Exercises on elliptic curves.

August 15-26, 2022.
African Institute for Mathematical Sciences (AIMS), M'Bour, Senegal
https://aims-senegal.org/
CIMPA Research School
https://www.cimpa.info/fr/node/6755
Cryptography, theoretical and computational aspects of number theory.
https://indico.math.cnrs.fr/event/5731/

1. Eisenstein series

Recall, for a lattice Λ in \mathbb{C} and $k \geq 3$,

$$
G_{k}(\Lambda)=\sum_{\lambda \in \Lambda \neq\{0\}} \frac{1}{\lambda^{k}}
$$

Check

- for k odd, $G_{k}(\Lambda)=0$.
- for $\lambda \in \mathbb{C} \backslash\{0\}$, and $\Lambda=\mathbb{Z} \lambda+\mathbb{Z i} \lambda, G_{6}(\Lambda)=0$.
- for $\lambda \in \mathbb{C} \backslash\{0\}$, and $\Lambda=\mathbb{Z} \lambda+\mathbb{Z} \varrho \lambda$ with $\varrho=\mathrm{e}^{2 \pi \mathrm{i} / 3}, G_{4}(\Lambda)=0$.

2. Isogenies

Let a_{1} and a_{2} be positive integers, Λ a lattice in $\mathbb{C}, \lambda_{1}, \lambda_{2}$ a basis of Λ and Λ^{\prime} the sublattice $a_{1} \lambda_{1} \mathbb{Z}+a_{2} \lambda_{2} \mathbb{Z}$ of Λ :

$$
\Lambda^{\prime}=a_{1} \lambda_{1} \mathbb{Z}+a_{2} \lambda_{2} \mathbb{Z} \subset \Lambda=\lambda_{1} \mathbb{Z}+\lambda_{2} \mathbb{Z}
$$

The two canonical surjections $\mathbb{C} \rightarrow \mathbb{C} / \Lambda^{\prime}$ and $\mathbb{C} \rightarrow \mathbb{C} / \Lambda$ give rise to a homomorphism $\psi: \mathbb{C} / \Lambda^{\prime} \rightarrow \mathbb{C} / \Lambda$ which is an isogeny :

Compute the degree n of the isogeny ψ, write the dual isogeny $\hat{\psi}: \mathbb{C} / \Lambda \rightarrow$ $\mathbb{C} / \Lambda^{\prime}$ and check that

$$
\psi \circ \hat{\psi}: \mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda \quad \text { and } \quad \hat{\psi} \circ \psi: \mathbb{C} / \Lambda^{\prime} \rightarrow \mathbb{C} / \Lambda^{\prime}
$$

are the multiplications by n.

3. Modular invariant

Write $g_{i}(\tau)$ for $g_{i}(\mathbb{Z}+\mathbb{Z} \tau)$ and $i \in\{2,3\}$.
For $\operatorname{Im}(\tau) \rightarrow \infty$ check

$$
g_{2}(\tau) \rightarrow 120 \sum_{m \geq 1} \frac{1}{m^{4}}=\frac{4 \pi^{3}}{3} \quad \text { and } \quad g_{3}(\tau) \rightarrow 280 \sum_{m \geq 1} \frac{1}{m^{6}}=\frac{8 \pi^{6}}{27}
$$

Deduce $\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2} \rightarrow 0$ and $j(\tau) \rightarrow \infty$.

