Exercices on the first course.

1. Let f be an entire function. Assume f is algebraic: there exists $P \in \mathbb{C}[X, Y], P \neq 0$, such that $P(z, f(z))=0$. Prove that f is a polynomial: $f \in \mathbb{C}[z]$.
2. Given pairwise distinct complex numbers $\alpha_{1}, \ldots, \alpha_{n}$, positive integers t_{1}, \ldots, t_{n} and complex numbers $\beta_{j, \tau}$ for $1 \leq j \leq n, 0 \leq \tau<t_{j}$, show that there exists a unique polynomial f of degree $<t_{1}+\cdots+t_{n}$ satisfying

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} z}\right)^{\tau} f\left(\alpha_{j}\right)=\beta_{j, \tau}
$$

for $1 \leq j \leq n$ and $0 \leq \tau<t_{j}$.
3. Let f be a nonzero entire function of order $\leq \varrho$. For $r \geq 0$, denote by $n(f, r)$ the number of zeroes (counting multiplicities) of f in the disc $|z| \leq r$. Show that there exists a constant $c>0$, depending only on f, such that, for $r \geq 1$,

$$
n(f, r) \leq c r^{\varrho}
$$

4. Solve the exercise on Blaschke products p. 24.
5. From the definition of the Euler Gamma function by means of the canonical product:

$$
\frac{1}{\Gamma(z)}=z \mathrm{e}^{\gamma z} \prod_{n \geq 1}\left(1+\frac{z}{n}\right) \mathrm{e}^{-z / n}
$$

deduce that $1 / \Gamma(z)$ is an entire function of order 1 and infinite exponential type.
6. Check that Abel's polynomials

$$
P_{n}(z)=\frac{1}{n!} z(z-n)^{n-1} \quad(n \geq 1)
$$

satisfy, for $n \geq 1$,

$$
\left|P_{n}\right|_{r} \leq\left(1+\frac{r}{n}\right)^{n} \mathrm{e}^{n}
$$

7. Check the formula on divided differences p. 35.
