Exercices: hints, solutions, comments

Fourth course

1. Answer the quizz p. 29.
2. The definition of u^{z} when u is a positive real number and z a complex number is $u^{z}=$ $\exp (z \log u)$ with the real logarithm of u. When $u \neq 1$, this is an entire function of z of order 1 and exponential type $|\log u|$. When u is a nonzero complex number which is not real >0, for instance a negative real number, the definition of u^{z} depends on the choice of a logarithm of u, namely a complex number, say $\log u$, such that $\exp (\log u)=u$. There are infinitely many of them, we selects one. Then the exponential type of this function $u^{z}=\exp (z \log u)$ is $|\log u|$.

Since the Golden ratio $\phi=\frac{1+\sqrt{5}}{2}$ is >0, the function ϕ^{z} is well defined by $\phi^{z}=\exp (z \log \phi)$, it has exponential type $\log \phi=0.481 \ldots$

However since $\tilde{\phi}=-\phi^{-1}=-0.618 \cdots<0$, the definition of $\tilde{\phi}^{z}$ depends on a choice of the logarithm of the negative number $\tilde{\phi}$. The minimal modulus of such a logarithm is

$$
\tau=\left((\log |\tilde{\phi}|)^{2}+\pi^{2}\right)^{1 / 2}=3.178 \ldots
$$

when $\log \tilde{\phi}=\log |\tilde{\phi}| \pm i \pi$. With such a choice, the type of $\tilde{\phi}^{z}=\exp (z \log \tilde{\phi})$ is τ.
2. Show that there exist entire functions of arbitrarily large order giving counterexamples to Bieberbach's claim p. 44 .
2. For $k \geq 1$, set $a(z)=\frac{1}{2} z(z-1)(z-2) \cdots(z-4 k+1)$. The function $f(z)=\mathrm{e}^{a(z)}$ has order $4 k$ and type $\tau_{4 k}(f)=1 / 2$.

There are $2 k$ even factors and $2 k$ odd factors, hence modulo $2 \mathbb{Z}[z]$ the polynomial $a(z)$ is congruent to $z^{2 k}\left(z^{2 k}-1\right)$. The coefficients of $z^{2 i+1}$ are even, hence $a^{\prime}(z) \in \mathbb{Z}[z]$. We deduce that $f(z)=\mathrm{e}^{a(z)}$ is a k-point Hurwitz entire function.

For $k=1$, this reduces to the example p. 45.
3. Let f be an entire function. Let $A \geq 0$. Assume

$$
\limsup _{r \rightarrow \infty} \mathrm{e}^{-r} \sqrt{r}|f|_{r}<\frac{\mathrm{e}^{-A}}{\sqrt{2 \pi}}
$$

(a) Prove that there exists $n_{0}>0$ such that, for $n \geq n_{0}$ and for all $z \in \mathbb{C}$ in the disc $|z| \leq A$, we have

$$
\left|f^{(n)}(z)\right|<1
$$

(b) Assume that f is transcendental. Deduce that the set

$$
\left\{\left(n, z_{0}\right) \in \mathbb{N} \times \mathbb{C}| | z_{0} \mid \leq A, f^{(n)}\left(z_{0}\right) \in \mathbb{Z} \backslash\{0\}\right\}
$$

is finite.
3.
(a) By assumption, there exists $\eta>0$ such that, for n sufficiently large, we have

$$
|f|_{n}<(1-\eta) \frac{\mathrm{e}^{n-A}}{\sqrt{2 \pi n}}
$$

We use Cauchy's inequalities

$$
\frac{\left|f^{(n)}\left(z_{0}\right)\right|}{n!} r^{n} \leq|f|_{r+\left|z_{0}\right|}
$$

