An elementary introduction to Cryptography

Michel Waldschmidt
 Emeritus Professor

Université P. et M. Curie - Paris VI
Centre International de Mathématiques
Pures et Appliquées - CIMPA
http://www.math.jussieu.fr/~miw/
https://www.ias.ac.in/listing/articles/reso/023

A sketch of Modern Cryptology

The Art and Science of Secrecy Systems
by Palash Sarkar
Resonance journal of science education
Volume 5 Number 9 (september 2000), p. 22-40

Data transmission, Cryptography and Arithmetic

Among the unexpected features of recent developments in technology are the connections between classical arithmetic on the one hand, and new methods for reaching a better security of data transmission on the other. We will illustrate this aspect of the subject by showing how modern cryptography is related to our knowledge of some properties of natural numbers. As an example, we explain how prime numbers play a key role in the process which enables you to withdraw safely your money from your bank account using your PIN (Personal Identification Number) secret code.

RSA
SECURITY゙

Encryption for security

Cryptology and the Internet: security norms, e-mail, web communication (SSL: Secure Socket Layer),

IP protocol (IPSec), e-commerce...

- Protect information
- Identification
- Contract
- Money transfer
- Public auction
- Public election
- Poker
- Public lottery
- Anonymous communication
- Code book, lock and key
- Driver's license, Social Security number, password, bioinformatics,
- Handwritten signature, notary
- Coin, bill, check, credit card
- Sealed envelope
- Anonymous ballot
- Cards with concealed backs
- Dice, coins, rock-paper-scissors
- Pseudonym, ransom note
- Algebra
- Arithmetic, number theory
- Geometry
- Topology
- Probability

Mathematics in cryptography

The protocol of the suitcases

Sending a suitcase

- Assume Alice has a suitcase and a lock with the key; she wants to send the suitcase to Bob in a secure way so that nobody can see the content of the suitcase.
- Bob also has a lock and the corresponding key, but they are not compatible with Alice's ones.

Secret code of a bank card

Secret code of a bank card

- You need to identify yourself to the bank. You know your secret code, but for security reason you are not going to send it to the bank. Everybody (including the bank) knows the public key. Only you know the secret key.

ervoie un mombre aléatoire \times
renvois $f(k, x)$
érific et donne outorisation

The memory electronic card (chip or smart card)

was invented in the 70's

by two french engineers,

Roland Moreno and Michel Ugon.

- France adopted the card with a microprocessor as early as 1992.
- In 2005, more than 15000000 bank cards were smart cards in France.
- In European Union, more than $1 / 3$ of all bank cards are smart cards.
http://www.cartes-bancaires.com

The memory electronic card (chip card) .

- The messages you send or receive should not reveal your secret key.
- Everybody (including the bank), who can read the messages back and forth, is able to check that the answer is correct, but is unable to deduce your secret code.
- The bank sends you a random message.
- Using your secret code (also called secret key or password) you send an answer.

Cryptography: a short history

Encryption using alphabetical transpositions and substitutions

- Julius Caesar: replaces each letter by another one in the same order (shift)

- For instance, (shift by 3) replace

ABCDEFGHIJKLMNOPQRSTUVWXYZ
by
DEFGHIJKLMNOPQRSTUVWXYZABC

- Example:

CRYPTOGRAPHY becomes FUBSWRJUDSKB

- More sophisticated examples: use any permutation (does not preserve the order).

- 800-873, Abu Youssouf Ya qub Ishaq Al Kindi
Manuscript on deciphering cryptographic messages.
Check the authenticity of sacred texts from Islam.

- XIIIth century, Roger Bacon: seven methods for encryption of messages.

Cryptograph, alchimist, writer, diplomat

- 1850, Charles Babbage (frequency of letters)
Babbage machine (ancestor of computer) Ada, countess of Lovelace: first programmer

Interpretation of hieroglyphs

- Jean-François Champollion (1790-1832)
- Rosette stone (1799)

Data transmission

- Carrier-pigeons : first crusade - siege of Tyr, Sultan of Damascus
- French-German war of 1870, siege of Paris
- Military centers for study of carrier-pigeons created in Coëtquidan and Montoire.

Data transmission

- James C. Maxwell (1831-1879)
- Electromagnetism Herz, Bose: radio

1917, Gilbert Vernam (disposable mask)
Example: the red phone Kremlin/White House One time pad

1950, Claude Shannon proves that the only secure secret key systems are those with a key at least as long as the message to be sent.

Any secure encyphering method is supposed to be known
by the enemy
The security of the system depends choice of keys.

