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Institut de Mathématiques de Jussieu, Paris

Honorary staff member of the Department of Mathematics,
Salahaddin University, Erbil, Iraq

http://www.imj-prg.fr/~michel.waldschmidt/

1 / 54

http://www.rnta.eu/RTN2025/
http://www.imj-prg.fr/~michel.waldschmidt/


Abstract
Analytic number theory is a very active domain of research.
We survey a selection of some of the many recent results
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SICME 2019

February 3 - 5, 2019:
The second international conference of mathematics in Erbil,
College of Science, Salahaddin University, Erbil.
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Notices of the AMS 72.5 May 2025 514–522

Pierre Cartier
1932–2024

I could describe myself as a mathematician without borders, borrowing
from a well-known saying. By this, I mean crossing boundaries, which
allowed me to do mathematics in some rather remarkable countries —
Vietnam, Iraq, Kurdistan, and others. Teaching mathematics in such
places made the effort worthwhile.
Why is it interesting to cross borders? Because on the other side, things
are different. It’s always exciting to venture to the other side of the
fence, to see what lies in the shade. What may seem uninteresting on
one side can be a treasure on the other, offering a fresh perspective.
Something that might seem trivial here could be significant there.

https://doi.org/10.1090/noti3140
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Selected topics in analytic number theory

A gentle introduction to a few subjects on which
Francesco contributed with original new results.

• Artin’s problem

• Egyptian fractions

• Permutation polynomials

• Elliptic curves

• Arithmetic functions

• Zero sum problems

• Multiplicatively dependent vectors

• Counting dihedral and quaternionic extensions
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Some statistics from

https://zbmath.org/authors/pappalardi.francesco
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https://www.genealogy.math.ndsu.nodak.edu/id.php?id=30592

Ram Murty
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https://www.mat.uniroma3.it/users/pappa/missions/index.html
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Artin’s Problem

https://www.mat.uniroma3.it/users/pappa/

PhD Thesis:
Remarks on Artin Conjecture on Primitive Roots,
https://www.mat.uniroma3.it/users/pappa/papers/PhDthesis.pdf
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Some of Francesco’s coauthors on Artin’s Problem

Herish Omer Abdullah Andam Ali Mustafa

Mohamed Anwar Igor Shparlinski Andrea Susa
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Decimal expansion of 1/n with n > 1
Dividing 1 by n.
If n has no other prime divisor than 2 and 5, the decimal
expansion ends with 0’s.
Otherwise, the remainders of the Euclidean division are among
1 and n− 1; as soon as one repeats, all the next ones also
repeat and the expansion is periodic. Hence the period has at
most n− 1 digits.
If n is prime to 10 (last decimal digit ∈ {1, 3, 7, 9}), it is
purely periodic (it repeats as soon as one remainder is 1).

Write a bar for the period:

1

3
= 0.333 333 . . . = 0.3.

Examples:

1

24
= 0.041 666 . . . = 0.041 6,

1

88
= 0.011 36 36 . . . = 0.011 36.
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Decimal expansion of 1/7

International

7))1000000
142 857

1
49
50
35
40

56
60
14
20

28
30
7

French style

1 0 0 0 0 0 0 7
7 1 4 2 8 5 7
3 0
2 8

2 0
1 4

6 0
5 6

4 0
3 5

5 0
4 9

1

Remainders: 1,3,2,6,4,5,1 . . .

1

7
= 0.142857 142857 · · · = 0.142857
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Remainders of the division of 1 by 7

Sequence of remainders: 1,3,2,6,4,5,1 . . .