(which are valid for all $z_{0} \in \mathbb{C}, n \geq 0$ and $r>0$) with $r=n-A$: for $|z| \leq A$, we have

$$
\left|f^{(n)}(z)\right| \leq \frac{n!}{(n-A)^{n}}|f|_{n}
$$

Hence Stirling's inequality

$$
n!\geq n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n}
$$

yields

$$
\left|f^{(n)}(z)\right| \leq(1-\eta) \mathrm{e}^{-A+1 /(12 n)}\left(1-\frac{A}{n}\right)^{-n}
$$

For n sufficiently large, the right hand side is <1.
(b) We need to assume that f is transcendental: indeed, if f is a polynomial with leading term $a_{0} z^{d}$ where d! $a_{0} \in \mathbb{Z} \backslash\{0\}$, then $f^{(d)}\left(z_{0}\right)=d!a_{0} \in \mathbb{Z} \backslash\{0\}$ for all z_{0} with $\left|z_{0}\right| \leq A$, and hence the set is infinite.

The condition $f^{(n)}\left(z_{0}\right) \in \mathbb{Z} \backslash\{0\}$ implies $\left|f^{(n)}\left(z_{0}\right)\right| \geq 1$. From (a) we deduce that there exists n_{0} such that the conditions $\left(n, z_{0}\right) \in \mathbb{N} \times \mathbb{C},\left|z_{0}\right| \leq A$ and $\left.f^{(n)}\left(z_{0}\right) \in \mathbb{Z} \backslash\{0\}\right\}$ imply $n \leq n_{0}$. Fix $n \leq n_{0}$. The function f is bounded on the disc $|z| \leq A$, say $|f(z)| \leq B$ for $|z| \leq A$. Let $b \in \mathbb{Z} \backslash\{0\},|b| \leq B$. Since $f^{(n)}$ is not constant, the function $f^{(n)}(z)-b$ is not zero, it has only finitely many zeroes in the disc $|z| \leq A$ and therefore the set of z_{0} with $\left|z_{0}\right| \leq A$ such that $f^{(n)}\left(z_{0}\right)=b$ is finite.
4. Let $\left(e_{n}\right)_{n \geq 1}$ be a sequence of elements in $\{1,-1\}$. Check that the function

$$
f(z)=\sum_{n \geq 0} \frac{e_{n}}{2^{n}!} z^{2^{n}}
$$

is a transcendental entire functions which satisfies

$$
\limsup _{r \rightarrow \infty} \sqrt{r} \mathrm{e}^{-r}|f|_{r}=\frac{1}{\sqrt{2 \pi}} .
$$

4. Let $\epsilon>0$ and let r tend to infinity. Let N be the integer such that

$$
2^{N-\frac{1}{2}} \leq r<2^{N+\frac{1}{2}}
$$

For $|z|=r$, we split the sum defining $f(z)$ in three subsums. Set

$$
S_{1}=\sum_{n<N} \frac{1}{2^{n!}} r^{2^{n}}, \quad S_{2}=\frac{1}{2^{N}!} r^{2^{N}}, \quad S_{3}=\sum_{n>N} \frac{1}{2^{n!}} r^{2^{n}}
$$

We claim

$$
\max \left\{S_{1}, S_{3}\right\} \leq \epsilon \frac{\mathrm{e}^{r}}{\sqrt{2 \pi r}}
$$

and

$$
S_{2} \leq(1+\epsilon) \frac{\mathrm{e}^{r}}{\sqrt{2 \pi r}}
$$

This will prove

$$
\limsup _{r \rightarrow \infty} \sqrt{r} \mathrm{e}^{-r}|f|_{r} \leq \frac{1}{\sqrt{2 \pi}}
$$

With $r=2^{N}$ we get equality.
Set $M=2^{N}$, so that $\frac{M}{\sqrt{2}} \leq r<M \sqrt{2}$.. Write $M=\alpha r$ with $\frac{1}{\sqrt{2}} \leq \alpha<\sqrt{2}$. Stirling's formula yields

$$
\frac{r^{M}}{M!}=\left(\frac{\mathrm{e}^{\alpha}}{\alpha^{\alpha}}\right)^{r} \frac{1}{\sqrt{2 \pi \alpha r}}(1+o(r)) .
$$

