Exercices: hints, solutions, comments

Third course

1. Let s_{0}, s_{1}, s_{2} be three complex numbers. Give a necessary and sufficient condition for the following to hold. There exist three sequences of polynomials $\left(\Lambda_{n, 0}(z)\right)_{n \geq 0},\left(\Lambda_{n, 1}(z)\right)_{n \geq 0},\left(\Lambda_{n, 2}(z)\right)_{n \geq 0}$ such that any polynomial $f \in \mathbb{C}[z]$ can be written in a unique way as a finite sum

$$
f(z)=\sum_{n \geq 0}\left(f^{(3 n)}\left(s_{0}\right) \Lambda_{n, 0}(z)+f^{(3 n)}\left(s_{1}\right) \Lambda_{n, 1}(z)+f^{(3 n)}\left(s_{2}\right) \Lambda_{n, 2}(z)\right)
$$

What is the degree of $\Lambda_{n, j}(z)$? The leading term? Write the six polynomials

$$
\Lambda_{0,0}(z), \Lambda_{0,1}(z), \Lambda_{0,2}(z), \Lambda_{1,0}(z), \Lambda_{1,1}(z), \Lambda_{1,2}(z)
$$

1. The polynomials $\Lambda_{n i}(n \geq 0, i=0,1,2)$ are defined by

$$
\Lambda_{n i}^{(3 k)}\left(s_{j}\right)=\delta_{n k} \delta_{i j}, \quad n, k \geq 0, i, j=0,1,2
$$

By symmetry, it suffices to deal with $i=0$.

- We start with $n=0$: a necessary and sufficient condition for the existence of a polynomial Λ_{00} satisfying $\Lambda_{00}^{\prime \prime \prime}=0$ and

$$
\Lambda_{00}\left(s_{0}\right)=1, \quad \Lambda_{00}\left(s_{1}\right)=\Lambda_{00}\left(s_{2}\right)=0
$$

is $s_{0} \neq s_{1}$ and $s_{0} \neq s_{2}$. Assume from now on that s_{0}, s_{1}, s_{2} are pairwise distinct. Then there is a unique such polynomial, it has degree 2 and is given by the Lagrange interpolation formula, namely

$$
\Lambda_{00}(z)=\frac{\left(z-s_{1}\right)\left(z-s_{2}\right)}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}
$$

- For $n \geq 1$ the polynomial $\Lambda_{n 0}$ is the unique polynomial satisfying the differential equation $\Lambda_{n 0}^{\prime \prime \prime}=\Lambda_{n-1,0}$ with the initial conditions

$$
\Lambda_{n 0}\left(s_{0}\right)=\Lambda_{n 0}\left(s_{1}\right)=\Lambda_{n 0}\left(s_{2}\right)=0
$$

It has degree $3 n+2$ and leading term $\frac{2}{(3 n+2)!} z^{3 n+2}$.

- We explicit the solution for $n=1$. The polynomial

$$
L(z)=\frac{1}{60} \frac{z^{5}}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}-\frac{1}{24} \frac{\left(s_{1}+s_{2}\right) z^{4}}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}+\frac{1}{6} \frac{s_{1} s_{2} z^{3}}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}
$$

satisfies

$$
L^{\prime \prime \prime}(z)=\frac{z^{2}}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}-\frac{\left(s_{1}+s_{2}\right) z}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}+\frac{s_{1} s_{2}}{\left(s_{0}-s_{1}\right)\left(s_{0}-s_{2}\right)}=\Lambda_{00}(z)
$$

Hence the unique polynomial Λ_{10} solution of the differential equation $\Lambda_{10}^{\prime \prime \prime}=\Lambda_{00}$ with the initial conditions

$$
\Lambda_{10}\left(s_{0}\right)=\Lambda_{10}\left(s_{1}\right)=\Lambda_{10}\left(s_{2}\right)=0
$$

is $\Lambda_{10}(z)=L(z)-\left(c_{0} z^{2}+c_{1} z+c_{2}\right)$ where c_{0}, c_{1}, c_{2} are the solutions of the system of equations

$$
\left\{\begin{array}{l}
c_{0} s_{0}^{2}+c_{1} s_{0}+c_{2}=L\left(s_{0}\right) \\
c_{0} s_{1}^{2}+c_{1} s_{1}+c_{2}=L\left(s_{1}\right) \\
c_{0} s_{2}^{2}+c_{1} s_{2}+c_{2}=L\left(s_{2}\right)
\end{array}\right.
$$

