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Exercices: hints, solutions, comments

First course

1. Let f be an entire function. Assume f is algebraic : there exists P ∈ C[X,Y ], P 6= 0, such that P (z, f(z)) = 0.
Prove that f is a polynomial : f ∈ C[z].

1. Write
P (X,Y ) = a0(X)Y d + a1(X)Y d−1 + · · ·+ ad(X),

where a0(X), a1(X), . . . , ad(X) are polynomials with a0(X) 6= 0. The assumption P (z, f(z)) = 0
is

a0(z)f(z)d + a1(z)f(z)d−1 + · · ·+ ad(z) = 0.

Let N be the maximum of the degrees of a1, . . . , ad. There exists constants c1, c2, r0 such that,
for |z| ≥ r0, we have

|a0(z)| ≥ c1 and max
1≤i≤d

|ai(z)| ≤ c2|z|N .

For r ≥ r0 set Mr = max{|f |r, 1}. From

c1M
d
r ≤ dc2rNMd−1

r

one deduces Mr ≤ c3r
N . From Cauchy’s inequalities it follows that f is a polynomial of degree

≤ N .

Remark. A stronger result is that the meromorphic functions in C which are algebraic are the
rational fractions, namely the elements in C(z).
• Here is a proof, using an argument proposed by Ameya Kadhe on January 18, 2021.

Let f be meromorphic functions in C and P ∈ C[X,Y ] a nonzero polynomial such that
P (z, f(z)) = 0. Select P of minimal degree in Y for this property. Let β ∈ C. Since the polynomial
P has minimal degree, it is not divisible by Y −β in C[X,Y ], hence P (X,β) ∈ C[X] is not the zero
polynomial : it has only finitely many roots. Therefore there are only finitely many z ∈ C such
that f(z) = β. This implies that the function g(z) = f(1/z) does not have an essential singularity
at 0 [Picard Great Theorem states that in every neighborhood of an essential singularity, the
function takes on every complex value, except possibly one, infinitely many times]. One deduces
that g is a rational function (consider the Laurent expansion of g at the origin), hence f also is
a rational function.
• Here is a proof without an appeal to the Picard Great Theorem.

We already proved that if f is entire, then f is a polynomial. Write

P (X,Y ) = a0(X)Y d + a1(X)Y d−1 + · · ·+ ad(X),

where a0(X), a1(X), . . . , ad(X) are polynomials with a0(X) 6= 0. The assumption P (z, f(z)) = 0
is

a0(z)f(z)d + a1(z)f(z)d−1 + · · ·+ ad(z) = 0.

Let z0 be a pole of f . Write

a0(z)f(z) = −a1(z)− a2(z)f(z)−1 − · · · ad(z)f(z)−d+1.



As z → z0, the right hand side has a finite limit −a1(z0). Hence the function g(z) = a0(z)f(z)
has no pole at z0. As a consequence, g(z) is an entire function. Since

g(z)d + a1(z)g(z)d−1 + a0(z)a2(z)g(z)d−1 + · · ·+ a0(z)d−2ad−1(z)g(z) + a0(z)d−1ad(z) = 0,

the function g(z) is algebraic, hence a polynomial, and therefore f(z) = g(z)/a0(z) is a rational
function.

The main characters of this course are entire functions. However, since we just mentioned
meromorphic functions, here is another exercise involving meromorphic functions in C.

We wish to introduce the following definition : a meromorphic function f is of order ≤ % if
there exists two entire functions f1 and f2 of order ≤ % with f2 6= 0 such that f = f1

f2
.

Before being allowed to do so, a lemma should be proved. State this lemma.
A reference will be given for the proof of this lemma.

Answer. We already defined the notion of order for an entire function. We wish to extend this
definition to a larger class, namely the class of meromorphic functions. We need to check that
the extended definition coincides with the restricted one on the class of entire functions. So the
lemma which one needs to prove is the following, using only the definition of order for entire
functions :

Let f , f1, f2 be three entire functions with f2 6= 0 and f1 = ff2. Assume that f1 and f2 are of
order ≤ %. Then f is of order ≤ %.