The function $x-x \log x$ for $x>0$ has it maximum at $x=1$, this maximum is 1 . Hence $\frac{e^{\alpha}}{\alpha^{\alpha}} \leq e$ with equality at $\alpha=1$. We deduce

$$
\frac{r^{M}}{M!} \leq \frac{e^{r}}{\sqrt{2 \pi r}}(1+o(r)) .
$$

The upper bound for S_{2} follows. For S_{1} and S_{3}, use

$$
S_{1} \leq \frac{N}{2^{N-1}} r^{r^{N-1}} \quad \text { and } \quad S_{3} \leq \frac{2}{(2 M)!} r^{2 M}
$$

and apply Stirling's formula as above.
5. Let s_{0} and s_{1} be two complex numbers and f an entire function satisfying $f^{(2 n)}\left(s_{0}\right) \in \mathbb{Z}$ and $f^{(2 n)}\left(s_{1}\right) \in \mathbb{Z}$ for all sufficiently large n. Assume the exponential type $\tau(f)$ satisfies

$$
\tau(f)<\min \left\{1, \frac{\pi}{\left|s_{0}-s_{1}\right|}\right\} .
$$

Prove that f is a polynomial.
Prove that the assumption on $\tau(f)$ is optimal.
5. (a) Let f satisfy the assumptions. Using exercise 3 above, we deduce from the assumption $\tau(f)<1$ that the sets

$$
\left\{n \geq 0 \mid f^{(2 n)}\left(s_{0}\right) \neq 0\right\} \text { and }\left\{n \geq 0 \mid f^{(2 n)}\left(s_{1}\right) \neq 0\right\}
$$

are finite. Define, for $n \geq 0$,

$$
\widehat{\Lambda}_{n}(z)=\left(s_{1}-s_{0}\right)^{2 n} \Lambda_{n}\left(\frac{z}{s_{1}-s_{0}}\right) .
$$

Hence

$$
P(z)=\sum_{n=0}^{\infty}\left(f^{(2 n)}\left(s_{1}\right) \widehat{\Lambda}_{n}\left(z-s_{0}\right)-f^{(2 n)}\left(s_{0}\right) \widehat{\Lambda}_{n}\left(z-s_{1}\right)\right)
$$

is a polynomial satisfying

$$
P^{(2 n)}\left(s_{0}\right)=f^{(2 n)}\left(s_{0}\right) \text { and } P^{(2 n)}\left(s_{1}\right)=f^{(2 n)}\left(s_{1}\right) \text { for all } n \geq 0
$$

The function $\tilde{f}(z)=f(z)-P(z)$ has the same exponential type as f and satisfies

$$
\tilde{f}^{(2 n)}\left(s_{0}\right)=\tilde{f}^{(2 n)}\left(s_{1}\right)=0 \text { for all } n \geq 0
$$

Set

$$
\hat{f}(z)=\tilde{f}\left(s_{0}+z\left(s_{1}-s_{0}\right)\right),
$$

so that

$$
\hat{f}^{(2 n)}(0)=\hat{f}^{(2 n)}(1)=0 \text { for all } n \geq 0 .
$$

The exponential types of f and \hat{f} are related by

$$
\tau(\hat{f})=\left|s_{1}-s_{0}\right| \tau(f)
$$

From the assumption on the upper bound for $\tau(f)$ we deduce $\tau(\hat{f})<\pi$. From Poritsky's Theorem (course 2 p. 29) we deduce that $\hat{f}(z)$ is a polynomial, hence f also.
(b) The function

$$
f(z)=\frac{\operatorname{sh}\left(z-s_{1}\right)}{\operatorname{sh}\left(s_{0}-s_{1}\right)}
$$

has exponential type 1 and satisfies $f\left(s_{0}\right)=1, f\left(s_{1}\right)=0$ and $f^{\prime \prime}=f$, hence $f^{(2 n)}\left(s_{0}\right)=1$ and $f^{(2 n)}\left(s_{1}\right)=0$ for all $n \geq 0$.

