linear map

C[Z]Smfl — c™
f(2) — (f(rj)(sj))ogjgm—l

is an isomorphism of C—vector spaces.
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The determinant D(s)

In other words we assume that the determinant

k!

—Sjij>
(k —rj)! 0<j,k<m—1

D(s)—-det<

does not vanish.
It follows that r; < j forall j =0,1,...,m — 1.

Proposition.

Assume D(s) # 0. Then there exists a unique family of
polynomials (A,,;(2))n>0,0<j<m—1 Satisfying

AT (50) = 6540, for myk >0 and 0<j,0<m—1.

Forn >0 and 0 < j <m — 1 the polynomial A,,; has degree
<mn+m—1.
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Recurrence relations

Under the assumption D(s) # 0, the polynomials A,,;(z),
(n>0,5=0,...,m—1), are the unique solution of the
recurrence relations Aﬁ[}?) = A,,_1; with initial conditions

A,E;»Z)(Sf) =0 for n>1,
A (se) =85 for 0<j 0<m—1,

with A,,; of degree < mn +m — 1.
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Expansion of polynomials into interpolation series

Proposition.

Assume D(s) # 0. Then any polynomial f has a finite
expansion

)= 303 (5)A (2),

=0 n>0

where only finitely many terms on the right hand side are
nonzero.

Goal: to extend this expansion to entire functions of
sufficiently small exponential type.
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Expansion of entire functions

We will produce a number 7 > 0 such that the following holds.

Theorem.

Assume D(s) # 0. Then any entire function f of exponential
type < T has an expansion of the form

)= 30 3 e (s)A (2),

j=0 n>0

where the series in the right hand side is absolutely and
uniformly convergent for z on any compact space in C.
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Unicity of the expansion

Corollary.
Assume D(s) # 0. If an entire function f has exponential type

< T and satisfies
f(mn+r] ( ) =0

for j =0,...,m — 1 and all sufficiently large n, then f is a
polynomial.
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The main examples

Examples

(1) Lidstone polynomials: 7 = ,
m=2,5=0,s1=1,rg=1r1 =0,
Ao(2) = Ap(1 — 2), Api(2) = An(2).

(2) Whittaker polynomials: 7 = 7/2,
m=2s0=1,s1=0,r90=0, r =1,

Ano(2) = My (2), Ani(2) = M7, (2 = 1).

(3) Poritsky: assuming sq, s1, ..., S,,_1 are pairwise distinct,

ro=71r1=-:="m1 =0.

(4) Gontcharoff periodic:
rj=j3 for j=0,1,...,m—1.
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Strategy of proof of the Theorem

Goal: for f of exponential type < T,

F2) = 35 O () A (=),

§=0 n>0

First prove it for e* for sufficiently small |¢|, say |t| < T, next
use Laplace transform to deduce it for f entire of type < 7.

Special case f(z) = e'#, f,(mnH7i)(s;) = ¢mntrigtsi

m—1
etz _ E etSj 2 tmn+rjAnj (Z)
=0

n>0
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Exponential sums

For j =0,1,...,m —1 and z € C, consider the power series
©;i(t, z) € C][t]] defined by

©i(t, z) = Z £ N (2).

n>0

Goal: there exists © > 0 such that, for |t/ < 1/0 and z € C,

we have
-1

e = e pi(t, 2).

3

<
Il
o
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Examples

(1) Lidstone : m =2, s =0, sy =1, rg =71 =0,

_sinh((1 — 2)t)

wo(t,z) = STOR sinh(¢z)

901(1;7 Z) =

(2) Whittaker : m =2, s50=1,5=0,70=0, r; =1,

cosh(tz)
cosh(t) ’

SOO(t’ Z) = 901(15’ Z) =

cosh(?)

sinh(t)

sinh((z — 1)t)

19/50



Upper bound for the interpolation polynomials

Given complex numbers ag, ay,--- and non negative real
numbers cg, ¢1, ..., we write

g a; 2" <, E ;2"

i>0 i>0

if |a;| < ¢ forall i > 0.

Lemma (D. Roy).