2. Let s_{0}, s_{1}, s_{2} be three complex numbers. Give a necessary and sufficient condition for the following to hold. There exist three sequences of polynomials $\left(M_{n, 0}(z)\right)_{n \geq 0},\left(M_{n, 1}(z)\right)_{n \geq 0},\left(M_{n, 2}(z)\right)_{n \geq 0}$ such that any polynomial $f \in \mathbb{C}[z]$ can be written in a unique way as a finite sum

$$
f(z)=\sum_{n \geq 0}\left(f^{(3 n)}\left(s_{0}\right) M_{n, 0}(z)+f^{(3 n+1)}\left(s_{1}\right) M_{n, 1}(z)+f^{(3 n+2)}\left(s_{2}\right) M_{n, 2}(z)\right) .
$$

What is the degree of $M_{n, j}(z)$? The leading term? Write the six polynomials

$$
M_{0,0}(z), M_{0,1}(z), M_{0,2}(z), M_{1,0}(z), M_{1,1}(z), M_{1,2}(z)
$$

2. The polynomials $M_{n i}(n \geq 0, i=0,1,2)$ are defined by

$$
M_{n i}^{(3 k+i)}\left(s_{j}\right)=\delta_{n k} \delta_{i j}, \quad n, k \geq 0, i, j=0,1,2 .
$$

As we will see, there is no condition for the existence and unicity of such polynomials.

- We start with $n=0$.

The unique polynomial $M_{00}(z)$ satisfying $M_{00}^{\prime \prime \prime}=0$ and $M_{00}\left(s_{0}\right)=1, M_{01}^{\prime}\left(s_{1}\right)=M_{01}^{\prime \prime}\left(s_{2}\right)=0$ is the constant polynomial $M_{00}(z)=1$.
The unique polynomial $M_{01}(z)$ satisfying $M_{01}^{\prime \prime \prime}=0$ and $M_{01}\left(s_{0}\right)=M_{01}^{\prime \prime}\left(s_{2}\right)=0, M_{01}^{\prime}\left(s_{1}\right)=1$ is $M_{01}(z)=z-s_{0}$.
The unique polynomial $M_{02}(z)$ satisfying $M_{02}^{\prime \prime \prime}=0$ and $M_{02}\left(s_{0}\right)=M_{02}^{\prime}\left(s_{1}\right)=0, M_{02}^{\prime \prime}\left(s_{2}\right)=1$ is

$$
M_{02}(z)=\frac{1}{2} z^{2}-s_{1} z+\frac{1}{2} s_{0}\left(2 s_{1}-s_{0}\right)
$$

- Let $n \geq 1$. For $i=0,1,2$, the polynomial $M_{n i}$ is the unique solution of the differential equation $M_{n i}^{\prime \prime \prime}=M_{n-1, i}$ with the initial condition

$$
M_{n i}\left(s_{0}\right)=M_{n i}^{\prime}\left(s_{1}\right)=M_{n i}^{\prime \prime}\left(s_{2}\right)=0
$$

For $n \geq 0$ and $i=0$ the solution is given by $M_{n 0}(z)=\frac{1}{(3 n)!} z^{3 n}$.
The leading term of $M_{n 1}$ is $\frac{1}{(3 n+1)!} z^{3 n+1}$ and the leading term of $M_{n 2}$ is $\frac{2}{(3 n+2)!} z^{3 n+2}$.

- We explicit the solution for $n=1$.

The polynomial

$$
A(z)=\frac{1}{24} z^{4}-\frac{1}{6} s_{0} z^{3}
$$

satisfies

$$
A^{\prime \prime \prime}(z)=z-s_{0}=M_{01}(z)
$$

Hence the unique polynomial M_{11} solution of the differential equation $M_{11}^{\prime \prime \prime}=M_{01}$ with the initial conditions

$$
M_{11}\left(s_{0}\right)=M_{11}^{\prime}\left(s_{1}\right)=M_{11}^{\prime \prime}\left(s_{2}\right)=0
$$

is $M_{11}(z)=A(z)-\left(a z^{2}+b z+c\right)$ where a, b, c are the solutions of the system of equations

$$
\begin{cases}a s_{0}^{2}+b s_{0}+c & =A\left(s_{0}\right) \\ 2 a s_{1}+b & =A^{\prime}\left(s_{1}\right), \\ 2 a & =A^{\prime \prime}\left(s_{2}\right)\end{cases}
$$

The polynomial

$$
B(z)=\frac{1}{120} z^{5}-\frac{s_{1}}{24} z^{4}+\frac{s_{0}\left(2 s_{1}-s_{0}\right)}{12} z^{3}
$$

satisfies

$$
B^{\prime \prime \prime}(z)=\frac{1}{2} z^{2}-s_{1} z+\frac{1}{2} s_{0}\left(2 s_{1}-s_{0}\right)=M_{02}(z)
$$

