Michel Waldschmidt

update : 23/08/2022

Exercises on elliptic curves.

August 15 - 26 , 2022.

African Institute for Mathematical Sciences (AIMS), M'Bour, Senegal

https://aims-senegal.org/

CIMPA Research School

https://www.cimpa.info/fr/node/6755

Cryptography, theoretical and computational aspects of number theory. https://indico.math.cnrs.fr/event/5731/

1. Eisenstein series

Recall, for a lattice Λ in \mathbb{C} and $k \geq 3$,

$$G_k(\Lambda) = \sum_{\lambda \in \Lambda \neq \{0\}} \frac{1}{\lambda^k} \cdot$$

Check

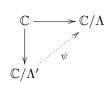
- for k odd, $G_k(\Lambda) = 0$.
- for $\lambda \in \mathbb{C} \setminus \{0\}$, and $\Lambda = \mathbb{Z}\lambda + \mathbb{Z}i\lambda$, $G_6(\Lambda) = 0$.
- for $\lambda \in \mathbb{C} \setminus \{0\}$, and $\Lambda = \mathbb{Z}\lambda + \mathbb{Z}\varrho\lambda$ with $\varrho = e^{2\pi i/3}$, $G_4(\Lambda) = 0$.

2. Isogenies

Let a_1 and a_2 be positive integers, Λ a lattice in \mathbb{C} , λ_1, λ_2 a basis of Λ and Λ' the sublattice $a_1\lambda_1\mathbb{Z} + a_2\lambda_2\mathbb{Z}$ of Λ :

$$\Lambda' = a_1 \lambda_1 \mathbb{Z} + a_2 \lambda_2 \mathbb{Z} \subset \Lambda = \lambda_1 \mathbb{Z} + \lambda_2 \mathbb{Z}.$$

The two canonical surjections $\mathbb{C} \to \mathbb{C}/\Lambda'$ and $\mathbb{C} \to \mathbb{C}/\Lambda$ give rise to a homomorphism $\psi : \mathbb{C}/\Lambda' \to \mathbb{C}/\Lambda$ which is an isogeny :



Compute the degree n of the isogeny ψ , write the dual isogeny $\hat{\psi} : \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$ and check that

$$\psi \circ \hat{\psi} : \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda \quad \text{and} \quad \hat{\psi} \circ \psi : \mathbb{C}/\Lambda' \to \mathbb{C}/\Lambda'$$

are the multiplications by n.

3. Modular invariant

Write $g_i(\tau)$ for $g_i(\mathbb{Z} + \mathbb{Z}\tau)$ and $i \in \{2, 3\}$. For $\operatorname{Im}(\tau) \to \infty$ check

$$g_2(\tau) \to 120 \sum_{m \ge 1} \frac{1}{m^4} = \frac{4\pi^3}{3} \text{ and } g_3(\tau) \to 280 \sum_{m \ge 1} \frac{1}{m^6} = \frac{8\pi^6}{27}$$

Deduce $\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2 \to 0$ and $j(\tau) \to \infty$.

4. Complex multiplication

Let $\Lambda = \mathbb{Z} + \mathbb{Z}\tau$ be a lattice with $\operatorname{Im}(\tau) \in \mathfrak{H}$ and let $\alpha \in \mathbb{C}^{\times} \setminus \mathbb{Z}$ satisfy $\alpha \Lambda \subset \Lambda$.

(a) Check that $(1, \tau) \in \mathbb{C}^2$ is an eigenvector of a matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Z})$$

with eigenvalue α .

(b) Deduce that τ and α are quadratic numbers with $\mathbb{Q}(\alpha) = \mathbb{Q}(\tau)$ and that α is an algebraic integer (the irreducible polynomial of α over \mathbb{Q} is monic).

(c) Let $AX^2 + BX + C$ be the minimal polynomial of τ over \mathbb{Z} with A > 0, gcd(A, B, C) = 1. Check that

$$\alpha \in \mathbb{Z} + \mathbb{Z}A\tau.$$

(d) Let $\overline{\alpha}$ be the complex conjugate of α . Check that α and $\overline{\alpha}$ define two dual isogenies of degree $\alpha \overline{\alpha}$ (the norm of α) of the torus \mathbb{C}/Λ .

5. Congruent numbers

Let n be a positive integer. Check that the following conditions are equivalent.

