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Abstract

This last course is devoted to arithmetic applications.

The first part is a survey on integer-valued entire functions of
exponential type; we start with its connection with
transcendental number theory.

Next we give new results related with Lidstone, Whittaker,
Poritsky and Gontcharoff interpolation.
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Integer-valued entire functions of exponential type

An integer-valued entire function is an entire function
(=analytic in the complex plane) which takes integer values at
the nonnegative integers; an example is 2z.

A Hurwitz function is an entire function with derivatives of
any order taking integer values at 0; an example is ez.

One main goal is to prove lower bounds for the growth of such
functions and similar ones when they are not a polynomials.
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Introduction: Hilbert’s 7th problem (1900)

David Hilbert

(1862 – 1943)

Prove that the numbers

eπ = 23.140 692 632 . . .

and

2
√
2 = 2.665 144 142 . . .

are transcendental.

A transcendental number is a number which is not algebraic.
The algebraic numbers are the roots of the polynomials with
rational coefficients.

http://www-history.mcs.st-and.ac.uk/Biographies/Hilbert.html
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Values of the exponential function ez = exp(z)

eπ = 1 +
π

1
+
π2

2
+
π3

6
+ · · ·+ πn

n!
+ · · ·

The number

e = e1 = 1 +
1

1
+

1

2
+

1

6
+ · · ·+ 1

n!
+ · · ·

is transcendental (Hermite, 1873), while

elog 2 = 1 +
log 2

1
+

(log 2)2

2
+ · · ·+ (log 2)n

n!
+ · · · = 2

eiπ = 1 +
iπ

1
+

(iπ)2

2
+ · · ·+ (iπ)n

n!
+ · · · = −1

are rational numbers.
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Charles Hermite

Charles Hermite

(1822 – 1901)

1873
The number e is
transcendental.

Ch. Hermite – Sur la fonction exponentielle, C. R. Acad.
Sci. Paris, 77 (1873), 18–24; 74–79; 226–233; 285–293;
Oeuvres, Gauthier Villars (1905), III, 150–181.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hermite.html
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Constance Reid: Hilbert

• Constance Reid. Hilbert. Springer Verlag 1970.
• Jay Goldman. The Queen of Mathematics: A Historically
Motivated Guide to Number Theory. Taylor & Francis, 1998.
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George Pólya Aleksandr Osipovich Gel’fond

Growth of integer-valued entire functions.
Pólya: N Gel’fond: Z[i]

G. Pólya

(1887 – 1985)

A.O. Gel’fond

(1906 – 1968)

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html

http://www-history.mcs.st-and.ac.uk/Biographies/Gelfond.html
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Integer-valued entire functions on N

G. Pólya (1915):
An entire function f which is
not a polynomial and satisfies
f(a) ∈ Z for all nonnegative
integers a grows at least like
2z. It satisfies

lim sup
R→∞

1

R
log |f |R ≥ log 2.

G. Pólya

(1887 – 1985)

Notation:
|f |R := sup

|z|≤R
|f(z)|.

http://www-history.mcs.st-and.ac.uk/Biographies/Polya.html
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Integer-valued entire function on Z[i]

S. Fukasawa (1928), A.O. Gel’fond (1929):
An entire function f which is not a polynomial and satisfies
f(a+ ib) ∈ Z[i] for all a+ ib ∈ Z[i] grows at least like ecz

2
. It

satisfies

lim sup
R→∞

1

R2
log |f |R ≥ γ.

Proof: Expand f(z) into a Newton interpolation series at the
Gaussian integers.

A.O. Gel’fond: γ ≥ 10−45.
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Entire functions vanishing on Z[i]
The canonical product associated with the lattice Z[i] is the
Weierstrass sigma function

σ(z) = z
∏

ω∈Z[i]\{0}

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)
,

which is an entire function vanishing on Z[i].
σ(z) grows like eπz

2/2:

lim sup
R→∞

1

R2
log |σ|R =

π

2
·

Hence
10−45 ≤ γ ≤ π

2
·
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Exact value of the constant γ of Gel’fond

F. Gramain (1981) : γ =
π

2e
·

This is best possible: D.W. Masser (1980).