Hence the unique polynomial M_{12} solution of the differential equation $M_{12}^{\prime \prime \prime}=M_{02}$ with the initial conditions

$$
M_{12}\left(s_{0}\right)=M_{12}^{\prime}\left(s_{1}\right)=M_{12}^{\prime \prime}\left(s_{2}\right)=0
$$

is $M_{12}(z)=B(z)-\left(a z^{2}+b z+c\right)$ where a, b, c are the solutions of the system of equations

$$
\begin{cases}a s_{0}^{2}+b s_{0}+c & =B\left(s_{0}\right) \\ 2 a s_{1}+b & =B^{\prime}\left(s_{1}\right) \\ 2 a & =B^{\prime \prime}\left(s_{2}\right)\end{cases}
$$

3. Let s_{0}, s_{1}, s_{2} be three complex numbers. Give a necessary and sufficient condition for the following to hold. There exist three sequences of polynomials $\left(N_{n, 0}(z)\right)_{n \geq 0},\left(N_{n, 1}(z)\right)_{n \geq 0},\left(N_{n, 2}(z)\right)_{n \geq 0}$ such that any polynomial $f \in \mathbb{C}[z]$ can be written in a unique way as a finite sum

$$
f(z)=\sum_{n \geq 0}\left(f^{(3 n)}\left(s_{0}\right) N_{n, 0}(z)+f^{(3 n)}\left(s_{1}\right) N_{n, 1}(z)+f^{(3 n+1)}\left(s_{2}\right) N_{n, 2}(z)\right)
$$

What is the degree of $N_{n, j}(z)$? The leading term? Write the six polynomials

$$
N_{0,0}(z), N_{0,1}(z), N_{0,2}(z), N_{1,0}(z), N_{1,1}(z), N_{1,2}(z)
$$

3. The polynomials $N_{n i}(n \geq 0, i=0,1,2)$ are defined by

$$
N_{n 0}^{(3 k)}\left(s_{0}\right)=N_{n 1}^{(3 k)}\left(s_{1}\right)=\delta_{n k}, \quad N_{n 2}^{(3 k+1)}\left(s_{2}\right)=\delta_{n k} \quad n, k \geq 0 .
$$

The polynomial $N_{n 1}$ is deduced from $N_{n 0}$ by permuting s_{0} and s_{1}. So we need to deal only with $N_{n 0}$ and $N_{n 2}$.

- Let $n=0$. The conditions on $N_{00}(z)$ and $N_{02}(z)$ are

$$
N_{00}\left(s_{0}\right)=1, \quad N_{00}\left(s_{1}\right)=N_{00}^{\prime}\left(s_{2}\right)=0, \quad N_{02}\left(s_{0}\right)=N_{02}\left(s_{1}\right)=0, \quad N_{02}^{\prime}\left(s_{2}\right)=1
$$

Write

$$
N_{00}(z)=\left(z-s_{1}\right)(a z+b), \quad N_{02}(z)=c\left(z-s_{0}\right)\left(z-s_{1}\right)
$$

so that $N_{00}^{\prime}(z)=a\left(2 z-s_{1}\right)+b$. The conditions on the numbers a and b arise from the requirement $N_{00}\left(s_{0}\right)=1$ and $N_{00}^{\prime}\left(s_{2}\right)=0$:

$$
\left\{\begin{array}{cl}
\left(a s_{0}+b\right)\left(s_{0}-s_{1}\right) & =1 \\
a\left(2 s_{2}-s_{1}\right)+b & =0
\end{array}\right.
$$

while the condition on c come from $N_{02}^{\prime}\left(s_{2}\right)=1$:

$$
c\left(2 s_{2}-s_{0}-s_{1}\right)=1
$$

A necessary and sufficient condition for the existence and unicity of a solution to this system is $s_{0} \neq s_{1}, s_{0}+s_{1} \neq 2 s_{2}$. Under this assumption, the solution is

$$
\left\{\begin{array}{l}
N_{00}(z)=\frac{\left(z-s_{1}\right)\left(z-s_{1}+2 s_{2}\right)}{\left(s_{0}-s_{1}\right)\left(s_{0}+s_{1}-2 s_{2}\right)} \\
N_{02}(z)=\frac{\left(z-s_{0}\right)\left(z-s_{1}\right)}{\left(s_{0}-s_{1}\right)\left(2 s_{2}-s_{0}-s_{1}\right)}
\end{array}\right.
$$

- For $n \geq 1$ and $i=0,1,2$, the polynomial $N_{n i}$ is the unique solution of the differential equation $N_{n i}^{\prime \prime \prime}=N_{n-1, i}$ with the initial condition

$$
N_{n i}\left(s_{0}\right)=N_{n i}\left(s_{1}\right)=N_{n i}^{\prime \prime}\left(s_{2}\right)=0
$$

The degree of $N_{n i}$ is $3 n+2$, the leading coefficient of $N_{n 0}$ is

$$
\frac{2}{(3 n+2)!\left(s_{0}-s_{1}\right)\left(s_{0}+s_{1}-2 s_{2}\right)}
$$

while the leading coefficient of $N_{n 0}$ is

$$
\frac{2}{(3 n+2)!\left(s_{0}-s_{1}\right)\left(2 s_{2}-s_{0}-s_{1}\right)} .
$$