For the proof, one may use the Minimum Modulus Theorem (for instance [Lang Analysis]
Chap. XIII Theorem 3.4 p. 368).

An analogy. One defines the height of a polynomial in C[z] as the maximum modulus of its
coefficients. One would like to extend the definition from C[z] to C(z) and say that a rational
fraction R ∈ C(z) has height ≤ H if R can be written as P/Q where P and Q are two polynomials
with height ≤ H. However this is allowed, because the new definition would not match the earlier
one on the set of polynomials. For instance the polynomial X2 + 2X + 1 as height 2, still it is a
quotient of two polynomials of height 1, namely X3 +X2 −X − 1 and X − 1.

2. Given pairwise distinct complex numbers α1, . . . , αn, positive integers t1, . . . , tn and complex numbers βj,τ
for 1 ≤ j ≤ n, 0 ≤ τ < tj , show that there exists a unique polynomial f of degree < t1 + · · ·+ tn satisfying(

d

dz

)τ
f(αj) = βj,τ

for 1 ≤ j ≤ n and 0 ≤ τ < tj .

2. This statement means that the linear map

C[z]<t1+···+tn −→ Ct1+···+tn

which maps a polynomial f of degree ≤ t1 + · · ·+ tn − 1 to the tuple of numbers((
d

dz

)τ
f(αj)

)
1≤j≤n
0≤τ<tj

is an isomorphism of vector spaces. The fact that it is injective is clear : an element in the kernel
has more zeroes (counting multiplicities) than its degree, hence it is 0. Since the two vector spaces
have the same dimension, it is surjective. Hence the result.
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Let us prove the surjectivity in a more explicit way. We will prove that for 1 ≤ i ≤ n and
0 ≤ ν < ti, there exists a polynomial Ai,ν(z) of degree < t1 + · · ·+ tn which satisfies(

d

dz

)τ
Ai,ν(αj) = δτ,νδi,j

for 1 ≤ i, j ≤ n and 0 ≤ τ < tj , 0 ≤ ν < ti. Then the polynomial

f(z) =

n∑
i=1

ti−1∑
ν=0

βj,τAi,ν(z)

will be the unique solution to the question.
Fix 1 ≤ i ≤ n and 0 ≤ ν < ti and set

Pi(z) =
∏

1≤j≤n
j 6=i

(
z − αj
αi − αj

)tj−1
.

Given any polynomial Bi,ν(z) such that Bi,ν(αi) = 1, the polynomial

Ai,ν(z) =
1

ν!
(z − αi)νBi,ν(z)Pi(z)

satisfies (
d

dz

)τ
Ai,ν(αj) = 0

for 0 ≤ τ < tj with 1 ≤ j ≤ n, j 6= i, and also for 0 ≤ τ < ν and j = i. Further,(
d

dz

)ν
Ai,ν(αi) = Bi,ν(αi) = 1

We only need to select Bi,ν(z) so that the conditions are satisfied for ν < τ < ti and j = i. If
ν = ti−1, then the solution is given by Bi,ν = 1. Assume ν ≤ ti−2. The solution is given by the
polynomial Bi,ν(z) of degree ti − ν − 1 having Taylor expansion at αi satisfying the conditions
Bi,ν(αi) = 1 and (

d

dz

)k
Ai(αi) = 0

for 1 ≤ k ≤ ti − ν − 1. The system to be solved is triangular, there is a unique solution.
Reference: An explicit formula can be found in
A.J. van der Poorten, Hermite interpolation and p–adic exponential polynomials, J. Austral.
Math. Soc. 22 (Sries A) (1976), 12–26.

3. Let f be a nonzero entire function of order ≤ %. For r ≥ 0, denote by n(f, r) the number of zeroes (counting
multiplicities) of f in the disc |z| ≤ r. Show that there exists a constant c > 0, depending only on f , such that,
for r ≥ 1,

n(f, r) ≤ cr%.