The function

$$
f(z)=\sin \left(\pi \frac{z-s_{0}}{s_{1}-s_{0}}\right)
$$

has exponential type $\frac{\pi}{\left|s_{1}-s_{0}\right|}$ and satisfies $f^{(2 n)}\left(s_{0}\right)=f^{(2 n)}\left(s_{1}\right)=0$ for all $n \geq 0$.
6. Let s_{0} and s_{1} be two complex numbers and f an entire function satisfying $f^{(2 n+1)}\left(s_{0}\right) \in \mathbb{Z}$ and $f^{(2 n)}\left(s_{1}\right) \in \mathbb{Z}$ for all sufficiently large n. Assume the exponential type $\tau(f)$ satisfies

$$
\tau(f)<\min \left\{1, \frac{\pi}{2\left|s_{0}-s_{1}\right|}\right\}
$$

Prove that f is a polynomial.
Prove that the assumption on $\tau(f)$ is optimal.
6. (a) Let f satisfy the assumptions. Using exercise 3 above, we deduce from the assumption $\tau(f)<1$ that the sets

$$
\left\{n \geq 0 \mid f^{(2 n+1)}\left(s_{0}\right) \neq 0\right\} \text { and }\left\{n \geq 0 \mid f^{(2 n)}\left(s_{1}\right) \neq 0\right\}
$$

are finite. Define, for $n \geq 0$,

$$
\widehat{M}_{n}(z)=\left(s_{1}-s_{0}\right)^{2 n} M_{n}\left(\frac{z}{s_{1}-s_{0}}\right)
$$

Hence

$$
P(z)=\sum_{n=0}^{\infty}\left(f^{(2 n)}\left(s_{1}\right) \widehat{M}_{n}\left(z-s_{0}\right)+f^{(2 n+1)}\left(s_{0}\right) \widehat{M}_{n+1}^{\prime}\left(z-s_{1}\right)\right)
$$

is a polynomial satisfying

$$
P^{(2 n+1)}\left(s_{0}\right)=f^{(2 n+1)}\left(s_{0}\right) \text { and } P^{(2 n)}\left(s_{1}\right)=f^{(2 n)}\left(s_{1}\right) \text { for all } n \geq 0
$$

The function $\tilde{f}(z)=f(z)-P(z)$ has the same exponential type as f and satisfies

$$
\tilde{f}^{(2 n+1)}\left(s_{0}\right)=\tilde{f}^{(2 n)}\left(s_{1}\right)=0 \text { for all } n \geq 0
$$

Set

$$
\hat{f}(z)=\tilde{f}\left(s_{0}+z\left(s_{1}-s_{0}\right)\right)
$$

so that

$$
\hat{f}^{(2 n+1)}(0)=\hat{f}^{(2 n)}(1)=0 \text { for all } n \geq 0
$$

The exponential types of f and \hat{f} are related by

$$
\tau(\hat{f})=\left|s_{1}-s_{0}\right| \tau(f)
$$

From the assumption on the upper bound for $\tau(f)$ we deduce $\tau(\hat{f})<\pi / 2$. From Whittacker's Theorem (course 2 p .37) we deduce that $\hat{f}(z)$ is a polynomial, hence f also.
(b) The function

$$
f(z)=\frac{\operatorname{sh}\left(z-s_{1}\right)}{\operatorname{ch}\left(s_{0}-s_{1}\right)}
$$

has exponential type 1 and satisfies $f^{\prime}\left(s_{0}\right)=1, f\left(s_{1}\right)=0$ and $f^{\prime \prime}=f$, hence $f^{(2 n+1)}\left(s_{0}\right)=1$ and $f^{(2 n)}\left(s_{1}\right)=0$ for all $n \geq 0$.