- We explicit the solution for $n=1$. The polynomial N_{10} is computed as follows : let $A(z)$ be a primitive of N_{00}. Then $N_{10}(z)=A(z)-\left(a z^{2}+b z+c\right)$ where a, b, c are the solutions of

$$
\begin{cases}a s_{0}^{2}+b s_{0}+c & =A\left(s_{0}\right), \\ a s_{1}^{2}+b s_{1}+c & =A\left(s_{1}\right), \\ 2 a s_{2}+b & =A^{\prime}\left(s_{2}\right) .\end{cases}
$$

In the same way, $N_{12}(z)=B(z)-\left(\alpha z^{2}+\beta z+\gamma\right)$, where $B(z)$ is a primitive of N_{02} while α, β, γ are the solutions of

$$
\begin{cases}\alpha s_{0}^{2}+\beta s_{0}+\gamma & =B\left(s_{0}\right), \\ \alpha s_{1}^{2}+\beta s_{1}+\gamma & =B\left(s_{1}\right), \\ 2 \alpha s_{2}+\beta & =B^{\prime}\left(s_{2}\right)\end{cases}
$$

Notice that both systems have the same determinant

$$
\left|\begin{array}{ccc}
s_{0}^{2} & s_{0} & 1 \\
s_{1}^{2} & s_{1} & 1 \\
2 s_{2} & 1 & 0
\end{array}\right|=\left(s_{0}-s_{1}\right)\left(2 s_{2}-s_{0}-s_{1}\right)
$$

4. On p. 11, check that if the determinant $D(\mathbf{s})$ does not vanish, then $r_{j} \leq j$ for all $j=0,1, \ldots, m-1$.
5.

Let $z_{0}, z_{1}, \ldots, z_{m-1}$ be independent variables. Write \mathbf{z} for $\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$. Let K be the field $\mathbb{Q}\left(z_{0}, z_{1}, \ldots, z_{m-1}\right)$ and $\mathrm{D}(\mathbf{z})$ be the determinant

$$
\operatorname{det}\left(\frac{k!}{\left(k-r_{j}\right)!} z_{j}^{k-r_{j}}\right)_{0 \leq j, k \leq m-1} \in \mathbb{Q}[\mathbf{z}] \subset K
$$

Recall $a!/(a-b)!=0$ for $a<b$.
For $j=0,1, \ldots, m-1$, the row vector

$$
\begin{aligned}
v_{j} & =\left(\frac{k!}{\left(k-r_{j}\right)!} z_{j}^{k-r_{j}}\right)_{k=0,1, \ldots, m-1} \\
& =\left(0,0, \ldots, 0, r_{j}!, \frac{\left(r_{j}+1\right)!}{1!} z_{j}, \frac{\left(r_{j}+2\right)!}{2!} z_{j}^{2}, \ldots, \frac{(m-1)!}{\left(m-1-r_{j}\right)!} z_{j}^{m-1-r_{j}}\right)
\end{aligned}
$$

belongs to $\{0\}^{r_{j}} \times K^{m-r_{j}}$. If $r_{j}>j$ for some $j \in\{0,1, \ldots, m-1\}$, then the $m-j$ vectors $v_{j}, v_{j+1}, \ldots, v_{m-1}$ all belong to the subspace $\{0\}^{j+1} \times K^{m-j-1}$ of K^{m}, the dimension of which is $m-j-1$; hence the determinant $\mathrm{D}(\mathbf{z})$ vanishes.

This amounts to say that a triangular matrix with a zero on the diagonal has a zero determinant.
5. Prove the proposition p. 11.
5. Assume $\mathrm{D}(\mathbf{s}) \neq 0$. Then there exists a unique family of polynomials $\left(\Lambda_{n j}(z)\right)_{n \geq 0,0 \leq j \leq m-1}$ satisfying

$$
\Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \delta_{n k}, \text { for } n, k \geq 0 \text { and } 0 \leq j, \ell \leq m-1
$$