Journal des sciences militaires, vol. IX,
pp. 5-38, Janvier 1883,
pp. 161-191, Février 1883 .

Colossus

Max Newman,
the first programmable electronic computer (Bletchley Park before 1945)

Claude E. Shannon

" Communication Theory of Secrecy Systems ", Bell System Technical Journal, 28-4 (1949), 656-715.

Information theory

Claude Shannon

A mathematical theory of communication
Bell System Technical Journal, 1948

Secure systems

Unconditional security: knowing the coded message does not yield any information on the source message: the only way is to try all possible secret keys.
In practice, all used systems do not satisfy this requirement.

Practical security: knowing the coded message does not suffice to recover the key nor the source message within a reasonable time.

DES:
 Data Encryption Standard

In 1970, the NBS (National Board of Standards) put out a call in the Federal Register for an encryption algorithm

- with a high level of security which does not depend on the confidentiality of the algorithm but only on secret keys
- using secret keys which are not too large
- fast, strong, cheap
- easy to implement

DES was approved in 1978 by NBS

Algorithm DES:
 combinations, substitutions and permutations between the text and the key

- The text is split in blocks of 64 bits
- The blocks are permuted
- They are cut in two parts, right and left
- Repetition 16 times of permutations and substitutions involving the secret key
- One joins the left and right parts and performs the inverse permutations.

Diffie-Hellman: Cryptography with public key

- Whit Diffie and Martin E. Hellman,
New directions in cryptography,
IEEE Transactions on
Information Theory,
22 (1976), 644-654

Symmetric versus Assymmetric cryptography

- Symmetric (secret key):
- Alice and Bob both have the key of the mailbox. Alice uses the key to put her letter in the mailbox. Bob uses his key to take this letter and read it.
- Only Alice and Bob can put letters in the mailbox and read the letters in it.
- Assymmetric (Public key):
- Alice finds Bob's address in a public list, and sends her letter in Bob's mailbox. Bob uses his secret key to read the letter.
- Anybody can send a message to Bob, only he can read it
nRSA

RSA

(Rivest, Shamir, Adleman - 1978)

R.L. Rivest, A. Shamir, and L.M.

Adleman

A method for obtaining digital signatures and public-key cryptosystems,
Communications of the ACM
(2) 21 (1978), 120-126.

Example of a trapdoor one-way function:
 The discrete logarithm
 (Simplified version)

Select a three digits number x.

Compute the cube: $x \times x \times x=x^{3}$.
Keep only the last three digits $=$ remainder of the division by 1000: this is y.

- Starting from \boldsymbol{x}, it is easy to find \boldsymbol{y}.
- If you know \boldsymbol{y}, it is not easy to recover \boldsymbol{x}.

The discrete logarithm
 modulo 1000

- Example: assume the last three digits of x^{3} are 631: we write x^{3} $\equiv 631$ modulo 1000. Goal: to find x.
- Brute force: try all values of $x=001,002, \ldots$ you will find that $x=111$ is solution.
- Check: $111 \times 111=12321$
- Keep only the last three digits:
$111^{2} \equiv 321$ modulo 1000
- Next $111 \times 321=35631$
- Hence $111^{3} \equiv 631$ modulo 1000 .

Retreive x from x^{7} modulo 1000

- With public key 3 , a secret key is 67 .
- Another example: public key 7 , secret key is 43 .
- If you know $x^{7} \equiv 871$ modulo 1000
- Check $871^{43} \equiv 111$ modulo 1000
- Therefore $x=111$.

Cube root modulo 1000

Solving $x^{3} \equiv 631$ modulo 1000 .

- Other method: use a secret key.

The public key here is 3 , since we compute x^{3}.
A secret key is 67.

- This means that if you raise 631 to the power 67, you will find x : $631^{67} \equiv x$ modulo 1000.

- Assume Alice has a suitcase and a lock; she wants to send the suitcase to Bob in a secure way so that nobody can see the content of the suitcase.
- Bob also has a lock and the corresponding key, but they are not compatible with Alice's ones.

Security of bank cards

Message modulo n

- Fix a positive integer n (in place of 1000): this is the size of the messages which are going to be sent.
- All computation will be done modulo n : we replace each integer by the remainder in its division by n.
- n will be a integer with some 300 digits.

Everybody who knows your public key 3 and the message 631 of the bank, can check that your answer 111 is correct, but cannot find the result without knowing the pin code 67 (unless he uses the brute force method).

Random
message

631

ATM

Pin

Code

67
3

$$
631^{67} \equiv 111 \quad 111^{3} \equiv 631
$$

It is easier to check a proof than to find it

Easy to multiply two numbers, even if they are large.