(i) The number n is congruent : there is a rectangle triangle with rational side lengths of area n :

$$n = \frac{ab}{2}, \quad a^2 + b^2 = c^2.$$

(ii) There is an arithmetic progression of rational squares with 3 terms and common difference \boldsymbol{n} :

$$e^2 - g^2 = n, \quad g^2 - f^2 = n$$

(iii) The elliptic curve $y^2 = x^3 - n^2 x$ has a rational point with $y \neq 0$. Hint. Set

$$\begin{split} (e,f,g) &= ((a+b)/2,(a-b)/2,c/2), \quad (a,b,c) = (e+f,e-f,2g), \\ (x,y) &= (nb/(c-a),2n^2/(c-a)), \quad (a,b,c) = ((x^2-n^2)/y,2nx/y,(x^2+n^2)/y) \end{split}$$

Subsidiary question. Check the following dictionary due to Claude Levesque :

$n = \frac{1}{2}ab \in \mathbb{Z}_{>0}$ $a^2 + b^2 = c^2$	a b	= e + f = e - f	$= \frac{C+F}{B}$ $= \frac{C-F}{B}$		$= \frac{\alpha^2 - \beta^2}{\delta}$ $= \frac{2\alpha\beta}{\delta}$	$= \frac{nV}{U}$ $= \frac{2U}{V}$
$a, b, c \in \mathbb{Q}_{>0}$ b < a	с	= 2g		$= \frac{Y}{\frac{X^2 + n^2}{Y}}$	$=\frac{\frac{\delta}{\alpha^2+\beta^2}}{\delta}$	$= \frac{V^2}{V}$
$n = e^2 - g^2$	e	$=\frac{a+b}{2}$	$=\frac{C}{B}$	$=\frac{X^2+2nX-n^2}{2Y}$	$=\frac{a^2+2\alpha\beta-\beta^2}{2\delta}$	$=\frac{nV^2+2U^2}{2UV}$
$n = g^2 - f^2$	f	$=\frac{a-b}{2}$	$=\frac{F}{B}$	$=\frac{X^2 - 2nX - n^2}{2Y}$	$=\frac{\alpha^2-2\alpha\beta-\beta^2}{2\delta}$	$=\frac{nV^2 - 2U^2}{2UV}$
$e, f, g \in \mathbb{Q}_{>0}$	g	$=\frac{c}{2}$	$=\frac{A}{B}$	$=\frac{X^2+n^2}{2Y}$	$=\frac{\alpha^2+\beta^2}{2\delta}$	$=\frac{U^2+1}{2V}$
$A^2 + nB^2 = C^2$	$\frac{A}{B}$	$=\frac{c}{2}$	= g	$=\frac{X^2+n^2}{2Y}$	$=\frac{\alpha^2+\beta^2}{2\delta}$	$=\frac{U^2+1}{2V}$
$A^2 - nB^2 = F^2$	$\frac{C}{B}$	$=\frac{a+b}{2}$	= e	$=\frac{X^2+2nX-n^2}{2Y}$	$=\frac{\alpha^2+2\alpha\beta-\beta^2}{2\delta}$	$=\frac{nV^2+2U^2}{2UV}$
$A, B, C, F \in \mathbb{Z}_{\geq 0}$	$\frac{F}{B}$	$=\frac{a-b}{2}$	= <i>f</i>	$=\frac{X^2-2nX-n^2}{2Y}$	$=\frac{\alpha^2-2\alpha\beta-\beta^2}{2\delta}$	$=\frac{nV^2-2U^2}{2UV}$
$Y^2 = X^3 - n^2 X$		$=\frac{c^2}{4}$	$= g^2$	$=rac{A^2}{B^2}$	$=\frac{n\alpha}{\beta}$	= nU
$X, Y \in \mathbb{Q}^{ imes}$	Y	$=\frac{c(a^2-b^2)}{8}$	= efg	$=rac{ACF}{B^3}$	$=rac{n^2\delta}{eta^2}$	$= n^2 V$
$n\delta^2 = \alpha^3\beta - \alpha\beta^3$	$\frac{\alpha}{\beta}$	$=\frac{c^2}{4n}$	$=\frac{g^2}{n}$	$= \frac{A^2}{nB^2}$	$=\frac{X}{n}$	= U
$\alpha, \beta, \delta \in \mathbb{Q}_{\geq 0}$	$\frac{\delta}{\beta^2}$	$= \frac{c(a^2 - b^2)}{8n^2}$	$=rac{efg}{n^2}$	$=\frac{ACF}{n^2B^3}$	$=\frac{Y}{n^2}$	= V
$nV^2 = U^3 - U$ $U, V \in \mathbb{Q}_{>0}$	U V	$= \frac{c^2}{4n} = \frac{c(a^2 - b^2)}{8n^2}$	$= \frac{g^2}{n}$ $= \frac{efg}{n^2}$	$= \frac{A^2}{nB^2}$ $= \frac{ACF}{n^2B^3}$	$= \frac{X}{n}$ $= \frac{Y}{n^2}$	$= \frac{\alpha}{\beta}$ $= \frac{\delta}{\beta^2}$