For $n \geq 0$ and $0 \leq j \leq m-1$ the polynomial $\Lambda_{n j}$ has degree $\leq m n+m-1$.
The assumption $\mathrm{D}(\mathbf{s}) \neq 0$ means that the linear map

$$
\begin{array}{clc}
\mathbb{C}[z]_{\leq m-1} & \longrightarrow & \mathbb{C}^{m} \\
L(z) & \longmapsto & \left(L^{\left(r_{j}\right)}\left(s_{j}\right)\right)_{0 \leq j \leq m-1}
\end{array}
$$

is an isomorphism of \mathbb{C}-vector spaces, $\mathbb{C}[z]_{\leq m-1}$ being the space of polynomials of degree $\leq m-1$. First proof. Assuming $\mathrm{D}(\mathbf{s}) \neq 0$, we prove by induction on n that the linear map

$$
\begin{array}{ccc}
\psi_{n}: \mathbb{C}[z]_{\leq m(n+1)-1} & \longrightarrow & \mathbb{C}^{m(n+1)} \\
L(z) & \longmapsto & \left(L^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)\right)_{0 \leq \ell \leq m-1,0 \leq k \leq n}
\end{array}
$$

is an isomorphism of \mathbb{C}-vector spaces. For $n=0$ this is the assumption $\mathrm{D}(\mathbf{s}) \neq 0$. Assume ψ_{n-1} is injective for some $n \geq 1$. Let $L \in \operatorname{ker} \psi_{n}$. Then $L^{(m)} \in \operatorname{ker} \psi_{n-1}$, hence $L^{(m)}=0$, which means that L has degree $<m$. From the assumption $\mathrm{D}(\mathbf{s}) \neq 0$ we conclude $L=0$.

The fact that ψ_{n} is injective for all n implies that if a polynomial $f \in \mathbb{C}[z]$ satisfies $f^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=$ 0 for all $k \geq 0$ and all ℓ with $0 \leq \ell \leq m-1$, then $f=0$. This shows the unicity of the solution $\Lambda_{n j}$ of the system of equations

$$
\Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \delta_{n k}, \quad \text { for } \quad n, k \geq 0 \quad \text { and } \quad 0 \leq j, \ell \leq m-1
$$

Since ψ_{n} is injective, it is an isomorphism, and hence surjective : for $0 \leq j \leq n-1$ there exists a unique polynomial $\Lambda_{n j} \in \mathbb{C}[z]_{\leq m(n+1)-1}$ such that $\Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \delta_{n k}$ for $0 \leq j, \ell \leq m-1$. These conditions show that the set of polynomials $\Lambda_{k j}$ for $0 \leq k \leq n, 0 \leq j \leq m-1$, is a basis of $\mathbb{C}[z]_{\leq m(n+1)-1}$: any polynomial $f \in \mathbb{C}[z]$ of degree $\leq m(n+1)-1$ can be written in a unique way

$$
f(z)=\sum_{j=0}^{m-1} \sum_{k=0}^{n} a_{k j} \Lambda_{k j}(z)
$$

and therefore the coefficients are given by $a_{k j}=f^{\left(m k+r_{j}\right)}\left(s_{j}\right)$.
Second proof. The conditions

$$
\Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \delta_{n k}, \quad \text { for } \quad n, k \geq 0 \quad \text { and } \quad 0 \leq j, \ell \leq m-1
$$

mean that any polynomial $f \in \mathbb{C}[z]$ has an expansion

$$
f(z)=\sum_{j=0}^{m-1} \sum_{n \geq 0} f^{\left(m n+r_{j}\right)}\left(s_{j}\right) \Lambda_{n j}(z),
$$

where only finitely many terms on the right hand side are nonzero.
Assuming $D(s) \neq 0$, we first prove the unicity of such an expansion by induction on the degree of f. The assumption $\mathrm{D}(\mathbf{s}) \neq 0$ shows that there is no nonzero polynomial of degree $<m$ satisfying $f^{\left(m n+r_{j}\right)}\left(s_{j}\right)=0$ for all (n, j) with $0 \leq n, j \leq m-1$. Now if f is a polynomial satisfying $f^{\left(m n+r_{j}\right)}\left(s_{j}\right)=0$ for all (n, j) with $n \geq 0$ and $0 \leq j \leq m-1$, then $f^{(m)}$ satisfies the same conditions and has a degree less than the degree of f. By the induction hypothesis we deduce $f^{(m)}=0$, which means that f has degree $<m$, hence $f=0$. This proves the unicity.

For the existence, let us show that, under the assumption $D(s) \neq 0$, the recurrence relations

$$
\Lambda_{n j}^{(m)}=\Lambda_{n-1, j}, \quad \Lambda_{n j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=0 \text { for } n \geq 1, \quad \Lambda_{0 j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \text { for } 0 \leq j, \ell \leq m-1
$$

have a unique solution given by polynomials $\Lambda_{n j}(z),(n \geq 0, j=0, \ldots, m-1)$, where $\Lambda_{n j}$ has degree $\leq m n+m-1$. Clearly, these polynomials will satisfy

$$
\Lambda_{n j}^{\left(m k+r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \delta_{n k}, \quad \text { for } \quad n, k \geq 0 \quad \text { and } \quad 0 \leq j, \ell \leq m-1
$$

From the assumption $\mathrm{D}(\mathbf{s}) \neq 0$ we deduce that, for $0 \leq j \leq m-1$, there is a unique polynomial $\Lambda_{0 j}$ of degree $<m$ satisfying

$$
\Lambda_{0 j}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=\delta_{j \ell} \text { for } 0 \leq \ell \leq m-1
$$

