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Abstract

The homogeneous forim, (X ,Y) of degred (n) which is
associated with the cyclotomic polynomialt) is dubbed a
cyclotomic binary form. A positive integer! 1 is said to be
representable by a cyclotomic binary form if there exist
integersn, x,y with n ! 3 andmax{| x|, |y|}! 2 such that

' h(X,y) = m. These debnitions give rise to a number of
guestions that we plan to address.
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DePnition by induction :
!
n l(t) — t n 1’ tn n 1 — n d(t)
din

For p prime,
P 1= (t " 1)(tP! Tyth24r q8ét+ 1) =" l(t)" p(t)’

SO
"o) =t tP 2+ qaAt+ L

For instance

"L(t) = t+ 1, "s(t)= t2+t+ 1, Us(t) = trH 3+ t2+t+ 1
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For instance

W _t4"l_2 P
a(t) = m—t + 1= ",(t9),

t6" 1 —t3+l— 2" e} n
@ Dern  ter oL rEROU

"e(t) =



Cyclotomic polynomials

"1

()= L—2A4
"a(t)
deEn
dln
For instance
n t4 ! l n
a(t) = I t2+ 1= ",(t?),

"o(t) = 2" t+ 1=

(" (t+1) t+1

"s(" 1).

The degree of ,(t) is! (n), where! is the Euler totient

function.
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Cyclotomic polynomials and roots of unity

Forn! 1, if #is a primitivenbth root of unity,
! .
"n(t) = (t" #).

ged(j,n)=1

Forn! 1,",(t) is the irreducible polynomial ov@rof the
primitive nbth roots of unity,

Let K be a beld and let be a positive integer. Assume that
K has characteristic eithér or else a prime numberprime

to n. Then the polynomial ,(t) is separable ovét and its
roots inK are exactly the primitivebth roots of unity which
belong toK .
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Properties of ,(t)

¥Forn! 2we have
") =t ()

¥ Letn = 2%pf* 44@ wherepy,...,p; are dilerent odd
primes,eg! 0, ! 1lfori=1,...,r andr! 1. Denote by
R the radical ofn, namely

2ppaap ife! 1,
praag ife=0.

R =

Then,
“a()= "R (t"F).

¥ Letn = 2m with m odd! 3. Then
"a(t)="m(" ).
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"n(1)

Forn! 2, we have' (1) = €(™, where the von Mangoldt
function is debned far ! 1 as

., logp if n= p" with p prime andr ! 1;
(n)= .
0 otherwise.

In other terms we have

p if n=p" with p prime andr ! 1;

mn 1 :
() 1 otherwise.
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Forn! 3,

1 if nis odd;
"n(" D=

"w2(1) if nis even.



"a(" D)
Forn! 3,

v n 1 if nis odd;
n(" 1=

"w2(1) if nis even.

In other terms, fon! 3,

p if n= 2p" with pa prime and ! 1;
1 otherwise.

(" D=

Hence" ,(" 1) = 1 whenn is odd or whem = 2m wherem
has at least two distinct prime divisors.
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Lower bound fdr,(t)

Forn! 3, the polynomial' ,(t) has real coe"cients and no
real root, hence it takes only positive values (and its degree
I'(n) is even).

Forn! 3andt# R, we have

"a() 20

Consequencefrom
") =t (W)
we deduce, fon! 3 andt # R,

"a(t) ! 2 W max{1, |t} ™.
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"L 2'Mforn! 3andt# R

Proof.
Let #, be a primitiven-th root of unity inC;
!

"n(t) = Noe,yolt" #)= (" $(#),

#

where$ runs over the embeddingy#,) $ C. We have

t" S ! % m(S(#))[ > 0,

(2)%m($(#) = $Gh) " S(Hh) = $Gh " #).
Now (2))%m(#,) = # " #, # Q(#) is an algebraic integer :

2" (0 1] Nogayo((2)%m(#) | ! 1.
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The cyclotomic binary forms
Forn! 2, debne

La(X,Y)= Y M (XTY).

This is a binary form iZ[X, Y] of degred (n).
Consequence of the lower bound'fg(t) : forn! 3 and
(x.y) # 2%,

La(x,y) b2 ™ max{ x|, Iyl ™.