There exists a constant © > (0 such that

m(n+1)—1 @mn+t)—i
1!
foralln >0 and j =0,1,...,m — 1.
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Expansion of €' for |t| < 1/©

The functions

pi(t, z) == Ztmn”jAnj(z)

n>0

are analytic in the disc [t| < 1/0O.
Let us prove, for |t| < 1/O and z € C,

m—1
e = Z e"ip;(t, 2).
=0

Proof. Define, for |t| < 1/© and z € C,

m—1
F(t, z) = Z " pi(t, z) — €',
=0

21 /50



Proof of the expansion of €%

We have

m—1
= Z et5j<pj (t,z) — e
— Z ts; Z Fmnatr; An]

n>0

:Zan (2)t",

n>0

where a,,(z) € Clz]<;4m—1 for all n. > 0.
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Proof of the expansion of €%

Z olsi Z tmn+r]A Z an(2>tn-

n>0 n>0

We obtain, forall k > 0and £ =0,1,...,m — 1,

o mk—+ry
(5) At = T ol
ya

n>0

m—1
. . k
— E :etsj 2 tmn+r] Aq({jn +W)(Sg) o tkarrgeth = 0.
J=0

n>0

Therefore a(mk+”)( ¢)=0forall k>0,n>0and
¢=0,1,...,m — 1. We conclude a,(z) =0 for all n > 0.
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Differential equations for ¢;(t, 2)
Recall, for |t| < 1/0,

©i(t, z) == Ztm"”JA

n>0
and A" = A,y ;, with initial conditions

A (s) =0 for n=1, AG(se) =0 for 0<je<m-1

Hence the functions ¢q(t, 2), p1(t, 2), ..., m-1(t, z) satisfy
the differential equation

o\" m :
($> 0i(t,z) =t"p;(t,z) for j=0,...,m—1

with the initial conditions

(%) ;(t,se) =t"6; for 0<j5,0<m—1
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Differential equations

Let ¢ be a primitive m-th root of unity. |For ¢ ## 0|, the

general solution of the differential equation
Fm(z) =1"f(2)
is a linear combination of the functions
< (k=0,1,...,m—1)

with coefficients depending on t.

Hence for 0 < [¢t| < 1/© there exist complex numbers ¢;y(t)
(j,k=0,1...,m —1) such that

3

pi(t,z) = cjk(t)ethZ.
0

B
Il
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The coefficients ¢ (t)

Recall
m—1
it 2) =Y "IN (2) = > egult)ed "
n>0 k=0
and

Te
(%) w;(t,s)) =t"6; for 0<j,0<m—1.

Hence, for 0 < j,/ <m —1and 0 < |t| < 1/O , we have

3

ci(t)CH e = 5.
0

B
Il
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Product of matrices

For0<j,/<m-—1and0<|t| <1/O , we have

—

3

Cjk(t)ck”egktsl = 5][.
0

B
Il

This means that the product

o)) ke thsl)
(e ))og],kgmfl (C © 0<k,0<m—1

is the identity m x m matrix.
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A matrix and its determinant

When you have a matrix, you consider its determinant

LAURENCE
FISHBURNE
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The determinant A(?)

For t € C, consider the m x m matrix

M(t) = (Ckrge(kt%)

0<kt<m—1

and its determinant A(t) =

etsO etsl e etsm—l
CTQGCtso <rleCtsl . Crm,1eCtsm71
det
C(m—l)meg’"*ltso C(m—l)n eg“mfltsl . C(m—l)rm71eg’"*1t$m71

Therefore the determinant A(¢) does not vanish for
0<t|<1/O-
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The value of 7

Let 7 be the least positive number such that A(t) does not
vanish for 0 < [t| < 7.

For |[t| < 1/© the matrix <Cjk(t))0§j,k§mfl is the inverse of
the matrix A (t). We deduce that the functions c;; () are
analytic in the domain 0 < |t| < 7.