By induction, given $n \geq 1$ and $j \in\{0,1, \ldots, m-1\}$, once we know $\Lambda_{n-1, j}(z)$, we choose a solution L of the differential equation $L^{(m)}=\Lambda_{n-1, j}$; using again the assumption $\mathrm{D}(\mathbf{s}) \neq 0$, we deduce that there is a unique polynomial \widetilde{L} of degree $<m$ satisfying $\widetilde{L}^{\left(r_{\ell}\right)}\left(s_{\ell}\right)=L^{\left(r_{\ell}\right)}\left(s_{\ell}\right)$ for $0 \leq \ell \leq m-1$; then the solution is given by $\Lambda_{n j}=L-\widetilde{L}$.
6. Poritsky's interpolation p. 31. Prove that the condition $\mathrm{D}(\mathbf{s}) \neq 0$ means that $s_{0}, s_{1}, \ldots, s_{m-1}$ are pairwise distinct.
Prove also that the function $\Delta(t)$ has a zero at the origin of multiplicity at least $m(m-1) / 2$.
N.B. The fact that the multiplicity is exactly $m(m-1) / 2$ follows from the fact that the coefficient of $t^{m(m-1) / 2}$ in the Taylor expansion at the origin of $\Delta(t)$ is given by a product of two Vandermonde determinants

$$
\frac{1}{1!2!\cdots(m-1)!} \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \zeta & \cdots & \zeta^{m-1} \\
1 & \zeta^{2} & \cdots & \zeta^{2(m-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \zeta^{m-1} & \cdots & \zeta^{(m-1)^{2}}
\end{array}\right) \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
s_{0} & s_{1} & \cdots & s_{m-1} \\
s_{0}^{2} & s_{1}^{2} & \cdots & s_{m-1}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
s_{0}^{m-1} & s_{1}^{m-1} & \cdots & s_{m-1}^{m-1}
\end{array}\right) .
$$

But this is not so easy to prove [Macintyre 1954, §3].
6. Poritsky interpolation is the case

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0
$$

The Vandermonde determinant

$$
D(\mathbf{s})=\operatorname{det}\left(s_{j}^{k}\right)_{0 \leq j, k \leq m-1}=\operatorname{det}\left(\begin{array}{ccccc}
1 & s_{0} & s_{0}^{2} & \cdots & s_{0}^{m-1} \\
1 & s_{1} & s_{1}^{2} & \cdots & s_{1}^{m-1} \\
1 & s_{2} & s_{2}^{2} & \cdots & s_{2}^{m-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & s_{m-1} & s_{m-1}^{2} & \cdots & s_{m-1}^{m-1}
\end{array}\right)=\prod_{0 \leq j<\ell \leq m-1}\left(s_{\ell}-s_{j}\right)
$$

does not vanish if and only if $s_{0}, s_{1}, \ldots, s_{m-1}$ are pairwise distinct.
The determinant $\Delta(t)$ is the determinant of the following matrix

$$
\left(\begin{array}{ccccc}
\mathrm{e}^{t s_{0}} & \mathrm{e}^{t s_{1}} & \mathrm{e}^{t s_{2}} & \cdots & \mathrm{e}^{t s_{m-1}} \\
\mathrm{e}^{\zeta t s_{0}} & \mathrm{e}^{\zeta t s_{1}} & \mathrm{e}^{\zeta t s_{2}} & \cdots & \mathrm{e}^{\zeta t s_{m-1}} \\
\mathrm{e}^{\zeta^{2} t s_{0}} & \mathrm{e}^{\zeta^{2} t s_{1}} & \mathrm{e}^{\zeta^{2} t s_{2}} & \cdots & \mathrm{e}^{\zeta^{2} t s_{m-1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathrm{e}^{\zeta^{m-1} t s_{0}} & \mathrm{e}^{\zeta^{m-1} t s_{1}} & \mathrm{e}^{\zeta^{m-1} t s_{2}} & \cdots & \mathrm{e}^{\zeta^{m-1} t s_{m-1}}
\end{array}\right)
$$