Therefore, ifl ,(x,y) = m, then
max{| x|, |y[} & 2m*" (.
If max{| x|, |y|}! 3, thenn is bounded :

'(n) &

logm

log(3/2) %




Generalization to CM belds (Gygry, 1977)

Let K be a CM beld of degrekoverQ. Let %# K be such
that K = Q(%; letf be the irreducible polynomial &§over
Q and letF (X,Y) = Y% (X/Y) the associated
homogeneous binary form :

f(t)= apt!+ at® 1+ 444 aq,

F(X,Y)= apX9+ a,X* 1Y + 444 agY .

For (x,y) # Z? we have

x4 & 2% 'F(x,y) and y?& 2%a8 'F(x,y).



Kalman Gygry, Laszle Lovasz

K. Gygry L. Lovasz

K. Gy ®§ry & L. Lov asz, Representation of integers by
norm forms || Publ. Math. Debreced7, 173181, (1970).
K. Gy ¥ry, Representation des nombres entiers par des
formes binairesPubl. Math. Debrece4 , 363D375, (1977).
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Best possible for CM Pelds

Letn! 3, not of the formp® nor 2p* with p prime anda! 1,
so that",(1) = ",(" 1) = 1.
Then the binary form

Fa(X,Y)=1 (X, Y" X)
has degreel = ! (n) anday = a4 = 1. Forx # Z we have

Fo(X,2x) =1 o(x,x)= x4,
Hence, fory = 2x, we have

y' = 285 TF(x,Y).
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Binary cyclotomic forms (EFBCLDBMW 2018)

Let m be a positive integer and let x,y be rational integers
satisfyingn ! 3, max{| x|, |y|}! 2and! ,(X,y) = m.Then

max{| x|, |y|} & %ml” (M hence ! (n) & &%Iogm.

These estimates are optimal, since &dr 1,

I 5(&" 28 = 3&.

If we assume (n) > 2, namely! (n) ! 4, then

I'(n) &

4 logm
log1l

which is best possible sintg(1," 2) = 11.



Lower bound for the cyclotomic polynomials

The upper bound

2 |
max{| x|, ly[} & '—éml’- (n)

for! ,(x,y) = m is equivalent to the following result :

Forn! 3andt# R,
#' S

"n(t) !

N|oo|



The sequend@&n)n: 3

= |nf n(t) (n! 3.

Letn! 3. Write
n=2%pfaag
wherepy, ..., p, are odd primes witlp; < aaé& p;, ! 0,
e! 1fori=1,...,randr! O.
(i) Forr = 0, we havegy ! 2andc, = ¢ = 1.
(i) Forr! 1 we have

|2r2

Cn = Cpyaqa | P1



T _P1(n)
End of the proof df,(t) !

N‘oo

Lemma. For any odd squarefree integerE p; aapg with
p; < p» < 444 p, satisfyingn! 11 andn € 15, we have

I'(n) > 2" log p..
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La(X,y) ! e max{| x|, ly[}' ™.
#1 _$m)

'\’|o.>|

c, !
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n#$ n#$
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The sequend@&n)n: 3

(%, y) ! G max{| x|, ly[}' ™.
#r $im
c, !

'\’|o.>|

¥liminfc, = Oandlimsupc, = 1.
n#$ n#$

¥ The sequencéc;)podd prime IS decreasing frord/ 4 to 1/ 2.

. 1,
¥ For p, andp, primes,c;,p, ! p—a
1

¥ For any prim lim = 1é
Yy p q:’l’ D2#S Cplpz - PL
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The sequend@m)m: 1

For each integem ! 1, the set

% , &
(nx,y) #N) Z° [ nt 3 max{|x],[yl}! 2 !n(x,y)=m

is bnite. Leta,, the number of its elements.

The sequence of integems! 1 such thata,, ! 1 starts with
the following values di,

mi{3/ 4|57 |8 9(10/11|12|13|16| 17
an || 816824 /4|16| 8 | 8 |12|40|40| 16




OEIS A299214

https:// oeis. org/ A299214
Number of representations of integers by cyclotomic binary
forms.