The function

$$
f(z)=\cos \left(\frac{\pi}{2} \cdot \frac{z-s_{0}}{s_{1}-s_{0}}\right)
$$

has exponential type $\frac{\pi}{2\left|s_{1}-s_{0}\right|}$ and satisfies $f^{(2 n+1)}\left(s_{0}\right)=f^{(2 n)}\left(s_{1}\right)=0$ for all $n \geq 0$.
7. Recall Abel's polynomials $P_{0}(z)=1$,

$$
P_{n}(z)=\frac{1}{n!} z(z-n)^{n-1} \quad(n \geq 1)
$$

Let ω be the positive real number defined by $\omega \mathrm{e}^{\omega+1}=1$. The numerical value is $\omega=0.278464542 \ldots$
(a) For $t \in \mathbb{C},|t|<\omega$ and $z \in \mathbb{C}$, check

$$
\mathrm{e}^{t z}=\sum_{n \geq 0} t^{n} \mathrm{e}^{n t} P_{n}(z)
$$

where the series in the right hand side is absolutely and uniformly convergent on any compact of \mathbb{C}.
Hint. Let $t \in \mathbb{R}$ satisfy $0<t<\omega$ and let $z \in \mathbb{R}$. For $n \geq 0$, define

$$
R_{n}(z)=\mathrm{e}^{t z}-\sum_{k=0}^{n-1} t^{k} \mathrm{e}^{k t} P_{k}(z)
$$

Check $R_{n}(0)=0, R_{n}^{\prime}(z)=R_{n-1}(z-1)$, so that

$$
R_{n}(z)=t \mathrm{e}^{t} \int_{0}^{z} R_{n-1}(w-1) \mathrm{d} w=\left(t \mathrm{e}^{t}\right)^{n} \int_{0}^{z} \mathrm{~d} w_{1} \int_{1}^{w_{1}} \mathrm{~d} w_{2} \cdots \int_{n-1}^{w_{n-1}} R_{0}\left(w_{n}-1\right) \mathrm{d} w_{n}
$$

Deduce

$$
\left|R_{n}(z)\right| \leq\left(t \mathrm{e}^{t}\right)^{n} \frac{(|z|+n)^{n}}{n!} \mathrm{e}^{t|z|}
$$

(see Gontcharoff 1930, p. 11-12] and Whittaker, 1933. Chap. III, (8.7)]).
(b) Let f be an entire function of finite exponential type $<\omega$. Prove

$$
f(z)=\sum_{n \geq 0} f^{(n)}(n) P_{n}(z),
$$

where the series in the right hand side is absolutely and uniformly convergent on any compact of \mathbb{C}.
(c) Prove that there is no nonzero entire function f of exponential type $<\omega$ satisfying $f^{(n)}(n)=0$ for all $n \geq 0$.

Give an example of a nonzero entire function f of finite exponential type satisfying $f^{(n)}(n)=0$ for all $n \geq 0$.
(d) Let $t \in \mathbb{C}$ satisfy $|t|<\omega$. Set $\lambda=t \mathrm{e}^{t}$. Let f be an entire function of exponential type $<\omega$ which satisfies

$$
f^{\prime}(z)=\lambda f(z-1)
$$

Prove

$$
f(z)=f(0) \mathrm{e}^{t z}
$$

7. (a) By analytic continuation it suffices to prove the formula for $0<t<\omega$ and $z \in \mathbb{R}$. Fix such a t. For $n \geq 0$ and $z \in \mathbb{R}$, define

$$
R_{n}(z)=e^{t z}-\sum_{k=0}^{n-1} t^{k} e^{k t} P_{k}(z)
$$

We have $R_{0}(z)=e^{t z}-1$ and for $n \geq 1$

$$
R_{n}^{\prime}(z)=t e^{t} R_{n-1}(z-1)
$$

with $R_{n}(0)=0$, so that

$$
R_{n}(z)=t e^{t} \int_{0}^{z} R_{n-1}(w-1) \mathrm{d} w=\left(t e^{t}\right)^{n} \int_{0}^{z} \mathrm{~d} w_{1} \int_{1}^{w_{1}} \mathrm{~d} w_{2} \cdots \int_{n-1}^{w_{n-1}} e^{t w_{n}} \mathrm{~d} w_{n}
$$