3. From Schwarz Lemma of p. 22 we deduce for R = 3er

|f |r ≤ e−n(f,r)|f |R.
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The left hand side is bounded from below by a positive constant c1 (since f is not the zero
function) while for R ≥ 3e we have

|f |R ≤ ec2R
%

with c2 > 0. The result follows.

4. Solve the exercise on Blaschke products p. 24.

4. For |z| < R2/|a|, we have∣∣∣∣ z − a
R2 − az

∣∣∣∣2 =
(z − a)(z − a)

(R2 − az)(R2 − az)
=

|z|2 − (az + az) + |a|2

R4 −R2(az + az) + |a|2|z|2
·

Hence ∣∣∣∣ z − a
R2 − az

∣∣∣∣ =
1

R
for |z| = R.

An alternative argument which yields this result is to write R2 = zz for |z| = R, to deduce

z − a
R2 − az

=
1

z
· z − a
z − a

and to notice that (z − a)/(z − a) has modulus 1.
Since

ϕa(−ar/|a|) = − a

|a|
· r + |a|
R2 + r|a|

we have
|ϕa(−ar/|a|)| = r + |a|

R2 + r|a|
·

From
(R2 − r2)(r − |a|) ≥ 0

we deduce
r + |a|
R2 + r|a|

≤ 2r

R2 + r2
·

Let |z| = r with |a| ≤ r < R and z 6= −ar/|a|. From the inequality

(R2 − r2)(R2 − |a|2)(2r|a|+ az + az) > 0

we deduce

[r2 − (az + az) + |a|2](R2 + r|a|)2 < (r + |a|)2[R4 − (az + az)R2 + |a|2r2].

Hence ∣∣∣∣ z − a
R2 − az

∣∣∣∣ < r + |a|
R2 + r|a|

·

Remark. Following Lang’s book [Lang, Complex analysis][Exercise 1.3, Chap. I § 3 p.12], one can
first reduce the problem to the special case R = 1, z = |z| nonnegative real.
(1) Replacing z by z/R and a by a/R, we may assume without loss of generality R = 1.
(2) Write z = reiθ and define a′ = ae−iθ. We have |z| = r, |a| = |a′|, z − a = eiθ(r − a′) and
1− az = 1− a′r, hence ∣∣∣∣ z − a1− az

∣∣∣∣ =

∣∣∣∣ r − a′1− a′r

∣∣∣∣ .
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This means that we may assume z is real and positive, z = r, with 0 ≤ r ≤ 1.
(3) The rest of the proof is the same. Lang’s exercise establishes only a weaker statement∣∣∣∣ z − a1− az

∣∣∣∣ < 1

for which the proof is much easier. The function

f(r) = (1− ra)(1− ra)− (r − a)(r − a)

from R to R is quadratic, the graph is a parabola with maximum at r = 0 with f ′(0) = 0,
f(0) > 0, f(1) = 0, hence f is > 0 on the interval [0, 1).

We deduce the following refinement (p. 23) to Schwarz Lemma of p. 22 :
Let f be an analytic function in a disc |z| ≤ R of C, with at least N zeroes in a disc |z| ≤ r with
r < R. Then

|f |r ≤
(

2rR

R2 + r2

)N
|f |R.

Proof The function

g(z) = f(z)

N∏
j=1

R2 − ajz
z − aj

is analytic in the disc |z| ≤ R. Using the previous lemma on Blaschke products, from

f = g

N∏
j=1

ϕaj

we deduce
|g|R = |f |RRN

and

|f |r ≤ |g|r
N∏
j=1

|ϕaj |r ≤ |g|r
(

2r

R2 + r2

)N
.

The result then follows from the maximum modulus principle

|g|r ≤ |g|R.

5. From the definition of the Euler Gamma function by means of the canonical product p. 32 :

1

Γ(z)
= zeγz

∏
n≥1

(
1 +

z

n

)
e−z/n

deduce that 1/Γ(z) is an entire function of order 1 and infinite exponential type.
Remark. Note that typos on p. 12 of the slides and on the text of the exercise needs to be corrected.