The sequencéa,,)mq Starts with
0,0,8,16,8,0,24,4,16,8,8,12,40,0,0, 40, 16, 4, 24, 8, 24,
0,0,0,24,8,12,24,8,0,32,8,0,8,0,16,32,0,24,8,8,0, 32,
0,8,0,0,12,40,12,0,32,8,0,8,0,32,8,0,0,48,0, 24, 40,
16,0,24,8,0,0,0,4,48,8,12,24, ...


https://oeis.org/A299214
https://oeis.org/A299214

OEIS A296095

htt ps:// oei s. or g/ A296095
Integers represented by cyclotomic binary forms.

an € Oform =

3,4,5,7,8,9,10,11, 12,13, 16, 17, 18, 19, 20, 21, 25, 26, 27,
28, 29, 31, 32, 34, 36, 37, 39, 40, 41, 43, 45, 48, 49, 50, 52, 53,
55, 57,58, 61, 63, 64, 65, 67, 68, 72, 73, 74, 75, 76, 79, 80, 81,
82, 84, 85, 89, 90, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108,
109, 111, 112, 113,116, 117,121, 122, ...


https://oeis.org/A296095
https://oeis.org/A296095

OEIS A293654

htt ps:// oei s. or g/ A293654
Integers not represented by cyclotomic binary forms.

an = Oform =

1,2,6,14,15, 22, 23, 24, 30, 33, 35, 38, 42, 44, 46, 47, 51, 54,
56, 59, 60, 62, 66, 69, 70, 71, 77, 78, 83, 86, 87, 88, 92, 94, 95,
96, 99, 102, 105, 107, 110, 114, 115, 118, 119, 120, 123, 126,
131,132, 134, 135, 138, 140, 141, 142, 143, 150, ...


https://oeis.org/A293654
https://oeis.org/A293654
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Integers represented by cyclotomic binary forn

ForN ! 1, let A(N) be the number om & N which are
represented by cyclotomic binary forms :

AN)=#{m#N | m&N, an € O}.

We have

# $
AN)= %N o N
(logN)}  (IogN)T  ~ (logN)?

asN $*



%= %+ %
The number of positive intege€s N represented by 4
(namely the sums of two squares) is

i $

% N + 0 N

*(logN)? (logN)?

The number of positive intege€s N represented by 3
(namelyx? + xy + y? : Loeschian numbers) is

# $

% N + 0 N

@(IogN)% (logN)3?

The number of positive intege€s N represented by 4, and
byl 3 is # $
N o N
(logN )2 (logN )=




The LandaubRamanujan constant

Edmund Landau Srinivasa Ramanujan
187791938 188791920

The number of positive intege€&s N which are sums of two
squares is asymptoticabgN (logN)' Y2, where
' ( (S
1, ! 142
O/Q = - a 1" )
2 p& 3mod 4 P



OEIS A064533

OEIS A064533 Decimal expansion of Landau-Ramanujan
constant.

% = 0.764223653589220 ...

¥ Ph. Flajolet and I. Vardi, Zeta function expansions of some
classical constants, Feb 18 1996.

¥ Xavier Gourdon and Pascal Sebah, Constants and records o
computation.

¥ David E. G. Hare125079 digits of the Landau-Ramanujan
constant.


https://oeis.org/A064533
https://oeis.org/A064533

The LandaubRamanujan constant

Referenceshtt ps:// oei s. or g/ A064533

¥ B. C. Berndt, RamanujanOs notebook part 1V,
Springer-Verlag, 1994.

¥ S. R. Finch, Mathematical Constants, Cambridge, 2003, pp.
98-104.

¥ G. H. Hardy, ORamanujan, Twelve lectures on subjects
suggested by his life and workO, Chelsea, 1940.

¥ Institute of Physics, Constants - Landau-Ramanujan
Constant.

¥ Simon Ploule, Landau Ramanujan constant.

¥ Eric WeissteinOs World of Mathematics, Ramanujan
constant.

¥ https:// en. w ki pedi a. or g/ w ki / Landau- Rananuj an_const ant .


https://oeis.org/A064533
https://en.wikipedia.org/wiki/Landau-Ramanujan_constant

Sums of two squares

If a and g are two integers, we denote by, 4 any integer 1
satisfying the condition

P[Nag=+ p, amod q.