F. Gramain D.W. Masser
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Irrationality of eπ

The function eπz takes the value

(eπ)a(−1)b

at the point a+ ib ∈ Z[i].

If the number

eπ = 23.140 692 632 779 269 005 729 086 367 . . .

were rational, these values would all be rational numbers.

Gel’fond’s proof yields the irrationality of eπ and more
generally the fact that eπ is not root of a polynomial XN − a
with N ≥ 1 and a ∈ Q.
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Transcendence of eπ

A.O. Gel’fond (1929): eπ is transcendental.

More generally, for α nonzero algebraic number with logα 6= 0
and for β imaginary quadratic number,

αβ = exp(β logα)

is transcendental.
Example: α = −1, logα = iπ, β = −i, αβ = (−1)−i = eπ.

R.O. Kuzmin (1930): 2
√
2 is transcendental.

More generally, for α nonzero algebraic number with logα 6= 0
and for β real quadratic number,

αβ = exp(β logα)

is transcendental.
Example: α = 2, logα = log 2, β =

√
2, αβ = 2

√
2.
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Solution of Hilbert’s seventh problem

A.O. Gel’fond and Th. Schneider (1934).

Transcendence of αβ

and of (logα1)/(logα2)
for algebraic α, β, α2 and α2.
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Further connection with transcendental number

theory

In 1950, E. G. Straus introduced a connection between
integer–valued functions and transcendence results, including
the Hermite–Lindemann Theorem on the transcendence of eα

for α 6= 0 algebraic.

However, as he pointed out in a footnote, at the same time,
Th. Schneider obtained more far reaching results, which
ultimately gave rise to the Schneider–Lang Criterion (1962).
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Integer-valued entire functions
An integer-valued entire function is an entire function f
(analytic in C) which satisfies f(n) ∈ Z for n = 0, 1, 2, . . . .

Example: the polynomials(
z

n

)
=
z(z − 1) · · · (z − n+ 1)

n!
(n ≥ 0).

Any polynomial with complex coefficients which is an
integer-valued entire function is a linear combination with
coefficients in Z of these polynomials:

u0+u1z+u2
z(z − 1)

2
+ · · ·+un

z(z − 1) · · · (z − n+ 1)

n!
+ · · ·

(finite sum) with ui in Z.
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G. Pólya (1915)

The function 2z is a transcendental (= not a polynomial)
integer-valued entire function.

2p/q =
q
√
2
p

2lim pn/qn = lim 2pn/qn ,

2z = exp(z log 2) = 1 +
z log 2

1
+

(z log 2)2

2
+

(z log 2)3

6
+ · · ·

G. Pólya (1915): 2z is the smallest transcendental
integer-valued entire function. It has exponential type

log 2 = 0.693 147 180 . . .
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Integer-valued entire functions on N
Pólya’s proof starts by expanding the function f into a
Newton interpolation series at the points 0, 1, 2, . . .:

f(z) =
∑
n≥0

un

(
z

n

)
, un =

n∑
k=0

(−1)k
(
n

k

)
f(n− k).

Since f(n) is an integer for all
n ≥ 0, the coefficients un are
integers. If f does not grow
fast, for sufficiently large n we
have |un| < 1, hence un = 0.

I. Newton

(1643– 1727)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Newton.html
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Proof of Pólya’s Theorem using Laplace transform
For N ≥ 0 and t ∈ C we have

N∑
n=0

(
N

n

)
(et − 1)n = eNt.

For |t| < log 2, we have

∣∣et − 1
∣∣ = ∣∣∣∣∣

∞∑
k=1

tk

k!

∣∣∣∣∣ ≤
∞∑
k=1

|t|k

k!
= e|t| − 1 < 1.

Hence for z ∈ C and |t| < log 2,

∞∑
n=0

(
z

n

)
(et − 1)n = etz.
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Laplace transform

Let f be an entire function of exponential type < log 2. Let r
satisfy τ(f) < r < log 2.
Let F (t) be the Laplace transform of f :

f(z) =
1

2πi

∫
|t|=r

etzF (t)dt =
∞∑
n=0

un

(
z

n

)
with

un =
1

2πi

∫
|t|=r

(et − 1)nF (t)dt.
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Proof of Pólya’s Theorem
Let f be an entire function of exponential type < log 2. We have

f(z) =

∞∑
n=0

un

(
z

n

)
.

