
Michel Waldschmidt Interpolation, January 2021

Exercices: hints, solutions, comments

Second course

1. Prove the two lemmas on entire functions p. 16.

1.
Lemma. An entire function f is periodic of period ω 6= 0 if and only if there exists a function

g analytic in C× such that f(z) = g(e2iπz/ω).

Solution. The map z 7→ eiπz is analytic and surjective. The condition eiπz = eiπz
′
implies

f(z) = f(z′). Hence there exists a unique map g : C× → C such that g(e2iπz) = f(z).

C

e2iπz

��

f // C
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>>

Let t ∈ C× and let z ∈ C be such that t = e2iπz. Then g(t) = f(z) and g′(t) = 1
2πf

′(z).
This proves the first lemma.

Lemma. If g is an analytic function in C× and if the entire function g(e2iπz/ω) has a type
< 2(N + 1)π/|ω|, then tNg(t) is a polynomial of degree ≤ 2N .

Therefore, if g(e2iπz/ω) has a type < 2π/|ω|, then g is constant.

Solution. Assume that the function f(z) = g(e2iπz/ω) has a type τ < 2(N+1)π/|ω|. Let t ∈ C×.
Write t = |t|eiθ with |θ| ≤ π. Set

z =
ω

2iπ
(log |t|+ iθ),

so that t = e2iπz/ω. For any ε1 > 0, we have

|z| ≤
( ω

2π
+ ε1

)
| log |t||

for sufficiently large |t| and also for sufficiently small |t|. We deduce

log |g(t)| = log |f(z)| ≤ (τ + ε2)|z| ≤
(ωτ

2π
+ ε3

)
| log |t||.

Notice that
ωτ

2π
< N + 1.

Hence |g|r ≤ eαr for sufficiently large r and also for sufficiently small r > 0 with α < N + 1.
Write

g(t) =
∑
n∈Z

bnt
n.

From
bn =

1

2π

∫
|t|=r

g(t)
dt

tn+1



we deduce Cauchy’s inequalities

|bn|rn ≤
1

2π
|g|r.

For n > N , we use these inequalities with r → ∞ while for n < −N , we use these inequalities
with r → 0. We deduce bn = 0 for |n| ≥ N + 1. Hence

g(t) =
1

tN
A(t) +B(t)

where A and B are polynomials of degree ≤ N .

2. Check c′′n = cn−1 for n ≥ 1 p. 22.

2. The function

F (z, t) =
etz − e−tz

et − e−t
=
∑
n≥0

cn(z)t2n

satisfies (
∂

∂z

)2

F (z, t) = t2F (z, t).

Since (
∂

∂z

)2

F (z, t) =
∑
n≥0

c′′n(z)t2n = c′′0(z) + c′′1(z)t2 + c′′2(z)t4 + · · ·

and
t2F (z, t) =

∑
n≥0

cn(z)t2n = c0(z)t2 + c1(z)t4 + c2(z)t6 + · · ·

we deduce c′′0(z) = 0 and c′′n(z) = cn−1(z) for n ≥ 1.
As a matter of fact, c0(z) = Λ0(z) = z, cn(z) = Λn(z) for n ≥ 0.

3. Let S be a positive integer and let z ∈ C. Using Cauchy’s residue Theorem, compute the integral (see p. 26)

1

2πi

∫
|t|=(2S+1)π/2

t−2n−1 sh(tz)

sh(t)
dt.

3. The poles of the function

t 7→ sh(tz)

sh(t)
=

etz − e−tz

et − e−t

are the complex numbers t such that e2t = 1, namely t ∈ iπZ.
The poles inside |t| ≤ (2S + 1)π/2 are the iπs with −S ≤ s ≤ S.
The residue at t = 0 of t−2n−1 sh(tz)

sh(t) is the coefficient ot t−2n in the Taylor expansion of sh(tz)
sh(t) ,

hence it is Λn(z).
Let s be an integer in the range 1 ≤ s ≤ S. Write t = iπs+ ε. Then

et = (−1)s(1 + ε+ · · · ), e−t = (−1)s(1− ε+ · · · , ) et − e−t = (−1)s2ε+ · · · ,

and
etz = eiπsz, e−tz = e−iπsz,
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so that
etz − e−tz

et − e−t
= (−1)s

i sin(πs)

ε
+ · · ·

Therefore the residue t = iπs of t−2n−1 sh(tz)
sh(t) is

(−1)n+s(πs)−2n−1.

For −S ≤ s ≤ −1, the residue at iπs is the same.
This proves the formula p. 26 :

Λn(z) = (−1)n
2

π2n+1

S∑
s=1

(−1)s

s2n+1
sin
(
sπz

)
+

1

2πi

∫
|t|=(2S+1)π/2

t−2n−1
sh(tz)

sh(t)
dt

for S = 1, 2, . . . and z ∈ C.

