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Abstract

The homogeneous form! n(X , Y) of degree! (n) which is
associated with the cyclotomic polynomial" n(t) is dubbed a
cyclotomic binary form. A positive integerm ! 1 is said to be
representable by a cyclotomic binary form if there exist
integersn, x, y with n ! 3 andmax{| x|, |y|} ! 2 such that
! n(x, y) = m. These deÞnitions give rise to a number of
questions that we plan to address.
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Cyclotomic polynomials
DeÞnition by induction :

" 1(t) = t " 1, tn " 1 =
!

d|n

" d(t).

For p prime,

tp " 1 = ( t " 1)(tp! 1 + tp! 2 + á á á+ t + 1) = " 1(t)" p(t),

so
" p(t) = tp! 1 + tp! 2 + á á á+ t + 1.

For instance

" 2(t) = t + 1, " 3(t) = t2 + t + 1, " 5(t) = t4 + t3 + t2 + t + 1.
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Cyclotomic polynomials

" n(t) =
tn " 1

!

d!= n
d|n

" d(t)
á

For instance

" 4(t) =
t4 " 1
t2 " 1

= t2 + 1 = " 2(t2),

" 6(t) =
t6 " 1

(t3 " 1)(t + 1)
=

t3 + 1
t + 1

= t2 " t + 1 = " 3(" t).

The degree of" n(t) is ! (n), where! is the Euler totient
function.
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Cyclotomic polynomials and roots of unity

For n ! 1, if # is a primitivenÐth root of unity,

" n(t) =
!

gcd(j ,n)= 1

(t " #j ).

For n ! 1, " n(t) is the irreducible polynomial overQ of the
primitivenÐth roots of unity,

Let K be a Þeld and letn be a positive integer. Assume that
K has characteristic either0 or else a prime numberp prime
to n. Then the polynomial" n(t) is separable overK and its
roots inK are exactly the primitivenÐth roots of unity which
belong toK .
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Properties of" n(t)
¥ For n ! 2 we have

" n(t) = t! (n) " n(1/ t)

¥ Let n = 2e0 pe1
1 á á áper

r wherep1, . . . , pr are di!erent odd
primes,e0 ! 0, ei ! 1 for i = 1, . . . , r and r ! 1. Denote by
R the radical ofn, namely

R =

"
2p1 á á ápr if e0 ! 1,

p1 á á ápr if e0 = 0.

Then,
" n(t) = " R(tn/ R).

¥ Let n = 2m with m odd ! 3. Then

" n(t) = " m(" t).
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" n(1)

For n ! 2, we have" n(1) = e!( n) , where the von Mangoldt
function is deÞned forn ! 1 as

"( n) =

"
logp if n = pr with p prime andr ! 1;

0 otherwise.

In other terms we have

" n(1) =

"
p if n = pr with p prime andr ! 1;

1 otherwise.
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" n(" 1)

For n ! 3,

" n(" 1) =

"
1 if n is odd ;

" n/ 2(1) if n is even.

In other terms, forn ! 3,

" n(" 1) =

"
p if n = 2pr with p a prime andr ! 1;

1 otherwise.

Hence" n(" 1) = 1 whenn is odd or whenn = 2m wherem
has at least two distinct prime divisors.
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Lower bound for" n(t)
For n ! 3, the polynomial" n(t) has real coe"cients and no
real root, hence it takes only positive values (and its degree
! (n) is even).
For n ! 3 and t # R, we have

" n(t) ! 2! ! (n) .

Consequence: from

" n(t) = t! (n) " n(1/ t)

we deduce, forn ! 3 and t # R,

" n(t) ! 2! ! (n) max{ 1, |t|} ! (n) .
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" n(t) ! 2" ! (n) for n ! 3 andt # R
Proof.
Let #n be a primitiven-th root of unity inC ;

" n(t) = NQ("n )/ Q(t " #n) =
!

#

(t " $(#n)),

where$ runs over the embeddingsQ(#n) $ C. We have

|t " $(#n)| ! |% m($(#n)) | > 0,

(2i )%m($(#n)) = $(#n) " $(#n) = $(#n " #n).

Now (2i )%m(#n) = #n " #n # Q(#n) is an algebraic integer :

2! (n) " n(t) ! | NQ("n )/ Q((2i )%m(#n)) | ! 1.
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The cyclotomic binary forms
For n ! 2, deÞne

! n(X , Y) = Y ! (n)" n(X / Y).

This is a binary form inZ[X , Y] of degree! (n).
Consequence of the lower bound for" n(t) : for n ! 3 and
(x, y) # Z2,

! n(x, y) ! 2! ! (n) max{| x|, |y|} ! (n) .

