
Michel Waldschmidt Interpolation, January 2021

Exercices: hints, solutions, comments

Fourth course

1. Answer the quizz p. 29.

1. The definition of uz when u is a positive real number and z a complex number is uz =
exp(z log u) with the real logarithm of u.When u 6= 1, this is an entire function of z of order 1
and exponential type | log u|. When u is a nonzero complex number which is not real > 0, for
instance a negative real number, the definition of uz depends on the choice of a logarithm of
u, namely a complex number, say log u, such that exp(log u) = u. There are infinitely many of
them, we selects one. Then the exponential type of this function uz = exp(z log u) is | log u|.

Since the Golden ratio φ = 1+
√
5

2 is > 0, the function φz is well defined by φz = exp(z log φ),
it has exponential type log φ = 0.481 . . .

However since φ̃ = −φ−1 = −0.618 · · · < 0, the definition of φ̃z depends on a choice of the
logarithm of the negative number φ̃. The minimal modulus of such a logarithm is

τ =
(

(log |φ̃|)2 + π2
)1/2

= 3.178 . . .

when log φ̃ = log |φ̃| ± iπ. With such a choice, the type of φ̃z = exp(z log φ̃) is τ .

2. Show that there exist entire functions of arbitrarily large order giving counterexamples to Bieberbach’s claim
p. 44.

2. For k ≥ 1, set a(z) = 1
2z(z− 1)(z− 2) · · · (z− 4k+ 1). The function f(z) = ea(z) has order 4k

and type τ4k(f) = 1/2.
There are 2k even factors and 2k odd factors, hence modulo 2Z[z] the polynomial a(z) is

congruent to z2k(z2k − 1). The coefficients of z2i+1 are even, hence a′(z) ∈ Z[z]. We deduce that
f(z) = ea(z) is a k–point Hurwitz entire function.

For k = 1, this reduces to the example p. 45.

3. Let f be an entire function. Let A ≥ 0. Assume

lim sup
r→∞

e−r√r|f |r <
e−A

√
2π
·

(a) Prove that there exists n0 > 0 such that, for n ≥ n0 and for all z ∈ C in the disc |z| ≤ A, we have

|f (n)(z)| < 1.

(b) Assume that f is transcendental. Deduce that the set{
(n, z0) ∈ N× C | |z0| ≤ A, f (n)(z0) ∈ Z \ {0}

}
is finite.

3.
(a) By assumption, there exists η > 0 such that, for n sufficiently large, we have

|f |n < (1− η)
en−A√

2πn
·



We use Cauchy’s inequalities
|f (n)(z0)|

n!
rn ≤ |f |r+|z0|,

(which are valid for all z0 ∈ C, n ≥ 0 and r > 0) with r = n−A : for |z| ≤ A, we have

|f (n)(z)| ≤ n!

(n−A)n
|f |n.

Hence Stirling’s inequality
n! ≥ nne−n

√
2πn

yields

|f (n)(z)| ≤ (1− η)e−A+1/(12n)

(
1− A

n

)−n
.

For n sufficiently large, the right hand side is < 1.
(b) We need to assume that f is transcendental : indeed, if f is a polynomial with leading term
a0z

d where d!a0 ∈ Z \ {0}, then f (d)(z0) = d!a0 ∈ Z \ {0} for all z0 with |z0| ≤ A, and hence the
set is infinite.

The condition f (n)(z0) ∈ Z \ {0} implies |f (n)(z0)| ≥ 1. From (a) we deduce that there exists
n0 such that the conditions (n, z0) ∈ N × C, |z0| ≤ A and f (n)(z0) ∈ Z \ {0}

}
imply n ≤ n0.

Fix n ≤ n0. The function f is bounded on the disc |z| ≤ A, say |f(z)| ≤ B for |z| ≤ A. Let
b ∈ Z \ {0}, |b| ≤ B. Since f (n) is not constant, the function f (n)(z) − b is not zero, it has only
finitely many zeroes in the disc |z| ≤ A and therefore the set of z0 with |z0| ≤ A such that
f (n)(z0) = b is finite.

4. Let (en)n≥1 be a sequence of elements in {1,−1}. Check that the function

f(z) =
∑
n≥0

en

2n!
z2
n

is a transcendental entire functions which satisfies

lim sup
r→∞

√
re−r|f |r =

1
√
2π
·

4. Let ε > 0 and let r tend to infinity. Let N be the integer such that

2N−
1
2 ≤ r < 2N+ 1

2 .

For |z| = r, we split the sum defining f(z) in three subsums. Set

S1 =
∑
n<N

1

2n!
r2
n

, S2 =
1

2N !
r2
N

, S3 =
∑
n>N

1

2n!
r2
n

.

