SEAMS School 2013 ITB
Number theory

Exercise 1
Let $a \geq 2$ and $n \geq 2$ be integers.
a) Assume that the number $N = a^n - 1$ is prime. Show that N is a Mersenne prime, that is $a = 2$ and n is prime.
b) Assume that the number $a^n + 1$ is prime. Show that n is a power of 2, and that a is even. Can you deduce $a = 2$ from the hypotheses?

Exercise 2
Using $641 = 2^4 + 5^4 = 2^7 \cdot 5 + 1$, show that 641 divides the Fermat number $F_5 = 2^{32} + 1$.

Exercise 3 (compare with exercise III.4 of Weil’s book)
Let n be an integer > 1. Check that n can be written as the sum of (two or more) consecutive integers if and only if n is not a power of 2.

Exercise 4 (exercise IV.3 of Weil’s book)
Let a, m, and n be positive integers with $m \neq n$. Check that the greatest common divisor (gcd) of $a^{2m} + 1$ and $a^{2n} + 1$ is 1 if a is even and 2 if a is odd. Deduce the existence of infinitely many primes.

Exercise 5 (exercise IV.5 of Weil’s book)
Check that the product of the divisors of an integer a is $a^{D/2}$ where D is the number of divisors of a.

Exercise 6 (exercise V.7 of Weil’s book)
Given $n > 0$, any $n + 1$ of the first $2n$ integers 1, ..., $2n$ contain a pair x, y such that y/x is a power of 2.

Exercise 7 (exercise V.3 of Weil’s book)
If n is a positive integer, then

$$2^{2n+1} \equiv 9n^2 - 3n + 2 \pmod{54}.$$
Exercise 8 (exercise V.4 of Weil’s book)
If x, y, z are integers such that $x^2 + y^2 = z^2$, then $xyz \equiv 0 \pmod{60}$.

Exercise 9 (exercise VI.2 of Weil’s book)
Solve the pair of congruences

$$5x - 7y \equiv 9 \pmod{12}, \quad 2x + 3y \equiv 10 \pmod{12};$$

show that the solution is unique modulo 12.

Exercise 10 (exercise VI.3 of Weil’s book)
Solve $x^2 + ax + b \equiv 0 \pmod{2}$

Exercise 11 (exercise VI.4 of Weil’s book)
Solve $x^2 - 3x + 3 \equiv 0 \pmod{7}$.

Exercise 12 (exercise VI.5 of Weil’s book)
The arithmetic mean of the integers in the range $[1, m - 1]$ prime to m is $m/2$.

Exercise 13 (exercise VI.6 of Weil’s book)
When m is an odd positive integer,

$$1^m + 2^m + \cdots + (m - 1)^m \equiv 0 \pmod{m}.$$

Exercise 14 (exercise VIII.3 of Weil’s book)
If p is an odd prime divisor of $a^{2n+1} + 1$ with $n \geq 1$, show that $p \equiv 1 \pmod{2^{n+1}}$.

Exercise 15 (exercise VIII.4 of Weil’s book)
If a and b are positive integers and $a = 2^a5^b m$ with m prime to 10, then the decimal expansion for b/a has a period ℓ where the number of decimal digits of ℓ divides $\varphi(m)$. Further, if there is no period with less than $m - 1$ digits, then m is prime.

Exercise 16 (exercise X.3 of Weil’s book)
For p prime and n positive integer,

$$1^n + 2^n + \cdots + (p - 1)^n \equiv \begin{cases} 0 \pmod{p} & \text{if } p - 1 \text{ does not divide } n, \\ -1 \pmod{p} & \text{if } p - 1 \text{ divides } n. \end{cases}$$

http://www.math.jussieu.fr/~miw/
Solution of Exercise 1. From
\[a^n - 1 = (a - 1)(a^{n-1} + a^{n-2} + \cdots + a^2 + a + 1), \]
it follows that \(a - 1 \) divides \(a^n - 1 \). Since \(a \geq 2 \) and \(n \geq 2 \), the divisor \(a - 1 \) of \(a^n - 1 \) is \(< a^n - 1 \). If \(a^n - 1 \) is prime then \(a - 1 = 1 \), hence \(a = 2 \).

If \(n = bc \), then \(a^n - 1 \) is divisible by \(a^c - 1 \), as we see from the relation
\[x^b - 1 = (x - 1)(x^{b-1} + x^{b-2} + \cdots + x^2 + x + 1) \]
with \(x = a^c \). Hence if \(2^n - 1 \) is prime, then \(n \) is prime.