100 = 1

101 = 10 ≡ 3 mod 7

102 = 30 ≡ 2 mod 7

103 = 20 ≡ 6 mod 7

104 = 60 ≡ 4 mod 7

105 = 40 ≡ 5 mod 7

106 = 50 ≡ 1 mod 7

gcd(7, 10) = 1

10 · 5 ≡ 1 mod 7

10 is a generator of the group
F×7 = {1, 2, 3, 4, 5, 6} =
{1,3,2,6,4,5,1}
10 is a primitive root modulo 7.
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Decimal expansion of 1/p with p prime

1/2 = 0.5
1/3 = 0.3 ` = 1
1/5 = 0.2
1/7 = 0.142 857 ` = 6
1/11 = 0.09 ` = 2
1/13 = 0.076 923 ` = 6
1/17 = 0.058 823 529 411 764 7 ` = 16

Definition: Long prime number (long period prime, maximal
period prime, full reptend prime) in decimal basis: when 10 is
a primitive root modulo p: ` = p− 1.

Long prime numbers in decimal basis:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109 . . . OEIS A001913

Long prime numbers in binary basis: :
3, 5, 11, 13, 19, 29, 37, 53, 59, 61, . . . OEIS A001122
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Primitive root modulo a prime

Let a > 1 not a multiple of the prime p. The number of digits
of 1/p in base a is the order of a modulo p: the smallest
k > 1 such that ak ≡ 1 mod p. The remainders are the
classes of 1, a, a2, . . . , ak−1 modulo p. Hence k divides p− 1.

Definition: a is a primitive root modulo p if k = p− 1:

{1, a, a2, . . . , ap−1} = {1, 2, 3, . . . , p− 1}.

Open Problem: is 2 a primitive root modulo p for infinitely
many p?
Not a single value of a is known for which one can show
unconditionally that the set of primes p for which a is a
primitive root modulo p is infinite.
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Artin’s Conjecture

Density of the set of prime numbers p for which a is a
primitive root modulo p:

Artin’s constant:
https://oeis.org/A005596

A =
∏
p

(
1− 1

p(p− 1)

)
= .3739558 . . .

Peter Stevenhagen

Reference: Peter Stevenhagen.
The correction factor in Artin’s primitive root conjecture.
J. Théor. Nombres Bordx. 15, No. 1, 383–391 (2003).

MR2019022 Zbl 1043.11078

Correction needed when the square free part of a is congruent to 1
modulo 4. No need for a = 2 nor a = 10.
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Artin’s Conjecture: history

Emil Artin
1898 – 1962

Helmut Hasse
1898 – 1979

1927
Emie Artin,
Helmut Hasse

Derrick H. Lehmer
1905 – 1991

Emma Lehmer
1906 – 2007

1957
D.H. and E. Lehmer

1958 correction factor:
letter of Artin to
Emma Lehmer

Christopher Hooley
1928 – 2018

Christopher Hooley (1967): proof
of the corrected result under GRH
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January 6, 1958

Letter of E. Artin to D.H. Lehmer

Dear Professor Lehmer:

Since you are interested in the density of primes connected
with the factorisation of polynomials I would like to stress the
fact that the root of these questions belongs to algebraic
number theory and should be viewed from this point of view.
Any interpretation in terms of elementary number theory hides
very essential insights into the nature of the questions.
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Artin’s Problem

Herish Omer Abdullah Andam Ali Mustafa Francesco Pappalardi

Let p be a prime and G a multiplicative subgroup of the group
of rational numbers.
How large can be the reduction of G modulo p?

Abdullah, Herish; Ali Mustafa, Andam; Pappalardi, Francesco
Density of the quasi r–rank Artin problem.
Funct. Approximatio, Comment. Math. 65, No. 1, 73–93 (2021). Zbl 1489.11004

Abdullah, H. O.; Mustafa, A. Ali; Pappalardi, F.
Divisibility of reduction in groups of rational numbers. II.
Int. J. Number Theory 19, No. 2, 247–260 (2023). Zbl 1520.11084
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Egyptian fractions

Cyril Banderier Ernest S. Croot III David E. Dobbs

John Friedlander Carlos Alexis Gómez Ruiz

Andrew J. Hetzel Florian Luca Enrique Treviño
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FP Slides of a lecture at Weinan
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Egyptian Fractions
Any positive rational number x/y < 1 can be written

x

y
=

1

a1
+

1

a2
+ · · ·+ 1

ak
with 1 ≤ k ≤ x.