4. Complex multiplication

Let $\Lambda=\mathbb{Z}+\mathbb{Z} \tau$ be a lattice with $\operatorname{Im}(\tau) \in \mathfrak{H}$ and let $\alpha \in \mathbb{C}^{\times} \backslash \mathbb{Z}$ satisfy $\alpha \Lambda \subset \Lambda$.
(a) Check that $(1, \tau) \in \mathbb{C}^{2}$ is an eigenvector of a matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z})
$$

with eigenvalue α.
(b) Deduce that τ and α are quadratic numbers with $\mathbb{Q}(\alpha)=\mathbb{Q}(\tau)$ and that α is an algebraic integer (the irreducible polynomial of α over \mathbb{Q} is monic).
(c) Let $A X^{2}+B X+C$ be the minimal polynomial of τ over \mathbb{Z} with $A>0, \operatorname{gcd}(A, B, C)=1$. Check that

$$
\alpha \in \mathbb{Z}+\mathbb{Z} A \tau
$$

(d) Let $\bar{\alpha}$ be the complex conjugate of α. Check that α and $\bar{\alpha}$ define two dual isogenies of degree $\alpha \bar{\alpha}$ (the norm of α) of the torus \mathbb{C} / Λ.

5. Congruent numbers

Let n be a positive integer. Check that the following conditions are equivalent.
(i) The number n is congruent : there is a rectangle triangle with rational side lengths of area n :

$$
n=\frac{a b}{2}, \quad a^{2}+b^{2}=c^{2} .
$$

(ii) There is an arithmetic progression of rational squares with 3 terms and common difference n :

$$
e^{2}-g^{2}=n, \quad g^{2}-f^{2}=n
$$

(iii) The elliptic curve $y^{2}=x^{3}-n^{2} x$ has a rational point with $y \neq 0$.

Hint. Set

$$
\begin{gathered}
(e, f, g)=((a+b) / 2,(a-b) / 2, c / 2), \quad(a, b, c)=(e+f, e-f, 2 g) \\
(x, y)=\left(n b /(c-a), 2 n^{2} /(c-a)\right), \quad(a, b, c)=\left(\left(x^{2}-n^{2}\right) / y, 2 n x / y,\left(x^{2}+n^{2}\right) / y\right) .
\end{gathered}
$$

Subsidiary question.
Check the following dictionary due to Claude Levesque :

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline $$
n=\frac{1}{2} a b \in \mathbb{Z}_{>0}
$$ \& a \& \& $$
=\frac{C+F}{B}
$$ \& $$
=\frac{Y}{X}
$$ \& $$
=\frac{\alpha^{2}-\beta^{2}}{\delta}
$$ \& $$
=\frac{n V}{U}
$$

\hline $$
a^{2}+b^{2}=c^{2}
$$ \& b \& $$
=e-f
$$ \& $$
=\frac{C-F}{B}
$$ \& $$
=\frac{2 n X}{Y}
$$ \& $$
=\frac{2 \alpha \beta}{\delta}
$$ \& $$
=\frac{2 U}{V}
$$

\hline $$
\begin{aligned}
& a, b, c \in \mathbb{Q}_{>0} \\
& b<a
\end{aligned}
$$ \& c \& \& $$
=\frac{2 A}{B}
$$ \& $$
=\frac{X^{2}+n^{2}}{Y}
$$ \& $$
=\frac{\alpha^{2}+\beta^{2}}{\delta}
$$ \& $$
=\frac{U^{2}+1}{V}
$$

\hline $n=e^{2}-g^{2}$ \& e \& $$
=\frac{a+b}{2}
$$ \& $$
=\frac{C}{B}
$$ \& $$
=\frac{X^{2}+2 n X-n^{2}}{2 Y}
$$ \& $$
=\frac{a^{2}+2 \alpha \beta-\beta^{2}}{2 \delta}
$$ \& $$
=\frac{n V^{2}+2 U^{2}}{2 U V}
$$

\hline $$
n=g^{2}-f^{2}
$$ \& $$
f
$$ \& $$
=\frac{a-b}{2}
$$ \& $$
=\frac{F}{B}
$$ \& $$
=\frac{X^{2}-2 n X-n^{2}}{2 Y}
$$ \& $$
=\frac{\alpha^{2}-2 \alpha \beta-\beta^{2}}{2 \delta}
$$ \& $$
=\frac{n V^{2}-2 U^{2}}{2 U V}
$$