If \(n \) has an odd divisor \(d > 1 \), then the identity
\[b^d + 1 = (b + 1)(b^{d-1} - b^{d-2} + \cdots + b^2 - b + 1) \]
with \(b = a^{n/d} \) shows that \(b + 1 \) divides \(a^n + 1 \). Hence if \(a^n + 1 \) is prime, then \(n \) has no odd divisor \(> 1 \), which means that \(n \) is a power of 2. Also \(a^n + 1 \) is odd, hence \(a \) is even.

It may happen that \(a^n + 1 \) is prime with \(a > 2 \) – for instance when \(a \) is a power of 2 (Fermat primes), but also for other even values of \(a \) like \(a = 6 \) and \(n = 2 \). It is a famous open problem to prove that there are infinitely many integers \(a \) such that \(a^2 + 1 \) is prime.

\[\square \]

Solution of Exercise 2. Write
\[641 = 2^4 + 5^4 = 2^7 \cdot 5 + 1, \]
so that on the one hand
\[5 \cdot 2^7 \equiv -1 \pmod{641}, \]
hence
\[5^4 \cdot 2^{28} \equiv (-1)^4 \equiv 1 \pmod{641}, \]
and on the other hand

\[5^4 \cdot 2^{28} \equiv -2^{32} \pmod{641}. \]

Hence

\[2^{32} \equiv -1 \pmod{641}. \]

Remark. One can repeat the same proof without using congruences. From the identity

\[x^4 - 1 = (x - 1)(x + 1)(x^2 + 1) \]

we deduce that for any integer \(x \), the number \(x^4 - 1 \) is divisible by \(x + 1 \). Take \(x = 5 \cdot 2^7 \); it follows that \(x + 1 = 641 \) divides \(5^4 2^{28} - 1 \). However 641 also divides \(2^{28}(2^4 + 5^4) = 2^{32} + 5^4 2^{28} \), hence 641 divides the difference

\[(2^{32} + 5^4 2^{28}) - (5^4 2^{28} - 1) = 2^{32} + 1 = F_5. \]

\(\square \)

Solution of Exercise 3. Assume first that \(n \geq 3 \) is not a power of 2. Let \(2a + 1 \) be an odd divisor of \(n \) with \(a \geq 1 \). Write \(n = (2a + 1)b \).

If \(b > a \) then \(n \) is the sum

\[(b - a) + (b - a + 1) + \cdots + (b - 1) + b + (b + 1) + \cdots + (b + a) \]

of the \(2a + 1 \) consecutive integers starting with \(b - a \).

If \(b \leq a \) then \(n \) is the sum

\[(a - b + 1) + (a - b + 2) + \cdots + \cdots + (a + b) \]

of the \(2b \) consecutive integers starting with \(a - b + 1 \).

Assume now \(n \) is a sum of \(b \) consecutive integers with \(b > 1 \):

\[n = a + (a + 1) + \cdots + (a + b - 1) = ba + \frac{b(b + 1)}{2}. \]

Then

\[2n = b(2a + b + 1) \]

is a product of two numbers with different parity, hence \(2n \) has an odd divisor and therefore \(n \) is not a power of 2. \(\square \)
Solution of Exercise 4. Without loss of generality we assume \(n > m \). Define \(x = a^{2^m} \), and notice that
\[
a^{2^n} - 1 = x^{2^{n-m}} - 1
\]
which is divisible by \(x + 1 \). Hence \(a^{2^m} + 1 \) divides \(a^{2^n} - 1 \). Therefore if a positive integer \(d \) divides both \(a^{2^m} + 1 \) and \(a^{2^n} + 1 \), then it divides both \(a^{2^n} - 1 \) and \(a^{2^n} + 1 \), and therefore it divides the difference which is 2. Hence \(d = 1 \) or 2. Further, \(a^{2^n} + 1 \) is even if and only if \(a \) is odd.

For \(n \geq 1 \), let \(P_n \) be the set of prime divisors of \(2^{2^n} + 1 \). The set \(P_n \) is not empty, and the sets \(P_n \) for \(n \geq 1 \) are pairwise disjoint. Hence their union is infinite.

Solution of Exercise 5. A one line proof:
\[
\left(\prod_{d|a} d \right)^2 = \left(\prod_{d|a} d \right) \left(\prod_{d|a} \frac{a}{d} \right) = \left(\prod_{d|a} a \right) = a^D.
\]

Remark. A side result is that if \(a \) is not a square, then \(D \) is even.

