Exercices on the third course.

1. Let s_{0}, s_{1}, s_{2} be three complex numbers. Give a necessary and sufficient condition for the following to hold. There exist three sequences of polynomials $\left(\Lambda_{n, 0}(z)\right)_{n \geq 0},\left(\Lambda_{n, 1}(z)\right)_{n \geq 0}$, $\left(\Lambda_{n, 2}(z)\right)_{n \geq 0}$ such that any polynomial $f \in \mathbb{C}[z]$ can be written in a unique way as a finite sum

$$
f(z)=\sum_{n \geq 0}\left(f^{(3 n)}\left(s_{0}\right) \Lambda_{n, 0}(z)+f^{(3 n)}\left(s_{1}\right) \Lambda_{n, 1}(z)+f^{(3 n)}\left(s_{2}\right) \Lambda_{n, 2}(z)\right)
$$

What is the degree of $\Lambda_{n, j}(z)$? The leading term? Write the six polynomials

$$
\Lambda_{0,0}(z), \Lambda_{0,1}(z), \Lambda_{0,2}(z), \Lambda_{1,0}(z), \Lambda_{1,1}(z), \Lambda_{1,2}(z)
$$

2. Let s_{0}, s_{1}, s_{2} be three complex numbers. Give a necessary and sufficient condition for the following to hold. There exist three sequences of polynomials $\left(M_{n, 0}(z)\right)_{n \geq 0},\left(M_{n, 1}(z)\right)_{n \geq 0}$, $\left(M_{n, 2}(z)\right)_{n \geq 0}$ such that any polynomial $f \in \mathbb{C}[z]$ can be written in a unique way as a finite sum

$$
f(z)=\sum_{n \geq 0}\left(f^{(3 n)}\left(s_{0}\right) M_{n, 0}(z)+f^{(3 n+1)}\left(s_{1}\right) M_{n, 1}(z)+f^{(3 n+2)}\left(s_{2}\right) M_{n, 2}(z)\right)
$$

What is the degree of $M_{n, j}(z)$? The leading term? Write the six polynomials

$$
M_{0,0}(z), M_{0,1}(z), M_{0,2}(z), M_{1,0}(z), M_{1,1}(z), M_{1,2}(z)
$$

3. Let s_{0}, s_{1}, s_{2} be three complex numbers. Give a necessary and sufficient condition for the following to hold. There exist three sequences of polynomials $\left(N_{n, 0}(z)\right)_{n \geq 0},\left(N_{n, 1}(z)\right)_{n \geq 0}$, $\left(N_{n, 2}(z)\right)_{n \geq 0}$ such that any polynomial $f \in \mathbb{C}[z]$ can be written in a unique way as a finite sum

$$
f(z)=\sum_{n \geq 0}\left(f^{(3 n)}\left(s_{0}\right) N_{n, 0}(z)+f^{(3 n)}\left(s_{1}\right) N_{n, 1}(z)+f^{(3 n+1)}\left(s_{2}\right) N_{n, 2}(z)\right) .
$$

What is the degree of $N_{n, j}(z)$? The leading term? Write the six polynomials

$$
N_{0,0}(z), N_{0,1}(z), N_{0,2}(z), N_{1,0}(z), N_{1,1}(z), N_{1,2}(z)
$$

4. On p. 11, check that if the determinant $D(\mathbf{s})$ does not vanish, then $r_{j} \leq j$ for all $j=$ $0,1, \ldots, m-1$.
5. Prove the proposition p. 11.
6. Poritsky's interpolation p. 31. Prove that the condition $\mathrm{D}(\mathbf{s})=0$ means that $s_{0}, s_{1}, \ldots, s_{m-1}$ are pairwise distinct.
Prove also that the function $\Delta(t)$ has a zero at the origin of multiplicity at least $m(m-1) / 2$. N.B. The fact that the multiplicity is exactly $m(m-1) / 2$ follows from the fact that the coefficient of
$t^{m(m-1) / 2}$ in the Taylor expansion at the origin of $\Delta(t)$ is given by a product of two Vandermonde determinants

$$
\frac{1}{1!2!\cdots(m-1)!} \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \zeta & \cdots & \zeta^{m-1} \\
1 & \zeta^{2} & \cdots & \zeta^{2(m-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \zeta^{m-1} & \cdots & \zeta^{(m-1)^{2}}
\end{array}\right) \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
s_{0} & s_{1} & \cdots & s_{m-1} \\
s_{0}^{2} & s_{1}^{2} & \cdots & s_{m-1}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
s_{0}^{m-1} & s_{1}^{m-1} & \cdots & s_{m-1}^{m-1}
\end{array}\right) .
$$

But this is not so easy to prove Macintyre 1954, §3].
7. Let $\mathbf{w}=\left(w_{n}\right)_{n \geq 0}$ be a sequence of complex numbers. Prove that the sequence of polynomials $\left(\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)\right)_{n \geq 0}$ defined by $\Omega_{\emptyset}=1$ and

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)=\int_{w_{0}}^{z} \mathrm{~d} t_{1} \int_{w_{1}}^{t_{1}} \mathrm{~d} t_{2} \cdots \int_{w_{n-1}}^{t_{n-1}} \mathrm{~d} t_{n}
$$

for $n \geq 1$ satisfy $\Omega_{w_{0}}(z)=z-w_{0}$ and for $n \geq 0, \Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}\left(w_{0}\right)=0$,

$$
\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}^{\prime}(z)=\Omega_{w_{1}, w_{2}, \ldots, w_{n}}(z) .
$$

What are the degree and the leading term of $\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}(z)$? Check

$$
\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}^{(k)}\left(w_{k}\right)=\delta_{k n}
$$

for $n \geq 0$ and $k \geq 0$. Deduce that any polynomial is a finite sum

$$
f(z)=\sum_{n \geq 0} f^{(n)}\left(w_{n}\right) \Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}(z)
$$

Check the formula for the Gontcharoff determinant p. 39.
Give a close formula for these polynomials $\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)$ when

- $w_{n}=0$ for all $n \geq 0$.
- $w_{n}=1$ for even $n \geq 0, w_{n}=0$ for odd $n \geq 1$.
- $w_{n}=n$ for all $n \geq 0$.

References

[Macintyre 1954] A. J. Macintyre, "Interpolation series for integral functions of exponential type", Trans. Amer. Math. Soc. 76 (1954), 1-13. $|\mathrm{MR}| \mathrm{Zbl}$

