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Diophantine Equations and Transcendental Methods
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(written by Noriko HIRATA)

Abstract

This lecture will be divided into three parts. We begin
with the result of J.Liouville on diophantine equatiohs, and
the refinement called the Thue-Siegel-Roth theorem. In the
second part, we give some results on integral points on certain
curves. After that; we will consider a connection between this

subject and transcendental numbers, via Baker's method.

§1. Some approximations.

Let us recall the theorem of Liouville:

THEOREM 1 (Liouville, 1844). Let o be an algebraic number
of degree d z 2. Then there exists C(a) > 0 such that for

all rational numbers g— with q > 0, we have

o - 2] > £,
q



83

where C(a) is easily computable.

This result was the first tool to construct a transcenden-
tal number. The point is that, if we take a real number; very
well approximated by rational numbers, then it can not be an
algebraic number.

We will give a proof of this result in a special case.

Proof in a special case; ]95 - %l > —3 . We would 1like

6q
to get the constant C(}g) = %-. For this, looking at the
minimal polynomial of 95, that is, X3 - 2, we remark that
p3 - 2q3 £ 0 because X3 - 2 has né rational roots, and also
p3 - 2q3 € Z. Then we know [p3 - 2q3| z 1. On the other

%q, we have

A

hand, if p

3 = 2 = — 2 = 2
Ip> - 27| = |p - 72q|-|p® + 72pq + 74q%| < |p - 72q|-6q
and if p > %q, we have '
P _ 3 3 _ 3 1
12 Zl > 12 -77] > ¢ .
By combining these inequalities, the result follows. (g.e.d.)

A.Thue improved Liouville's theorem. His improvement is

essential because we can apply it to diophantine equations.

THEOREM 2 (Thue). Let o be an algebraic number of degree
d z 3. Then there exist § with 0 < § < d and C'(a) > O

such that for all rational numbers g with q > 0, we have
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COROLLARY 3. Let f € Z[X,Y] be a homogeneous polynomial

of degree d 2 3, Then for all non-zero integérs k, the equa-

tion f(x,y) = k has only finitely many solutions (X,y) € Z2‘

Proof of Corollary 3 in a special case. We shall use the

result (without proof):

172 - B > — .
q' 7 146.42-955

We consider a diophantine equation x3 - 2y3 = k and we ' start

from (x,y) e 22 satisfying this equation. So we have
kx| = |x3 - 2y3| = |x - 9§y||x2 + }fxy + }Zy2|
|x - 72y|-3x2.

We may suppose |x| 2z |y|, and we get

1 = ! |x - 9§y| s Alkl

106|X12.955—1 106lyl2.955—-1 2!

3x
10137|k]23.»

v

IA

A

namely, |x| (g.e.d.)

We can see that all the solutions of this diophantine
equation are bounded by some explicit number. We should say
that when § is less than d, it is difficult to compute C'(a) in
an effective way, so if we use the method of Thue, we cannot

give always such an explicit upper bound for the solutions.
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§2. Diophantine equations.

Let K be a number field and OK be the ring of integers in
K. We shall consider several curves and the integral points on
these curves. Here we denote unknowns in Ok by x and y.

We make a list of diophantine equations that have only

finitely many solutions in Ok.

(M) Mordell's equation. Let k be a non-zero element of K.
Then Mordell's equation y2 = X3 + k  has only finitely many

solutions (X,y) ¢ kaﬁk-

(E) Elliptic equation. Let f e K[X] be a polynomial of
degree 3 with three distinct complex roots. Then the elliptic
equation y2 = f(x) has only finitely many solutions

(x,y) ¢ O‘KXO‘K.

(HE) Hyperelliptic equation. Let £ ¢ K[X] be a polynomial
of degree 2 3 with at least three simple complex roots. Then
the hyperelliptic equation y2 = f(x) has only finitely many

solutions (x,y) € OkXOk.

These three results are special cases of the result of
C.L.Siegel, that is, if we take a curveﬁ f(x,y) =0 which has
a genus at least one, then on this curve there are only finite-
ly many integral points.  But for the above equations, we have

some effective results, while for Siegel's theorem, we have not
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an effective result. Now, further equations are the following:

(SE) Superelliptic equation. Let f € K[X] be a polynomial
with at least two complex roots whose orders of multiplicity
are prime to m, where m is a natural number at least three.
Then the superelliptic equation ym = f(x) has only finitely

many solutions (%X,Y) € UKXOk-

(T) Thue's equation. Let kK be a non-zero element of K. Let

Qqr®°" 0 be elements of K such that Aqr05 and 0y are distinct.

n
Then Thue's equation (x - a1y)---(x - uny) = k has only

finitely many solutions (X,y) ¢ OpxCg.