If you know only the product, it is difficult to find the two numbers.

Is 2047 the product of two smaller numbers?
Answer: yes $2047=23 \times 89$

Size of n

We take for n the product of two prime numbers with some 150 digits each.

The product has some 300 digits: computers cannot find the two prime numbers.

Example

```
p=11139543251488279879254901754770248440709
    22844843
q=19174817025245044393757862682308621806969
    34189293
pq=2135987035920910082395022704999628797051 09534182641740644252416500858395774644508 8405009430865999
```

- The numbers $2,3,5,7,11,13,17,19, \ldots$ are prime.
- The numbers $4=2 \times 2,6=2 \times 3,8=2 \times 2 \times 2,9=3 \times 3,10=2 \times 5$, $2047=23 \times 89 \ldots$ are composite.
- Any integer ≥ 2 is either a prime or a product of primes. For instance $12=2 \times 2 \times 3$.
- Given an integer, decide whether it is prime or not (primality test).
- Given a composite integer, give its decomposition into a product of prime numbers (factorization algorithm).

Primality tests

- Given an integer, decide whether it is the product of two smaller numbers or not

Today's limit : more than 1000 digits

Factorization algorithms

- Given a composite integer, decompose it into a product of prime numbers

Today's limit : around 150 digits

Industrial primes

- Probabilistic Tests are not genuine primality tests: they do not garantee that the given number is prime. But they are useful whenever a small rate or error is allowed. They produce the industrial primes.

Agrawal-Kayal-Saxena

- Manindra Agrawal, Neeraj Kayal and Nitin Saxena, PRIMES is in P (July 2002)
http://www.cse.iitk.ac.in/news/primality.html

The four largest known primes:

January 3, 2018	$\mathbf{2}^{77232917} \mathbf{- 1}$
	23249425 digits
January 7, 2016	$\mathbf{2}^{74207281 \mathbf{- 1}}$
	22338618 decimal digits
February 8, 2013	$\mathbf{2}^{57885 ~ \mathbf{1 6 1}} \mathbf{- 1}$
	$17425 \mathbf{1 7 0}$ digits
August 23, 2008	$\mathbf{2}^{\mathbf{4 3} 112 \mathbf{6 0 9} \mathbf{- 1}}$
	$12978 \mathbf{1 8 9}$ digits

Cooperative Computing

Through the EFF Cooperative Computing Awards,
EFF will confer prizes of:

* \$100 000 (1 lakh) to the first individual or group who discovers a prime number with at least 10000000 decimal digits.
* \$150 000 to the first individual or group who discovers a prime number with at least 100000000 decimal digits.
* \$250 000 to the first individual or group who discovers a prime number with at least 1000000000 decimal digits.
http://www.eff.org/awards/coop.php

Large primes

- 11 among the 12 largest known primes can be written as $2^{p}-1$ (and we know 50 such primes)
- We know

402 primes with more than 1000000 digits (11 in 2007), 2201 primes with more than 500000 digits (55 in 2007).

- The list of 5000 largest known primes is available at http://primes.utm.edu/primes/

- Mersenne numbers are numbers of the form $M_{p}=2^{p}-1$ with p prime.
- There are only 49 known Mersenne primes, the first ones are $3,7,31,127$ with $3=M_{2}=2^{2}-1,7=M_{3}=2^{3}$ $-1,31=M_{5}=2^{5}-1,127=M_{7}=2^{7}-1$.
- 1536 , Hudalricus Regius: $M_{1 l}=2^{11}-1$ is not prime: $2047=23 \times 89$.

GIMPS

The Great Internet Mersenne Prime Search $2^{P}-1$ Finding 10 World Record Primes!

Marin Mersenne (1588-1648), preface to
Cogitata Physica-Mathematica (1644): the numbers $2^{n}-1$ are prime for

$$
n=2,3,5,7,13,17,19,31,67,127 \text { and } 257
$$

and composite for all other positive integers $n<257$.
The correct list is:
$2,3,5,7,13,17,19,31,61,89,107$ and 127.