We deduce, for $z \in \mathbb{R}$ and $n \geq 0$,

$$
\left|R_{n}(z)\right| \leq\left(t e^{t}\right)^{n} \frac{(|z|+n)^{n}}{n!} e^{t|z|}
$$

(for the details, see (see Gontcharoff 1930, p. 11-12] and Whittaker, 1933, Chap. III, (8.7)]). Stirling's formula shows that the assumption $t e^{t+1}<1$ implies $R_{n}(z) \rightarrow 0$ as $n \rightarrow \infty$.
(b) Let

$$
f(z)=\sum_{n \geq 0} \frac{a_{n}}{n!} z^{n}
$$

be an entire function of exponential type $\tau(f)$. The Laplace transform of f, viz.

$$
F(t)=\sum_{n \geq 0} a_{n} t^{-n-1}
$$

is analytic in the domain $|t|>\tau(f)$. From Cauchy's residue Theorem, it follows that for $r>\tau(f)$ we have

$$
f(z)=\frac{1}{2 \pi i} \int_{|t|=r} e^{t z} F(t) \mathrm{d} t
$$

We replace $e^{t z}$ by the series in the formula proved in (a) and get, for $\tau(f)<r<\omega$,

$$
f(z)=\frac{1}{2 \pi i} \int_{|t|=r} \sum_{n \geq 0} t^{n} e^{n t} P_{n}(z) F(t) \mathrm{d} t=\sum_{n \geq 0} P_{n}(z) \frac{1}{2 \pi i} \int_{|t|=r} t^{n} e^{n t} F(t) \mathrm{d} t .
$$

For $n \geq 0$ we have

$$
f^{(n)}(z)=\frac{1}{2 \pi i} \int_{|t|=r} t^{n} e^{t z} F(t) \mathrm{d} t
$$

hence

$$
f^{(n)}(n)=\frac{1}{2 \pi i} \int_{|t|=r} t^{n} e^{n t} F(t) \mathrm{d} t,
$$

so that

$$
f(z)=\sum_{n \geq 0} f^{(n)}(n) P_{n}(z)
$$

(c) From (b), one deduces that an entire function f of exponential type $<\omega$ satisfying $f^{(n)}(n)=0$ for all $n \geq 0$ is the zero function.

The function $\sin (\pi z / 2)$ has type $\pi / 2$ and satisfies $f^{(n)}(n)=0$ for all $n \geq 0$. Notice that $\omega<\pi / 2=1.570 \ldots$
(d) The function $g(z)=f(z)-f(0) \mathrm{e}^{t z}$ satisfies $g(0)=0$ and $g^{\prime}(z)=\lambda g(z-1)$, hence $g^{(n)}(n)=0$ for all $n \geq 0$. Since g has an exponential type $<\omega$, we deduce from (c) that $g=0$.

Références

[Gontcharoff 1930] W. Gontcharoff, "Recherches sur les dérivées successives des fonctions analytiques. Généralisation de la série d'Abel", Ann. Sci. École Norm. Sup. (3) 47 (1930), 1-78. MR Zbl
[Whittaker, 1933] Whittaker, J. M. (1933). On Lidstone's series and two-point expansions of analytic functions. Proc. Lond. Math. Soc. (2), 36 :451-469.
https://doi.org/10.1112/plms/s2-36.1.451