The value $\Delta(0)$ at $t=0$ is 0 . We use the multilinearity of the determinant : the derivative (with respect to t) is the sum of determinants where we derive the rows. The derivative of order k of the row

$$
\left(\begin{array}{lllll}
\mathrm{e}^{\zeta^{j} t s_{0}} & \mathrm{e}^{\zeta^{j} t s_{1}} & \mathrm{e}^{\zeta^{j} t s_{2}} & \cdots & \mathrm{e}^{\zeta^{j} t s_{m-1}}
\end{array}\right)
$$

is the row

$$
\left(\begin{array}{lllll}
\left(\zeta^{j} s_{0}\right)^{k} \mathrm{e}^{\zeta^{j} t s_{0}} & \left(\zeta^{j} s_{1}\right)^{k} \mathrm{e}^{\zeta^{j} t s_{1}} & \left(\zeta^{j} s_{2}\right)^{k} \mathrm{e}^{\zeta^{j} t s_{2}} & \cdots & \left(\zeta^{j} s_{m-1}\right)^{k} \mathrm{e}^{\zeta^{j} t s_{m-1}}
\end{array}\right)
$$

which takes the value

$$
\left(\begin{array}{lllll}
\left(\zeta^{j} s_{0}\right)^{k} & \left(\zeta^{j} s_{1}\right)^{k} & \left(\zeta^{j} s_{2}\right)^{k} & \cdots & \left(\zeta^{j} s_{m-1}\right)^{k}
\end{array}\right)
$$

at $t=0$.
If we derive the same number of times two rows, the corresponding determinant vanishes at $t=0$. Hence to get a nonzero derivative at 0 we need to take derivatives of order at least

$$
0+1+2+\cdots+(m-1)=\frac{m(m-1)}{2}
$$

7. Let $\mathbf{w}=\left(w_{n}\right)_{n \geq 0}$ be a sequence of complex numbers. Prove that the sequence of polynomials $\left(\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)\right)_{n \geq 0}$ defined by $\Omega_{\emptyset}=1$ and

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)=\int_{w_{0}}^{z} \mathrm{~d} t_{1} \int_{w_{1}}^{t_{1}} \mathrm{~d} t_{2} \cdots \int_{w_{n-1}}^{t_{n-1}} \mathrm{~d} t_{n}
$$

for $n \geq 1$ satisfy $\Omega_{w_{0}}(z)=z-w_{0}$ and for $n \geq 0, \Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}\left(w_{0}\right)=0$,

$$
\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}^{\prime}(z)=\Omega_{w_{1}, w_{2}, \ldots, w_{n}}(z)
$$

What are the degree and the leading term of $\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}(z)$? Check

$$
\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}^{(k)}\left(w_{k}\right)=\delta_{k n}
$$

for $n \geq 0$ and $k \geq 0$. Deduce that any polynomial is a finite sum

$$
f(z)=\sum_{n \geq 0} f^{(n)}\left(w_{n}\right) \Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}(z)
$$

Check the formula for the Gontcharoff determinant p. 39.
Give a close formula for these polynomials $\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)$ when

- $w_{n}=0$ for all $n \geq 0$.
- $w_{n}=1$ for even $n \geq 0, w_{n}=0$ for odd $n \geq 1$.
- $w_{n}=n$ for all $n \geq 0$.

7. The definition of these polynomials involving iterated integrals means that the sequence of polynomials $\left(\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}\right)_{n \geq 0}$ in $\mathbb{C}[z]$ is defined as follows: we set $\Omega_{\emptyset}=1, \Omega_{w_{0}}(z)=z-w_{0}$, and, for $n \geq 1$, the polynomial $\Omega_{w_{0}, w_{1}, w_{2}, \ldots, w_{n}}(z)$ is the polynomial of degree $n+1$ which is the primitive of $\Omega_{w_{1}, w_{2}, \ldots, w_{n}}$ vanishing at w_{0}.

For $n \geq 0$, we write $\Omega_{n ; \mathbf{w}}$ for $\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}$, a polynomial of degree n which depends only on the first n terms of the sequence \mathbf{w}.

By induction we deduce that the leading term of $\Omega_{n ; \mathbf{w}}$ is $(1 / n!) z^{n}$.
Starting from $\Omega_{w_{0}}\left(w_{0}\right)$ and using the differential equation, we deduce by induction

$$
\Omega_{n ; \mathbf{w}}^{(k)}\left(w_{k}\right)=\delta_{k n}
$$

for $n \geq 0$ and $k \geq 0$. It follows that the sequence $\left(\Omega_{n ; \mathbf{w}}\right)_{n \geq 0}$ is the unique sequence of polynomials such that any polynomial P can be written as a finite sum

$$
P(z)=\sum_{n \geq 0} P^{(n)}\left(w_{n}\right) \Omega_{n ; \mathbf{w}}(z) .
$$

In particular, for $N \geq 0$ we have

$$
\frac{z^{N}}{N!}=\sum_{n=0}^{N} \frac{1}{(N-n)!} w_{n}^{N-n} \Omega_{n ; \mathbf{w}}(z)
$$

This gives an inductive formula defining $\Omega_{N ; \mathbf{w}}$: for $N \geq 0$,

$$
\Omega_{N ; \mathbf{w}}(z)=\frac{z^{N}}{N!}-\sum_{n=0}^{N-1} \frac{1}{(N-n)!} w_{n}^{N-n} \Omega_{n ; \mathbf{w}}(z)
$$