Solution of Exercise 6. Let \(x_1, \ldots, x_{n+1} \) be \(n + 1 \) distinct positive integers \(\leq 2n \). For \(i = 1, \ldots, n+1 \), denote by \(y_i \) the largest odd divisor of \(x_i \). Notice that \(1 \leq y_i \leq n \) for \(1 \leq i \leq n + 1 \). By Dirichlet box principle, there exist \(i \neq j \) such that \(y_i = y_j \). Then \(x_i \) and \(x_j \) have the same largest odd divisor, which means that \(x_i/x_j \) is a power of 2.

Solution of Exercise 7. For \(n = 0 \) both sides are equal to 2, for \(n = 1 \) to 8. We prove the result by induction. Assume
\[
2^{2^n} - 1 = 9(n - 1)^2 - 3(n - 1) + 2 \quad \text{mod 54}.
\]
The right hand side is \(9n^2 - 21n + 14 \), and
\[
4(9n^2 - 21n + 14) = 36n^2 - 84n + 56
\]
which is congruent to \(9n^2 - 3n + 2 \), since \(27n(n + 3) \) is a multiple of 54.
\textit{Solution of Exercise 8.} Since $60 = 2^2 \cdot 3 \cdot 5$, we just need to check that 4, 3 and 5 divide xyz.

If two at least of the numbers x, y, z are even, then 4 divides xyz. If only one of them, say t, is even, then t^2 is either the sum or the difference of two odd squares. Any square is congruent to 0, 1 or 4 modulo 8. Hence $t^2 \equiv 0 \pmod{8}$, which implies $t \equiv 0 \pmod{4}$. Therefore $xyz \equiv 0 \pmod{4}$.

The squares modulo 3 are 0 and 1, hence z^2 is not congruent to 2 modulo 3, and therefore x^2 and y^2 are not both congruent to 1 modulo 3: one at least of them is 0 modulo 3, hence 3 divides xy.

Since the squares modulo 3 are 0 and 1, the same argument shows that 5 divides xy.

\hfill \Box

\textit{Solution of Exercise 9.} Multiply the first equation by 3, the second by 7 and add. From $29 \equiv 5 \pmod{12}$ and $97 \equiv 1 \pmod{12}$ we get $5x \equiv 1 \pmod{12}$. Since

$$5 \times 5 - 2 \times 12 = 1,$$

the inverse of 5 modulo 12 is 5. Hence $x \equiv 5 \pmod{12}$. Substituting yields $y \equiv 4 \pmod{12}$.

The unicity can also be proved using the fact that the determinant of the system

$$\begin{vmatrix}
5 & -7 \\
2 & 3
\end{vmatrix}$$

is 29 which is prime to 12.

\hfill \Box

\textit{Solution of Exercise 10.} (Compare with exercise XI.2: If p is an odd prime and a is prime to p, show that the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ has two solutions, one or none according as $b^2 - 4ac$ is a quadratic residue, 0 or a non-residue modulo p).

If a is even, the discriminant in \mathbb{F}_2 is 0, and there is a unique solution $x \equiv b \pmod{2}$.

If a is odd, the discriminant is not 0 (hence it is 1 in \mathbb{F}_2). If b is even there are two solutions (any $x \in \mathbb{F}_2$ is a solution, $x(x+1)$ is always even), if b is odd there is no solution: $x^2 + x + 1$ is irreducible over \mathbb{F}_2.

\hfill \Box
Solution of Exercise 11. In the ring $F_7[X]$ of polynomials over the finite field $\mathbb{Z}/7\mathbb{Z} = F_7$, we have

$$X^2 - 3X + 3 = (X + 2)^2 - 1 = (X + 1)(X + 3).$$

The roots of this polynomial are

$$x = 6 \pmod 7 \quad \text{and} \quad x = 4 \pmod 7. \quad \square$$

Solution of Exercise 12. We define a partition of the set of integers k in the range $[1, m-1]$ prime to m into two or three subsets, where one subset consists of those integers k which are $< m/2$, another subset consists of those integers k which are $> m/2$, with an extra third set with a single element $\{m/2\}$ if m is congruent to 2 modulo 4. The result follows from the existence of a bijective map $k \mapsto m - k$ from the first subset to the second.

\[\square\]

Solution of Exercise 13. Use the same argument as in Exercise 12 with

$$k^m + (m-k)^m \equiv 0 \pmod m \quad \text{for} \quad 1 \leq k \leq m$$

since m is odd.

\[\square\]

Solution of Exercise 14. The property that p divides $a^{2^n} + 1$ is equivalent to $a^{2^n} \equiv -1 \pmod p$, which means also that a has order 2^{n+1} modulo p. Hence in this case 2^{n+1} divides $p - 1$.