Perfect numbers

A large composite Mersenne number

- $2^{2944999}-1$ is composite: divisible by

314584703073057080643101377

Even perfect numbers (Euclid)

- Even perfect numbers are numbers which can be written $2^{p-l} \times M_{p}$ with $M_{p}=2^{p}-1$ a Mersenne prime (hence p is prime).
- Are there infinitely many perfect numbers?
- Nobody knows whether there exists any odd perfect number.
- An integer n is called perfect if n is the sum of the divisors of n distinct from n.
- The divisors of 6 distinct from 6 are $1,2,3$ and $6=1+2+3$.
- The divisors of 28 distinct from 28 are $1,2,4,7,14$ and $28=1+2+4+7+14$.
- Notice that $6=2 \times 3$ and $28=4 \times 7$
while $3=M_{2} \quad$ and $7=M_{3}$.
- Other perfect numbers are $496=16 \times 31$, $8128=64 \times 127, \ldots$

Fermat numbers
 (1601-1665)

- A Fermat number is a number which can be written $F_{n}=2^{2^{n}}+1$.
- Construction with rule and compass of regular polygons.
- $F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537$ are prime numbers.
- Fermat suggested in 1650 that all F_{n} are prime numbers.

Euler
 (1707-1783)

- $F_{5}=2^{32}+1$ is divisible by 641

$$
\begin{gathered}
4294967297=641 \times 6700417 \\
641=5^{4}+2^{4}=5 \times 2^{7}+1
\end{gathered}
$$

- Are there infinitely many Fermat primes?
- Only 5 Fermat primes F_{n} are known:

$$
F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537 .
$$

RSA Laboratories

Challenge Number Prize \$US

- RSA-576 \$10,000 Factored December 2003
- RSA-640 \$20,000 Factored November 2005
- RSA-704 $\$ 30,000$ Not Factored
- RSA-768 \$50,000 Factored December 2009
- RSA-896 \$75,000 Not Factored
- RSA-1024 \$100,000 Not Factored
- RSA-1536 \$150,000 Not Factored
- RSA-2048 \$200,000 Not Factored

Factorization algorithms

- Given a composite integer, decompose it into a product of prime numbers
- Today's limit : around 150 decimal digits for a random number
- Most efficient algorithm: number field sieve Factorization of RSA-155 (155 decimal digits) in 1999
- Factorization of a divisor of $2^{953}+1$ with 158 decimal digits in 2002.
- A number with 313 digits on May 21, 2007.
http://www.loria.fr/~zimmerma/records/factor.html https://en.wikipedia.org/wiki/Integer_factorization_records

RSA Laboratories

RSA-768

Status: Factored December 12, 2009
Decimal Digits: 232 Digit sum 1018
1230186684530117755130494958384962720772853569595334792197322452151726400507263657 5187452021997864693899564749427740638459251925573263034537315482685079170261221 42913461670429214311602221240479274737794080665351419597459856902143413
$=$
3347807169895689878604416984821269081770479498371376856891243138898288379387800228 7614711652531743087737814467999489
*
3674604366679959042824463379962795263227915816434308764267603228381573966651127923 3373417143396810270092798736308917
http://www.crypto-world.com/announcements/rsa768.txt

RSA-704 Prize: $\$ 30,000$

Status: Not Factored
Decimal Digits: 212

- 74037563479561712828046796097429573142593188889231 28908493623263897276503402826627689199641962511784 39958943305021275853701189680982867331732731089309 00552505116877063299072396380786710086096962537934 650563796359
- Digit Sum: 1009

Current trends in cryptography

- Computing modulo n means working in the multiplicative group of integers modulo n
- Specific attacks have been developed, hence a group of large size is required.
- We wish to replace this group by another one in which it is easy to compute, where the discrete logarithm is hard to solve.
- For smart cards, cell phones, ... a small mathematical object is needed.
- A candidate is an elliptic curve over a finite field.

Other security problems of the modern business world

- Digital signatures
- Identification schemes
- Secret sharing schemes
- Zero knowledge proofs

To count efficiently the number of points on an elliptic cur over a finite field

To check the vulnerability to known attacks

To find new invariants in order to develop new attacks.

Discrete logarithm on the Jacobian of algebraic curves

Modern cryptography

- Quantum cryptography (Peter Shor) - magnetic nuclear resonance

Quizz: How to become a hacker?

Answer: Learn mathematics

- http://www.catb.org/~esr/faqs/hacker-howto.htm

$F_{5}=2^{32}+1$ is divisible by 641

- $641=625+16=5^{4}+2^{4}$
- $641=5 \times 128+1=5 \times 2^{7}+1$
- 641 divides $2^{28} \times\left(5^{4}+2^{4}\right)=5^{4} \times 2^{28}+2^{32}$
- $X^{4}-1=(X+1)(X-1)\left(X^{2}+1\right)$

641 divides $\left(5 \times 2^{7}\right)^{4}-1=5^{4} \times 2^{28}-1$

- Hence 641 divides $2^{32}+1$