Let r satisfy τ(f) < r < log 2. Then

un =
1

2πi

∫
|t|=r

(et − 1)nF (t)dt.

Hence, for sufficiently large n,

|un| ≤ r|F |r(er − 1)n < 1.

Gérard Rauzy. Les zéros entiers des fonctions entières de type
exponentiel. Séminaire de Théorie des Nombres de Bordeaux,
(1976-1977), pp. 1-10 https://www.jstor.org/stable/44165280
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Growth of integer-valued entire functions

G. Pólya (1915): an integral valued entire of exponential type
< log 2 is a polynomial.

More precisely, if f is a transcendental integer-valued entire
function, then

lim
r→∞

√
r2−r|f |r > 0.

Equivalent formulation:

If f is an integer-valued entire function such that

lim
r→∞

√
r2−r|f |r = 0,

then f is a polynomial.
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Carlson vs Pólya

F. Carlson (1914): an entire function f of exponential type
< π satisfying f(N) = {0} is 0.
The function sin(πz) is a transcendental entire function of
exponential type π vanishing on Z.

G. Pólya (1915): an integer-valued entire function of
exponential type < log 2 is a polynomial.
The function 2z is an integer-valued entire function of
exponential type log 2.
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G.H. Hardy (1917)

A refinement of Pólya’s result
was achieved by G.H. Hardy
who proved that if f is an
integer-valued entire function
such that

lim
r→∞

2−r|f |r = 0,

then f is a polynomial.
G.H. Hardy

(1877 – 1947)

Compare with Pólya’s assumption:

lim
r→∞

√
r2−r|f |r = 0.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Hardy.html
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A. Selberg (1941)

A. Selberg proved that if an
integer–valued entire function
f satisfies

τ(f) ≤ log 2 +
1

1500
,

then f is of the form
P 0(z) + P 1(z)2

z, where P 0

and P 1 are polynomials.

A. Selberg

(1917 – 2007)

There are only countably many such functions.

https://www-history.mcs.st-andrews.ac.uk/Biographies/Selberg.html
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Ch. Pisot (1942)
Ch. Pisot proved that if an integer–valued entire function f
has exponential type ≤ 0.8, then f is of the form

P 0(z) + 2zP 1(z) + γzP 2(z) + γzP 3(z),

where P 0, P 1, P 2, P 3 are polynomials and γ, γ are the non real
roots of the polynomial z3 − 3z + 3.

This contains the result of
Selberg, since

| log γ| = 0.758 98 · · · > log 2+
1

1500
= 0.693 81 . . .

Pisot obtained more general
result for functions of
exponential type < 0.9934 . . .

Ch. Pisot

(1910 – 1984)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Pisot.html
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Completely integer–valued entire function
A completely integer–valued entire function is an entire
function which takes values in Z at all points in Z.

Let u > 1 be a quadratic unit, root of a polynomial
X2 + aX + 1 for some a ∈ Z. Then the functions

uz + u−z and
uz − u−z

u− u−1

are completely integer–valued entire function of exponential
type log u.

Examples of such quadratic units are the roots u and u−1 of
the polynomial X2 − 3X + 1:

u =
3 +
√
5

2
, u−1 =

3−
√
5

2
·

28 / 65



Quizz

Let φ be the Golden ratio and let φ̃ = −φ−1, so that

X2 −X − 1 = (X − φ)(X − φ̃).

For any n ∈ Z we have

φn + φ̃n ∈ Z

and
log φ = − log |φ̃| < log 2.

Why is φz + φ̃z not a counterexample to Pólya’s result on the
growth of transcendental integer-valued entire functions?
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Completely integer–valued entire function

The function

1√
5

(
3 +
√
5

2

)z

− 1√
5

(
3 +
√
5

2

)−z
.

is a completely integer–valued transcendental entire function.