For $n = 5$, this shows that any prime divisor of $2^{2^5} + 1$ is congruent to 1 modulo $2^6 = 64$. It turns out that 641 divides the Fermat number F_5 (see exercise 2).

\[\square\]

Solution of Exercise 15. For c a positive integer, the decimal expansion of the number

$$\frac{1}{10^c - 1} = 10^{-c} + 10^{-2c} + \cdots$$

is periodic, with a period having c decimal digits, namely $c-1$ zeros followed by one 1. For $1 \leq r < 10^c - 1$, the number

$$\frac{r}{10^c - 1}$$

7
has a periodic decimal expansion, with a period (maybe not the least one) having \(c \) decimal digits, these digits are the decimal digits of \(r \). Adding a positive integer to a real number does not change the expansion after the decimal point. The decimal expansion of the product of a real number \(x \) by a power of 10 is obtained by shifting the decimal expansion of \(x \) (on the right or on the left depending of whether it is a positive or a negative power of 10).

We claim that a number of the form

\[
\frac{k}{10^{\ell}(10^c - 1)},
\]

where \(k, \ell \) and \(c \) are integers with \(k > 0 \) and \(c > 0 \), has a decimal expansion which is ultimately periodic with a period of length \(c \). Indeed, using the Euclidean division of \(k \) by \(10^c - 1 \), we write

\[
k = (10^c - 1)q + r \quad \text{with} \quad 0 \leq r < 10^c - 1,
\]

hence

\[
\frac{k}{10^{\ell}(10^c - 1)} = \frac{1}{10^\ell} \left(q + \frac{r}{10^c - 1} \right),
\]

and our claim follows from the previous remarks.

Now we consider the decimal expansion of \(b/a \) when \(a \) and \(b \) are positive integers and \(a = 2^\alpha 5^\beta m \) with \(m \) prime to 10. Denote by \(c \) the order of the class of 10 modulo \(m \). Then \(c \) divides \(\varphi(m) \), \(10^c \equiv 1 \pmod{m} \) and

\[
\frac{b}{a} 10^{\alpha + \beta}(10^c - 1) \in \mathbb{Z}.
\]

Therefore \(b/a \) has a decimal expansion with a period having \(c \) decimal digits. If \(c \) is the smallest period and if \(c = m - 1 \), then \(m - 1 \) divides \(\varphi(m) \), hence \(\varphi(m) = m - 1 \) and \(m \) is prime. For instance with \(a = m = 7, \alpha = \beta = 0, b = 1: \)

\[
1/7 = 0.142857 142857 142857 14 \ldots
\]

has minimal period of length 6.

\[\square\]

Solution of Exercise 16. If \(p - 1 \) divides \(n \), then \(a^n \equiv 1 \pmod{p} \) for \(a = 1, \ldots, p - 1 \), the sum has \(p - 1 \) terms all congruent to 1 modulo \(p \), hence the sum is congruent to \(-1 \) modulo \(p \).
Assume $p-1$ does not divide n. Let ζ be a generator of the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^\times$. Since ζ has order $p-1$, the condition that $p-1$ does not divide n means $\zeta^n \neq 1$. Let $d = \gcd(p-1, n)$ and $q = (p-1)/d$.

We claim that the order of ζ^n is q. Indeed, we can write $n = d\delta$. Since ζ has order $p-1$ it follows that ζ^d has order q, and since $\gcd(d, q) = 1$, $\zeta^n = (\zeta^d)^{\delta}$ has also order q.

Therefore the sequence $(1^n, 2^n, \ldots, (p-1)^n)$, which is a permutation of the sequence $(1, \zeta^n, \zeta^{2n}, \ldots, \zeta^{(p-2)n})$, is a repetition d times of the sequence $(1, \zeta^n, \zeta^{2n}, \ldots, \zeta^{(q-1)n})$. Also $(\zeta^n)^q = 1$. Hence

$$1^n + 2^n + \cdots + (p-1)^n = \sum_{j=0}^{p-2} \zeta^{jn} = d \sum_{j=0}^{q-1} \zeta^{jn} = \frac{(\zeta^n)^q - 1}{\zeta^n - 1} = 0.$$

\[\square\]

References

MR 80e:10004

http://www.math.jussieu.fr/~miw/

9