4. Prove the proposition p. 31 :
Let f be an entire function. The two following conditions are equivalent.
(i) f (2k)(0) = f (2k)(1) = 0 for all k ≥ 0.
(ii) f is the sum of a series ∑

n≥1

an sin(nπz)

which converges normally on any compact.
Prove also the following result :
Let f be an entire function. The two following conditions are equivalent.
(i) f (2k+1)(0) = f (2k)(1) = 0 for all k ≥ 0.
(ii) f is the sum of a series ∑

n≥1

an cos

(
(2n+ 1)π

2
z

)
which converges normally on any compact.

4.
(a) For n ≥ 1, the function z 7→ sin(nπz) satisfies (i). Hence (ii) implies (i).

Let us check that (i) implies (ii). The conditions f (2k)(0) = 0 for all k ≥ 0 mean f(−z) =
−f(z). The conditions f (2k)(1) = 0 for all k ≥ 0 mean f(1 + z) = −f(1 − z). Hence f (2k)(0) =
f (2k)(1) = 0 for all k ≥ 0 imply f(z+2) = f(z), which means that f is periodic of period 2. Since f
is an entire function, from the first lemma p. 16, we deduce that there exists a function g analytic
in C× such that f(z) = g(eiπz). Now the condition f(z) = −f(−z) implies g(1/t) = −g(t). Let
us write

g(t) =
∑
n∈Z

bnt
n.

The Laurent series on the right hand side converges normally on every compact in C×. The
condition g(1/t) = −g(t) implies b−n = −bn for all n ∈ Z, hence b0 = 0 and

g(t) =
∑
n≥1

bn
(
tn − t−n

)
which implies condition (ii) with an = 2ibn.
(b) For n ≥ 1, the function z 7→ cos

(
(2n+1)π

2 z
)
satisfies (i). Hence (ii) implies (i).

Let us check that (i) implies (ii). The conditions f (2k+1)(0) = 0 for all k ≥ 0 mean f(−z) =
f(z). The conditions f (2k)(1) = 0 for all k ≥ 0 mean f(1 + z) = f(1 − z). We deduce that
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f is periodic of period 4. Since f is an entire function, from the first lemma p. 16, we deduce
that there exists a function g analytic in C× such that f(z) = g(eiπz/2). Now the condition
f(z) = f(−z) implies g(1/t) = g(t). We deduce in the same way as above

g(t) =
∑
n≥1

bn
(
tn + t−n

)
which implies condition (ii).

5. Complete the three proofs of the Lemma p. 33.

5. Lemma. Let f be a polynomial satisfying

f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0.

Then f = 0.

Let f be a polynomial satisfying

f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0.

• First proof By induction on the degree of the polynomial f .
If f has degree ≤ 1, say f(z) = a0z + a1, the conditions f ′(0) = f(1) = 0 imply a0 = a1 = 0,

hence f = 0.
If f has degree ≤ n with n ≥ 2 and satisfies the hypotheses, then f ′′ also satisfies the

hypotheses and has degree < n, hence by induction f ′′ = 0 and therefore f has degree ≤ 1. The
result follows.

• Second proof The assumption f (2n+1)(0) = 0 for all n ≥ 0 means that f is an even function :
f(−z) = f(z). The assumption f (2n)(1) = 0 for all n ≥ 0 means that f(1−z) is an odd function :
f(1− z) = −f(1 + z). We deduce f(z + 2) = f(1 + z + 1) = −f(1− z − 1) = −f(−z) = −f(z),
hence f(z+4) = f(z) ; it follows that the polynomial f is periodic, and therefore it is a constant.
Since f(1) = 0, we conclude f = 0.

• Third proof Write

f(z) = a0 + a2z
2 + a4z

4 + a6z
6 + a8z

6 + · · ·+ a2nz
2n + · · ·

(finite sum). We have f(1) = f ′′(1) = f (iv)(1) = · · · = 0 :

a0 +a2 +a4 +a6 + · · · +a2n + · · · = 0
2a2 +12a4 +30a5 + · · · +2n(2n− 1)a2n + · · · = 0

24a4 +360a6 + · · · + (2n)!
(2n−4)!

a2n + · · · = 0

. . .
...

The matrix of this system is triangular with maximal rank.

6. Let (Mn(z))n≥0 and (M̃n(z))n≥0 be two sequences of polynomials such that any polynomial f ∈ C[z] has a
finite expansion

f(z) =
∞∑
n=0

(
f (2n)(1)Mn(z)+f

(2n+1)(0)M̃n(z)
)
,

with only finitely many nonzero terms in the series (see p. 34). Check

M̃n(z) = −M ′n+1(1− z)
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for n ≥ 0.
Hint: Consider f ′(1− z).

6. Define f̃(z) = f ′(1− z). Write

f(z) =

∞∑
n=0

(
f (2n)(1)Mn(z) + f (2n+1)(0)M̃n(z)

)
.