In 1921, F. Carlson proved that if the type τ(f) of a
completely integer–valued entire function f satisfies

τ(f) < log

(
3 +
√
5

2

)
= 0.962 . . . ,

then f is a polynomial.
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A. Selberg (1941)

A. Selberg: if the type τ(f) of a completely integer–valued
entire function f satisfies

τ(f) ≤ log

(
3 +
√
5

2

)
+ 2 · 10−6,

then f is of the form

P 0(z) + P 1(z)

(
3 +
√
5

2

)z

+ P 2(z)

(
3 +
√
5

2

)−z
where P 0, P 1, P 2 are polynomials.
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Hurwitz functions

A Hurwitz function is an
entire function f such that
f (n)(0) ∈ Z for all n ≥ 0.

A. Hurwitz

(1859 – 1919)

The polynomials which are Hurwitz functions are the
polynomials of the form

a0 + a1z + a2
z2

2
+ a3

z3

6
+ · · ·+ an

zn

n!

with ai ∈ Z.
https://www-history.mcs.st-andrews.ac.uk/Biographies/Hurwitz.html
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Hurwitz functions

The exponential function

ez = 1 + z +
z2

2
+
z3

6
+ · · ·+ zn

n!
+ · · ·

is a transcendental Hurwitz function of exponential type 1.
For a ∈ Z, the function eaz is also a Hurwitz function of
exponential type |a|.
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Kakeya (1916)
S. Kakeya (1916): a Hurwitz function of exponential type < 1
is a polynomial.
More precisely, a Hurwitz function satisfying

lim sup
r→∞

√
re−r|f |r = 0

is a polynomial.

Question: is
√
r superfluous? Is ez the smallest Hurwitz

function?

Recall Pólya vs Hardy: an integer-valued entire functions of
low growth is a polynomial.

Pólya’s assumption: lim
r→∞

√
r2−r|f |r = 0.

Hardy’s assumption: lim
r→∞

2−r|f |r = 0.
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Pólya (1921)
G. Pólya refined Kakeya’s result in 1921: a Hurwitz function
satisfying

lim sup
r→∞

√
re−r|f |r <

1√
2π

is a polynomial.
(Kakeya’s assumption: lim sup = 0).
This is best possible for uncountably many functions, as
shown by the functions

f(z) =
∑
n≥0

en
2n!

z2
n

with en ∈ {1,−1} which satisfy

lim sup
r→∞

√
re−r|f |r =

1√
2π
·
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A variant of Pólya’s result

Let f be an entire function and let A ≥ 0. Assume

lim sup
r→∞

e−r
√
r|f |r <

e−A√
2π
·

Then there exists n0 > 0 such that, for n ≥ n0 and for all
z ∈ C in the disc |z| ≤ A, we have

|f (n)(z)| < 1.

Hint for the proof.
Use Cauchy’s inequalities and Stirling’s formula.
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Sato and Straus (1964)

D. Sato and E.G. Straus
proved that for every ε > 0,
there exists a transcendental
Hurwitz function with

lim sup
r→∞

√
2πr e−r

(
1 +

1 + ε

24r

)−1
|f |r < 1,

while every Hurwitz function
for which

lim sup
r→∞

√
2πr e−r

(
1 +

1− ε
24r

)−1
|f |r ≤ 1

is a polynomial.

E.G. Straus

(1922 – 1983)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Straus.html
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Integer–valued functions vs Hurwitz functions:

Let us display horizontally the rational integers and vertically
the derivatives.

integer–valued functions:
horizontal

f • • • · · · • · · ·
0 1 2 · · · n · · ·

Hurwitz functions: vertical

...
f (n) •

...
f ′ •
f •

0
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Several points and / or several derivatives

There are several natural ways to mix integer–valued functions
and Hurwitz functions:

I horizontally, one may include finitely may derivatives in
the study of integer–valued functions.

A k–times integer–valued function is an entire function f
such that f (j)(n) ∈ Z for all n ≥ 0 and
j = 0, 1, . . . , k − 1.

I Vertically, one may consider entire functions with all
derivatives at finitely many points taking integer values.