Sums of two squares

If a and g are two integers, we denote by, 4 any integer 1
satisfying the condition

P[Nag=+ p, amod q.

An integerm ! 1is of the form
m=14(x,y) = x*+y?

if and only if there exist integess! 0, N34 andN 4 such
that
m= 22N5,Nqa.



Loeschian numbersn:= x%+ Xy + y?
An integerm ! 1is of the form
m=1!3(x,y)=! 6(X," y) = X*+ xy + y*

if and only if there exist integels! 0, N,3 andN 3 such
that
m=3"N3;N 3.



Loeschian numbersn:= x%+ Xy + y?
An integerm ! 1is of the form

m=1!3(x,¥)=! 6(X," y) = X+ Xy + y*

if and only if there exist integels! 0, N,3 andN 3 such
that
m=3"N3;N 3.

The number of positive intege€s N which are represented by
the quadratic formX 2+ XY + Y? is asymptotically
%N (logN)' ¥2 where

1 b
%= 4 & 1" =
2233 p& 2 mod 3 p2




OEIS A301429

OEIS A301429 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers.
I ( [
1 ! 142
%= —a 1" =
2234 p& 2mod 3 P

% = 0.63890940544 ...


https://oeis.org/A301429
https://oeis.org/A301429

OEIS A301429

OEIS A301429 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers.
I ( [
1 ! 142
%= —a 1" =
2234 p& 2mod 3 P

% = 0.63890940544 ...

%= % + % = 1403133059 ...


https://oeis.org/A301429
https://oeis.org/A301429

Zeta function expansions of some classical constants, Feb 18 19
| R

*‘s K-

llan Vardi

I'3 = 0.63890940544534388
22549426749282450937
54975508029123345421
69236570807631002764
96582468971791125286
64388141687519107424 . ..

Bill Allombert



OEIS A301430

OEIS A301430 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers which are
sums of two squares.

1 ! ) . 1*!
"= —a( a(log(2+ 3)) #(1/4) 1" —
p&5,7,11 mod 12 p

N[

' =0.30231614235 ...


https://oeis.org/A301430
https://oeis.org/A301430

OEIS A301430

OEIS A301430 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers which are
sums of two squares.

g2+ F)ia | ) 2 o
1 =- + " —
5( e( og( )) #(1/4) P .
p&5,7,11 mod 12
''=0.30231614235 ...

Only 11 digits after the decimal point are known.


https://oeis.org/A301430
https://oeis.org/A301430

Zeta function expansions of some classical constants, Feb 18 19
| R

'35& K-

llan Vardi

" = 0.302316142357065637
94776990048019971560
24127951893696454588
67841288865448752410
51089948746781397927
27085677659132725910. ..

Bill Allombert
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Further developments

¥ Prove similar estimates for the number of integers
represented by other binary forrfdone for quadratic forms);
e.g. : prove similar estimates for the number of integers which
are sums of two cubes, two biquadrates,. ..

¥ Prove similar estimates for the number of integers which are
represented by , for a givenn.

¥ Prove similar estimates for the number of integers which are
represented by , for somen with ! (n) ! d.



Stewart - Xiao

Let F be a binary form of degre®! 3 with nonzero
discriminant.

There exists a positive consta@t > 0 such that the number
of integers of absolute value at mdstwhich are represented
by F(X,Y) is asymptotic toCg N %9,



Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao


http://arxiv.org/abs/1605.03427

Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xia@n the representation of
integers by binary forms
arXiv:1605.03427v2 (March 23, 2018).


http://arxiv.org/abs/1605.03427

K. Mahler (1933)

Let F be a binary form of degre®! 3 with nonzero
discriminant.
Denote byAr the area (Lebesgue measure) of the domain

{(y) # R | F(xy) & 1}.