Therefore, if! n (x, y) = m, then

max{| x|, |y|} & 2m1/! (n) .

If max{| x|, |y|} ! 3, then n is bounded :

! (n) &
logm

log(3/ 2)
á
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Generalization to CM Þelds (Gyýory, 1977)

Let K be a CM Þeld of degreed overQ. Let %# K be such
that K = Q(%) ; let f be the irreducible polynomial of%over
Q and letF (X , Y) = Y df (X / Y) the associated
homogeneous binary form :

f (t) = a0td + a1td! 1 + á á á+ ad,

F (X , Y) = a0X d + a1X d! 1Y + á á á+ adY d.

For (x, y) # Z2 we have

xd & 2dad! 1
d F (x, y) and yd & 2dad! 1

0 F (x, y).



K«alm«an Gyýory, L«aszl«o Lov«asz

K. Gyýory L. Lov«asz

K. Gy ýory & L. Lov «asz, Representation of integers by
norm forms II, Publ. Math. Debrecen17, 173Ð181, (1970).
K. Gy ýory, Repr«esentation des nombres entiers par des
formes binaires, Publ. Math. Debrecen24 , 363Ð375, (1977).



Best possible for CM Þelds

Let n ! 3, not of the formpa nor 2pa with p prime anda ! 1,
so that " n(1) = " n(" 1) = 1.
Then the binary form

F n(X , Y) = ! n(X , Y " X )

has degreed = ! (n) anda0 = ad = 1. For x # Z we have
F n(x, 2x) = ! n(x, x) = xd.
Hence, fory = 2x, we have

yd = 2dad! 1
0 F (x, y).
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Binary cyclotomic forms (EFÐCLÐMW 2018)
Let m be a positive integer and letn, x, y be rational integers
satisfyingn ! 3, max{| x|, |y|} ! 2 and ! n(x, y) = m.Then

max{| x|, |y|} &
2

'
3

m1/! (n) , hence ! (n) &
2

log3
logm.

These estimates are optimal, since for&! 1,

! 3(&," 2&) = 3&2.

If we assume! (n) > 2, namely! (n) ! 4, then

! (n) &
4

log11
logm

which is best possible since! 5(1, " 2) = 11.
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Lower bound for the cyclotomic polynomials

The upper bound

max{| x|, |y|} &
2

'
3

m1/! (n)

for ! n(x, y) = m is equivalent to the following result :

For n ! 3 and t # R,

" n(t) !

# '
3

2

$ ! (n)

.



The sequence(cn)n! 3

cn = inf
t" R

" n(t) (n ! 3).

Let n ! 3. Write
n = 2e0 pe1

1 á á áper
r

wherep1, . . . , pr are odd primes withp1 < á á á< pr , e0 ! 0,
ei ! 1 for i = 1, . . . , r and r ! 0.
(i) For r = 0, we havee0 ! 2 andcn = c2e0 = 1.
(ii) For r ! 1 we have

cn = cp1ááápr ! p! 2r " 2

1 .



End of the proof of" n(t) !

# '
3

2

$ ! (n)

.

Lemma. For any odd squarefree integern = p1 á á ápr with
p1 < p2 < á á á< pr satisfyingn ! 11 andn (= 15, we have

! (n) > 2r + 1 log p1.



The sequence(cn)n! 3

! n(x, y) ! cn max{| x|, |y|} ! (n) .

cn !

# '
3

2

$ ! (n)

.

¥ lim inf
n#$

cn = 0 and lim sup
n#$

cn = 1.

¥ The sequence(cp)p odd prime is decreasing from3/ 4 to 1/ 2.

¥ For p1 andp2 primes,cp1p2 !
1
p1

á

¥ For any primep1, lim
p2#$

cp1p2 =
1
p1

á
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The sequence(am)m! 1

For each integerm ! 1, the set
%

(n, x, y) # N) Z2 | n ! 3, max{| x|, |y|} ! 2, ! n(x, y) = m
&

is Þnite. Letam the number of its elements.

The sequence of integersm ! 1 such thatam ! 1 starts with
the following values ofam

m 3 4 5 7 8 9 10 11 12 13 16 17
am 8 16 8 24 4 16 8 8 12 40 40 16
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OEIS A299214

ht t ps:// oei s. or g/ A299214
Number of representations of integers by cyclotomic binary
forms.