A k–point Hurwitz function is an entire function having
all its derivatives at 0, 1, . . . , k − 1 taking integer values.
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k–times integer–valued functions (horizontal)

k = 2: f(n) ∈ Z, f ′(n) ∈ Z (n ≥ 0).

f ′ • • • · · · • · · ·
f • • • · · · • · · ·

0 1 2 · · · n · · ·

According to Gel’fond (1929), a k–times integer–valued

function of exponential type < k log

(
1 + e−

k−1
k

)
is a

polynomial.

The function (sin(πz))k has exponential type kπ and vanishes
with multiplicity k on Z.
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Two–point Hurwitz functions (vertical)
k = 2: f (n)(0) ∈ Z, f (n)(1) ∈ Z (n ≥ 0).

...
...

...
f (n) • •

...
...

...
f ′ • •
f • •

0 1

D. Sato (1971): every two
point Hurwitz entire functions
for which there exists a
positive constant C such that

|f |r ≤ C exp
(
r2 − r − log r

)
is a polynomial.

Also, there exist transcendental two point Hurwitz entire
functions with

|f |r ≤ exp
(
r2 + r − log r +O(1)

)
.
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k–point Hurwitz functions

For k ≥ 3 our knowledge is more limited.

...
...

...
...

...
f (n) • • · · · •

...
...

...
. . .

...
f ′ • • · · · •
f • • · · · •

0 1 · · · k

D. Sato (1971) proved that
the order of k–point Hurwitz
functions is ≥ k.
This is best possible, as
shown by the function
ez(z−1)···(z−k+1).
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k–point Hurwitz functions

For an entire function f of order ≤ %, define

τ%(f) = lim sup
r→∞

log |f |r
r%

·

f grows like eτ%(f)z
%
.

Example: for k ≥ 1, the function f(z) = ez(z−1)···(z−k+1) has
order k and τk(f) = 1: it grows like ez

k
.

43 / 65



k–point Hurwitz functions

L. Bieberbach (1953) stated
that if a transcendental entire
function f of order % is a
k–point Hurwitz entire
function, then either % > k, or
% = k and the type τk(f) of f
satisfies τk(f) ≥ 1. L. Bieberbach

(1886 – 1982)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Bieberbach.html
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k–point Hurwitz functions

However, as noted by D. Sato, since the polynomial

a(z) =
1

2
z(z − 1)(z − 2)(z − 3)

can be written

a(z) =
1

2
z4 − 3z3 − 11

2
z2 − 3z,

it satisfies a′(z) ∈ Z[z].

It follows that the function ea(z) is a 4-point Hurwitz
transcendental entire function of order % = 4 and τ4(f) = 1/2.
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Utterly integer–valued entire functions

Another way of mixing the horizontal and the vertical
generalizations is to introduce utterly integer–valued entire
function, namely entire functions f which satisfy f (n)(m) ∈ Z
for all n ≥ 0 and m ∈ Z.

...
...

...
...

f (n) • • · · · • · · ·
...

...
...

. . .
...

f ′ • • · · · • · · ·
f • • · · · • · · ·

0 1 · · · m · · ·
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G.A. Fridman (1968), M. Welter (2005)
E.G. Straus (1951) suggested that transcendental utterly
integer–valued entire function may not exist.

G.A. Fridman (1968) showed that there exists transcendental
utterly integer–valued function f with

lim sup
r→∞

log log |f |r
r

≤ π

and proved that a transcendental utterly integer–valued
function f satisfies

lim sup
r→∞

log log |f |r
r

≥ log(1 + 1/e).

The bound log(1 + 1/e) was improved by M. Welter (2005) to
log 2: hence f grows like e2

z
(double exponential).
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Sato’s examples

An utterly integer–valued transcendental entire functions has
infinite order: it grows like a double exponential ee

αz
.

D. Sato (1985) constructed a nondenumerable set of utterly
integer–valued transcendental entire functions.

He selected inductively the coefficients an with

1

n!(2π)n
≤ |an| ≤

3

n!(2π)n

and defined
f(z) =

∑
n≥0

an sin
n(2πz).
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Abel series
There is also a diagonal way of mixing the questions of
integer–valued functions and Hurwitz functions by considering
entire functions f such that f (n)(n) ∈ Z. The source of this
question goes back to N. Abel.