The functions (¢, z) are now defined by

—_

it 2) = Y cplt)et "

0

for all z € C and for all ¢ with A(t) # 0. In particular the
function of two variables (¢, z) — ¢;(t, ) is analytic in the
domain |t| < 7, z € C, and the equations

0i(t,z) = Z "IN (2).

n>0

3

i

are valid in this domain.
30/50



Poritsky interpolation
ro="r1=-"-="m1=0.

The condition D(s) = 0 means that sq, 1, ..., 8,1 are
pairwise distinct.

The function A(¢) has a zero at the origin of multiplicity
m(m — 1)/2. The coefficient of t™"™~1/2 in the Taylor
expansion at the origin of A(¢) is given by a product of two
Vandermonde determinants.

31/50



Gontcharoff interpolation (periodic)
rij=jforj=0,1,...,m—1.

In this case A(0) is the Vandermonde determinant

1 1 .. 1
1 ¢ e (mt

det | 1 G C2(m—1) 7
1 Cw;fl . C(m;l)2

and hence is not zero.
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Recall Laplace transform

Let a
fle) =) "

n>0

be an entire function of exponential type 7(f). The Laplace

transform of f,
FP(t)=) a,t™",

n>0

is analytic in the domain |t| > 7(f). For o > 7(f) we have

fo) = —— [ R

270 Jjtj=,

Hence

1

Flmntri) () = 5 /| el (¢ dt.
tj=e
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End of the proof

Assume 7(f) < 7. Let p satisfy 7(f) < o < 7. For |t| = o, we

have
m—1
tz __ ts;jymn+r;
e _E E et iNn;(2),

n>0 j=0
hence

f(z) = = e F(t)dt

270 Jitj=e

— Zmz_l (% /|t y tm"”je“jF(t)dt> Avji(2)

n>0 j=0

= F () A (2).

n>0

The last series is absolutely and uniformly convergent for z on
any compact space in C.
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Abel — Gontcharoff interpolation

Let w = (w,,)n>0 be a sequence of complex numbers. There
exists a sequence of polynomials (€2,,.w)n>0 in C[z] such that
any polynomial f can be written as a finite sum

We define Qv = Qg
that

..... w,_; € C[z] by induction on n so

Q") (wy,) = 6pn for n>0 and k>0.

We set QO,W = Q@ = ]_, QLW = QwO(Z) = Z — Wy.

For n > 1, we define Q0 wy ws....w, (2) as the polynomial of
degree n + 1 which is the primitive of €2, s, w, Vanishing at
Wo.

.....

35/50



The polynomials ,.w = Qugwy.. w, 4

For n >0, Q,,. is a polynomial of degree n which depends
only on the first n terms of the sequence w.

The leading term of Q,,., is (1/n!)z".

For N > 0 we have

Z 1 N-—n

n=

This gives an inductive formula defining Qy.: for N > 0,

Qyw(2) = — — —wN*"Qn;W(z).

36 /50



The polynomials €,y
From the definition we deduce the following formula, involving
iterated integrals

z t1 tn—1
Qw07w1,~~~,wn4 <Z> = / dty / dtg--- / di,,.
wo w1 Wn—1

Examples: since

Quow1,...wn (2) = QO,w1—wo,wz—wo,---7wn—wo(z — wp),
it suffices to consider the case wy = 0.
21000, (2) = (2 — wy)* — wy?,
3100.01.w, (2) = (2 — w2)? — 3(wy — we)?z + wy?,
A0 oy wp w5 (2) = (2 — ws)* — 6(wy — ws)?(z — wy)?

— 4(wy — w3)*z + 6w, (wg — w3)? — w3
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Gontcharoff determinant for Qg w,. w, (%)

-----

z
1!
Wo
1!

z
2!
Wo
2!
w1
1!

Zn—l on
(n— 1])! n!
wO”_ U)On
(n—1)! n!
wln—2 wln—l
(n— 22! (n—1)!
wy wo
(n—3)! (n—2)!
. wn.—l
L 1!
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Two examples

e Forw=(1,0,1,0,...,0,1,...), we recover the Whittaker
polynomials

Donw(2) = My (2), Qopiiw(2) =M, (2 —1).

e For the arithmetic progression w = (a + nt),>¢ with a in C
and t in C\ {0}, we obtain Abel’s polynomials

() = (=~ a)(z — 0 — ity

for n > 1, which satisfy

Q;z;w(z) = Qn—l;w(z - t)

39 /50



Estimate for |$2,..| when sup,,~( |w,| < oo

Assume that the sequence (|w,|),>¢ is bounded. Let
A > sup,,>q [wy.