Proof.
By induction on x: true for x = 1.
Assume x > 1. Greedy algorithm: take for a1 the smallest
positive integer satisfying

1

a1
6
x

y

and define
x1
y1

=
x

y
− 1

a1
·

Only need to check: x1 < x.
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End of the proof

Since x/y < 1 and a1 is the smallest positive integer satisfying
1/a1 6 x/y, we have

1

a1
6
x

y
<

1

a1 − 1
·

Hence
a1 − 1 <

y

x
6 a1.

From
a1x− x < y 6 a1x

we deduce the desired estimate for x1 = a1x− y:

0 6 a1x− y < x.
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Example: x
y =

2
3

1 <
3

2
< 2,

1

2
<

2

3
< 1,

2

3
− 1

2
=

1

6
·
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The greedy algorithm

4

121
=

1

33
+

1

363
·

The greedy algorithm gives

4

121
=

1

31
+

1

1250
+

1

4 688 750
·

Also
5

121
=

1

33
+

1

121
+

1

363
but the greedy algorithm gives

5

121
=

1

25
+

1

757
+

1

763 309
+

1

873 960 180 913

+
1

1 527 612 795 642 093 418 846 225
·
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Sums of two Egyptian fractions

For n > 1, the rational numbers 1/n, 2/n, are sums of two
Egyptian fractions:

1

n
=

1

2n
+

1

2n
,

2

n
=

1

n
+

1

n
·

Exercise1: the rational numbers 3/p with p prime ≡ 1
(mod 3) and 4/p with p prime ≡ 1 (mod 4) are not sums of
two Egyptian fractions.

We have seen that the rational numbers 3/n with n > 1 are
sums of three Egyptian fractions.

Is-it true for 4/n?

1
https://www.imo.universite-paris-saclay.fr/~daniel.perrin/Divers/APM543-4b.pdf
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Open problem

Open problem. For any n > 1, the rational number 4/n is
the sum of three Egyptian fractions:

4

n
=

1

a
+

1

b
+

1

c
·
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Egyptian fraction

Fix k and n.
How many x’s are there such that x/n is a sum of reciprocals
of k positive integers a1, . . . , ak?

x

n
=

1

a1
+ · · ·+ 1

ak
·
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Ternary Egyptian fractions with prime denominator

Florian Luca Francesco Pappalardi

For p prime, define

A3(p) = #

{
m ∈ N | m

p
=

1

a1
+

1

a2
+

1

a3
, a1, a2, a3 ∈ N

}
.

Then as x→∞
x(log x)3 �

∑
p6x

A3(p)� x(log x)5.

Luca, Florian; Pappalardi, Francesco
On ternary Egyptian fractions with prime denominator.
Res. Number Theory 5, No. 4, Paper No. 34, 14 p. (2019). Zbl 1455.11057
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Permutation polynomials

Sergei Vladimirovich Konyagin Claudia Malvenuto
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Exponential Sums and Permutation Polynomials Ramachandra’s birthday 1

Exponential Sums

and
Enumeration of Permutation Polynomials

Francesco Pappalardi

Conference on Zeta Functions in honor of

Prof. K. Ramachandra on his 70th birthday

National Institute of Advanced Studies

NIAS

Bangalore December 13 - 15, 2003

Università Roma Tre

35 / 54



Bangalore, December 2003

https://www.mat.uniroma3.it/users/pappa/SLIDES/Slides.html
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Polynomial maps on a finite field
Let Fq be a finite field with q elements. Given a map
ϕ : Fq → Fq, there is a unique polynomial f in Fq[X] of
degree < q such that f(c) = ϕ(c) for all c ∈ Fq. This
polynomial f can be computed via the Lagrange interpolation
formula (Vandermonde determinant).
There is another closed formula which rests on the fact that
zq = z for all z ∈ Fq and 1− zq−1 = δ0,z (Kronecker symbol):

zq−1 =

{
1 for z 6= 0,

0 for z = 0.