... . ..

f (n) •
... . ..

f ′ •
f •

0 1 · · · n · · ·
Niels Abel

(1802 – 1829)

https://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html
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Abel polynomials
Recall

P n(z) =
1

n!
z(z − n)n−1 (n ≥ 1).

Any polynomial f has a finite expansion

f(z) =
∑
n≥0

f (n)(n)P n(z).

G. Halphén (1882) : Such an expansion (with a series in the
right hand side which is absolutely and uniformly convergent
on any compact of C) holds also for any entire function f of
finite exponential type < ω, where ω = 0.278 464 542 . . . is
the positive real number defined by ωeω+1 = 1.

If an entire function f of exponential type < ω satisfies
f (n)(n) = 0 for all sufficiently large n, then f is a polynomial.
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F. Bertrandias (1958)

Let τ0 = 0.567 143 290 . . . be the positive real number defined
by τ0e

τ0 = 1.
The function f(z) = eτ0z satisfies f ′(z) = f(z − 1) and
f(0) = 1, hence f (n)(n) = 1 for all n ≥ 0.

F. Bertrandias (1958): an entire function f of exponential
type < τ0 such that f (n)(n) ∈ Z for all sufficiently large
integers n ≥ 0 is a polynomial.

Let τ1 be the complex number defined by τ1e
τ1 = (1+ i

√
3)/2.

Then an entire function f of exponential type
< |τ1| = 0.616 . . . such that f (n)(n) ∈ Z for all sufficiently
large integers n ≥ 0 is of the form P (z) +Q(z)eτ0z, where P
and Q are polynomials.
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Variations on this theme

I q analogues and multiplicative versions (geometric
progressions):
Gel’fond (1933, 1952), J.A. Kazmin (1973), J.P. Bézivin
(1984, 1992) F. Gramain (1990), M. Welter (2000,
2005), J-P. Bézivin (2014).

I analogs in finite characteristic:
D. Adam (2011), D. Adam and M. Welter (2015).

I congruences:
A. Perelli and U. Zannier (1981), J. Pila (2003, 2005).

I several variables:
S. Lang (1965), F. Gross (1965), A. Baker (1967),
V. Avanissian and R. Gay (1975), F. Gramain (1977,
1986), P. Bundschuh (1980) . . .
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The Masser–Gramain–Weber constant
D.W. Masser (1980) and F. Gramain–M. Weber (1985)
studied an analog of Euler’s constant for Z[i], which arises in a
2–dimensional analogue of Stirling’s formula:

δ = lim
n→∞

(
n∑
k=2

(πrk
2)−1 − log n

)
,

where rk is the radius of the smallest disc in R2 that contains
at least k integer lattice points inside it or on its boundary.

In 2013, G. Melquiond, W. G. Nowak and P. Zimmermann
computed the first four digits :

1.819776 < δ < 1.819833,

disproving a conjecture of F. Gramain.
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Lidstone and Whittaker interpolation

George James Lidstone

(1870 – 1952)

John Macnaghten Whittaker

(1905 – 1984)

...
...

...
f (2n+1) ◦ ◦
f (2n) • •

...
...

...
f ′′ • •
f ′ ◦ ◦
f • •

s0 s1

...
...

...
f (2n+1) • ◦
f (2n) ◦ •

...
...

...
f ′′ ◦ •
f ′ • ◦
f ◦ •

s0 s1

• values in Z ◦ no condition
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Arithmetic result for Lidstone interpolation
Let s0 and s1 be two complex numbers and f an entire
function satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for all
sufficiently large n.

...
...

...
f (2n+1) ◦ ◦
f (2n) • •

...
...

...
f ′′ • •
f ′ ◦ ◦
f • •

s0 s1

If

τ(f) < min

{
1,

π

|s0 − s1|

}
,

then f is a polynomial.

This is best possible.