Proposition.

Let k > 1/log2. For n sufficiently large, we have, for all
r> 1A

’

|Qnswlr < (R1)".
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Expansion in a disc containing |2| < A

Recall sup,,»q |w,| < A.

Proposition.

Let f be an entire function of exponential type T(f) satisfying
7(f) <log2/A. Then

f(z) = Z f(n) (0n)Qnw (2),

n>0

where the series on the right hand side is absolutely and
uniformly convergent in any disk |z| < r with r <log2/7(f).
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Two examples

Corollary.

If an entire function f of exponential type T(f) < log2/A
satisfies ) (w,) = 0 for all sufficiently large n, then f is a

polynomial.
Special case where the set {wg, wy, wo, ...} is finite, say
{SQ, S1y e Sm—l}v with
max{|sol,|s1], ..., |sm-1]} < A.
Corollary.
If an entire function f of exponential type 7(f) < log2/A
satisfies ,
f(s;) =0
=0

for all suthiciently large n, then f is a polynomial.
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Historical survey and annotated references

AQJNAPES [4 Gontcharoff, W. (1930).

Recherches sur les
dérivées successives des
fonctions analytiques.
DERIVEES SUCCESSIVES }JES‘FON(}TIONS ANALYTIQUES Generallsatlon de Ia serie
d'Abel.
Par M. W. GONTCHAROFF Ann SCi E/C Norm
Supér. (3), 47:1-78.

[’ECOLE NORMALE SUPERIEURE

Interpolation problem for
f"(s,), n>0.
Example:
f(”m”)(sj), n>0 0<j<m-—1
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Historical survey and annotated references

Hillel Poritsky @ Poritsky, H. (1932).

(1898 — 1990) On certain polynomial
Ph.D. Cornell University 1927 polyhomial
and other approximations

Topics in Potential Theory.

Wallie Abraham Hurwitz to analytic functions.
(student of David Hilbert) Trans. Amer. Math. Soc.,

34(2):274-331.

Interpolation problem for

frm(s;), n>0, 0<j<m-—1.

https://pt.wikipedia.org/wiki/Hillel_Poritsky
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41924
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Historical survey and annotated references

8 Whittaker, J. M. (1933).
On Lidstone's series and
two-point expansions of
analytic functions.

Proc. Lond. Math. Soc.
(2), 36:451-469.

John Macnaghten Whittaker
(1905 — 1984)

Standard sets of polynomials: complete, indeterminate,
redundant.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html
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Historical survey and annotated references

8 Whittaker, J. M. (1935).
Interpolatory function
theory, volume 33.
Cambridge University
Press, Cambridge.

John Macnaghten Whittaker
(1905 — 1984)

Chap. Ill. Properties of successive derivatives.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html
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Historical survey and annotated references

[A Macintyre, A. J. (1954).
Interpolation series for
integral functions of

: exponential type.
Archibald James Macintyre Trans. Amer. Math. Soc.

(1908 — 1967) 76:1-13.

Interpolation problem for

frmtid (s, n >0, 0<j<m-—1

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Macintyre_Archibald.html
P group: y grap. Y
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Historical survey and annotated references

[ Boas, Jr., R. P. and Buck,

TS \ R. C. (1964).
“- ‘? Polynomial expansions of
' analytic functions.
Ralph Philip Boas Jr Second printing,
(1012 - 1992) corrected. Ergebnisse der

Mathematik und ihrer
Grenzgebiete, N.F., Bd.

Robert Creighton Buck 19. Academic Press, Inc.,
(1920 — 1998) Publishers, New York;

Springer-Verlag, Berlin.

Chap. I § 3: the method of the kernel expansion.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Boas.html
https://en.wikipedia.org/wiki/Robert_Creighton_Buck
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