(S) Siegel's equation. Let a and a' be elements of K. Let u

and u' be unknown wunits in K. Then Siegel's equation
au + a'u' = 1 has only finitely many solutions u,u', units in
K.

We can remark that J.-H.Evertse generalized Siégel's
result to the equation €4+t + €= 0 where €qr°°°s€, are
called S-units. Evertse's result has not yet been made effec-
tive while Siegel's result is effective.

Now we would like to explaih the proof that each equation
has only finitely many solutions. For this, we begin with the

connections between these equations. For example, the hypef—

elliptic equation is more general than the elliptic equation,v
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the elliptic equation is more general than Mordell's equation,
and the superelliptic equation can take the exponent 3, so it
is easy to see that the superelliptic equation is more general
than Mordell's equation with the transformation with x replaced
by v and y replaced by x. But there are some connections which
are not trivial. Denoting a trivial relation by —, and a non-

trivial relation by =3, we have the following relations.
T == SE — M

P

We first explain the two trivial relations M — S and

T — S.

Proof of M — S. Look at the equation au + a'u' = 1.
The unit group is finitely generated, so we can write u = y2b,
where b is an element of the set of the units divided by the

squares of units, so b belongs to a certain finite set. 1In the

same way, we can write u' = x3c with ¢ in a finite set. Then
we have y2ab = - x3a'c + 1 which yields Mordell's equation if
we multiply both sides by (ab)>(a'c)®. = (g.e.d.)

Proof of T — S. We write u = x3b, u' = y3c with b,c
in a finite set, and we have the equation  x°ab + yoa'c = 1
which gives Thue's equation. (g.e.d.)

We now give an outline of the proofs which are not
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trivial.

Proof of T = SE. We start from an equation (SE). We

write this equation as

m t, ) ty

v o= ag(x - By) 0 (x - By) T ocee (x - By) |
where m =z 3, h z 2, the numbers 61,~--,Bh are distinct, and at
least two numbers of t1,---,th, say t1 and t2, are prime to m.
For simplicity, we suppose aO’B1'."’Bh € OK. We consider the
solution (x,y) ¢ OKXC% of this equation. We can write‘ideals
as

( ) = o for i = 1,2

X"Bi —OZiBi or = trer :
where Bi is not divisible by any m-th power of prime ideals.
Since the common factors of X - B, and X - BR. divide

1 J

'Bi - Bj' and further ti (i =1,2) is prime to m, it is easy to

see that each Bi divides (a0

| | (B; - Bj))m, SO we may suppose
1#3

that Bi is a "fixed" ideal. Select ai,.si from a fixed set of
representatives for the ideal classes, and such that a& a; and
f%.Bi are principal. Multiplying the above equality by (Ilm'Bi
we obtain »

M ' _ _ v 1
Then, by some algebraic argument, we see that it is possible to
write

m ,

X - B; = w, Gi for i = 1,2,

with Gi in some fixed finite set of algebraic numbers and wieOK

(see [1,p.41]1). From this we have
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m m
By — By =wy & - Wy &y
We can consider that the unknowns are WiW, € Ok. We see that
this is a "fixed" polynomial which is homogeneous in LARAD with
m =2 3. This is exactly the situation of Thue's equation, and

there are only finitely many solutions (w1,w2) in OKx so the

KI

number of solutions (x,y) is also finite. (g.e.d.)

Proof of S = T. Assume that (S) is known, and consider

Thue's equation
(x - ay)e=(x - ay) =k,
where k ¢ Ok, k # 0, fixed. We know that =x - @y are
distinct for i = 1,2,3, and that x - o,y divides k, which
means that the field norm of x - oy is bounded. Then, by
using properties of the unit group, we can write
X - 03y = Bieqy

with Bi in a "fixed" finite set of ihtegers in K, and with a

unit €. Now we consider the three equations

X - oy = Bieqs | (1)

X = a,y = Byeyy (2)

X - agy = B3ez. _ (3)
By elimination with (1) x (a, - a3) + (2) x (u3 - aq)  F
(3) x (a1 - az), we obtain an equation of the form

a,eq + ajye, + a383 =0
with a, ¢ Ok "fixed" and non-zero. Dividing it by ajey, we

get
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a1e1 a2€2

+ = = 1.
~a3€3 aje;

For u = 51/53, u' = 52/53, this is (S), and it has only

finitely many solutions u and u'. The problem is to find €3
which satisfies
€1 = Ueg, (4)
€y = U'e3. ' (5)

Put (4) and (5) into (1),(2),(3), and we eliminate £ to get

83(x - u1y) B1U(x - u3y),

If B3 = Byu, we have Bja; = Bjozu = Bjaz, which means B3= 0.
So we get g5 # Byu. Put

aqB3-0a38qu
p = —23 31
83-811‘1

We get x = by, and therefore yn(b - a1)---(b - an) = k, and
this is a simple equation to solve, which has only finitely

many solutions y. » (g.e.d.)