Hence
f(X) =

∑
c∈Fq

ϕ(c)
(
1− (X − c)q−1

)
.

For f and g in Fq[X], we have f(c) = g(c) for all c ∈ Fq if
and only if f − g is a multiple of Xq −X.
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Permutation polynomials

Let f ∈ Fq[X]. The following equivalent properties define
permutation polynomials
(i) The polynomial map c 7→ f(c) is a permutation of Fq.
(ii) The map c 7→ f(c) from Fq to Fq is surjective.
(iii) The map c 7→ f(c) from Fq to Fq is injective.
(iv) The map c 7→ f(c) from Fq to Fq is bijective.

If σ ∈ Sq is a permutation of Fq, then the associated
polynomial

f(X) =
∑
c∈Fq

σ(c)
(
1− (X − c)q−1

)
has degree ≤ q − 2 if q > 2 since

∑
c∈Fq

σ(c) = 0:

the coefficient of Xq−1 in Xq −X is
∑

c∈Fq
c = 0.

38 / 54



Permutation polynomials and cryptography

Dickson–Diffie–Hellmann Key
Exchange

Uses Dickson permutation
polynomials (1896). Leonard Eugene Dickson

1874 – 1954

There is a fast algorithm to compute the values of Dickson
permutation polynomials, no fast algorithm is known to
compute the Dickson Discrete Logarithm.

Wanted: new explicit permutation polynomials.
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Enumerating permutation polynomials with given degree

The number of permutation polynomials over Fq is q!.

Claudia Malvenuto and Francesco Pappalardi:
Almost all permutation polynomials have degree q − 2.

Given q and d, the number N (q, d) of permutation
polynomials of degree < q − 2 satisfies

|N (q, d)− (q − 1)!| ≤
√

2e

π
qq/2.
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Enumerating permutation polynomials

Claudia Malvenuto Francesco Pappalardi

Applications in combinatorics and cryptography

Malvenuto, Claudia; Pappalardi, Francesco
Enumerating permutation polynomials. I: Permutations with non-maximal degree.
Finite Fields Appl. 8, No. 4, 531–547 (2002). Zbl 1029.11068
Enumerating permutation polynomials. II: k–cycles with minimal degree.
Finite Fields Appl. 10, No. 1, 72–96 (2004). Zbl 1035.11062
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Elliptic curves

William Banks Chantal David Hershy Kisilevsky

Igor Shparlinski
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Counting with elliptic curves over finite fields

Let E be an elliptic curve over a prime field with p elements.
Then the group of points is of cardinality N , where N is in the
Hasse interval [p− 2

√
p+ 1, p+ 2

√
p+ 1]. While its order is

well-understood there are finer invariants such as the group
structure, the exponent of this group, etc. which are not so
well-understood.

Francesco has written a few papers in which he has
investigated statistical questions such as how large is the
exponent of the group likely to be, or if we fix the structure of
the group how many p’s are there for which there exist elliptic
curves E with the group of points having that structure, etc.
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Rational points on elliptic curves over finite fields

William Banks Francesco Pappalardi

Igor Shparlinski

Which are the finite groups which can be realized as groups of
rational points of an elliptic curve over a finite field?
Banks, William D.; Pappalardi, Francesco; Shparlinski, Igor E.
On group structures realized by elliptic curves over arbitrary finite fields.
Exp. Math. 21, No. 1, 11–25 (2012). Zbl 1257.11060
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Lang–Trotter Conjectures

Serge Lang
1927 – 2005

Hale Freeman Trotter
1931 – 2022

In 1976, Lang and Trotter formulated elliptic analogues of the
Artin primitive root conjecture. Suppose E is an elliptic curve
over Q with a rational point of infinite order. A natural
question is how often does the prescribed point generate
E(Fp), the group of points mod p?