The sequence(am)m%1 starts with
0, 0, 8, 16, 8, 0, 24, 4, 16, 8, 8, 12, 40, 0, 0, 40, 16, 4, 24, 8, 24,
0, 0, 0, 24, 8, 12, 24, 8, 0, 32, 8, 0, 8, 0, 16, 32, 0, 24, 8, 8, 0, 32,
0, 8, 0, 0, 12, 40, 12, 0, 32, 8, 0, 8, 0, 32, 8, 0, 0, 48, 0, 24, 40,
16, 0, 24, 8, 0, 0, 0, 4, 48, 8, 12, 24, . . .

https://oeis.org/A299214
https://oeis.org/A299214


OEIS A296095

ht t ps:// oei s. or g/ A296095
Integers represented by cyclotomic binary forms.

am (= 0 for m =
3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27,
28, 29, 31, 32, 34, 36, 37, 39, 40, 41, 43, 45, 48, 49, 50, 52, 53,
55, 57, 58, 61, 63, 64, 65, 67, 68, 72, 73, 74, 75, 76, 79, 80, 81,
82, 84, 85, 89, 90, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108,
109, 111, 112, 113, 116, 117, 121, 122, . . .

https://oeis.org/A296095
https://oeis.org/A296095


OEIS A293654

ht t ps:// oei s. or g/ A293654
Integers not represented by cyclotomic binary forms.

am = 0 for m =
1, 2, 6, 14, 15, 22, 23, 24, 30, 33, 35, 38, 42, 44, 46, 47, 51, 54,
56, 59, 60, 62, 66, 69, 70, 71, 77, 78, 83, 86, 87, 88, 92, 94, 95,
96, 99, 102, 105, 107, 110, 114, 115, 118, 119, 120, 123, 126,
131, 132, 134, 135, 138, 140, 141, 142, 143, 150, . . .

https://oeis.org/A293654
https://oeis.org/A293654


Integers represented by cyclotomic binary forms

For N ! 1, let A (N ) be the number ofm & N which are
represented by cyclotomic binary forms :

A (N ) = # { m # N | m & N , am (= 0} .

We have

A(N ) = %
N

(logN )
1
2

" '
N

(logN )
3
4

+ O

#
N

(logN )
3
2

$

asN $ * .
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represented by cyclotomic binary forms :

A (N ) = # { m # N | m & N , am (= 0} .

We have

A(N ) = %
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(logN )
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%= %3 + %4
The number of positive integers& N represented by! 4

(namely the sums of two squares) is

%4
N

(logN )
1
2

+ O

#
N

(logN )
3
2

$

.

The number of positive integers& N represented by! 3

(namelyx2 + xy + y2 : Loeschian numbers) is

%3
N

(logN )
1
2

+ O

#
N

(logN )
3
2

$

.

The number of positive integers& N represented by! 4 and
by ! 3 is

'
N

(logN )
3
4

+ O

#
N

(logN )
7
4

$

.



The LandauÐRamanujan constant

Edmund Landau
1877Ð1938

Srinivasa Ramanujan
1887Ð1920

The number of positive integers& N which are sums of two
squares is asymptotically%4N (logN )! 1/ 2, where

%4 =
1

2
1
2

á
!

p & 3 mod 4

'
1 "

1
p2

( ! 1
2

.



OEIS A064533

OEIS A064533 Decimal expansion of Landau-Ramanujan
constant.

%4 = 0.764223653589220 . . .

¥ Ph. Flajolet and I. Vardi, Zeta function expansions of some
classical constants, Feb 18 1996.
¥ Xavier Gourdon and Pascal Sebah, Constants and records of
computation.
¥ David E. G. Hare,125079 digits of the Landau-Ramanujan
constant.

https://oeis.org/A064533
https://oeis.org/A064533


The LandauÐRamanujan constant

References :ht t ps:// oei s. or g/ A064533

¥ B. C. Berndt, RamanujanÕs notebook part IV,
Springer-Verlag, 1994.
¥ S. R. Finch, Mathematical Constants, Cambridge, 2003, pp.
98-104.
¥ G. H. Hardy, ÓRamanujan, Twelve lectures on subjects
suggested by his life and workÓ, Chelsea, 1940.
¥ Institute of Physics, Constants - Landau-Ramanujan
Constant.
¥ Simon Plou!e, Landau Ramanujan constant.
¥ Eric WeissteinÕs World of Mathematics, Ramanujan
constant.
¥ ht t ps:// en. wi ki pedi a. or g/ wi ki / Landau- Ramanuj an_const ant .

https://oeis.org/A064533
https://en.wikipedia.org/wiki/Landau-Ramanujan_constant


Sums of two squares

If a andq are two integers, we denote byN a,q any integer! 1
satisfying the condition

p | N a,q =+ p , a mod q.