Proof of S =) HE. Here we consider

S t.
1
f(xX) = a, ] ] (X - ei)
i=1
where ag € Ogr € € Ok (1. = i ; s) distinct, tj,tz,t3 odd
numbers. The ideal class group of K is finite, so we put
R, = a finite set of ideals which represent each

1

class of the class group,

and
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k

R, = the set of ideals of the form ,gl Py Y with
kz = 0 or T, where {PQ} is the set of prime

ideals which divide (a0 l#l (ei - ej)).

We denote also by S1 the finite set of elements of K of the

k k
form c€11--°srr°$y where €qr " i€, is a fixed fundamental

basis of the unit group, ¢ is any root of unity in K, ki = 0 or
which

1, B is a generator of BPB' with B ¢ R and B' € R

2 1
represents the class of £f1, and y is a generator of C}ﬁ with

2

C ¢ R1 and 0 ¢ R1 which represents the class of C- .

Let L = K({/§, § € S1}). We choose generators 81,82,83

of principal ideals of L such that (Bk) divides (ei - ej)
with {i,3,k} = {1,2,3}. We put a = - B,/B;, a' = - B,/B,
and we know that au + au' = 1 has only finitely many solu-

tions u and u', units of L. "Put further

S, = {(u,u") | au + a'u' = 1}

and

n
1]

{x eL | (B1u + Bzu')A2 = -

for some (u,u') ¢ 82}.
We shall show that (x,y) satisfying y2 = f(x) can be

written as
1 e3—e2 2
— L o4 *
X = ez + 4{ B1Au + B1Au } for X ¢ S3s (*)

which will give the finiteness of the set of solutions of

- 10 -
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(HE).
For this, we decompoée for j = 1,2,3,
2
(X—ej)_ aijl

where £3j has no square factors. Regarding the equation

t. t. '

2 .

yo = (x - ey) Jea, T | (x - e;) 3 =1,2,3,
J 0 34 *

with odd numbers tj' we get that Bj belongs to R,. Let f% € R,

1

which represents ‘55 and <15 ¢ R, which represents a51. So

we can deduce that the ideal

|2 v t 2 1
is a principal ideal. Then, by the same argument as mentioned
in the proof of T = SE, we can write

X - e, = 2. 6 j=17213l

. J j 3!
with zj e O0.,, 6j € S1. In L, we can decompose

e; - ey = (zj/dj - zi/éi)(zj/éj + zi/éi),
then there exist units u; ¢ L (1 =i £ 3) such that
21V8y - 2,/8, = Bjug,
z3/63 - 21/61 = Byu,.
Then u = u1/u3 and u' = u2/u3 satisfy au + au' = 1, so

(uq/usy, u,/u;) € 5,. If we take A = uy, we have

e —e2 ) e —63

T _ 3 "2 _ i 1
223783 = ~ByAu + B0 - ByAu® + B hu !

SO )\ € 83. Now, from this and x - ez = zg 63, we obtain (*).

(q.e.d{):

- 11 -
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§3. Baker's method.

We shall finish this lecture by Baker's method. This

method gives an effective way to prove (S).

THEOREM 4 (A.Baker). Let K be an algebraic number field
and let a,a' be elements of K. Take a fundamental Dbasis
€17°° 1€, of the unit group of K, and let z,t' be roots of
unity. If

m m m) m'
1 r ' ' 1 r
u = g-€1 --oEr and u = C -€1 o--Er

(m1r"',mr:m{r"',m£ € Z) satisfy the equation
au + a'u' =1,

then

max (|m, m!|]) = C
1=zisr | ll’ | ll ’

where C 1is a constant which can be effectively computed 1in

terms of €; (1 =i =sr),K,a,a'.

‘This theorem makes it possible to solve explicitly the

diophantine equations that we have mentioned.

Now we state an ‘open problem on this subject.

Open problem. If we take a curve of genus two over a
number field, it is known by Siegel's theorem that this curve

has only finitely many integral points. We can say that this

curve corresponds. to (HE) by a birational transformation, but

- 12 -
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~this transformation doesn't conserve the integral points. It
is not yet known how to give an upper bound of solutions even

in the case of genus two.
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