More precisely, let a be a rational point of infinite order. The
problem is to determine the density of primes p for which
E(Fp) is generated by the reduction of a mod p.
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Lang–Trotter Conjectures (continued)
Let E be an elliptic curve over Q, which does not have
complex multiplication over the algebraic closure of Q. For
x > 0, let P (x) be the number of primes p < x such that E
has good super-singular reduction at p. A conjecture of Lang
and Trotter states that

P (x) = O(x1/2/ log x).

Jean-Pierre Serre

In his paper Quelques
applications du théorème de
densité de Chebotarev, Serre
proves P (x) = O(x3/4) under
the generalized Riemann
hypothesis (GRH) for Artin
L-functions.
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Lang–Trotter Conjectures (continued)

Chantal David Francesco Pappalardi

In 1999 Chantal David and Francesco Pappalardi prove the
Lang-Trotter Conjecture on the average.

David, Chantal; Pappalardi, Francesco.
Average Frobenius distributions of elliptic curves.
Int. Math. Res. Not. No. 4, 165–183 (1999). Zbl 0934.11033
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Arithmetic functions

William Banks John Friedlander Alexei Glibichuk

Florian Luca Filip Saidak Igor Shparlinski
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Arithmetic functions

Counting solutions to various equations in arithmetic
functions, like the Euler function being a square, or the order
function (of an element modulo p) being squarefree, etc.

Pappalardi, Francesco
Square free values of the order function.
New York J. Math. 9, 331–344 (2003). Zbl 1066.11044

Pappalardi, Francesco; Saidak, Filip; Shparlinski, Igor E.
Square-free values of the Carmichael function.
J. Number Theory 103, No. 1, 122–131 (2003). Zbl 1042.11058
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Zero sum problems

Sukumar Das Adhikari R. Balasubramanian YongGao Chen

John Friedlander Sergei Vladimirovich Konyagin

Francesco Pappalardi Purusottam Rath
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Zero sum problems

Given a subset A of an abelian group G what is the minimal
number n(A,G) of elements of A that we need to choose to
make sure that among these there is a zero subsum? What
about a zero subsum of a given length k?

Adhikari, Sukumar Das; Chen, Yonggao; Friedlander, J. B.; Konyagin, S. V.;
Pappalardi, F.
Contributions to zero-sum problems.
Discrete Math. 306, No. 1, 1–10 (2006). Zbl 1161.11311

Adhikari, Sukumar Das; Balasubramanian, R.; Pappalardi, F.; Rath, Purusottam
Some zero-sum constants with weights.
Proc. Indian Acad. Sci., Math. Sci. 118, No. 2, 183–188 (2008). Zbl 1207.11030
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Multiplicatively dependent vectors

Francesco Pappalardi Min Sha

Igor Shparlinski Cameron Stewart

Asymptotic formulas are proved for the number of
multiplicatively dependent vectors of algebraic numbers of
fixed degree, or within a fixed number field, and bounded
height.
Pappalardi, Francesco; Sha, Min; Shparlinski, Igor E.; Stewart, Cameron L.
On multiplicatively dependent vectors of algebraic numbers.
Trans. Am. Math. Soc. 370, No. 9, 6221–6244 (2018). Zbl 1442.11134
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Counting dihedral and quaternionic extensions

Etienne Fouvry Florian Luca

Francesco Pappalardi Igor Shparlinski

Fouvry, Étienne; Luca, Florian; Pappalardi, Francesco; Shparlinski, Igor E.
Counting dihedral and quaternionic extensions.
Trans. Am. Math. Soc. 363, No. 6, 3233–3253 (2011). Zbl 1235.11097
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Joyeux anniversaire Francesco
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