For Z > 0 denote byN ¢ (Z) the number ofx,y) # Z? such
that 0< |[F(X,y)| & Z.
Then

NF(Z) — AFZZ/d + O(zl/(d! 1))

asZ $*



Kurt Mahler

Nl
Kurt Mahler
1903 b 1988

Uber die mittlere Anzahl der Darstellungen grosser Zahlen

durch binare Formen,
Acta Math. 62 (1933), 91-166.
https:// carma. newcast | e. edu. au/ mahl er/ bi ogr aphy. ht m


https://carma.newcastle.edu.au/mahler/biography.html

Higher degree

The situation for positive debnite forms of degre8 is
dilerent for the following reason :

¥ If a positive integem is represented by a positive debnite
guadratic form, it usually has many such representations;
while if a positive integan is represented by a positive
debnite binary form of degred 3, it usually has few such
representations.
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Higher degree

The situation for positive debnite forms of degre8 is
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¥ If a positive integem is represented by a positive debnite
guadratic form, it usually has many such representations;
while if a positive integan is represented by a positive
debnite binary form of degred 3, it usually has few such
representations.

If F is a positive debnite quadratic form, the numbe(xqfy)
with F (x,y) & N is asymptotically a constant timeés, but
the number of~ (x, y) is much smaller.

If F is a positive dePnite binary form of degdee 3, the
number of(x,y) with F(x,y) & N is asymptotically a
constant timesN V9, the number ofF (x, y) is also
asymptotically a constant timgs ¥ 9.



Sums okbth powers

If a positive integem is a sum of two squares, there are many
such representations.

Indeed, the number dk,y) inZ) Z with x?+ y?> & N is
asymptotic to( N, while the number of values N taken by

the quadratic form 4 is asymptotic td®aN/ logN where

% is the LandaubRamanujan constant. Hengdakes each

of these values with a high multiplicity, on the average

((/%) TogN.

On the opposite, it is extremely rare that a positive integer is a
sum of two biquadrates in more than one way (not counting
symmetries).



635318657 = 158" + 59* = 134* + 133"

The smallest integer
represented by* + y* in two
essentially dilerent ways was
found by Euler, it is
635318657 =

41) 113) 241) 569.

Leonhard Euler
1707 B 1783

[OEIS A216284Number of solutions to the equation

x4+ y*=n with x! y> 0.

An inbnite family with one parameter is known for non trivial
solutions tox} + x3 = x5+ XJ.

htt p:// nat hwor | d. wol f ram cond D ophant i neEquat i on4t hPower s. ht ni


https://oeis.org/A216284
http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

Sums okbth powers

One conjectures that given! 5, if an integer is of the form
xX + yX there is essentially a unique such representation. But
there is no value df for which this has been proved.
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Higher degree

The situation for positive debnite forms of degre8 is
dilerent also for the following reason.

A necessary and su"cient condition for a numimerto be
represented by one of the quadratic forms ! 4, is given by
a congruence.

By contrast, consider the quartic binary form
I (X,Y) = X%+ Y% On the one hand, an integer
represented by g is of the form

N1g(N3gNsgN7g)”.

On the other hand, there are many integers of this form which
are not represented Hys.



Quartan primes

[OEIS A002645Quartan primes: primes of the form
x*+y* x>0, y>O0.


https://oeis.org/A002645
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Quartan primes

[OEIS A002645Quartan primes: primes of the form
x*+y* x>0, y>O0.

The list of prime numbers represented!ystart with
2,17,97,257, 337,641, 881, 1297, 2417, 2657, 3697, 4177,
4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561,
28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161,

66977, 80177, 83537,83777, 89041, 105601, 107377, 119617, ...

It is not known whether this list is Pnite or not.

The largest known quartan prime is currently the
largest known generalized Fermat prime: The
1353265-digit  (145310°5%%€)4 + 14,


https://oeis.org/A002645

Primes of the form? + y*

[OEIS A002313primes
[OEIS A002645primes
[OEIS A006686primes
[OEIS A100266primes
[OEIS A100267primes

of the
of the
of the
of the
of the

form
form
form
form
form

X2+ y2.
x4yt
X8+ y8,
X16 + y16’
Xx32 + Y32,


https://oeis.org/A002313
https://oeis.org/A002645
https://oeis.org/A006686
https://oeis.org/A100266
https://oeis.org/A100267

Primes of the forn 2+ Y*

John Friedlander Etienne Fouvry
But it is known that there are inbnitely many prime numbers
of the formX?2 + Y4,
Friedlander, J. & Iwaniec, H he polynomiaX 2 + Y*#
captures its primesAnn. of Math. (2)148 (1998), no. 3,
945D1040.
https://arxiv.org/pdf/math/9811185.pdf
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