Then

f ′(z) =

∞∑
n=0

(
f (2n)(1)M ′n(z) + f (2n+1)(0)M̃ ′n(z)

)
and

f̃(z) = f ′(1− z) =

∞∑
n=0

(
f (2n)(1)M ′n(1− z) + f (2n+1)(0)M̃ ′n(1− z)

)
.

The coefficient of f (2n+2)(1) is M ′n+1(1− z).
However we also have

f̃(z) =
∞∑
n=0

(
f̃ (2n)(1)Mn(z) + f̃ (2n+1)(0)M̃n(z)

)
.

Since f̃ (2n)(1) = −f (2n+1)(0) and f̃ (2n+1)(0) = −f (2n+2)(1), this yields

f̃(z) =

∞∑
n=0

(
−f (2n+1)(0)Mn(z)− f (2n+2)(1)M̃n(z)

)
.

The coefficient of f (2n+2)(1) is −M̃n(z).
From the unicity of the expansion we conclude

−M̃n(z) = M ′n+1(1− z)

for n ≥ 0 (and M ′0 = 0).

7. Let S be a positive integer and let z ∈ C. Using Cauchy’s residue Theorem, compute the integral (see p. 39)

1

2πi

∫
|t|=Sπ

t−2n−1 ch(tz)

ch(t)
dt.

7. The poles of the function

t 7→ ch(tz)

ch(t)
=

etz + e−tz

et + e−t

are the complex numbers t such that e2t = −1, namely t =
(
s+ 1

2

)
iπ, s ∈ Z.

The poles inside |t| ≤ Sπ are the numbers
(
s+ 1

2

)
iπ and

(
−s− 1

2

)
iπ with 0 ≤ s ≤ S.

The residue at t = 0 of t−2n−1 ch(tz)
ch(t) is the coefficient ot t−2n in the Taylor expansion of ch(tz)

ch(t) ,
hence it is Mn(z).

Let s be an integer in the range 0 ≤ s ≤ S. Write t =
(
s+ 1

2

)
iπ + ε. Then

et = (−1)seiπ/2eε = (−1)si(1 + ε+ · · · ), e−t = (−1)se−iπ/2eε = −(−1)si(−1)s(1− ε+ · · · , )
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et + e−t = (−1)s2iε+ · · · ,

and
etz + e−tz = 2 cos

(
2s+ 1

2
πz

)
+ · · ·

Therefore, for s ≥ 0, the residue t =
(
s+ 1

2

)
iπ of t−2n−1 ch(tz)

ch(t) is

(−1)n+s
(
s+

1

2

)−2n−1
π−2n−1 cos

(
2s+ 1

2
πz

)
.

For 0 ≤ s ≤ S, the residue at
(
−s− 1

2

)
iπ is the same.

This proves the formula p. 39 :

Mn(z) = (−1)n
22n+2

π2n+1

S−1∑
s=0

(−1)s

(2s+ 1)2n+1
cos

(
(2s+ 1)π

2
z

)
+

1

2πi

∫
|t|=Sπ

t−2n−1
ch(tz)

ch(t)
dt

for S = 1, 2, . . . and z ∈ C.

8. Give examples of complete, redundant and indeterminate systems in Whittaker classification p. 43.

8.
• Complementary sequences (each integer belongs to one and only one of the two sets) are
complete. For instance the set of two sequences

(1, 3, 5, . . . , 2n+ 1, . . . ), (0, 2, 4, . . . , 2n, . . . )

is complete (Whittaker).

• The set of two sequences

(0, 2, 4 . . . , 2n, . . . ), (0, 2, 4 . . . , 2n, . . . )

is complete (Lidstone).

• The set of two sequences

(1, 3, 5, . . . , 2n+ 1, . . . ), (1, 3, 5, . . . , 2n+ 1, . . . )

is indeterminate (more than one solution to the interpolation problem). If one adds 0 to one set,

(0, 1, 3, 5, . . . , 2n+ 1, . . . ), (1, 3, 5, . . . , 2n+ 1, . . . )

one gets a complete set.

• Given any sequence (q0, q1, q2, . . . ), the set of two sequences

(0, 1, 2, . . . , n, . . . ), (q0, q1, q2, . . . )

is redundant (no solution to the interpolation problem).

• The set of two sequences

(0, 2, 4, 6, 8, . . . , 2n, . . . ), (0, 1, 3, 5, . . . , 2n+ 1, . . . )
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is redundant (no solution to the interpolation problem).

• According to [?], a pair of sequences (p0, p1, p2, . . . ), (q0, q1, q2, . . . ) is complete if and only if
the sequence (D(1), D(2), D(3), . . . ), defined by

D(m) is the number of p and q which are < m

satisfies
D(m) ≥ m for all m ≥ 1 and D(m) = m for infinitely many m.

Given a complete pair of sequences, if we remove some elements, we get an indeterminate pair.
Given an indeterminate pair of sequences, it is possible to add some elements and get a complete
pair.
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