We claim
max{S1, S3} ≤ ε

er√
2πr

and
S2 ≤ (1 + ε)

er√
2πr

.

This will prove

lim sup
r→∞

√
re−r|f |r ≤

1√
2π
·
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With r = 2N we get equality.
Set M = 2N , so that M√

2
≤ r < M

√
2.. Write M = αr with 1√

2
≤ α <

√
2. Stirling’s formula

yields
rM

M !
=

(
eα

αα

)r
1√

2παr
(1 + o(r)).

The function x− x log x for x > 0 has it maximum at x = 1, this maximum is 1. Hence eα

αα ≤ e
with equality at α = 1. We deduce

rM

M !
≤ er√

2πr
(1 + o(r)).

The upper bound for S2 follows. For S1 and S3, use

S1 ≤
N

2N−1!
r2
N−1

and S3 ≤
2

(2M)!
r2M

and apply Stirling’s formula as above.

5. Let s0 and s1 be two complex numbers and f an entire function satisfying f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z for
all sufficiently large n. Assume the exponential type τ(f) satisfies

τ(f) < min

{
1,

π

|s0 − s1|

}
.

Prove that f is a polynomial.
Prove that the assumption on τ(f) is optimal.

5. (a) Let f satisfy the assumptions. Using exercise 3 above, we deduce from the assumption
τ(f) < 1 that the sets

{n ≥ 0 | f (2n)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. Define, for n ≥ 0,

Λ̂n(z) = (s1 − s0)2nΛn

(
z

s1 − s0

)
.

Hence

P (z) =

∞∑
n=0

(
f (2n)(s1)Λ̂n(z − s0)− f (2n)(s0)Λ̂n(z − s1)

)
is a polynomial satisfying

P (2n)(s0) = f (2n)(s0) and P (2n)(s1) = f (2n)(s1) for all n ≥ 0.

The function f̃(z) = f(z)− P (z) has the same exponential type as f and satisfies

f̃ (2n)(s0) = f̃ (2n)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n)(0) = f̂ (2n)(1) = 0 for all n ≥ 0.
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The exponential types of f and f̂ are related by

τ(f̂) = |s1 − s0|τ(f).

From the assumption on the upper bound for τ(f) we deduce τ(f̂) < π. From Poritsky’s Theorem
(course 2 p. 29) we deduce that f̂(z) is a polynomial, hence f also.
(b) The function

f(z) =
sh(z − s1)

sh(s0 − s1)

has exponential type 1 and satisfies f(s0) = 1, f(s1) = 0 and f ′′ = f , hence f (2n)(s0) = 1 and
f (2n)(s1) = 0 for all n ≥ 0.

The function
f(z) = sin

(
π
z − s0
s1 − s0

)
has exponential type π

|s1−s0| and satisfies f (2n)(s0) = f (2n)(s1) = 0 for all n ≥ 0.

6. Let s0 and s1 be two complex numbers and f an entire function satisfying f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z
for all sufficiently large n. Assume the exponential type τ(f) satisfies

τ(f) < min

{
1,

π

2|s0 − s1|

}
.

Prove that f is a polynomial.
Prove that the assumption on τ(f) is optimal.

6. (a) Let f satisfy the assumptions. Using exercise 3 above, we deduce from the assumption
τ(f) < 1 that the sets

{n ≥ 0 | f (2n+1)(s0) 6= 0} and {n ≥ 0 | f (2n)(s1) 6= 0}

are finite. Define, for n ≥ 0,

M̂n(z) = (s1 − s0)2nMn

(
z

s1 − s0

)
.

Hence

P (z) =

∞∑
n=0

(
f (2n)(s1)M̂n(z − s0) + f (2n+1)(s0)M̂ ′n+1(z − s1)

)
is a polynomial satisfying

P (2n+1)(s0) = f (2n+1)(s0) and P (2n)(s1) = f (2n)(s1) for all n ≥ 0.

The function f̃(z) = f(z)− P (z) has the same exponential type as f and satisfies

f̃ (2n+1)(s0) = f̃ (2n)(s1) = 0 for all n ≥ 0.

Set
f̂(z) = f̃

(
s0 + z(s1 − s0)

)
,

so that
f̂ (2n+1)(0) = f̂ (2n)(1) = 0 for all n ≥ 0.
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The exponential types of f and f̂ are related by

τ(f̂) = |s1 − s0|τ(f).

From the assumption on the upper bound for τ(f) we deduce τ(f̂) < π/2. From Whittacker’s
Theorem (course 2 p. 37) we deduce that f̂(z) is a polynomial, hence f also.
(b) The function

f(z) =
sh(z − s1)

ch(s0 − s1)

has exponential type 1 and satisfies f ′(s0) = 1, f(s1) = 0 and f ′′ = f , hence f (2n+1)(s0) = 1
and f (2n)(s1) = 0 for all n ≥ 0.