• values in Z ◦ no condition
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Arithmetic result for Lidstone interpolation

If τ(f) < min

{
1,

π

|s0 − s1|

}
, f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z

for all sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)
sinh(s0 − s1)

has exponential type 1 and satisfies f(s0) = 1, f(s1) = 0 and
f ′′ = f , hence f (2n)(s0) = 1 and f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = sin

(
π
z − s0
s1 − s0

)
has exponential type π

|s1−s0| and satisfies

f (2n)(s0) = f (2n)(s1) = 0 for all n ≥ 0.
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Sketch of proof

Recall the following variant of Pólya’s result:

Let f be an entire function. Let A ≥ 0. Assume

lim sup
r→∞

e−r
√
r|f |r <

e−A√
2π
·

Then the set{
(n, z0) ∈ N× C | |z0| ≤ A, f (n)(z0) ∈ Z \ {0}

}
is finite.
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Arithmetic result for Whittaker interpolation

Let s0 and s1 be two complex numbers and f an entire
function satisfying f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z for each
sufficiently large n.

...
...

...
f (2n+1) • ◦
f (2n) ◦ •

...
...

...
f ′′ ◦ •
f ′ • ◦
f ◦ •

s0 s1

Assume

τ(f) < min

{
1,

π

2|s0 − s1|

}
.

Then f is a polynomial.

This is best possible.
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Arithmetic result for Whittaker interpolation

If τ(f) < min

{
1,

π

2|s0 − s1|

}
, f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z

for each sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)
cosh(s0 − s1)

has exponential type 1 and satisfies f ′(s0) = 1, f(s1) = 0 and
f ′′ = f , hence f (2n+1)(s0) = 1 and f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = cos

(
π

2
· z − s0
s1 − s0

)
has exponential type π

2|s1−s0| and satisfies

f (2n+1)(s0) = f (2n)(s1) = 0 for all n ≥ 0.
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Poritsky and Gontcharoff–Abel interpolation

Poritsky

...
...

...
...

f (3n+2) ◦ ◦ ◦
f (3n+1) ◦ ◦ ◦
f (3n) • • •

...
...

...
...

f (iv) ◦ ◦ ◦
f ′′′ • • •
f ′′ ◦ ◦ ◦
f ′ ◦ ◦ ◦
f • • •

s0 s1 s2

Gontcharoff–Abel

...
...

...
...

f (3n+3) • ◦ ◦
f (3n+2) ◦ ◦ •
f (3n+1) ◦ • ◦
f (3n) ◦ ◦ •

...
...

...
...

f (iv) ◦ ◦ •
f ′′′ • ◦ ◦
f ′′ ◦ • ◦
f ′ ◦ • ◦
f • ◦ ◦

s0 s1 s2
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Arithmetic result for Poritsky interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Theorem.
If

f (mn)(sj) ∈ Z

for all sufficiently large n and for 0 ≤ j ≤ m− 1, then f is a
polynomial.

For m = 2 with f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z (Lidstone),
the assumption on the exponential type τ(f) of f is

τ(f) < min{1, π/|s0 − s1|},

and this is best possible.
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Gontcharoff–Abel interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Theorem.
Assume that for each sufficiently large n, one at least of the
numbers

f (n)(sj) j = 0, 1, . . . ,m− 1

is in Z. Then f is a polynomial.

In the case m = 2 with f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z
(Whittaker), the assumption is

τ(f) < min

{
1,

π

2|s0 − s1|

}
,

and this is best possible.
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Historical survey and annotated references

Ernst Gabor Straus

(1922 – 1983)

Straus, E. G. (1950).
On entire functions with
algebraic derivatives at
certain algebraic points.
Ann. of Math. (2),
52:188–198.

Connection with transcendental number theory.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Straus.html
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Three references

M. Waldschmidt. On transcendental entire functions with
infinitely many derivatives taking integer values at two points.
Southeast Asian Bulletin of Mathematics, to appear in 2021.
arXiv: 1912.00173 [math.NT].

M. Waldschmidt. On transcendental entire functions with
infinitely many derivatives taking integer values at finitely many
points. Moscow Journal of Combinatorics and Number Theory, 9-4
(2020), 371–388.
DOI 10.2140/moscow.2020.9.371 arXiv: 1912.00174 [math.NT].

M. Waldschmidt. Integer–valued functions, Hurwitz functions
and related topics: a survey. To appear in the proceedings of the
2019 Journées Arithmétiques (Istanbul).
arXiv:2002.01223 [math.NT]
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