5. We first prove that 1/Γ(z) has an order ≤ 1. This is a special case of a general result on
canonical products [Lang, Complex analysis][XIII, §3]. In our special case, the main auxiliary
result is the following :
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Let ε > 0. There exists C > 0 such that, for all z ∈ C,

|(1− z)ez| ≤ C |z|
1+ε

.

This estimate is easy for |z| > 1 :

|(1− z)ez| ≤ 2|z|e|z| ≤ 2e2|z| ≤ e3|z| ≤ C |z|
1+ε

.

It is trivial for 1
2 ≤ |z| ≤ 1, since |1−z| is bounded from above and |z|1+ε is bounded from below.

Finally for |z| < 1
2 one expand (1− z)ez into a power series in z as follows : write

ez =
∑
k≥0

zk

k!
= 1 +

∑
k≥1

zk

k!
and zez =

∑
k≥0

zk+1

k!
=
∑
k≥1

kzk

k!
,

so that
(1− z) ez = ez − zez = 1−

∑
k≥2

k − 1

k!
zk = 1− 1

2
z2 − 2

3!
z3 − · · ·

Hence for |z| < 1
2 ,

|(1− z) ez| ≤ 1 + c|z|2 ≤ C |z|
1+ε

.

Using this auxiliary result, we deduce∣∣∣∣∣∣
∏
n≥1

(
1− z

n

)
ez/n

∣∣∣∣∣∣ ≤ C
∑
n≥1(|z|/n)

1+ε

≤ eC
′|z|1+ε .

This complete the proof that 1/Γ(z) has an order ≤ 1.

Using the canonical product, one checks the equality between the meromorphic functions

Γ(z + 1) = zΓ(z).

For 0 < a < 1, we have

1

Γ(−a− n)
= (1 + a)(2 + a) · · · (n+ a)

1

Γ(−a)
·

Using
(1 + a)(2 + a) · · · (n+ a) = n!

(
1 +

a

1

)(
1 +

a

2

)
· · ·
(

1 +
a

n

)
≥ n!

we deduce from Stirling’s formula that the order of 1/Γ is 1 and the exponential type is infinite.

6. Check that Abel’s polynomials

Pn(z) =
1

n!
z(z − n)n−1 (n ≥ 1)

satisfy, for n ≥ 1,
|Pn|r ≤

(
1 +

r

n

)n
en.

6. The explicit form of Stirling’s formula p. 19 implies

n! > nne−n
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for all n ≥ 1. For n ≥ 1, r ≥ 0 and |z| = r, we deduce

|Pn(z)| ≤ 1

n!
r(r + n)n−1 ≤ nn

n!

(
1 +

r

n

)n
≤ en

(
1 +

r

n

)n
.

7. Check the formula on divided differences p. 35.

7.

f(x) = f(x0) + (x− x0)f [x0, x] = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x].

Hence
f [x0, x1, x2] =

f [x0, x2]− f [x0, x1]

x2 − x1
·

The claim is
f [x0, x1, x2] =

f [x1, x2]− f [x0, x1]

x2 − x0
·

Indeed one checks

(x2 − x0)(f [x0, x2]− f [x0, x1]) = (x2 − x1)(f [x1, x2]− f [x0, x1])

since

(x2−x0)f [x0, x2] = f(x2)−f(x0), (x2−x1)f [x1, x2] = f(x2)−f(x1), (x1−x0)f [x0, x1] = f(x1)−f(x0)

and
f(x2)− f(x0) + f(x1)− f(x2) = f(x1)− f(x0).

In the general case, one checks

n∑
j=1

f(xj)∏
1≤k≤n
k 6=j

(xj − xk)
−
n−1∑
j=0

f(xj)∏
0≤k≤n−1

k 6=j

(xj − xk)
= (xn − x0)

n∑
j=0

f(xj)∏
0≤k≤n
k 6=j

(xj − xk)

(check the coefficient of f(xj) in both sides of the formula), hence

f [x0, x1, . . . , xn] =

n∑
j=0

f(xj)∏
0≤k≤n
k 6=j

(xj − xk)
·

and
f [x0, x1, . . . , xn] =

f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
·
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