The function
f(z) = cos

(
π

2
· z − s0
s1 − s0

)
has exponential type π

2|s1−s0| and satisfies f (2n+1)(s0) = f (2n)(s1) = 0 for all n ≥ 0.

7. Recall Abel’s polynomials P0(z) = 1,

Pn(z) =
1

n!
z(z − n)n−1 (n ≥ 1).

Let ω be the positive real number defined by ωeω+1 = 1. The numerical value is ω = 0.278 464 542 . . .
(a) For t ∈ C, |t| < ω and z ∈ C, check

etz =
∑
n≥0

tnentPn(z),

where the series in the right hand side is absolutely and uniformly convergent on any compact of C.
Hint. Let t ∈ R satisfy 0 < t < ω and let z ∈ R. For n ≥ 0, define

Rn(z) = etz −
n−1∑
k=0

tkektPk(z).

Check Rn(0) = 0, R′n(z) = Rn−1(z − 1), so that

Rn(z) = tet
∫ z

0
Rn−1(w − 1)dw = (tet)n

∫ z

0
dw1

∫ w1

1
dw2 · · ·

∫ wn−1

n−1
R0(wn − 1)dwn.

Deduce

|Rn(z)| ≤ (tet)n
(|z|+ n)n

n!
et|z|

(see [Gontcharoff 1930, p. 11-12] and [Whittaker, 1933, Chap. III, (8.7)]).
(b) Let f be an entire function of finite exponential type < ω. Prove

f(z) =
∑
n≥0

f (n)(n)Pn(z),

where the series in the right hand side is absolutely and uniformly convergent on any compact of C.
(c) Prove that there is no nonzero entire function f of exponential type < ω satisfying f (n)(n) = 0 for all n ≥ 0.
Give an example of a nonzero entire function f of finite exponential type satisfying f (n)(n) = 0 for all n ≥ 0.
(d) Let t ∈ C satisfy |t| < ω. Set λ = tet. Let f be an entire function of exponential type < ω which satisfies

f ′(z) = λf(z − 1).

Prove
f(z) = f(0)etz .

7. (a) By analytic continuation it suffices to prove the formula for 0 < t < ω and z ∈ R. Fix
such a t. For n ≥ 0 and z ∈ R, define

Rn(z) = etz −
n−1∑
k=0

tkektPk(z).
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We have R0(z) = etz − 1 and for n ≥ 1

R′n(z) = tetRn−1(z − 1)

with Rn(0) = 0, so that

Rn(z) = tet
∫ z

0

Rn−1(w − 1)dw = (tet)n
∫ z

0

dw1

∫ w1

1

dw2 · · ·
∫ wn−1

n−1
etwndwn.

We deduce, for z ∈ R and n ≥ 0,

|Rn(z)| ≤ (tet)n
(|z|+ n)n

n!
et|z|

(for the details, see (see [Gontcharoff 1930, p. 11-12] and [Whittaker, 1933, Chap. III, (8.7)]).
Stirling’s formula shows that the assumption tet+1 < 1 implies Rn(z)→ 0 as n→∞.
(b) Let

f(z) =
∑
n≥0

an
n!
zn

be an entire function of exponential type τ(f). The Laplace transform of f , viz.

F (t) =
∑
n≥0

ant
−n−1,

is analytic in the domain |t| > τ(f). From Cauchy’s residue Theorem, it follows that for r > τ(f)
we have

f(z) =
1

2πi

∫
|t|=r

etzF (t)dt.

We replace etz by the series in the formula proved in (a) and get, for τ(f) < r < ω,

f(z) =
1

2πi

∫
|t|=r

∑
n≥0

tnentPn(z)F (t)dt =
∑
n≥0

Pn(z)
1

2πi

∫
|t|=r

tnentF (t)dt.

For n ≥ 0 we have

f (n)(z) =
1

2πi

∫
|t|=r

tnetzF (t)dt,

hence
f (n)(n) =

1

2πi

∫
|t|=r

tnentF (t)dt,

so that
f(z) =

∑
n≥0

f (n)(n)Pn(z).

(c) From (b), one deduces that an entire function f of exponential type < ω satisfying f (n)(n) = 0
for all n ≥ 0 is the zero function.

The function sin(πz/2) has type π/2 and satisfies f (n)(n) = 0 for all n ≥ 0. Notice that
ω < π/2 = 1.570 . . .
(d) The function g(z) = f(z)−f(0)etz satisfies g(0) = 0 and g′(z) = λg(z−1), hence g(n)(n) = 0
for all n ≥ 0. Since g has an exponential type < ω, we deduce from (c) that g = 0.
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