We also have

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n}}(z)=\Omega_{0, w_{1}-w_{0}, w_{2}-w_{0}, \ldots, w_{n}-w_{0}}\left(z-w_{0}\right) .
$$

With $w_{0}=0$, the first polynomials are given by

$$
\begin{aligned}
2!\Omega_{0, w_{1}}(z)= & \left(z-w_{1}\right)^{2}-w_{1}^{2} \\
3!\Omega_{0, w_{1}, w_{2}}(z)= & \left(z-w_{2}\right)^{3}-3\left(w_{1}-w_{2}\right)^{2} z+w_{2}^{3} \\
4!\Omega_{0, w_{1}, w_{2}, w_{3}}(z)= & \left(z-w_{3}\right)^{4}-6\left(w_{2}-w_{3}\right)^{2}\left(z-w_{1}\right)^{2} \\
& -4\left(w_{1}-w_{3}\right)^{3} z+6 w_{1}^{2}\left(w_{2}-w_{3}\right)^{2}-w_{3}^{4} .
\end{aligned}
$$

Let us check that these polynomials are also given by the following determinant

$$
\Omega_{w_{0}, w_{1}, \ldots, w_{n-1}}(z)=(-1)^{n}\left|\begin{array}{cccccc}
1 & \frac{z}{1!} & \frac{z^{2}}{2!} & \cdots & \frac{z^{n-1}}{(n-1)!} & \frac{z^{n}}{n!} \\
1 & \frac{w_{0}}{1!} & \frac{w_{0}^{2}}{2!} & \cdots & \frac{w_{0}^{n-1}}{(n-1)!} & \frac{w_{0}^{n}}{n!} \\
0 & 1 & \frac{w_{1}}{1!} & \cdots & \frac{w_{1}^{n-2}}{(n-2)!} & \frac{w_{1}^{n-1}}{(n-1)!} \\
0 & 0 & 1 & \cdots & \frac{w_{2}^{n-3}}{(n-3)!} & \frac{w_{2}^{n-2}}{(n-2)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \frac{w_{n-1}}{1!}
\end{array}\right| .
$$

Indeed, the right hand side is a polynomial of degree n, vanishing at w_{0}. Its derivative is obtained by replacing the first row with its derivative, namely

$$
\left(\begin{array}{llllll}
0 & 1 & \frac{z}{1!} & \frac{z^{2}}{2!} & \cdots & \frac{z^{n-1}}{(n-1)!}
\end{array}\right)
$$

The determinant that we get reduces to a similar determinant as above but with $w_{0}, w_{1}, \ldots, w_{n-1}$ replaced with w_{1}, \ldots, w_{n-1}. Hence the sequence of determinants satisfies the differential equation characteristic of the sequence $\left(\Omega_{n ; \mathbf{w}}\right)_{n \geq 0}$.

- With the sequence $w_{n}=0$ for all $n \geq 0$, we get Taylor polynomials

$$
\Omega_{n ; \mathbf{w}}(z)=\frac{z^{n}}{n!}
$$

- With the sequence $\mathbf{w}=(1,0,1,0, \ldots, 0,1, \ldots)$, that is $w_{n}=1$ for even $n \geq 0, w_{n}=0$ for odd $n \geq 1$, we recover the Whittaker polynomials

$$
\Omega_{2 n ; \mathbf{w}}(z)=M_{n}(z), \quad \Omega_{2 n+1, \mathbf{w}}(z)=M_{n+1}^{\prime}(z-1)
$$

- With the arithmetic progression

$$
(a, a+t, a+2 t, \ldots, a+n t, \ldots),
$$

$\mathbf{w}=(a+n t)_{n \geq 0}$ with a in \mathbb{C} and t in $\mathbb{C} \backslash\{0\}$, we get the sequence of Abel polynomials

$$
\Omega_{n ; \mathbf{w}}(z)=\frac{1}{n!}(z-a)(z-a-n t)^{n-1}
$$

for $n \geq 1$. In particular for $a=0, t=1$, the sequence is $\mathbf{w}=(0,1,2,3, \ldots, n, \ldots)$, namely $w_{n}=n$ for all $n \geq 0$, this is

$$
\Omega_{n ; \mathbf{w}}(z)=\frac{1}{n!} z(z-n)^{n-1}
$$

for $n \geq 1$.

Références

[Gontcharoff 1930] W. Gontcharoff, "Recherches sur les dérivées successives des fonctions analytiques. Généralisation de la série d'Abel", Ann. Sci. Ecole Norm. Sup. (3) 47 (1930), 1-78. MR $/ \mathrm{Zbl}$
[Macintyre 1954] A. J. Macintyre, "Interpolation series for integral functions of exponential type", Trans. Amer. Math. Soc. 76 (1954), 1-13. MR ZBbl

