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Statement
1. Recall that the continued fraction expansion of a real irrational number ¢, namely
1
t = Qo + 1
a; + 1
as + 71

(1/3+7

with a; € Z for all j > 0 and a; > 1 for j > 1, is denoted by [ag; a1, as, as, ...].

Let ¢ be the real number whose continued fraction expansionis [1; 3, 1, 3, 1, 3, 1,...],
which means as, = 1 and ag,.1 = 3 for n > 0. Write a quadratic polynomial with
rational coefficients vanishing at t.

Solution
The number ¢ satisfies .
t=1+ 3+—1
t

An easy computation shows that ¢ is a root of the polynomial 3X? — 3X — 1.

Statement

2. Solve the equation y?> —y =z
a)in Z x Z,

b)in Q x Q.

Solution

a) There are two obvious solutions (z,y) = (0,0) and (x,y) = (0,1). If there were
another solution in Z x Z, this solution would satisfy 22 > 1 and |y| > 2. In this case
the two positive integers |y| and |y — 1| are consecutive, therefore they are relatively
prime. If the product of two relatively prime integers is a square, then each of them
is a square. Since there is no example of two consecutive integers which are both
squares, in Z x Z the given equation has only the two obvious solutions.
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b) The geometric idea is to intersect the curve with a line through a rational point,

for instance (0,0). Let (x,y) € Q x Q be a solution with x # 0. Set t = y/x. Notice
1
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first that ¢t # £1 because y = +x does not yield a solution when x # 0. Substitute
tx to y in the equation, next divides by x which is not zero. One gets
t t?
(1) T= 5y and V=
For t = 0 these formulae (1) give the solution (z,y) = (0,0) but (1) does not produce
the solution (z,y) = (0, 1).
Conversely, if ¢ is a rational number which is not 1 nor —1, then (z,y) given by (1)

is solution of the equation. In conclusion (1) produces all rational solutions apart
from (0,1).

Statement
3. Solve the equation z'* = y?! in Z x Z.

Solution

We first consider the equation 15a = 21b in rational integers (a,b) € Z x Z. This
equation is equivalent to 5a = 7b. Since 5 and 7 are relatively prime, the general
solution is given by (a,b) = (7c, 5¢) with ¢ € Z.

Now decompose z and y into prime factors. It follows that the general solution
of the equation 25 = y?! dans Z x Z is given by (z,y) = (¢',#°) with ¢ in Z.
Remark. Since the exponents 15 and 21 are odd, x ety have the same sign. Fort > 0
one gets the positive solutions (x,y), while t < 0 produce the negative solutions.

Statement

4. Let A = Z[1/2] be the subring of Q spanned by 1/2.
a) Is A a finitely generated Z-module?

b) Which are the units of A?

Solution
a) Recall that a finitely generated Z-module M is a Z—-module which if it is generated
by a finite number of elements, which means that there is a finite subset {v1,...,vm}

of M such that

M =2y, + -+ Zyp,.
Recall also that the right hand side denotes the set of linear combinations of the v;
with coefficients in Z:

Z’Vl"‘""f“zf)/m:{a1'71+"'+am7m; (al,...,am)ezm}-

On the other hand the subring A = Z[1/2] of the rational number field Q generated
by 1/2 is the set of rational numbers ¢/2" with ¢ € Z and n € Z, n > 0.

Now if 741, ...,7vm are elements in A = Z[1/2], then each of them can be written
¢;/2". Let n be the largest of the n;. Any linear combination of 71,..., 7, with
integer coefficients is an integer r such that 2"r is an integer. For instance 1/2"! is
an element in A which is not in the Z-module Zv; + - - - + Z~,,. One deduces that
A is not a finitely generated Z—module.
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The fact that the ring A is not a finitely generated Z-module follows also from a
theorem in the course together with the fact that 1/2 is not integral over Z.

b) An element x = £/2" in A is a unit in A if and only if there exists 2/ = ¢'/2" € A
such that the product zz’ is 1, which means ¢¢ = 2"+, Therefore ¢ and ¢ are
both powers of 2, up to a multiplicative coefficient —1. Conversely in the ring A
any power of 2 with an exponent in Z is a unit: 27-277 =1 for any j € Z, and both
factors 2/, 277 are in A.

In conclusion the units in A are £27, j € Z.

Statement
5. Which are the finitely generated sub-Z-modules of the additive group Q?

Solution

The answer is that they are the Z—submodules of Q which are generated by a single
element. One direction is clear: if v is a rational number then Zv is a finitely
generated Z—submodule of Q. The problem is to prove the converse.

Let 71, ...,7vm be rational numbers. If the v; are all 0 the Z-module they generate
is {0} which is Z~ with v = 0. Otherwise denote by ¢ the least positive common
denominator of the 7; and set p; = ¢vy. The numbers ¢, py,...,p, are positive
integers with ged 1. Denote by p the greatest common divisor of py,...,pm, SO
that Zp = Zp, + - - - + Zp,,. Then p and q are relatively prime and the Z-module
M =Zy + -+ Z, is Zy with v = p/q.

Statement
6. Find the rational roots of the polynomial X7 — X%+ X° — X4 - X34+ X? — X 4 1.