An integerm ! 1 is of the form

m = ! 4(x, y) = x2 + y2

if and only if there exist integersa ! 0, N 3,4 andN 1,4 such
that

m = 2a N 2
3,4 N 1,4.
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Loeschian numbers :m = x2 + xy + y2

An integerm ! 1 is of the form

m = ! 3(x, y) = ! 6(x, " y) = x2 + xy + y2

if and only if there exist integersb ! 0, N 2,3 andN 1,3 such
that

m = 3b N 2
2,3 N 1,3.

The number of positive integers& N which are represented by
the quadratic formX 2 + X Y + Y 2 is asymptotically
%3N (logN )! 1/ 2 where

%3 =
1

2
1
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á
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'
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1
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OEIS A301429

OEIS A301429 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers.

%3 =
1

2
1
2 3

1
4

á
!

p & 2 mod 3

'
1 "

1
p2

( ! 1
2

.

%3 = 0.63890940544 . . .

%= %3 + %4 = 1.403133059 . . .

https://oeis.org/A301429
https://oeis.org/A301429
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Zeta function expansions of some classical constants, Feb 18 1996.

Philippe Flajolet Ilan Vardi

Bill Allombert

! 3 = 0.63890940544534388
22549426749282450937
54975508029123345421
69236570807631002764
96582468971791125286
64388141687519107424 . . .

April 2018



OEIS A301430

OEIS A301430 Decimal expansion of an analog of the
Landau-Ramanujan constant for Loeschian numbers which are
sums of two squares.

' =
3

1
4

2
5
4

á(
1
2 á(log(2+

'
3))

1
4 á

1
#(1/ 4)

á
!

p & 5, 7, 11 mod 12

)
1"

1
p2

* ! 1
2
.

' = 0.30231614235 . . .

Only 11 digits after the decimal point are known.

https://oeis.org/A301430
https://oeis.org/A301430
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Zeta function expansions of some classical constants, Feb 18 1996.

Philippe Flajolet Ilan Vardi

Bill Allombert

" = 0.302316142357065637
94776990048019971560
24127951893696454588
67841288865448752410
51089948746781397927
27085677659132725910. . .

April 2018



Further developments

¥ Prove similar estimates for the number of integers
represented by other binary forms(done for quadratic forms) ;
e.g. : prove similar estimates for the number of integers which
are sums of two cubes, two biquadrates,. . .

¥ Prove similar estimates for the number of integers which are
represented by! n for a givenn.

¥ Prove similar estimates for the number of integers which are
represented by! n for somen with ! (n) ! d.
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Stewart - Xiao

Let F be a binary form of degreed ! 3 with nonzero
discriminant.
There exists a positive constantCF > 0 such that the number
of integers of absolute value at mostN which are represented
by F (X , Y) is asymptotic toCF N 2/ d.



Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xiao,On the representation of
integers by binary forms,
arXiv:1605.03427v2 (March 23, 2018).

http://arxiv.org/abs/1605.03427


Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xiao,On the representation of
integers by binary forms,
arXiv:1605.03427v2 (March 23, 2018).

http://arxiv.org/abs/1605.03427


K. Mahler (1933)

Let F be a binary form of degreed ! 3 with nonzero
discriminant.
Denote byAF the area (Lebesgue measure) of the domain

{ (x, y) # R2 | F (x, y) & 1} .

For Z > 0 denote byN F (Z ) the number of(x, y) # Z2 such
that 0 < |F (x, y)| & Z .
Then

N F (Z ) = AF Z 2/ d + O(Z 1/ (d! 1) )

asZ $ * .



Kurt Mahler

Kurt Mahler
1903 Ð 1988

¬Uber die mittlere Anzahl der Darstellungen grosser Zahlen
durch bin¬are Formen,
Acta Math. 62 (1933), 91-166.
ht t ps:// car ma. newcast l e. edu. au/ mahl er / bi ogr aphy. ht ml

https://carma.newcastle.edu.au/mahler/biography.html


Higher degree
The situation for positive deÞnite forms of degree! 3 is
di!erent for the following reason :
¥ If a positive integerm is represented by a positive deÞnite
quadratic form, it usually has many such representations ;
while if a positive integerm is represented by a positive
deÞnite binary form of degreed ! 3, it usually has few such
representations.

If F is a positive deÞnite quadratic form, the number of(x, y)
with F (x, y) & N is asymptotically a constant timesN , but
the number ofF (x, y) is much smaller.

If F is a positive deÞnite binary form of degreed ! 3, the
number of(x, y) with F (x, y) & N is asymptotically a
constant timesN 1/ d, the number ofF (x, y) is also
asymptotically a constant timesN 1/ d.