\hline $$
e, f, g \in \mathbb{Q}>0
$$ \& \& $$
=\frac{-}{2}
$$ \& $$
=\frac{A}{B}
$$ \& $$
=\frac{X^{2}+n^{2}}{2 Y}
$$ \& $$
=\frac{\alpha^{2}+\beta^{2}}{2 \delta}
$$ \& $$
=\frac{U^{2}+1}{2 V}
$$

\hline $$
A^{2}+n B^{2}=C^{2}
$$ \& $$
\frac{A}{B}
$$ \& $$
=\frac{c}{2}
$$ \& \& $$
=\frac{X^{2}+n^{2}}{2 Y}
$$ \& $$
=\frac{\alpha^{2}+\beta^{2}}{2 \delta}
$$ \& $$
=\frac{U^{2}+1}{2 V}
$$

\hline $$
A^{2}-n B^{2}=F^{2}
$$ \& $$
\frac{C}{B}
$$ \& $$
=\frac{a+b}{2}
$$ \& $$
=e
$$ \& $$
=\frac{X^{2}+2 n X-n^{2}}{2 Y}
$$ \& $$
=\frac{\alpha^{2}+2 \alpha \beta-\beta^{2}}{2 \delta}
$$ \& $$
=\frac{n V^{2}+2 U^{2}}{2 U V}
$$

\hline $$
A, B, C, F \in \mathbb{Z}_{>0}
$$ \& $$
\frac{F}{B}
$$ \& $$
=\frac{a-b}{2}
$$ \& \& $$
=\frac{X^{2}-2 n X-n^{2}}{2 Y}
$$ \& $$
=\frac{\alpha^{2}-2 \alpha \beta-\beta^{2}}{2 \delta}
$$ \& $$
=\frac{n V^{2}-2 U^{2}}{2 U V}
$$

\hline $$
Y^{2}=X^{3}-n^{2} X
$$ \& \& $$
=\frac{c^{2}}{4}
$$ \& \& $$
=\frac{A^{2}}{B^{2}}
$$ \& $$
=\frac{n \alpha}{\beta}
$$ \&

\hline \& \& $$
=\frac{c\left(a^{2}-b^{2}\right)}{8}
$$ \& $$
=e f g
$$ \& $$
=\frac{A C F}{B^{3}}
$$ \& $$
=\frac{n^{2} \delta}{\beta^{2}}
$$ \& $=n^{2} V$

\hline $$
n \delta^{2}=\alpha^{3} \beta-\alpha \beta^{3}
$$ \& $$
\frac{\alpha}{\beta}
$$ \& $$
=\frac{c^{2}}{4 n}
$$ \& $$
=\frac{g^{2}}{n}
$$ \& $$
=\frac{A^{2}}{n B^{2}}
$$ \& $$
=\frac{X}{n}
$$ \&

\hline $$
\alpha, \beta, \delta \in \mathbb{Q}_{>0}
$$ \& $\frac{\delta}{\beta^{2}}$ \& $$
=\frac{c\left(a^{2}-b^{2}\right)}{8 n^{2}}
$$ \& $$
=\frac{e f g}{n^{2}}
$$ \& $$
=\frac{A C F}{n^{2} B^{3}}
$$ \& $$
=\frac{Y}{n^{2}}
$$ \&

\hline $$
\begin{aligned}
& n V^{2}=U^{3}-U \\
& U, V \in \mathbb{Q}_{>0}
\end{aligned}
$$ \& U

V \& \[
$$
\begin{aligned}
& =\frac{c^{2}}{4 n} \\
& =\frac{c\left(a^{2}-b^{2}\right)}{8 n^{2}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& =\frac{g^{2}}{n} \\
& =\frac{e f g}{n^{2}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& =\frac{A^{2}}{n B^{2}} \\
& =\frac{A C F}{n^{2} B^{3}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& =\frac{X}{n} \\
& =\frac{Y}{n^{2}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& =\frac{\alpha}{\beta} \\
& =\frac{\delta}{\beta^{2}}
\end{aligned}
$$
\]

\hline
\end{tabular}