Solution

Recall that if p/q is a rational root with pged(p, ¢) = 1 of a polynomial ag X"+ - -+ay,
with coefficients in Z with aga,, # 0, then p divides a,, and ¢ divides ag. Here ag
and a,, are both equal to 1, the only values to be tested are 1 and —1 and both are
roots.

Statement

7. Let k be the number field Q(i, v/2).

a) What is the degree of k over Q7 Give a basis of k over Q. Find 7 € k such that
k = Q(v). Which are the conjugates of v over Q7

b) Show that k is a Galois extension of Q. What is the Galois group? Which are
the subfields of k7

Solution
a) The field k is the field generated by i and v/2 over Q, hence it contains v/2 and i.
Since the field Q(v/2) is contained in the field R of real numbers, it does not contain
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i. Therefore k is an extension of degree 2 of Q(v/2) and therefore an extension of
degree 4 of Q.

A basis of Q(v/2) over Q (as a Q-vector space) is {1,v/2}, a basis of k over
Q(v2) is {1,i}, hence a basis of k over Q is obtained by taking the 4 products
{1,v2,1,iv/2}.

An example (among many!) of an element in k which is a generator of k over Q
(here we consider field extensions: one is looking for a v such that & = Q(v)) is
v =i+ /2, since its 4 conjugates over Q are distinct: they are

i+V2, =2, —i+V2, —i—V2

b) The field k is the splitting field over Q of the polynomial (X? — 2)(X? + 1) - it
is also the splitting field over Q of the monic irreducible polynomial of ~ which is,
given our choice above for 7,

(X —i—V2)(X —i+V2)(X +i—V2)(X +i+v2)=X"—2X*+9.

Hence k is a normal extension of Q (it is a splitting field) as well as a separa-
ble extension (the polynomial has no multiple roots - anyway we are here in zero
characteristic).

The Galois group G of k over Q is the group of automorphisms of k. Such an
automorphism is determined by its values at the points v/2 and i. Its value at v/2
is a conjugate of /2, hence is v/2 or —v/2. Similarly its value at i is a conjugate of
7, hence is ¢ or —i. This gives the four automorphisms we were looking for. Denote
by o the non—trivial automorphism of k& which fixes ¢ and by 7 the automorphism
which fixes v/2 — then 7 is the complex conjugation and G = {1, 0, 7,07} (here 1 is
the unit element in the group G, namely the identity automorphism of k). Hence
G is the non cyclic group of order 4, it is abelian of type (2,2) which means that it
is isomorphic to (Z/2Z) x (Z/2Z7), and it has exactly 5 subgroups: two of them are
the trivial subgroups {1} and G, while the three others have order 2:

{1,¢}, {1,7}, {1,071}

As a consequence of Galois theory k£ has exactly 5 subfields, two of them are the
trivial ones k (the Galois group of k over k is {1}) and Q (the Galois group of k
over Q is GG), the three others are the subfields of & which are fixed by the three
subgroups of order 2 respectively, they are the three quadratic subfields of k:

Q(i), Q(W?2), Q(iv2).

For instance let us check that iv/2 is fixed by o7: indeed o7(i) = o(—i) = —i and

o1(v2) = 0(v/2) = —v/2. The Galois group of k over Q(iv/2) is {1,07}, as it
should.



Statement

8. Let ¢ € Csatisfy ¢(° =1 and ¢ # 1. Let K = Q(().

a) What is the monic irreducible polynomial of ¢ over Q? Which are the conjugates
of ¢ over Q7 What is the Galois group G of K over Q7 Which are the subgroups
of G?

b) Show that K contains a unique subfield L of degree 2 over Q. What is the ring
of integers of L7 What is its discriminant? What is the group of units?

Solution
a) The monic irreducible polynomial of ¢ over Q is X* + X? + X2+ X + 1. The
conjugates of ( over Q are the four roots of this polynomial, they are the four
primitive fifth roots of unity in C; if ¢ is any of them, the others are (2,3, ¢*. The
Galois group of K over Q has four elements, which are the four automorphisms of
K. Each of the four automorphisms is determined by the image of {, hence one can
denote these automorphisms by oy, 09, 03, 04 with 0;(¢) = ¢?. The group G is cyclic,
a generator is oo: indeed
73(C) = a(C*) = ¢ a3 = () = = ¢,

hence 03 = 04, 03 = 03 and G = {1,09,03,05}. Another generator is o3 (this is due
to the fact that the exponent 3 is prime to the order of the group 4).
b) The group G is cyclic of order 4; since 4 has three divisors (1, 2, 4) it follows that
G has 3 subgroups, two of them are the trivial subgroups {1} and G, the third one
is the unique subgroup H of G of order 2, it is generated by the unique element of
order 2, namely o3. Since 03(¢) = ¢ is the complex conjugate of ¢ (recall (° =1,
I¢|2 = ¢¢ =1 hence ¢* = (! = (), the subfield L of K which is fixed by H is the
intersection of K and R.

Set a = ¢ + (, so that « € K N R.. Since

F=(C+)P=C+C+2 and 1+(+C+3+(=0,

we have a? + o — 1 = 0. The real part of ¢ is positive, hence « is the golden
number (1 4+ +/5)/2. The field L is the field Q(v/5), its ring of integers is Z + Za,
its discriminant is 5, the group of units is {+a™ ; m € Z}.
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