Higher degree
The situation for positive deÞnite forms of degree! 3 is
di!erent for the following reason :
¥ If a positive integerm is represented by a positive deÞnite
quadratic form, it usually has many such representations ;
while if a positive integerm is represented by a positive
deÞnite binary form of degreed ! 3, it usually has few such
representations.

If F is a positive deÞnite quadratic form, the number of(x, y)
with F (x, y) & N is asymptotically a constant timesN , but
the number ofF (x, y) is much smaller.

If F is a positive deÞnite binary form of degreed ! 3, the
number of(x, y) with F (x, y) & N is asymptotically a
constant timesN 1/ d, the number ofF (x, y) is also
asymptotically a constant timesN 1/ d.



Higher degree
The situation for positive deÞnite forms of degree! 3 is
di!erent for the following reason :
¥ If a positive integerm is represented by a positive deÞnite
quadratic form, it usually has many such representations ;
while if a positive integerm is represented by a positive
deÞnite binary form of degreed ! 3, it usually has few such
representations.

If F is a positive deÞnite quadratic form, the number of(x, y)
with F (x, y) & N is asymptotically a constant timesN , but
the number ofF (x, y) is much smaller.

If F is a positive deÞnite binary form of degreed ! 3, the
number of(x, y) with F (x, y) & N is asymptotically a
constant timesN 1/ d, the number ofF (x, y) is also
asymptotically a constant timesN 1/ d.



Sums ofkÐth powers

If a positive integerm is a sum of two squares, there are many
such representations.
Indeed, the number of(x, y) in Z ) Z with x2 + y2 & N is
asymptotic to( N , while the number of values& N taken by
the quadratic form! 4 is asymptotic to%4N /

'
logN where

%4 is the LandauÐRamanujan constant. Hence! 4 takes each
of these values with a high multiplicity, on the average
((/% )

'
logN .

On the opposite, it is extremely rare that a positive integer is a
sum of two biquadrates in more than one way (not counting
symmetries).



635318657 = 1584 + 594 = 1344 + 1334.

Leonhard Euler
1707 Ð 1783

The smallest integer
represented byx4 + y4 in two
essentially di!erent ways was
found by Euler, it is
635318657 =
41 ) 113 ) 241 ) 569.

[OEIS A216284]Number of solutions to the equation
x4 + y4 = n with x ! y > 0.
An inÞnite family with one parameter is known for non trivial
solutions tox4

1 + x4
2 = x4

3 + x4
4.

ht t p:// mat hwor l d. wol f r am. com/ Di ophant i neEquat i on4t hPower s. ht ml

https://oeis.org/A216284
http://mathworld.wolfram.com/DiophantineEquation4thPowers.html


Sums ofkÐth powers

One conjectures that givenk ! 5, if an integer is of the form
xk + yk, there is essentially a unique such representation. But
there is no value ofk for which this has been proved.



Higher degree

The situation for positive deÞnite forms of degree! 3 is
di!erent also for the following reason.

A necessary and su"cient condition for a numberm to be
represented by one of the quadratic forms! 3, ! 4, is given by
a congruence.

By contrast, consider the quartic binary form
! 8(X , Y) = X 4 + Y 4. On the one hand, an integer
represented by! 8 is of the form

N 1,8(N 3,8N 5,8N 7,8)4.

On the other hand, there are many integers of this form which
are not represented by! 8.
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Quartan primes

[OEIS A002645]Quartan primes: primes of the form
x4 + y4, x > 0, y > 0.

The list of prime numbers represented by! 8 start with
2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177,
4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561,
28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161,
66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, . . .

It is not known whether this list is Þnite or not.

The largest known quartan prime is currently the
largest known generalized Fermat prime: The
1353265-digit (14531065536)4 + 14.

https://oeis.org/A002645
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Primes of the formx2k
+ y2k

[OEIS A002313]primes of the form x2 + y2.
[OEIS A002645]primes of the form x4 + y4,
[OEIS A006686]primes of the form x8 + y8,
[OEIS A100266]primes of the form x16 + y16,
[OEIS A100267]primes of the form x32 + y32.

https://oeis.org/A002313
https://oeis.org/A002645
https://oeis.org/A006686
https://oeis.org/A100266
https://oeis.org/A100267


Primes of the formX 2 + Y 4

John Friedlander «Etienne Fouvry
But it is known that there are inÞnitely many prime numbers
of the formX 2 + Y 4.
Friedlander, J. & Iwaniec, H.The polynomialX 2 + Y 4

captures its primes, Ann. of Math. (2)148 (1998), no. 3,
945Ð1040.
https://arxiv.org/pdf/math/9811185.pdf
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